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Abstract. One difficulty in the cryptanalysis of the Advanced Encryp-
tion Standard AES is the tension between operations in the two fields
GF (28) and GF (2). This paper outlines a new approach that avoids this
conflict. We define a new block cipher, the BES, that uses only simple
algebraic operations in GF (28). Yet the AES can be regarded as being
identical to the BES with a restricted message space and key space, thus
enabling the AES to be realised solely using simple algebraic operations
in one field GF (28). This permits the exploration of the AES within a
broad and rich setting. One consequence is that AES encryption can be
described by an extremely sparse overdetermined multivariate quadratic
system over GF (28), whose solution would recover an AES key.
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1 Introduction

Rijndael [7, 8] was chosen as the Advanced Encryption Standard (AES) and
published as FIPS 197 [21] on 26 November 2001. The AES is carefully designed
to resist standard block cipher attacks [1, 18]. Here we move our attention to a
cipher that is an extension of AES, but which offers one particular advantage.
All of the operations in this new cipher, the BES, are entirely described using
very simple operations in GF (28). Thus while the AES is embedded within the
BES, and while the BES fully respects encryption with the AES, there are no
GF (2)8 operations.

The properties of this new cipher are intimately related to the properties of
the AES, as the AES is essentially the BES with a restricted message and key
space. The AES is, in essence, woven into the fabric of the BES. Yet, in many
ways, the new cipher is easier to analyse. It is certainly easier to describe; one
round of the cipher consists exclusively of inversion in GF (28), matrix multipli-
cation in GF (28), and key addition in GF (28).

By recasting the AES in this way we highlight some important structural
features of the AES. We illustrate this with a differential-type effect in the BES
that seems surprising given the design principles of the AES. Furthermore, we



show that the AES preserves algebraic curves and that it can be expressed as a
very simple system of multivariate quadratic equations over GF (28). It is entirely
possible that such a new approach might offer significant improvements to the
cryptanalysis of the AES.

2 Previous Work and Notation

Throughout the AES process, Rijndael (the eventual AES) received considerable
cryptanalytic attention [10, 12, 17]. The simplicity of Rijndael was emphasized
by its designers [7, 8], and much work has concentrated on the structural prop-
erties of the cipher [9, 11, 15, 19, 20, 23, 24].

In this paper we introduce a new technique which further simplifies analysis
of the AES. While the AES encryption process is typically described using oper-
ations on an array of bytes, we represent the data as column vectors, so matrix
multiplication of such a column vector occurs on the left. We regard a byte as
an element of the binary field defined by the irreducible “Rijndael” polynomial
X8 +X4 +X3 +X + 1. We denote this field by F and a root of this polynomial
by θ, so

F = GF (28) =
GF (2)[X]

(X8 +X4 +X3 +X + 1)
= GF (2)(θ).

Each byte therefore represents a polynomial in θ and we adopt the convention
that the most significant bit in a byte (the θ7 term) is represented by the left-
most, and most significant, bit of the hexadecimal representation of a byte.

The version of the AES we consider has a 128-bit or 16-byte message and
key space, though our comments are more generally applicable. The new cipher
BES has a 128-byte message and key space. We later define a restriction of the
BES spaces to a subset of size 2128 that corresponds to the AES. We denote
these three sets by A, B and BA respectively, so

A State space of the AES Vector space F16

B State space of the BES Vector space F128

BA Subset of B corresponding to A Subset of F128.

3 The Basic Structure of the AES

We refer to FIPS 197 [21] for a full description of the cipher, but we list the
significant steps here. We concentrate our attentions on a typical round; the first
and last rounds have a different (but related) form that is easily assimilated. We
consider the basic version of the AES, which encrypts a 16-byte block using a
16-byte key with 10 encryption rounds.

The input to the AES round function can be viewed as a rectangular array of
bytes or, equivalently, as a column vector of bytes. Throughout the encryption
process this byte-structure is fully respected. The AES specification defines a
round in terms of the following three transformations.



1. The AES S-Box. The value of each byte in the array is substituted accord-
ing to a table look-up. This table look up S[·] is the combination of three
transformations.
(a) The input w is mapped to x = w(−1) where w(−1) is defined by

w(−1) = w254 =
{
w−1 w 6= 0

0 w = 0

Thus “AES inversion” is identical to standard field inversion in F for
non-zero field elements with 0(−1) = 0.

(b) The intermediate value x is regarded as a GF (2)-vector of dimension 8
and transformed using an (8 × 8) GF (2)-matrix LA. The transformed
vector LA · x is then regarded in the natural way as an element of F.

(c) The output of the AES S-Box is (LA · x) + 63, where addition is with
respect to GF (2).

2. The AES linear diffusion (mixing) layer.
(a) Each row of the array is rotated by a certain number of byte positions.
(b) Each column of the array is considered to be an F-vector, and a column

y is transformed to the column C · y, where C is a (4× 4) F-matrix.
3. The AES subkey addition. Each byte of the array is added (with respect

to GF (2)) to a byte from the corresponding array of round subkeys.

The additive constant (63) in the AES S-box can be removed by incorporat-
ing it within a (slightly) modified key schedule [19]. For simplicity, we use this
description of the AES in this paper.

4 The Big Encryption System (BES)

We introduce a new iterated block cipher, the Big Encryption System (BES),
which operates on 128-byte blocks with a 16-byte key. Both the AES and the BES
are defined in terms of bytes and we now describe the common mathematical
framework for both ciphers.

Both the AES and the BES use a state vector of bytes, which is transformed
by the basic operations within a round. In both cases, the plaintext is the input
state vector while the ciphertext is the output state vector. As described in
Section 2, the state spaces of the AES and the BES are the vector spaces A = F16

and B = F128 respectively. We now describe the basic techniques required to
establish the relationship between the AES and the BES.

Inversion. The inversion operation is easily described. For a ∈ F, it is identical
to standard field inversion for non-zero field elements with 0(−1) = 0. For an
n-dimensional vector a = (a0, . . . , an−1) ∈ Fn, we view inversion as a compo-
nentwise operation and set

a(−1) = (a(−1)
0 , . . . , a

(−1)
n−1 ).



Vector conjugates. For any element a ∈ F we can define the vector conjugate
of a, ã, as the vector of the eight GF (2)-conjugates of a, so

ã =
(
a20

, a21
, a22

, a23
, a24

, a25
, a26

, a27
)
.

We use a vector conjugate mapping φ from Fn to a subset of F8n. For n = 1 and
a ∈ F, we have

ã = φ(a) =
(
a20

, a21
, a22

, a23
, a24

, a25
, a26

, a27
)
.

This definition extends in the obvious way to a vector conjugate mapping φ
from Fn to a subset of F8n. The n-dimensional vector a = (a0, . . . , an−1) ∈ Fn

is mapped to

ã = φ(a) = (φ(a0), . . . , φ(an−1)) .

The vector conjugate mapping φ has desirable algebraic properties, namely
that it is additive and preserves inverses, so

φ(a + a′) = φ(a) + φ(a′) and
φ(a−1) = φ(a)−1.

When each successive set of eight components in a ∈ F8n form an ordered
set of GF (2)-conjugates, we say that a has the conjugacy property. Such vectors
lie in Im(φ), and we can consider φ−1 : Im(φ) → Fn as an extraction mapping
which recovers the basic vector from a vector conjugate.

Embedding the AES state space in the BES state space. Any plaintext,
ciphertext, intermediate text, or subkey for the AES is an element of the state
space A. Similarly, any plaintext, ciphertext, intermediate text, or subkey for
the BES is an element of the state space B.

We can use the vector conjugate map φ to embed any element of the AES
state space A into the BES state space B. We define

BA = φ(A) ⊂ B to be the AES subset of BES,

that is the embedded image of the AES state space in the BES state space.
Elements of BA, that is embedded images of AES states or subkeys, have the
vector conjugacy property. Furthermore, BA is an additively closed set that also
preserves inverses.

In the following sections we describe the cipher BES. This is done in such a
way that the “commuting” diagram in Figure 1 is fully respected.



A
φ−→ BA

↓ ↓
k → AES BES ← φ(k)

↓ ↓

A
φ−1

←− BA

Fig. 1. The relationship between the AES and the BES. The important feature of the
BES is that it is defined exclusively using simple operations in one field, GF (28).

4.1 AES and BES

As previously described, we regard a state vector of the AES to be an element
a ∈ A. We further regard each round subkey as an element ki ∈ A. We do
not use the standard AES way of representing an element a as a square array.
Instead we view the state vector a as a column vector, where

a =

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

= (a00, . . . , a30, a01, . . . , a31, . . . , a33)T .

For the BES, we also view the state vector b ∈ B as a column vector where

b = (b000, . . . , b007, b100, . . . , b107, . . . , . . . , b330, . . . , b337)T .

It should be obvious how we intend to use the embedding mapping φ. We set

φ(aij) = (bij0, . . . , bij7).

Each basic operation in a round of the AES describes a bijective mapping on
A. These can be readily replaced with similar operations in the BES. Our aim
in doing this is to ensure that every operation (including the GF (2)-linear map
from the AES S-box) is expressed using simple algebraic operations over F.

Subkey addition. This is obvious for both the AES and the BES. For the
AES we combine the state vector a ∈ A with an AES subkey (kA)i ∈ A by
a 7→ a + (kA)i. We do exactly the same in BES and we combine the state vector
b ∈ B with a subkey (kB)i ∈ B by b 7→ b + (kB)i. We consider the generation
of the BES subkeys below.

S-box inversion. As inversion operates componentwise on bytes, it is just as
easy to describe in the BES as the AES. In the AES, inversion can be viewed
as a componentwise vector inversion of the state vector a ∈ A. Thus the AES
inversion operation is given by a 7→ a(−1). This can be translated in the obvious
manner, and for b ∈ B, inversion in the BES is given by b 7→ b(−1).



Row operation. The AES RowShift operation permutes the bytes in the array.
Clearly this process can be considered as a transformation of the components of
a column vector a ∈ A. It is straightforward to represent this transformation as
multiplication of the state vector a ∈ A by a (16×16) F-matrix RA. Consider the
equivalent operation in the BES. It is equally straightforward to represent this
transformation as multiplication of the state vector b ∈ B by a (128 × 128) F-
matrix RB . In moving from RA to RB we only need ensure that vector conjugates
are moved as a single entity.

Column operation. The AES MixColumn operation is defined using a (4× 4)
F-matrix CA. A column y ∈ F4 of the conceptual state array is transformed into
a replacement column z ∈ F4 by

z = CA · y =


θ (θ + 1) 1 1
1 θ (θ + 1) 1
1 1 θ (θ + 1)

(θ + 1) 1 1 θ

 · y =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

 · y.
We can readily view this as a transformation of the AES state space A by the
(16×16) F-matrix transformation MixA, where MixA is a block diagonal matrix
with 4 identical blocks CA, so MixA = Diag4(CA). Consider now the equivalent
transformation within the BES. Our aim is to replicate the actions of the AES,
but to maintain the condition that each byte in the AES is represented by a
conjugate vector in the BES. To do this we consider eight versions of the matrix
CA. These versions are denoted by C(k)

B and they are defined as

C
(k)
B =


θ2

k

(θ + 1)2
k

1 1
1 θ2

k

(θ + 1)2
k

1
1 1 θ2

k

(θ + 1)2
k

(θ + 1)2
k

1 1 θ2
k

 for k = 0, . . . , 7,

so C
(0)
B = CA. We note that C(k)

B is an MDS matrix, thereby offering certain
diffusion properties [7, 8], and that if

(z0, z1, z2, z3)T = CA · (y0, y1, y2, y3)T then

(z2k

0 , z2k

1 , z2k

2 , z2k

3 )T = C
(k)
B ·

(
y2k

0 , y2k

1 , y2k

2 , y2k

3

)T

.

This provides a way of preserving the conjugacy property through the MixColumn
transformation in the BES. The matrices C(k)

B can be used to define the (128×
128) F-matrix MixB that respects the vector conjugate embedding mapping
φ : A → BA, so the action of MixColumn on bytes in the AES is replicated
by the action of MixB on vector conjugates in the BES. Under a simple basis
re-ordering, MixB is a block diagonal matrix comprising 32 (4×4) MDS matrices.



The S-box GF (2)-linear operation. In the AES, there is no easy way to
represent this transformation of the state space A as a matrix multiplication
However, in the BES there is a simple matrix representation of this operation.

The AES GF (2)-linear operation σA : F16 → F16 is defined using a function
f : F→ F that operates on each component of the state vector a, so

a = (a00, . . . , a33) 7→ σA(a) = (f(a00), . . . , f(a33)).

In the AES specification, f is defined by considering F = GF (28) as the vector
space GF (2)8. The transformation f is then represented by the action of an
(8× 8) GF (2) matrix LA where

LA =



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1


.

To accomplish the change from GF (28) to GF (2)8, the natural mapping ψ :
GF(28) → GF(2)8 is used in the AES. The componentwise AES GF (2)-linear
operation f : F → F is then defined by f(a) = ψ−1(LA(ψ(a))) for a ∈ F. It is
the need for the maps ψ and ψ−1 that complicates analysis of the AES.

However, there exists a polynomial with co-efficients in F which interpolates
f : F → F. This polynomial may be regarded as an equivalent definition of f .
Further, since f is an additive or linearized polynomial [16] on F, it is necessarily
described by a linear combination of conjugates. Thus we obtain

f(a) =
7∑

k=0

λka
2k

for a ∈ F,

where (λ0, λ1, λ2, λ3, λ4, λ5, λ6, λ7) = (05, 09, f9, 25, f4, 01, b5, 8f).

This polynomial is essentially given in [8] as part of the derivation of the related
S-Box interpolation polynomial [7, 8]. However, our interest is in separating out
the F-inversions from the rest of the F-linear round function, since this separa-
tion seems algebraically the most natural.

The GF (2)-linear operation from the AES S-box can now be defined in the
BES using an (8× 8) F-matrix. This matrix replicates the (AES) action of the
GF (2)-linear map on the first byte of a vector conjugate set while ensuring that



the property of vector conjugacy is preserved on the remaining bytes. We set

LB =



(λ0)2
0

(λ1)2
0

(λ2)2
0

(λ3)2
0

(λ4)2
0

(λ5)2
0

(λ6)2
0

(λ7)2
0

(λ7)2
1

(λ0)2
1

(λ1)2
1

(λ2)2
1

(λ3)2
1

(λ4)2
1

(λ5)2
1

(λ6)2
1

(λ6)2
2

(λ7)2
2

(λ0)2
2

(λ1)2
2

(λ2)2
2

(λ3)2
2

(λ4)2
2

(λ5)2
2

(λ5)2
3

(λ6)2
3

(λ7)2
3

(λ0)2
3

(λ1)2
3

(λ2)2
3

(λ3)2
3

(λ4)2
3

(λ4)2
4

(λ5)2
4

(λ6)2
4

(λ7)2
4

(λ0)2
4

(λ1)2
4

(λ2)2
4

(λ3)2
4

(λ3)2
5

(λ4)2
5

(λ5)2
5

(λ6)2
5

(λ7)2
5

(λ0)2
5

(λ1)2
5

(λ2)2
5

(λ2)2
6

(λ3)2
6

(λ4)2
6

(λ5)2
6

(λ6)2
6

(λ7)2
6

(λ0)2
6

(λ1)2
6

(λ1)2
7

(λ2)2
7

(λ3)2
7

(λ4)2
7

(λ5)2
7

(λ6)2
7

(λ7)2
7

(λ0)2
7


We can now represent the entire set of GF (2)-linear operations in the AES with
a (128× 128) F-matrix in the BES, LinB. Thus LinB is a block diagonal matrix
with 16 identical blocks LB, so LinB = Diag16(LB).

Key schedule. We can use the techniques from previous sections to describe
the key schedule for the BES. This effectively replicates the actions of the AES
key schedule, in which a 16-byte AES key kA provides eleven subkeys, each in
A. In the BES, a 128-byte BES key kB provides eleven subkeys, each in B.

The key schedule in the AES uses the same operations as the AES encryption
process, namely the GF (2)-linear map, componentwise inversion, byte rotation,
and addition. Thus the key schedule can also be described using the same simple
algebraic operations over F. Whenever a constant is required in the AES, we
use the embedded image of that constant in the BES. Whenever a byte in the
AES has to be moved to a different position, we ensure that the corresponding
vector conjugate is moved as a single entity in the BES. In this way, we ensure
that if a BES key the conjugacy property, then so do all its derived subkeys.
If the embedded image of the AES key kA is the BES key kB = φ(kA), then
(kB)i = φ((kA)i) for every round subkey, so the embedded images of an AES
subkey sequence form a BES subkey sequence.

Round function of BES. We have now completely described a round of BES.
If the inputs to the BES round function are b ∈ B and subkey (kB)i ∈ B, then
the BES round function is given by

RoundB(b, (kB)i) = MixB

(
RB

(
LinB

(
b(−1)

)))
+ (kB)i

= MB · (b(−1)) + (kB)i,

where MB is a (128×128) F-matrix performing linear diffusion within the BES.
Furthermore, if the inputs to the AES round function are a ∈ A and subkey
(kA)i ∈ A, then we have

RoundA(a, (kA)i) = φ−1 ( RoundB (φ(a), φ((kA)i) ) ) .



4.2 The relationship between the AES and the BES

The BES is a 128-byte block cipher, which consists entirely of simple algebraic
operations over F. It has the property that BA, the set of embedded images
of AES vectors, or equivalently the set of all BES inputs with the conjugacy
property, is closed under the action of the BES round function. Furthermore,
encryption in the BES fully respects encryption in the AES and the commuting
diagram given in Figure 1 holds. Thus the BES restricted to BA provides an
alternative description of the AES and analysis of the BES may well provide
additional insight into the AES.

5 Algebraic Observations on the BES

The round function of the BES, and hence essentially the AES, is given by

b 7→MB · b(−1) + (kB)i.

Thus a round of the AES is simply componentwise inversion and an affine trans-
formation with respect to the same field F = GF (28). This suggests many pos-
sible areas for future investigation. We offer some preliminary observations.

5.1 Linear diffusion in BES

The linear diffusion F-matrix MB of the BES is a sparse matrix and can be
analysed using similar techniques to those used in [19]. These were originally
used to analyse the related linear diffusion GF (2)-matrix (denoted by M in [19]).
However, this linear diffusion matrix (M) and the AES inversion are with respect
to different fields.

The minimum polynomial of MB is (X + 1)15, effectively the same as the
minimum polynomial of M . In some sense, the BES is structurally no more
complicated than the AES. Following [19], we find an F-matrix PB such that

RB = P−1
B ·MB · PB ,

where RB is essentially the Jordan form of MB. The matrix RB has 112 rows
with two ones and 16 rows with a single one while all other entries are zero.
It is effectively the simple matrix R given in [19], and has similar interesting
properties. The significant change here is that the properties ofMB are properties
in F and not GF (2). Such properties have the potential to interact directly with
the inversion operation. Many of these properties involve linear functionals or
parity equations. A parity equation is a row vector eT , and the parity of a vector
b ∈ B is eT · b =

∑127
i=0 ei · bi. We note a few interesting properties.

– MB has order 16.
– The columns of PB form a basis for B. In this basis, the action of the linear

diffusion layer is given by the very simple matrix MB.



– In particular, MB fixes a subspace of B of dimension 16. The intersection
with BA, the embedded AES state space, has 216 elements.

– The rows of P−1
B form linear functionals or parity equations (defined above)

that always evaluate to 0 or 1 on BA (by considering dual spaces).
– The set of parity equations whose value is fixed by MB form a 16-dimensional

vector subspace over F.

These observations may seem somewhat abstract, but they do have important
consequences. We discuss an example below in which these observations can be
used to illustrate certain differential properties of the BES.

5.2 Related encryptions in the BES.

As noted in Section 5.1, it is possible to find parity equations whose values are
fixed by MB , the linear diffusion layer of the BES. One example is

e = (

repeat 16 times︷ ︸︸ ︷
b4, fd, 17, 0e, 54, a0, f6, 52, . . .)T ,

for which eT = eT · MB, so eT · b = eT · (MB · b). We now describe some
interesting properties relating two plaintext-ciphertext pairs generated under
related subkey sequences. These properties hold with probability one and so
they can be appropriately extended to any number of rounds.

Suppose p has parity pe = eT · p under parity equation eT , so t · p has
parity tpe for any t ∈ F. Consider two state and subkey pairs p,ki ∈ B and
tp, t(−1)ki ∈ B (t 6= 0, 1). A typical BES round function is given by

p 7→MB · p(−1) + ki, and
t · p 7→ t−1MB · p(−1) + t−1ki.

When we consider the effect of the BES round function on the parities, we obtain

pe = (eT · p) 7→ eT ·MB · p(−1) + eT · ki = eT · p(−1) + eT · ki

= eT · (p(−1) + ki),
tpe = (eT · tp) 7→ eT · t−1MB · p(−1) + eT · t−1ki = eT · t−1p(−1) + eT · t−1ki

= t−1eT · (p(−1) + ki).

Thus if (pe, tpe) are the parities under eT , then after one round using subkeys
ki and t−1ki respectively, the respective parities are (p′e, t

−1p′e) for some p′e.
Hence if we encrypt two plaintexts (p, tp) under different sets of related subkey
sequences as detailed below, then we obtain two ciphertexts that are related by
their parities ce and tce.

Plaintext Parity Subkey sequence Ciphertext Parity
pe k0,k1,k2,k3 · · · ,k9k10 ce
tpe tk0, t

−1k1, tk2, t
−1k3, · · · , t−1k9, tk10 tce



Differential-type effect in BES. We can increase the sophistication slightly
and consider two pairs of plaintext p0,p1 ∈ B and tp0, tp1 ∈ B. The difference
in the first pair is p0 + p1 with parity pe = eT · (p0 + p1), and similarly the
parity of the difference in the second pair is tpe.

Plaintext Difference Parity Subkey sequence Ciphertext Difference Parity
eT · (p0 + p1) = pe k0,k1, · · · ,k10 ce

eT · (tp0 + tp1) = tpe tk0, t
−1k1, · · · , tk10 tce

Suppose we encrypt the two pairs of plaintexts under two sets of related
subkey sequences as detailed in the above table, then the plaintext and ciphertext
difference parities have the same relationship, as shown in the above table. This
relationship holds with probability one, so would be applicable for any number
of rounds. Thus there exists a probability one differential effect under related
subkey sequences in the BES in which every S-Box is active.

Relevance of these BES observations to the AES. These preliminary
observations do not apply when specific details of the key schedule are considered.
Even if they did, they would not apply directly to the AES for a rather subtle
reason. If (p, tp) ∈ B×B, then (p, tp) /∈ BA×BA; that is if p has the conjugacy
property, then tp cannot have the conjugacy property (t 6= 0, 1). Thus, if p is
an embedded AES plaintext, then tp cannot be an embedded AES plaintext.

However, these observations are very interesting for the light they shed on the
AES design philosophy [7, 8]. As far as linear and differential cryptanalysis are
concerned, the BES would be expected to have similar properties to the AES. In
particular, the diffusion in both has the same reliance on MDS matrices. However
in the BES, which is intricately entwined with the AES, we have exhibited a
differential-like property that occurs with certainty even though every S-Box is
active.

5.3 Preservation of algebraic curves

Each of the BES operations, namely “inversions” (ignoring 0-inversion for the
moment) and affine transformations over F, are simple algebraic transformations
of B. Thus each BES operation maps an algebraic curve defined on B = F128

to an isomorphic algebraic curve. For a given key 128-bit key k, more than half
(about 53%) of AES plaintexts are encrypted without “inverting” 0 (since 160
inversions are performed). Let Ak ⊂ A denote this set of AES plaintexts for
key k. If embedded plaintexts from Ak lie on a curve, then the corresponding
embedded ciphertexts lie on an isomorphic curve over F. Thus, the AES and
the BES can be considered to preserve algebraically simple curves over F with a
reasonable probability. In particular, the inversion and the affine transformation
of the BES round function map quadratic forms over F to quadratic forms over
F, so the AES can be described using a very simple system of multivariate
quadratic equations over F. We consider the consequences of this observation
below.



6 Multivariate Quadratic Equations

We now demonstrate that recovering an AES key is equivalent to solving par-
ticular systems of extremely sparse multivariate quadratic equations by express-
ing a BES (and hence an AES) encryption as such a system. The problem of
solving such systems of equations lies at the heart of several public key cryp-
tosystems [3, 22], and there has been some progress in providing solutions to
such problems [4, 5, 14]. Recently, Courtois and Pieprzyk [6] have suggested the
use of a system of multivariate quadratic equations over GF (2) to analyse the
AES. However, such a GF (2)-system derived directly from the AES is far more
complicated than the F-system derived from the BES.

6.1 A simple multivariate quadratic system for the AES

We first establish the notation that we need. We denote the plaintext and ci-
phertext by p ∈ B and c ∈ B respectively, and the state vectors before and after
the ith invocation of the inversion layer by wi ∈ B and xi ∈ B (0 ≤ i ≤ 9)
respectively. A BES encryption is then described by the following system of
equations:

w0 = p + k0,

xi = w(−1)
i for i = 0, . . . , 9,

wi = MBxi−1 + ki for i = 1, . . . , 9,
c = M∗Bx9 + k10,

where M∗B = RB · LinB = Mix−1
B · MB , since the final round in the BES

(equivalently the AES) does not use the MixColumn operation.
We now consider these equations componentwise. We first denote the matrix

MB by (α) and the matrix M∗B by (β). We represent the (8j +m)th component
of xi, wi and ki by xi,(j,m), wi,(j,m) and ki,(j,m) respectively. We can now express
the previous set of equations in the following way:

w0,(j,m) = p(j,m) + k0,(j,m),

xi,(j,m) = w
(−1)
i,(j,m) for i = 0, . . . , 9,

wi,(j,m) = (MBxi−1)(j,m) + ki,(j,m) for i = 1, . . . , 9,
c(j,m) = (M∗Bx9)(j,m) + k10,(j,m).

We assume that 0-inversion does not occur as part of the encryption or the
key schedule. This assumption is true for 53% of encryptions and 85% of 128-
bit keys, and even if the assumption is invalid, only a very few of the following
equations are incorrect. Under the stated assumption, the system of equations
can be written as:

0 = w0,(j,m) + p(j,m) + k0,(j,m),
0 = xi,(j,m)wi,(j,m) + 1 for i = 0, . . . , 9,
0 = wi,(j,m) + (MBxi−1)(j,m) + ki,(j,m) for i = 1, . . . , 9,
0 = c(j,m) + (M∗Bx9)(j,m) + k10,(j,m).



We thus obtain a collection of simultaneous multivariate quadratic equations
which fully describe a BES encryption. These are given for j = 0, . . . , 15 and
m = 0, . . . , 7 by:

0 = w0,(j,m) + p(j,m) + k0,(j,m),
0 = xi,(j,m)wi,(j,m) + 1 for i = 0, . . . , 9,
0 = wi,(j,m) + ki,(j,m) +

∑
(j′,m′) α(j,m),(j′,m′)xi−1,(j′,m′) for i = 1, . . . , 9,

0 = c(j,m) + k10,(j,m) +
∑

(j′,m′) β(j,m),(j′,m′)x9,(j′,m′).

A BES encryption can therefore be described as a multivariate quadratic system
using 2688 equations over F, of which 1280 are (extremely sparse) quadratic
equations and 1408 are linear (diffusion) equations. These equations comprise
5248 terms, made from 2560 state variables and 1408 key variables.

When we consider an AES encryption embedded in the BES framework,
we obtain more multivariate quadratic equations because the embedded state
variables of an AES encryption are in BA and possess the conjugacy property.
We thus obtain the following very simple multivariate quadratic equations for
j = 0, . . . , 15 and m = 0, . . . , 7 (where m+1 is interpreted modulo 8). We divide
these equations into linear equations and multivariate quadratic equations.

0 = w0,(j,m) + p(j,m) + k0,(j,m);
0 = wi,(j,m) + ki,(j,m) +

∑
(j′,m′) α(j,m),(j′,m′)xi−1,(j′,m′) for i = 1, . . . , 9,

0 = c(j,m) + k10,(j,m) +
∑

(j′,m′) β(j,m),(j′,m′)x9,(j′,m′).

0 = xi,(j,m)wi,(j,m) + 1 for i = 0, . . . , 9,
0 = x2

i,(j,m) + xi,(j,m+1) for i = 0, . . . , 9,
0 = w2

i,(j,m) + wi,(j,m+1) for i = 0, . . . , 9.

An AES encryption can therefore be described as an overdetermined multivari-
ate quadratic system using 5248 equations over F, of which 3840 are (extremely
sparse) quadratic equations and 1408 are linear equations. These encryption
equations comprise 7808 terms, made from 2560 state variables and 1408 key
variables. Furthermore, the AES key schedule can be expressed as a similar mul-
tivariate quadratic system. In its most sparse form, the key schedule system uses
2560 equations over F, of which 960 are (extremely sparse) quadratic equations
and 1600 are linear equations. These key schedule equations comprise 2368 terms
made from the 2048 variables, of which 1408 are basic key variables and 640 are
auxiliary variables. We can, of course, immediately reduce the sizes of these mul-
tivariate quadratic systems by using the linear equations to substitute for state
and key variables, though the resulting system is slightly less sparse.

6.2 Potential attack techniques

It is clear that an efficient method for the solution of this type of multivariate
quadratic system would give a cryptanalysis of the AES with potentially very
few plaintext-ciphertext pairs. While there is some connection to work on in-
terpolation attacks [13], techniques such as relinearisation [14] or the extended



linearisation or XL algorithm [5] have been specifically developed for the solution
of such systems. A simple overview of these techniques is given below.

– Generate equations of higher degree from the original equations by multi-
plying the original equations by certain other terms or equations.

– Regard the generated system of equations of higher degree as linear combi-
nations of formal terms.

– If there are more linearly independent equations than terms, solve the linear
system.

The recently proposed extended sparse linearisation or XSL algorithm [6] is a
modification of the XL algorithm that attempts to solve the types of multivariate
quadratic systems that can occur in iterated block ciphers. A discussion of the
use of the XSL algorithm on the AES multivariate quadratic GF (2)-system is
given in [6]. The AES F-system derived from the BES is far simpler, which
would suggest that the XSL algorithm would solve this F-system far faster (2100

AES encryptions) than the GF (2)-system. However, the estimate given for the
number of linearly independent equations generated by the XSL technique [6]
appears to be inaccurate [2].

It is obvious that much urgent research is required on the solution of AES
multivariate quadratic systems over F to see what new cryptanalytic approaches
and attacks are possible. In particular, refinements to XL-type techniques and
the applicability of sparse matrix techniques seem to be important topics for
future work. It is certainly important to know the degree and size of linearly
soluble systems generated from the AES multivariate quadratic systems. If the
degree and size of such a generated system is too small, then attacks on the
AES might be possible. We note that the BES representation of the AES gives
other simple quadratic equations over F, such as xi,(j,m+1)wi,(j,m) = xi,(j,m) or
xi,(j,m+2)wi,(j,m) = xi,(j,m+1)xi,(j,m). These can be used to build other simple
multivariate quadratic systems over F for the AES. Indeed, the first of these
equations is essentially used to construct the GF (2) system for the AES given
in [6]. We can also use simple higher degree equations over F to build other
simple multivariate systems for the AES. It is clear from this brief discussion
that many aspects of the AES representation over F remain to be investigated.

6.3 Implications for the AES

The cryptanalysis of the AES is equivalent to the solution of some particular
system of extremely sparse multivariate quadratic equations over F. The analysis
of the AES as a complicated multivariate quadratic system over GF (2) by Cour-
tois and Pieprzyk [6] is related to the problem of finding such a solution. Most of
the other published security results on the AES are concerned with demonstrat-
ing that bit-level linear and differential techniques do not compromise the AES.
However, from an algebraic viewpoint, such techniques are trace (F → GF (2))
function techniques, and trace function techniques are not normally employed in
the solution of multivariate systems. It is arguable that an important aspect of



the security of the AES, namely the solubility of an extremely sparse multivariate
quadratic system over F, is yet to be explored.

7 Conclusions

In this paper we have introduced a novel interpretation of the AES as being em-
bedded in a new cipher, the BES. However, the BES does not necessarily inherit
security properties we might have expected from the AES. Furthermore, the
BES has a simple algebraic round function consisting solely of a componentwise
inversion and and a highly structured affine transformation over the same field
GF (28). Indeed, this alternative description of the AES is mathematically much
simpler than the original specification. One consequence is that the security of
the AES is equivalent to the solubility of certain extremely sparse multivariate
quadratic systems over GF (28).
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