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Abstract

In this paper we give an approximate probability distribution for

the maximum order complexity of a random binary sequence� This

enables the development of statistical tests based on maximum order

complexity for the testing of a binary sequence generator� These tests

are analogous to those based on linear complexity�
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� Introduction

The linear complexity is a well�known tool for assessing the cryptographic
strength of a binary sequence� For a given sequence� it measures the length
of the shortest linear feedback shift register �LFSR� that can generate the
sequence� The linear complexity is easily calculated using the Berlekamp�
Massey algorithm ��	� which also gives a corresponding LFSR� A sequence
with a low linear complexity can therefore easily be simulated� and so a
sequence with a large linear complexity is clearly necessary condition for a
secure keystream� If we let Sn is the 
rst n bits of the sequence S and C��� be
the linear complexity� then Rueppel ��	 has shown that for a random sequence
of n bits Sn�

E�C�Sn�� �
n

�
and V ar�C�Sn�� � ��

This result can be used as the basis for statistically testing one aspect of a
sequences randomness� Rueppel also introduced the idea of a linear com�

plexity pro�le� which is C�Sn� considered as a function of n� He gave some
properties of a �typical� linear complexity pro
le for a random sequence�
Thus the linear complexity pro
le can be used to construct statistical tests
for the randomness of a sequence as discussed by Wang ��	� Carter ��	 and
Niederreiter ��	�

In this paper� we consider general �nonlinear� feedback shift registers

�FSR�� Accordingly we de
ne the maximum order complexity of a sequence
Sn to be the shortest feedback register that can generate the sequence Sn�
The maximum order complexity can be calculated e�ciently using� for ex�
ample� a directed acyclic word graph or a su�x tree� These two methods
are similar� and further details are given in Jansen ��	 and Erdmann ��	 re�
spectively� Therefore just as for low linear complexity� a sequence with low
maximum order complexity can easily be simulated� and so a sequence with
a large maximum order complexity is clearly necessary condition for a secure
keystream� A detailed account of the cryptographic aspects of the maxi�
mum order complexity is given by Jansen ��	� To 
nd the maximum order
complexity of a sequence we need to 
nd the largest value k such that there
exists a subsequence of length k that appears more than once in the sequence
and does not have the same element following it each time it appears� The
maximum order complexity of that sequence is then k � �� For example� in
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the binary sequence
��������������

k must be at least � since the ��bit subsequence ���� is followed by a � the

rst time it appears in the sequence and by a � the second time� On the other
hand� k cannot be � since every ��bit subsequence appears only once and so
no two ��bit subsequences have the same successor� Therefore k � �� and
the maximum order complexity of the sequence ������������� is k � � � ��
The obvious brute force method of 
nding such a k for a general sequence�
by checking all ��bit subsequences and then all ��bit subsequences and so
on until the successor condition given above is no longer satis
ed� is highly
ine�cient�

The maximum order complexity has many similarities with the linear
complexity� and it would be useful for cryptographic purposes if we could
construct analogous tests for maximum order complexity to those which have
been constructed for linear complexity� In order to do this� it is necessary to
know about the distribution of the maximum order complexity for random
sequences� Unfortunately the distribution of the maximum order complexity
of a random sequence is di�cult to calculate exactly� In this paper we present
a way to approximate the distribution of the maximum order complexity�
From this approximation we can construct statistical tests in order to test
the randomness of a sequence� Our approximation of the distribution of the
maximum order complexity depends on a function that approximates P �c� k��
the probability that the 
rst k c�tuples in a sequence are all di�erent� The
approximation to this function will be described in Section �� In Section �
we use this approximation when considering purely periodically repeating
sequences� and in Section � when considering all sequences of a given length�
In Section �� we construct some statistical tests based on the maximum order
complexity� and 
nally we give some conclusions in Section ��

� An Approximation for P �c� k�

In order to approximate the distribution of the maximum order complexity
of a random sequence we 
rst need to 
nd a function that approximates
P �c� k�� the probability that the 
rst k c�tuples in a sequence are all di�erent
or unique We can give the following recursive formula for P �c� k��
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Lemma� P �c� k� �
Qk��

i�� R�c� i�� where R�c� j � �� is the conditional proba�
bility of the jth c�tuple being unique given that the 
rst �j � �� c�tuples are
unique�

Proof� P �c� k� � P �
rst k c�tuples are unique�� so

P �c� k� � P �kth c�tuple is unique j 
rst k � � c�tuples are unique�
� P �
rst k � � c�tuples are unique�

� R�c� k � ��P �c� k � ���

where R�c� k��� is the conditional probability of the kth c�tuple being unique
given that the 
rst k � � c�tuples are unique� Thus we have

P �c� k� � R�c� k � ��R�c� k � �� � � �R�c� ��P �c� ���

and since P �c� �� � P �
rst c�tuple is unique� � �� we have

P �c� k� �
k��Y
i��

R�c� i��

To approximate the conditional probability R�c� i�� we consider a �binary�
deBruijn�Good graph of order �c � ��� A deBruijn�Good graph of order a
consists of �a nodes each with a unique a�bit label� A directed edge exists
from one node to another if the label of the latter begins with the 
nal �a���
bits of the former� Note that every node has two in�edges and two out�edges�
and there is a natural bijection between the �a�� edges and the set of �a����
tuples� Any sequence of length greater than a can now be represented as
a path in the deBruijn�Good graph of order a consisting of the successive
a�tuples of the sequence� For any node Z of this graph� we can de
ne its
conjugate node �Z� If Z has label z�z� � � � za then its conjugate node �Z is the
node with label �z�z� � � � za� where �z� � z� � �� Nodes Z and �Z have their
last �a� �� bits in common� so there is a node that has a directed edge from
both Z and �Z�

R�c� k � �� is the probability that the kth c�tuple is unique given that
the previous �k � �� c�tuples were unique� Equivalently R�c� k � �� is the
probability that the next edge traversed in the path in the deBruijn�Good
graph of order �c� �� is one not traversed before� given that �k � �� unique
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edges have been traversed so far� It is important to note here that there are
exactly two edges leaving each node� and exactly two edges leading to each
node� so while each edge must only be traversed once� it is possible for a
node to be visited twice� Suppose we now call the last node in this sequence
B� and the one preceding it A� so B is the kth node and A is the �k � ��th

node� If B was not seen before in the sequence then neither of the edges
leaving B has been traversed and so taking either edge guarantees us that
the kth c�tuple is unique� However� if B was seen once before then one of
its out�edges has been traversed� and so the next edge will be unique with
probability �

�
� Similarly if B was seen twice before� then both out�edges of

B must have been traversed�

If we let �i be the event that B occurs exactly i times in the path prior
to the kth node� and let � be the event that all the k � � edges in the path
are unique then

R�c� k � �� � P �kthc�tuple is unique j 
rst k � � c�tuples are unique�
� P ���j�� �

�
�
P ���j���

The probability that B has already occurred in the sequence depends on
the conjugate node of A� �A� We introduce �A in our argument as it is easier to
estimate the probability that �A occurs in our path than it is to estimate the
same probability for B� This di�erence is a result of the fact that we know B

has already occurred once in the path as the kth node� so we know that one
of its predecessors has also occurred at least once� whereas we know nothing
about �A and its predecessors� Since our path has unique edges� B can only
occur as one of the 
rst k�� nodes if either it is the 
rst node or if it follows
�A� whereas �A can only occur as one of the 
rst k � � nodes if it is either
the 
rst node or if it follows either of its two predecessors� The following
asymptotic result concerning the number of times the node �A occurs will
enable us to calculate R�c� k � ���

Lemma��	� For large c and moderate h� the number of times the conjugate
vertex �A of the penultimate vertex A appears in the 
rst h nodes of a path
is approximately binomially distributed with parameters h and ���c��� for
almost all vertices A�
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Corollary� If Ni denotes the ith node in the path then

P � �A �� Ni for all i in �� � � � � h� �
�
h
�

�
��� �

�c��
�h�

P � �A � Ni for exactly one i in �� � � � � h� �
�
h
�

�
� �
�c��

���� �
�c��

�h���

P � �A � Ni for exactly two is in �� � � � � h� �
�
h
�

�
� �
�c��

���� � �
�c��

�h���

If �A appears in a path with random edges� thenB follows �A with probabil�
ity �

�
� For the case of large c and moderate path lengths� the deBruijn�Good

graph has many edges and many possible paths so there is little di�erence
between the probabilities that B follows �A in a path with random edges and
and in a path with unique edges� Thus we take the probability that B fol�
lows �A to be �

�
when we consider paths with unique edges� This gives the

following result�

Theorem� R�c� k � �� � � � k
�c��

�O
�

k�

��c

�
�

Proof� Let � be the event that B is the 
rst node� and �� the event that B
is not the 
rst node� then we have

P ���j�� � P ���j�� ��P ��� � P ���j�� ���P �� ��
and P ���j�� � P ���j�� ��P ��� � P ���j�� ���P �� ���

Now� P ���j�� �� � �� and� if Ni is the ith node in the path then

P ���j�� ��� � �
�
P � �A � Ni for exactly one i in �� � � � � k � � j��

�P � �A �� Ni for all i in �� � � � � k � � j���

P ���j�� �� � P �B �� Ni for all i � �� � � � � k � � j��

� �
�
P � �A � Ni for exactly one i in �� � � � � k � � j��

�P � �A �� Ni for all i in �� � � � � k � � j���

and P ���j�� �
�� � P �B � Ni for exactly one i in �� � � � � k � � j��

� �
�P �

�A � Ni for exactly one i in �� � � � � k � � j��

�P � �A � Ni for exactly two is in �� � � � � k � � j���

For reasons given above� we assume that these probabilities are approxi�
mately correct even when conditional on �� the event that all the previous
edges are unique� Thus we have

P ���j�� � P ���j�� ��P ��� � P ���j�� ���P ����

� �k���
�c ���

�
�c�� �

k�� � �� � �
�c�� �

k��
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and P ���j�� � P ���j�� ��P ��� � P ���j�� ���P ����

� �k����

��c�� ���
�

�c�� �
k�� � � k�c ����

�
�c�� �

k���

and since R�c� k � �� � P ���j�� �
�
�
P ���j��� we have

R�c� k � �� �
�
�� �

�c��

�k�� �k����
��c �

�
�� �

�c��

�k�� �
k��
�c �

k
�c��

�
�
�
�� �

�c��

�k��
�
�
�� ��k�	�

�c�� �
�k����k�	�

��c

� �
�� �

�c��

��k���
� �� k

�c��
�O

�
k�

��c

�
�

Thus if we de
ne

r�c� k � �� � ��
k

�c��
�

then R�c� k � �� is well�approximated by r�c� k � ��� and so P �c� k� is well�
approximated by

p�c� k� �
k��Y
i��

r�c� i� �
k��Y
i��

�
� �

i� �

�c��

�
�

To test this approximation� we compared the values of p�c� k� with es�
timated values �P �c� k� for the probability P �c� k� obtained by simulation�
These are based on ������ simulations and are calculated by counting the
number of sequences of length k � c� � that have no repeated c�tuple� The
results for k � �� are given in Table �� and the results for k � �� in Table ��

� Pure Periodically Repeating Sequences

In this section we consider pure periodically repeating sequences� that is
sequences that consist of k bits that form one period of the sequence and
are then repeated� We give an approximation for the probability that such
a sequence has complexity c� A pure periodically repeating sequence has
complexity c if the 
rst k c�tuples are unique but at least one of the 
rst
k �c � ���tuples is repeated� Thus to determine the complexity of such a
sequence� we need only to look at the 
rst �k � c � �� bits to see if the k
c�tuples are unique and the 
rst �k� c� �� bits to see if the k �c� ���tuples
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are not unique� If Q�c� k� denotes the probability that the 
rst k c�tuples
are unique while the k �c � ���tuples are not unique� then Q�c� k� is well�
approximated by q�c� k�� where

q�c� k� �

�
p�c� k�� p�c� �� k� k � �c��

p�c� k� otherwise�

Note that Q�c� k� and q�c� k� are only de
ned for sequences of length at least
�k � c� �� and for k � �c�

We can compare the values we obtain using q�c� k� with the true probabil�
ities found by Jansen ��	� Table ��� of Jansens thesis contains the results of
computing the complexity of all pure periodically repeating sequences with
period length k � ��� From this table we can calculate the true probabil�
ity Q�c� k� and compare it with our approximation q�c� k�� Figure � gives
this comparison graphically for period length k � ��� We can see that the
approximations look very similar to the true values�

4 8 12 16 20
0

0.2

0.1

0.3
True
Approximate

c

Figure ��
True �Q�c� ���� versus Approximated �q�c� ���� Probability

that the 
rst k c�tuples are unique
while the k �c� ���tuples are not unique�

Having computed the approximate distribution of the maximum order
complexity for random pure periodically repeating sequences� we can com�
pute the approximate mean and variance of the complexity� Let Qk be a
random variable that denotes the maximum order complexity of a pure peri�
odically repeating sequence of length k� and let �Qk denote our approximation
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to Qk� We now have the following result�
Lemma��	� The approximate mean and variance of �Qk are given by�

E� �Qk� �
Pk��

c�dlog� ke
c q�c� k� � �k � ���

Pk��
c�dlog� ke

p�c� k��

Var� �Qk� � �k � ��� �
Pk��

c�dlog� ke
��c � ��p�c� k� �E� �Qk���

The results of these computations are given in Table �� where they are
compared with the true values� The approximation is becoming more accu�
rate as k increases� As it is easy to compute the mean and variance of the
maximum order complexity exactly for small k� it is not a problem that the
results are not as accurate in that region�

The problem of determining the complexity of a periodically repeating
sequence can be looked at in another way� Namely� we observe that cal�
culating the probability that a periodically repeating sequence with period
length k has complexity at most c is the same as calculating the probability
that a random cycle of length k occurs in a deBruijn�Good graph of order
at most c� Maurer ��	 has obtained tight bounds asymptotically on the num�
ber of cycles of length k in deBruijn�Good graphs of order at most c� He
has shown for every positive real number x that the lim sup as k � 	 of
the probability that a cycle of length k occurs in a deBruijn�Good graph of
order at most d� log� k � � log� log� k � xe is less than or equal to e��

x��

� He
also has shown that the lim inf as k � 	 of the probability that a cycle of
length k occurs in a deBruijn�Good graph of order at most d� log� k � xe is
at least �� ���x���� Erdmann ��	 has shown that the bounds obtained using
the approximate probabilities are consistent with Maurers results and that
they are also consistent with the results of Zubkov and Mikhailov ���	�

� Random Sequences

In Section � we obtained an approximation for the distribution of the max�
imum order complexity for pure periodically repeating sequences� In this
section we will approximate the distribution for all sequences of a given
length� The sequences of length n that have maximum order complexity
c can be separated into three distinct categories� The 
rst category consists
of sequences of length n that have no repeated c�tuples but have at least one
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repeated �c � ���tuple in the 
rst n � c � � positions� The second category
consists of the pure periodically repeating sequences of maximum order com�
plexity c considered in Section �� The third category consists of sequences
that have some c�tuples that appear only once followed by a collection of
c�tuples that are repeated� that is sequences which are ultimately periodic�
The approximate number of sequences in the 
rst category is

�nq�c� n� c� ���

and in the second category is

min��c�n�c�X
k�c��

k kq�c� k��

where  k is the number of distinct k�bit cycles�  k are computed using the
following formula given by Golomb ��	�

 k �
�

k

X
jjk

��j��k�j

where ��j� is the M!obius ��function� which is de
ned in the following manner�
If we express j as a unique product of the form

j �
qY

m��

p�mm �

where pm are prime divisors of j and each �m is an integer� then

��j� �

��	
�


� j � �
� �

Qq
m�� �m� � �

����q otherwise�

The number of sequences in the third category is harder to compute� Erd�
mann ��	 has shown that there are approximately

cX
d��

min��d�n�X
k�d��

min��c�n�c��kX
i�max�c�d���

�ik ka�c� k� i�q�d� k�
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such sequences� where for k � i � �c

a�c� k� i� �

�
b�c� k� i�� b�c� �� k� i� k � i � �c��

b�c� k� i� otherwise
�

and for sequences of length �k � i� c� ���

b�c� k� i� �
i�k��Y
j�k

r�c� j� �
iY

j��

�
� �

k � j

�c��

�
�

We can now calculate N�c� n� the approximate number of sequences of length
n with complexity c as

N�c� n� � �nq�c� n� c� �� �
Pmin��c�n�c�

k�c�� k kq�c� k�

�
Pc

d��

Pmin��d�n�
k�d��

Pmin��c�n�c��k
i�max�c�d��� �

ik ka�c� k� i�q�d� k�

Note that asymptotically almost all sequences are in the 
rst category� so for
large n� N�c� n� � �nq�c� n� c� ��� Therefore

m�c� n� �
N�c� n�Pn��
i�� N�i� n�

�

is the approximate probability that a sequence of length n has complexity
c� We can compare these approximate probabilities with the true values
obtained from Jansens Table ��� ��	� This comparison is plotted graphically
in Figure � for sequences of length n � ���
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Figure ��
True versus Approximated �m�c� ��� Probability

that a random sequence of length n
has Maximum Order Complexity of c

We can now calculate the approximate expected value and variance of the
maximum order complexity� If we let Mn be a random variable that denotes
the maximum order complexity of a random sequence of length n� and �Mn

our approximation to Mn� then we have for an approximate mean

E� �Mn� �
n��X
c��

cm�c� n��

and an approximate variance

Var� �Mn� �
n��X
c��

c�m�c� n��

�
n��X
c��

cm�c� n�

��
�

The results are shown for comparison with the true values in Table �� We
also note that E� �Mn� 
 � log� n for large n� the theoretical asymptotic mean
of the maximum order complexity�

� Statistical Tests

Having calculated an approximate distribution� it is now a simple matter to
construct statistical tests for randomness� For example� if we had a num�
ber of di�erent sequences from a sequence generator� we could calculate the
maximum order complexities of each sequence and so obtain an empirical dis�
tribution of maximum order complexities� This empirical distribution could
then be compared with the theoretical approximate distribution by applying
a goodness�of�
t technique� In this section� we show how the approximation
can be used to develop a maximum order complexity jumps test which is di�
rectly analogous to the jumps test based on linear complexity ��	 ��	� We now
quote some results without proof that enable us to calculate an approximate
jumps distribution�

Lemma��	� Let rnc�d denote the number of sequences of length n � � with
maximum order complexity d� that have maximum order complexity c when
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the 
nal bit is deleted� then�
�a� If d �� c and d � n� �c then rnc�d � ��
�b� If d � n� c� � when n � �c then rnc�d � ��

Theorem��	� Let rnc�d denote the number of sequences of length n � � with
maximum order complexity d� that have maximum order complexity c when
the 
nal bit is deleted� and let Nn

c denote the number of sequences of length
n with complexity c� then we have the following results�
�a�

Pn��
c�� r

n
c�d � Nn��

d �
�b�

Pn
d�c r

n
c�d � �N

n
c �

�c�
Pn��

c��

Pn
d�c r

n
c�d � �

n���
�d� rnc�d � rn��c�d�� for all d � c�

�e� rnc�d � rn�d�c��
c�c�� �

�f� rnc�c � �
n�c���n� c� ��q�c� n� c��

Suppose we now let Jn denote the total number of jumps that occur in
all sequences of length n and Jk

n denote the number of jumps of size k that
occur in all sequences of length n� Therefore Jk

n is the number of sequences
that have a jump of size k when the �m � ��th bit is added� summed over
k � m � n� �� and clearly

Pn��
k�� J

k
n � Jn� It can be seen that

Jk
n �

n�k��X
m��

�n�m�k��
mX
c��

rm��
c�c�� �

n�k��X
m��

�n�m�k��Sm�

where Sm �
Pm

c�� r
m��
c�c��� so Sm is the total number of sequences of length

m � � that have a jump of size one when the �m � ��nd is added� We
note that Jk

n depends only on the di�erence �n � k�� and so Jk��
n�� � Jk

n and
Jk��
n � �Jk

n � Sn�k� Therefore Jk
n can be calculated recursively as

Jk
n �

�

�
�Jk��

n � Sn�k��

Jn can now be calculated recursively as

Jn�� � �Jn �
n��X
m��

Sm�

We can compute an approximation �Sm for Sm by using our approximation
for rm��

c�c��� The results for � � m � �� are given in Table ��
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Jn is the number of jumps in all sequences of length n� so the expected
number of jumps in any particular sequence of length n is Jn

�n
� If we let Jn

be a random variable given by the number of jumps in the maximum order
complexity pro
le of a sequence of length n� then

E�Jn� �
Jn

�n
�

n��X
m��

Sm��
��m��� � ��n��

If J k
n is the random variable of the number of jumps of size k in the maximum

order complexity pro
le of a sequence of length n then

E�J k
n � �

Jk
n

�n
�

n�k��X
m��

Sm

�m�k��
�

We can use our approximation to calculate approximations �Jn and �J k
n to Jn

and J k
n respectively� Table � gives the expected number of jumps of size k

in a sequence of length �� as calculated by our approximation as well as the
true value� and Table � gives the expected number of jumps in a sequence
of length n �� � n � ��� as calculated by our approximation as well as the
true value�

� Conclusions

In this paper we have derived an approximate distribution for the maximum
order complexity of random binary sequences� and we have used this approxi�
mation to show how to construct statistical tests to identify keystreams that
can be simulated by short feedback shift registers� Two interesting areas
for future research suggest themselves� Firstly� a theoretical study of how
the maximum order complexity relates to other complexity measures� and
secondly an extensive study of how accurate our approximations for long
sequences when compared with results derived by simulation�
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