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Abstract

In this paper we give an approximate probability distribution for
the maximum order complexity of a random binary sequence. This
enables the development of statistical tests based on maximum order
complexity for the testing of a binary sequence generator. These tests
are analogous to those based on linear complexity.
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1 Introduction

The linear complezity is a well-known tool for assessing the cryptographic
strength of a binary sequence. For a given sequence, it measures the length
of the shortest linear feedback shift register (LFSR) that can generate the
sequence. The linear complexity is easily calculated using the Berlekamp—
Massey algorithm [5], which also gives a corresponding LFSR. A sequence
with a low linear complexity can therefore easily be simulated, and so a
sequence with a large linear complexity is clearly necessary condition for a
secure keystream. If we let S, is the first n bits of the sequence S and C(-) be
the linear complexity, then Rueppel [8] has shown that for a random sequence

of n bits 5,
E(C(S,)) ~ g and Var(C(S,)) ~ 1.

This result can be used as the basis for statistically testing one aspect of a
sequence’s randomness. Rueppel also introduced the idea of a linear com-
plexity profile, which is C(S,) considered as a function of n. He gave some
properties of a “typical” linear complexity profile for a random sequence.
Thus the linear complexity profile can be used to construct statistical tests
for the randomness of a sequence as discussed by Wang [9], Carter [1] and
Niederreiter [7].

In this paper, we consider general (nonlinear) feedback shift registers
(FSR). Accordingly we define the mazimum order complezity of a sequence
S, to be the shortest feedback register that can generate the sequence §,.
The maximum order complexity can be calculated efficiently using, for ex-
ample, a directed acyclic word graph or a suffix tree. These two methods
are similar, and further details are given in Jansen [4] and Erdmann [2] re-
spectively. Therefore just as for low linear complexity, a sequence with low
maximum order complexity can easily be simulated, and so a sequence with
a large maximum order complexity is clearly necessary condition for a secure
keystream. A detailed account of the cryptographic aspects of the maxi-
mum order complexity is given by Jansen [4]. To find the maximum order
complexity of a sequence we need to find the largest value k such that there
exists a subsequence of length &k that appears more than once in the sequence
and does not have the same element following it each time it appears. The
maximum order complexity of that sequence is then k + 1. For example, in



the binary sequence

0110010101101,

k must be at least 4 since the 4-bit subsequence 0110 is followed by a 0 the
first time it appears in the sequence and by a 1 the second time. On the other
hand, k cannot be 5 since every 5-bit subsequence appears only once and so
no two 5-bit subsequences have the same successor. Therefore kK = 4, and
the maximum order complexity of the sequence 0110010101101 is &+ 1 = 5.
The obvious brute force method of finding such a k for a general sequence,
by checking all 1-bit subsequences and then all 2-bit subsequences and so
on until the successor condition given above is no longer satisfied, is highly
inefficient.

The maximum order complexity has many similarities with the linear
complexity, and it would be useful for cryptographic purposes if we could
construct analogous tests for maximum order complexity to those which have
been constructed for linear complexity. In order to do this, it is necessary to
know about the distribution of the maximum order complexity for random
sequences. Unfortunately the distribution of the maximum order complexity
of a random sequence is difficult to calculate exactly. In this paper we present
a way to approximate the distribution of the maximum order complexity.
From this approximation we can construct statistical tests in order to test
the randomness of a sequence. Our approximation of the distribution of the
maximum order complexity depends on a function that approximates P(c, k),
the probability that the first & c-tuples in a sequence are all different. The
approximation to this function will be described in Section 2. In Section 3
we use this approximation when considering purely periodically repeating
sequences, and in Section 4 when considering all sequences of a given length.
In Section 5, we construct some statistical tests based on the maximum order
complexity, and finally we give some conclusions in Section 6.

2 An Approximation for P(c,k)

In order to approximate the distribution of the maximum order complexity
of a random sequence we first need to find a function that approximates
P(c, k), the probability that the first k£ c-tuples in a sequence are all different
or unique We can give the following recursive formula for P(c, k).



Lemma: P(c,k) = [[*=} R(c,i), where R(c,j — 1) is the conditional proba-
bility of the j** c-tuple being unique given that the first (j — 1) c-tuples are
unique.

Proof: P(c,k) = P(first k c-tuples are unique), so

P(c,k) = P(k* c-tuple is unique | first £ — 1 c-tuples are unique)
x P(first K — 1 c-tuples are unique)
= R(c,k—1)P(c,k —1),

where R(c,k—1) is the conditional probability of the k** c-tuple being unique
given that the first K — 1 c-tuples are unique. Thus we have

P(c,k) = R(¢,k — 1)R(c,k —2)--- R(c,1)P(c, 1),

and since P(c,1) = P(first c-tuple is unique) = 1, we have

k—1

P(c,k) = ] R(c,?). N

=1

To approximate the conditional probability R(c,?), we consider a (binary)
deBruijn—Good graph of order (¢ — 1). A deBruijn—-Good graph of order a
consists of 2* nodes each with a unique a-bit label. A directed edge exists
from one node to another if the label of the latter begins with the final (a—1)
bits of the former. Note that every node has two in—edges and two out—edges,
and there is a natural bijection between the 291 edges and the set of (a4 1)-
tuples. Any sequence of length greater than a can now be represented as
a path in the deBruijn—Good graph of order a consisting of the successive
a-tuples of the sequence. For any node Z of this graph, we can define its
conjugate node Z. If Z has label 2,2, - - - z, then its conjugate node Z is the
node with label Z1z5:--2z,, where z; = 21 ® 1. Nodes Z and Z have their
last (a — 1) bits in common, so there is a node that has a directed edge from

both Z and Z.

R(c,k — 1) is the probability that the k' c-tuple is unique given that
the previous (k — 1) c-tuples were unique. Equivalently R(c,k — 1) is the
probability that the next edge traversed in the path in the deBruijn—-Good
graph of order (¢ — 1) is one not traversed before, given that (k¥ — 1) unique
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edges have been traversed so far. It is important to note here that there are
exactly two edges leaving each node, and exactly two edges leading to each
node, so while each edge must only be traversed once, it is possible for a
node to be visited twice. Suppose we now call the last node in this sequence
B, and the one preceding it A, so B is the k** node and A4 is the (k — 1)
node. If B was not seen before in the sequence then neither of the edges
leaving B has been traversed and so taking either edge guarantees us that
the k** c-tuple is unique. However, if B was seen once before then one of
its out—edges has been traversed, and so the next edge will be unique with
probability % Similarly if B was seen twice before, then both out-edges of
B must have been traversed.

If we let 3; be the event that B occurs exactly ¢ times in the path prior
to the k** node, and let a be the event that all the £ — 1 edges in the path
are unique then

R(c,k —1)

(kthc-tuple is unique | first kK — 1 c-tuples are unique)

P
P(Boler) + 5P(Bs ).

The probability that B has already occurred in the sequence depends on
the conjugate node of A, A. We introduce A in our argument as it is easier to
estimate the probability that A occurs in our path than it is to estimate the
same probability for B. This difference is a result of the fact that we know B
has already occurred once in the path as the k** node, so we know that one
of its predecessors has also occurred at least once; whereas we know nothing
about A and its predecessors. Since our path has unique edges, B can only
occur as one of the first kK — 1 nodes if either it is the first node or if it follows
A, whereas A can only occur as one of the first £ — 1 nodes if it is either
the first node or if it follows either of its two predecessors. The following
asymptotic result concerning the number of times the node A occurs will
enable us to calculate R(c,k — 1).

Lemmal2]: For large ¢ and moderate h, the number of times the conjugate
vertex A of the penultimate vertex A appears in the first & nodes of a path
is approximately binomially distributed with parameters A and 2~(¢-1) for
almost all vertices A.



Corollary: If N; denotes the :** node in the path then
P(A# N;foralliin1,...,h) =~ (})(1— 5%,
P([l = N; for exactly one ¢in 1,...,h) = }11 (23 ) (1 — 2¢1_1)h_1,
P([l = N; for exactly two ¢’sin 1,...,h) =~ E

}21 (2c1—1 )2(]— - 2c1—1 )h_2'

If A appears in a path with random edges, then B follows A with probabil-
ity % For the case of large ¢ and moderate path lengths, the deBruijn—-Good
graph has many edges and many possible paths so there is little difference
between the probabilities that B follows A in a path with random edges and
and in a path with unique edges. Thus we take the probability that B fol-
lows A to be % when we consider paths with unique edges. This gives the
following result.

Theorem: R(c,k — 1) :1—%4—0('“3).

23¢
Proof: Let v be the event that B is the first node, and 4’ the event that B
is not the first node, then we have
P(Bola) = P(Bola,y)P(7) + P(Bole,y') P(v')
and P(Bi|a) = P(Bila,7)P(y) + P(Bile,y')P(').
Now, P(Bs|a,v) = 0, and, if N; is the i** node in the path then
P(fBola,v') =~ %P([l = N, for exactly one ¢ in 1,...,k — 2 |a)
+P(A#N;foralliin 1,...,k—2 |a),

P(Bi|la,y) =P(B#N;foralli=2,...,k—1 |a)
%P([l = N, for exactly one ¢ in 1,...,k — 2 |a)
+P(A# N;foralliin 1,...,k—2 |a),

%

and P(Bi|a,y') = P(B = N, for exactly one ¢ in 2,...,k — 1 |a)
~ %P(A = N, for exactly one ¢ in 1,...,k — 2 |a)
+P(A = N; for exactly two ¢’sin 1,...,k — 2 |a).
For reasons given above, we assume that these probabilities are approxi-

mately correct even when conditional on «, the event that all the previous
edges are unique. Thus we have

P(Bola) = P(Bola)P(3) + P(Bola7')P(7)
o - ) 4 (- )t
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and P(fi|a) = P(Ba,y)P(y) + P(fila,y') P(v)
r G (- ) 4 ()L — )R
and since R(c,k — 1) = P(fBola) + %P(ﬂﬂa), we have

R(c,k—1) = (1 _ 2c1_1>k—3(k2—22)2 N (1 B 2¢1_1>k_2 <k2_c2 N %>
i (1_ %)k_l
( 2c+1 (= 32)2(5_4)> (1 _ 2c1_1>(k—3)
=1- 2c+1 +0 <k3 ) 1

Thus if we define L

gort
then R(c,k — 1) is well-approximated by r(c,k — 1), and so P(c, k) is well-
approximated by

r(c,k—1)=1-—

k—1 . k—1 : T 1
plek) = I rte,i) =TT (1 - 57 )

To test this approximation, we compared the values of p(c, k) with es-
timated values P(c,k) for the probability P(c,k) obtained by simulation.
These are based on 10,000 simulations and are calculated by counting the
number of sequences of length k& 4+ ¢ — 1 that have no repeated c-tuple. The
results for k = 16 are given in Table 1, and the results for £ = 32 in Table 2.

3 Pure Periodically Repeating Sequences

In this section we consider pure periodically repeating sequences, that is
sequences that consist of k& bits that form one period of the sequence and
are then repeated. We give an approximation for the probability that such
a sequence has complexity c. A pure periodically repeating sequence has
complexity c if the first k& c-tuples are unique but at least one of the first
k (c — 1)-tuples is repeated. Thus to determine the complexity of such a
sequence, we need only to look at the first (k + ¢ — 1) bits to see if the k&
c-tuples are unique and the first (k + ¢ — 2) bits to see if the k (¢ — 1)-tuples
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are not unique. If Q(c,k) denotes the probability that the first k c-tuples
are unique while the k (¢ — 1)-tuples are not unique, then Q(c,k) is well-
approximated by ¢(c, k), where

_ p(c,k) —p(c - 17k) k S 26_1
ale, k) = { p(c, k) otherwise.
Note that Q(c, k) and g(c, k) are only defined for sequences of length at least
(k4 c¢—1) and for k& < 2°.

We can compare the values we obtain using ¢(c, k) with the true probabil-
ities found by Jansen [4]. Table 3.2 of Jansen’s thesis contains the results of
computing the complexity of all pure periodically repeating sequences with
period length £ < 24. From this table we can calculate the true probabil-
ity Q(c,k) and compare it with our approximation ¢(c,k). Figure 1 gives
this comparison graphically for period length k¥ = 24. We can see that the
approximations look very similar to the true values.

0.3
- True
0.2 — Approximate
0.1
4 8 12 16 20

Figure 1:
True (Q(c,24)) versus Approximated (g(c,24)) Probability
that the first k£ c-tuples are unique
while the k (¢ — 1)-tuples are not unique.

Having computed the approximate distribution of the maximum order
complexity for random pure periodically repeating sequences, we can com-
pute the approximate mean and variance of the complexity. Let () be a
random variable that denotes the maximum order complexity of a pure peri-
odically repeating sequence of length k, and let Qk denote our approximation



to Qr. We now have the following result.
Lemmal2]: The approximate mean and variance of () are given by:

B(Qk) % Tl @ a(e,F) = (k= 1) = Sicfiy 0 plesB),
Var(Qr) ~ (k —1)* — Zf;?lc& k1(2c + Dp(c, k) — E(Qr)?.

The results of these computations are given in Table 3, where they are
compared with the true values. The approximation is becoming more accu-
rate as k increases. As it is easy to compute the mean and variance of the
maximum order complexity exactly for small k, it is not a problem that the
results are not as accurate in that region.

The problem of determining the complexity of a periodically repeating
sequence can be looked at in another way. Namely, we observe that cal-
culating the probability that a periodically repeating sequence with period
length k£ has complexity at most c is the same as calculating the probability
that a random cycle of length k& occurs in a deBruijn—-Good graph of order
at most c. Maurer [6] has obtained tight bounds asymptotically on the num-
ber of cycles of length k in deBruijn—-Good graphs of order at most c¢. He
has shown for every positive real number # that the limsup as & — oo of
the probability that a cycle of length & occurs in a deBruijn—-Good graph of
order at most [2log, k — 2log, log, k — z] is less than or equal to e™>" . He
also has shown that the liminf as kK — oo of the probability that a cycle of
length k occurs in a deBruijn—Good graph of order at most [2log, k + z] is
at least 1 — 2-(**)), Erdmann [2] has shown that the bounds obtained using
the approximate probabilities are consistent with Maurer’s results and that
they are also consistent with the results of Zubkov and Mikhailov [10].

4 Random Sequences

In Section 3 we obtained an approximation for the distribution of the max-
imum order complexity for pure periodically repeating sequences. In this
section we will approximate the distribution for all sequences of a given
length. The sequences of length n that have maximum order complexity
¢ can be separated into three distinct categories. The first category consists
of sequences of length n that have no repeated c-tuples but have at least one



repeated (¢ — 1)-tuple in the first » — ¢ + 1 positions. The second category
consists of the pure periodically repeating sequences of maximum order com-
plexity ¢ considered in Section 3. The third category consists of sequences
that have some c-tuples that appear only once followed by a collection of
c-tuples that are repeated, that is sequences which are ultimately periodic.
The approximate number of sequences in the first category is

2"q(e,n — c+ 1),
and in the second category is
min(2¢,n—c)
Z k‘I’kQ(ca k)a
k=c+1

where Uy, is the number of distinct k-bit cycles. ¥y are computed using the
following formula given by Golomb [3]:

1 . .
¥, = L Z M(J)2k/J

ilk

where p(7) is the Mobius p-function, which is defined in the following manner.
If we express j as a unique product of the form

g
j = H p;xnm,
m=1
where p,, are prime divisors of j and each a,, is an integer, then
1 j=1

p() = 0 (Iln=10m) > 1

(—1)? otherwise.

The number of sequences in the third category is harder to compute. Erd-
mann [2] has shown that there are approximately

¢ min(2¢,n) min(2¢,n—c)—k

oy 3 2'kVa(c, k,i)q(d, k)

d=0 k=d+1 i=max(c—d,1)
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such sequences, where for k + ¢ < 2¢

) b(c ki) —blc—1,k,3) k41<2°70
(e,k,i) = { b(c,k,1) otherwise

and for sequences of length (kK + ¢+ ¢ — 1),

. itk—1 ‘ i k+
b(c,k,t) = H r(c,j) = H (1— Seti )
7=1

=k

We can now calculate N(c,n) the approximate number of sequences of length
n with complexity c as

N(e,n) =2"g(e,n —c+ )—I—Z;cmr;fln °) kWUrq(c, k)
min( 2 ) min(2¢n—c¢
—I_Zd Ozk d+1 Zz rn(ax(c )) 211{7‘1’]601(0 k 7’) (d7 k)

Note that asymptotically almost all sequences are in the first category, so for

large n, N(c,n) = 2"¢(c,n — ¢+ 1). Therefore

N(e,n)
it N(iyn)

is the approximate probability that a sequence of length n has complexity

m(e,n) =

c. We can compare these approximate probabilities with the true values
obtained from Jansen’s Table 3.1 [4]. This comparison is plotted graphically
in Figure 2 for sequences of length n = 24.

0.3
/Y — True
o2 | L Approximate
0.1 |
O , | Sl |
4 8 12 16 20
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Figure 2:
True versus Approximated (m(c,24) Probability
that a random sequence of length n
has Maximum Order Complexity of ¢

We can now calculate the approximate expected value and variance of the
maximum order complexity. If we let M,, be a random variable that denotes
the maximum order complexity of a random sequence of length n, and M,
our approximation to M, then we have for an approximate mean

n—1
M,) = Z em(c,n),
c=0

and an approximate variance

2
Var(M, Zcmcn (Zcmcn).

The results are shown for comparison with the true values in Table 4. We
also note that E(M,) ~ 2log, n for large n, the theoretical asymptotic mean
of the maximum order complexity.

5 Statistical Tests

Having calculated an approximate distribution, it is now a simple matter to
construct statistical tests for randomness. For example, if we had a num-
ber of different sequences from a sequence generator, we could calculate the
maximum order complexities of each sequence and so obtain an empirical dis-
tribution of maximum order complexities. This empirical distribution could
then be compared with the theoretical approximate distribution by applying
a goodness—of-fit technique. In this section, we show how the approximation
can be used to develop a mazimum order complexity jumps test which is di-
rectly analogous to the jumps test based on linear complexity [1] [9]. We now
quote some results without proof that enable us to calculate an approximate
jumps distribution.

Lemmal[4]: Let r}; denote the number of sequences of length n 4 1 with
maximum order complexity d, that have maximum order complexity ¢ when
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the final bit is deleted, then:
(a) If d # cand d < n — 2° then 77, = 0;
(b) If d > n —c+ 1 when n > 2¢ then 77, = 0.

Theorem|2]: Let r; denote the number of sequences of length n 4- 1 with
maximum order complexity d, that have maximum order complexity ¢ when
the final bit is deleted, and let N7 denote the number of sequences of length
n with complexity ¢, then we have the following results:

(@) o g = N

e

(c) X Zd— na =2

(d) » cd = r?ji'_ll_l for all d > ¢

(e) cd __r?cfic+17

(f) r2, ~ 277 1(n—c—l—l) (c,mn —¢).

Suppose we now let J, denote the total number of jumps that occur in
all sequences of length n and J* denote the number of jumps of size k that
occur in all sequences of length n. Therefore J* is the number of sequences
that have a jump of size k when the (m + 1)** bit is added, summed over
k<m <n—1,and clearly Y"1 J* = J,. It can be seen that

n—k—1 n—k—1

ZE: gn—m-— k— 125:rgzih _ ZE: 2n_4n_k_1££n7

m=0

where S, = > 7 Z”c"'_'l_ll, so S is the total number of sequences of length
m + 2 that have a jump of size one when the (m + 2)"d is added. We
note that J* depends only on the difference (n — k), and so J,’f_"l_'ll = JF and

JF1 =2J* 1 S, ;. Therefore J* can be calculated recursively as

n n

1
JE = §(J’“‘1 — Sn_k)-

J, can now be calculated recursively as

n—1

J£+1:: 2J£'+ 2: S;V

m=0

We can compute an approximation S, for Sp, by using our approximation

for rZ‘c"_'I_ll. The results for 0 < m < 23 are given in Table 5.

13



J, is the number of jumps in all sequences of length n, so the expected
number of jumps in any particular sequence of length n is £ oa If we let J,
be a random variable given by the number of jumps in the maximum order
complexity profile of a sequence of length n, then

E(Jn) = ZS S g7,

If J* is the random variable of the number of jumps of size k in the maximum
order complexity profile of a sequence of length n then

Jk n—k—1 S
k m
E(T)) = 50 = Z_:O kL

We can use our approximation to calculate approximations I and jf to Jn
and JF respectively. Table 6 gives the expected number of jumps of size k
in a sequence of length 24 as calculated by our approximation as well as the
true value, and Table 7 gives the expected number of jumps in a sequence
of length n (1 < n < 24) as calculated by our approximation as well as the
true value.

6 Conclusions

In this paper we have derived an approximate distribution for the maximum
order complexity of random binary sequences, and we have used this approxi-
mation to show how to construct statistical tests to identify keystreams that
can be simulated by short feedback shift registers. Two interesting areas
for future research suggest themselves. Firstly, a theoretical study of how
the maximum order complexity relates to other complexity measures, and
secondly an extensive study of how accurate our approximations for long
sequences when compared with results derived by simulation.
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P(c,16) p(c, 16)
¢ | Simulated | Approximated
5 0.0741 0.0983
6 0.3259 0.3317
7 0.5970 0.5833
8 0.7811 0.7660
9 0.8877 0.8759
10 0.9419 0.9360
11 0.9707 0.9675
12 0.9859 0.9836
13 0.9922 0.9918
14 0.9964 0.9959
15 0.9981 0.9979

Table 1:

Simulated (P) and Approximated (p) Probability
that the first 16 c-tuples are unique.
(10000 Simulations.)
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P(c,32) p(c, 32)
¢ | Simulated | Approximated
6 0.0051 0.0109
7 0.1070 0.1163
8 0.3529 0.3493
9 0.6054 0.5944
10 0.7840 0.7721
11 0.8852 0.8790
12 0.9415 0.9376
13 0.9692 0.9683
14 0.9839 0.9840
15 0.9911 0.9920
16 0.9955 0.9960
17 0.9980 0.9980
18 0.9991 0.9990
19 0.9996 0.9995

20 0.9999 0.9998

21 0.9999 0.9999

22 0.9999 0.9999

23 0.9999 1.0000

24 1.0000 1.0000
Table 2:

Simulated (P) and Approximated (p) Probability
that the first 32 c-tuples are unique.
(10000 Simulations.)
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E(Qx) E(Qr) | Var(Qr) | Var(Qr)
k | Approximate | True | Approximate True
1 0.000 0.000 0.000 0.000
2 1.000 1.000 0.000 0.000
3 2.000 2.000 0.000 0.000
4 2.766 2.667 0.179 0.222
5 3.633 3.667 0.232 0.222
6 4.261 3.889 0.651 0.543
7 4.829 4.667 1.111 1.333
8 5.317 5.000 1.560 1.333
9 5.758 5.464 1.846 1.534
10 6.089 5.697 2.277 1.888
11 6.382 6.161 2.605 2.329
12 6.642 6.287 2.844 2.001
13 6.876 6.660 3.012 2.605
14 7.088 6.812 3.129 2.537
15 7.283 7.040 3.210 2.684
16 7.465 7.225 3.265 2.701
17 7.637 7.445 3.288 2.897
18 7.795 7.583 3.323 2.792
19 7.945 7.769 3.346 2.971
20 8.087 7.904 3.362 2.926
21 8.223 8.052 3.373 3.018
22 8.353 8.189 3.381 3.010
23 8.477 8.323 3.388 3.079
24 8.596 8.443 3.393 3.058

Table 3:

Mean and Variance of the

Approximated (@) and True (Q)

N

Maximum Order Complexity Distribution
for Pure Periodically Repeating Sequences
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E(M,) E(M,) Var(M,,) Var(M,,)
n | Approximate | True | Approximate True
1 0.000 0.000 0.000 0.000
2 0.500 0.500 0.250 0.250
3 1.613 1.000 0.444 0.500
4 2.114 1.625 0.753 0.734
5 2.529 2.125 0.833 0.859
6 3.083 2.656 1.004 0.976
7 3.496 3.125 1.115 1.016
8 3.853 3.549 1.196 1.092
9 4.177 3.922 1.322 1.174
10 4.503 4.287 1.497 1.252
11 4.863 4.626 1.655 1.308
12 5.146 4.934 1.695 1.381
13 5.399 5.216 1.761 1.461
14 5.643 5.485 1.869 1.521
15 5.877 5.728 1.984 1.618
16 6.103 5.961 2.087 1.694
17 6.317 6.178 2.172 1.769
18 6.521 6.384 2.241 1.843
19 6.712 6.581 2.298 1.901
20 6.897 6.763 2.347 1.974
21 7.057 6.939 2.377 2.033
22 7.215 7.106 2.429 2.088
23 7.369 7.266 2.480 2.140
24 7.329 7.418 2.527 2.189
Table 4:

Mean and Variance of the

Approximated (M) and True (M)

~

Maximum Order Complexity Distribution
for Truly Random Sequences
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S S S S
m | Approximate | True | m | Approximate True
0 2 2 12 938 972
1 0 0 13 1743 1768
2 3 4 14 3352 3340
3 0 0 15 6279 6156
4 8 12 16 11984 11988
5 9 8 17 22691 23006
6 12 22 18 43365 43478
7 35 36 19 82691 82846
8 76 98 20 155345 158968
9 129 138 || 21 303204 303290
10 260 248 || 22 581427 580180
11 396 480 || 23 1115503 1113224

Table 5:

A

Approximated (S,,) and True Values (S,,)
of the total number of sequences of length (m + 2)
with a Maximum Order Complexity jump of size One

when the (m + 2)"d is added.
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B | B AN
k | Approximate True k | Approximate True
1 1.729670 2.273267 || 13 0.000292 0.000419
2 0.847509 1.119361 || 14 0.000138 0.000200
3 0.414718 0.550669 || 15 0.000065 0.000095
4 0.202729 0.270709 || 16 0.000030 0.000044
5 0.098900 0.132890 || 17 0.000014 0.000021
6 0.048158 0.065148 || 18 0.000007 0.000010
7 0.023403 0.031892 || 19 0.000003 0.000004
8 0.011344 0.015583 || 20 0.000001 0.000002
9 0.005485 0.007599 | 21 0.000001 0.000001
10 0.002643 0.003695 || 22 0.000000 0.000000
11 0.001269 0.001792 || 23 0.000000 0.000000
12 0.000607 0.000865

Table 6:

Approximated (E(j;il)) and True Values (E(Jy;))
for the Expected Number of Jumps of size k

in Maximum Order Complexity
in a sequence of length 24
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B(7) | B(7) B(7) | B(7)
n | Approximate | True || n | Approximate | True
1 0.000 0.000 || 13 2.372 2.749
2 0.500 0.500 || 14 2.486 2.872
3 0.750 0.750 || 15 2.596 2.988
4 1.063 1.125 || 16 2.702 3.097
5 1.219 1.313 || 17 2.803 3.198
6 1.414 1.594 || 18 2.899 3.294
7 1.585 1.797 || 19 2.991 3.387
8 1.717 1.984 || 20 3.078 3.474
9 1.852 2.148 || 21 3.161 3.557
10 1.994 2.326 | 22 3.239 3.637
11 2.128 2.482 || 23 3.315 3.713
12 2.258 2.621 || 24 3.387 3.785
Table 7:

Approximated (E(j24)) and True Values (E(J24))
for the Expected Number of Jumps

in Maximum Order Complexity
in a sequence of length 24
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