

Edinburgh Research Explorer

DELICIOUS: Deadline-Aware Approximate Computing in Cache-
Conscious Multicore

Citation for published version:
Saha, S, Chakraborty, S, Agarwal, S, Gangopadhyay, R, Själander, M & McDonald-Maier, K 2022,
'DELICIOUS: Deadline-Aware Approximate Computing in Cache-Conscious Multicore', IEEE Transactions
on Parallel and Distributed Systems. https://doi.org/10.1109/TPDS.2022.3228751

Digital Object Identifier (DOI):
10.1109/TPDS.2022.3228751

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
IEEE Transactions on Parallel and Distributed Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 16. Dec. 2022

https://doi.org/10.1109/TPDS.2022.3228751
https://doi.org/10.1109/TPDS.2022.3228751
https://www.research.ed.ac.uk/en/publications/bc6bd994-f4bb-4742-952c-79a8622a2847

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XXXXXX XXXX 1

DELICIOUS: Deadline-Aware Approximate
Computing in Cache-Conscious Multicore

Sangeet Saha, Shounak Chakraborty, Sukarn Agarwal, Rahul Gangopadhyay, Magnus Själander,
and Klaus McDonald-Maier

Abstract—Enhancing result-accuracy in approximate computing (AC) based real-time systems, without violating power constraints of
the underlying hardware, is a challenging problem. Execution of such AC real-time applications can be split into two parts: (i) the
mandatory part, execution of which provides a result of acceptable quality, followed by (ii) the optional part, that can be executed
partially or fully to refine the initially obtained result in order to increase the result-accuracy, without violating the time-constraint. This
paper introduces DELICIOUS, a novel hybrid offline-online scheduling strategy for AC real-time dependent tasks. By employing an
efficient heuristic algorithm, DELICIOUS first generates a schedule for a task-set with an objective to maximize the results-accuracy,
while respecting system-wide constraints. During execution, DELICIOUS then introduces a prudential cache resizing that reduces
temperature of the adjacent cores, by generating thermal buffers at the turned off cache ways. DELICIOUS further trades off this
thermal benefits by enhancing the processing speed of the cores for a stipulated duration, called V/F Spiking, without violating the
power budget of the core, to shorten the execution length of the tasks. This reduced runtime is exploited either to enhance
result-accuracy by dynamically adjusting the optional part, or to reduce temperature by enabling sleep mode at the cores. While
surpassing the prior art, DELICIOUS offers 80% result-accuracy with its scheduling strategy, which is further enhanced by 8.3% in
online, while reducing runtime peak temperature by 5.8 °C on average, as shown by benchmark based evaluation on a 4-core based
multicore.

Index Terms—Real-time Systems, Approximate Computing, Thermal Management, Dead Block, Caches Resizing, TDP

✦

1 INTRODUCTION

IN real-time systems, the correctness not only depends
on the result-accuracy, but also on the time at which

these results are produced. For such time-critical scenarios,
approximated results obtained on-time are preferable over
accurate results produced after the deadline. In plenty of
application domains, such as multimedia computing, track-
ing of mobile targets, real-time heuristic search, informa-
tion gathering and control systems, an approximate result,
obtained before the deadline is usually acceptable [5]. For
example, in case of video streaming, frames having lower
quality are better than completely missing frames. In target
tracking, an approximated estimation of the target’s location
generated within deadline is better than an accurate loca-
tion, obtained too late. In these domains, a task is logically
decomposed into a mandatory subtask and an optional
subtask [9], [35], [37]. The entire mandatory subtask must
be completed before the deadline to generate the minimally
acceptable QoS, followed by a partial/complete execution of
the optional part, subject to availability of the resources, to
improve accuracy of the initially obtained result within the

• S. Saha and K. McDonald-Maier are with School of Computer Sci-
ence and Electronic Engineering, University of Essex, UK. E-mail:
sangeet.saha@essex.ac.uk, kdm@essex.ac.uk.

• S. Chakraborty and M. Själander are with the Department of Com-
puter Science, Norwegian University of Science and Technology,
Trondheim, Norway 7491. E-mail: shounak.chakraborty@ntnu.no, mag-
nus.sjalander@ntnu.no.

• S. Agarwal is with School of Informatics, University of Edinburgh, UK.
E-mail: sagarwa2@ed.ac.uk.

• R. Gangopadhyay is with Faculty of Mathematics and Computer
Science, St. Petersburg State University, Russia. E-mail: rahulincx-
tint@gmail.com.

Manuscript received XXXXX xx, XXXX; revised XXXX XX, XXXX.

deadline. The QoS increases with the number of execution
cycles spent on the optional part.

Energy efficient scheduling of the AC real-time task-set
that intends to improve result-accuracy without violating
the underlying system constraints have become an active
research avenue in recent past. Stavrinides and Karatza were
among the first to propose scheduling of an AC real-time
task-set [44]. A recent theoretical analysis [37] shows how
to improve system level result-accuracy through task to
processor allocation and task adjustment constrained by an
energy budget. However, limiting the energy usage does not
ensure thermal safety of the chip, which can be tackled by
incorporating power constraint, like thermal design power
(TDP), together with a runtime power management while
considering several architectural parameters. In an energy
efficient approach, Prepare [10], to improve system level
result-accuracy, the authors considered the runtime archi-
tectural characteristics. However, the detailed runtime cache
characteristics of the applications were not considered.

Researchers also employed integer linear programming
(ILP) based scheduling strategies [10], [37] that might often
become prohibitively expensive for large problem sizes,
which can be overcome by designing a computationally
feasible heuristic strategy. In DELICIOUS, we devise an
efficient scheduling heuristic to schedule approximated real-
time tasks on a chip multiprocessor (CMP) platform, where
the scheduling is constrained by task-dependency and dead-
lines. The entire strategy of DELICIOUS is summarized in
Figure 1. Our AC real-time application contains n number of
dependent tasks (T1 to Tn shown in the top of Figure 1) and
the entire application has a deadline. Each task is equipped
with multiple versions with diverse set of result-accuracy

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3228751

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XXXXXX XXXX 2

T
1

T
2

T
3

T
n

Dependency and Deadline Constraints

C
M

P

DELICIOUS-Online

Dead-Entry Eviction Dynamic LLC Resizing

V/F Spiking

Improves LLC
Performance

* Saves Energy
* Generates
 Thermal Buffers

* Improves QoS
* Reduces Temperature by
 Power Gating at Slacks

At LLC At LLC

At Cores

Dispatch
Table

For each T
i

(i) Version ID
(ii) Processor ID

(iii) Start-Time Instant

DELICIOUS-Offline

P
ro

ce
ss

o
r

In
fo

rm
at

io
n

Fig. 1: DELICIOUS: Process Overview

based on the respective execution length of the optional part
that is executed. In DELICIOUS-Offline (shown in the left
of Figure 1), the scheduling information, which versions of
a task (Version ID) will be executed on which core (Processor
ID) in a CMP and its starting time (Start-Time Instant) for all
the tasks will be generated with an objective to maximize the
overall system-level result-accuracy. All tasks are assigned
a base voltage/frequency (V/F) level, which is the highest
possible V/F (other than turbo mode [2]) for the underlying
processor core. The generated schedule is next stored in
a dispatch table (shown just below the DELICIOUS-Offline
part in Figure 1), from which task-executions are triggered.

With the objective to further enhancing the accuracy
by exploiting runtime architectural characteristics (shown
at the bottom of Figure 1), DELICIOUS-Online judiciously
selects and evicts dead blocks1 from the shared last level
cache (LLC) and turns off spare LLC ways to reduce the
temperature of the cores in its proximity. By considering the
live thermal status, DELICIOUS attempts to execute tasks
at a higher frequency than that originally assigned for a
stipulated duration (so called V/F Spiking, based on fine-
grained DVFS [17]). V/F Spiking increases throughput and
enables more of the optional part of a task to be executed,
and thus improves the QoS without impacting the pre-
determined schedule. To improve power and thermal effi-
ciency further, DELICIOUS shuts down cores during unused
slacks generated by reducing execution times of the tasks.

The contributions of DELICIOUS are as follows:
1) Our intended problem has been clearly formulated as

an optimization problem, discussed in Sec. 4, subject to
a set of constraints.

2) We have presented a real-time scheduling policy, DE-
LICIOUS, for AC real-time precedence constrained task
graphs (PTGs) on homogeneous CMPs.

3) Design of a heuristic strategy for an AC real-time
PTG on a CMP, where each task can have multiple
versions with distinct degrees of accuracy (see Sec. 5).
In addition to delivering satisfactory performance, the
strategy exhibits reasonable time complexity with com-
paratively low, polynomial time scheduling overheads.

4) We apply a power/thermal restriction (i.e. TDP) aware
V/F Spiking technique (see Sec. 6), induced by online

1. Dead blocks indicate the data that will never be accessed before
being evicted from the cache (detailed later in Sec. 6).

LLC-resizing, to improve achieved QoS while keeping
temperature in check, which we have empirically vali-
dated and reported in Figure 11 and 12.

5) By shortening the execution time for each task, V/F
Spiking incurs dynamic slacks, which are either exploited
(i) to execute a higher task-version subject to availabil-
ity, or (ii) to put the core in sleep mode to reduce core
temperature (see Sec. 6).

We further argue and empirically validate the efficacy of
the task-scheduling heuristic of DELICIOUS in combination
with the runtime mechanisms (see Sec. 7). For a set of
tasks, the scheduling heuristic of DELICIOUS achieves 80%
QoS, which is close to a recent ILP based optimal policy,
Prepare [10] that achieves a QoS of 83%, while running
time of ILP based optimal scheduling of Prepare is signifi-
cantly higher than the scheduling heuristic of DELICIOUS
(see Figure 6). Our benchmark based evaluation with a 4-
core based baseline CMP (equipped with 4MB 16-way asso-
ciative shared L2 cache) in our simulation setup (consisted
of gem5 [8], McPAT [30], and Hotspot [48]) shows that the
dynamic LLC-resizing induced and TDP aware V/F Spiking
of DELICIOUS further stimulates the achieved QoS by 8.3%
and reduces core-temperature up to 9.2 °C, while meeting
the deadlines. Our empirical analysis shows that, online
mechanism of DELICIOUS outperforms Prepare [10] and
GDP [33], in terms of online QoS enhancement, and peak
temperature reduction. To the best of our knowledge, DELI-
CIOUS is the first scheduling mechanism that introduces a
dead block eviction based LLC-resizing induced TDP aware
V/F Spiking technique for enhancing the QoS of dependent
AC real-time task-set without violating the deadline and the
thermal constraints.

Before formulating the problem in Sec. 4, we discuss
the relevant prior work in Sec. 2, and brief our system
model and assumptions in Sec. 3. The core offline and
online mechanisms of DELICIOUS are detailed in Sec. 5
and Sec. 6, respectively. The evaluation of offline and online
mechanisms of DELICIOUS are presented next in Sec. 7
before concluding the paper in Sec. 8. The acronyms used
in our paper are abbreviated in Table 1.

TABLE 1: Acronyms and their Abbreviations
Acronyms Abbreviations
AC Approximate Computing
ILP Integer Linear Programming
RoI Region of Interest
PTG Precedence-constrained Task Graph
QoS Quality of Service
NAQ Normalized Achieved QoS
CMP Chip Multiprocessor
LLC Last Level Cache
V/F Voltage/Frequency
OoO Out of Order
DVFS Dynamic Voltage and Frequency Scaling
DPM Dynamic Power Management

2 STATE-OF-THE-ART

Minimizing energy in recent CMP based real-time sys-
tems has become a topic of paramount importance [38],
[39]. Scheduling time-critical dependent tasks on CMP
platform while maintaining the energy/power constraint
is gradually becoming challenging with technology scal-
ing [22]. Researchers recently attempted to devise energy-
aware scheduling for the real-time task-sets with various

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3228751

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XXXXXX XXXX 3

system-wide constraints [6], [23], [27]. In 2018, the concept
of AC to meet the energy budget of a large scale real-
time system was introduced for the tasks without prece-
dent constraints [9]. Other prior arts also explored AC
task scheduling for the embedded real-time systems while
minimizing energy [9], [32], [49], for the set of independent
tasks. Yu et al. proposed the concept of an “Imprecise
Computation (IC)” [47], for the first time, where individual
tasks are decomposed into mandatory and optional parts,
and their “dynamic-slack-reclamation” technique improves
the system-wide QoS for more energy savings, but task-
dependencies were not considered. To the best of our
knowledge, in the very first attempt to schedule IC/AC
dependent tasks [44], authors measured the performance of
conventional real-time scheduling techniques like Highest
Level First (HLF) and Least Space Time First (LSTF) for a
couple of task-sets, where one set contains the AC tasks,
but energy efficiency was not considered. The energy aware
scheduling of dependent AC tasks were considered in some
prior works [36], [37] that employed DVFS at the cores.

Most of the prior energy/thermal management mech-
anisms [14], [17], [28] control the dynamic power of the
cores in CMPs either by employing DVFS [41], [42] or by
migrating tasks [13], [19], [20]. Recently, Roeder et al. [42]
showed the effectiveness of DVFS, planned offline, for a het-
erogeneous real-time system with multi-version based task-
model, but energy efficiency can be enhanced dynamically
based on the runtime tasks’ as well as system’s character-
istics. Donald and Martonosi [14] have shown the efficacy
of different DVFS techniques along with task migration
policies to control temperature, where distributed DVFS
applied with task migration are claimed to be the best. How-
ever, underlying migration overheads at the caches were
not accounted. Hanumaiah et al. [26] proposed a thermal
efficient thread migration, that was integrated with DVFS
to reduce temperature of the homogeneous CMPs [25].
Recently, Esmaili et al. also integrated DPM, DVFS, and task
migration in constrained scheduling, but the power budget
of the system was not included [16]. Another study shows
how combining DVFS and DPM can significantly boost up
system throughput and thermal efficiency of the large sized
CMPs [29]. However, a couple of recent attempts have tried
to combine DVFS with the cache based policies [11], [12], but
their efficacy in improving QoS of the AC real-time systems
have not been studied. Moreover, these studies did not focus
on the block recency before evicting them from the LLC,
which we have studied in DELICIOUS.

2.1 DELICIOUS Over Prior Arts

In DELICIOUS, we investigated the potential of LLC way-
shutdown in improving thermal efficiency of a multicore
system, and how this benefits can be traded off to improve
core performance. Basically, DELICIOUS first proposes a
novel heuristic based offline scheduling algorithm for a
set of dependent AC real-time tasks, with an objective to
improve the QoS (see Sec. 5). The QoS is further stimu-
lated during execution by employing LLC resizing based
mechanism that shuts down cache ways to reduce core-
temperature in proximity, which assists the cores to main-
tain a higher V/F for a stipulated time-span (see Sec. 6). Our
results also illustrates, both offline and online mechanisms

of DELICIOUS surpass the recent techniques. To the best
of our knowledge, DELICIOUS is the first technique that
employs dynamic LLC-resizing for a scheduled AC real-
time tasks to reduce core-temperature, that further offers
room for V/F Spiking to enhance result-accuracy on-the-fly,
while maintaining deadline and thermal safety.

3 SYSTEM MODEL AND ASSUMPTIONS

The considered CMP consists of m homogeneous cores,
denoted as P = {P1, P2, ..., Pm}. Each core supports L
distinct V/Fs denoted as V = {V1, V2, ..., VL} and F =
{F1, F2, ..., FL}, where Vi < Vi+1 and Fi < Fi+1. The offline
schedule is generated by considering a single base core V/F
(≤ VL/FL), at which core can execute tasks until comple-
tion without any potential thermal threats [1]. However, in
online phase, during V/F Spiking, a core can execute tasks at
higher V/F than the base level for a stipulated duration.

T
1

T
2

T
3

T
4

T
5

T
6

k
2
 X 1

T1

2
T2

2
Tk

2

Available Versions

Selected
Version

2

D
PTG

= 70

Fig. 2: Precedence task graph (PTG) with timing parameters

Our application is represented as a precedence task
graph (PTG) (see Figure 2), G = (T,E), where T is a
set of tasks (T = {Ti | 1 ≤ i ≤ n}) and E is a set of
directed edges (E = {⟨Ti, Tj⟩ | 1 ≤ i, j ≤ n; i ̸= j}),
representing the task-dependency or precedence relations
between a distinct pair of tasks. An edge ⟨Ti, T j⟩ implies a
precedence, i.e. a task Tj can start its execution only after Ti

is executed. Our single source and single sink tasks have no
predecessors and no successors, respectively. Being a real-
time application, G has to be executed within the given
deadline, DPTG, by executing all the associated tasks (Ti).
Each Ti can have ki different versions (signifying different
degrees of accuracy), Ti = {T 1

i , T
2
i , . . . , T

ki
i }, those are

distinct by their respective execution lengths (Oi), denoted
as O1

i , O2
i , ..., Oki

i , where Op
i offers higher result-accuracy

than Oq
i , if p > q [46]. DELICIOUS selects a particular

version among the ki versions of Ti, the selection procedure
is detailed in the following section. For each optional part of
a task (Oi), there exists a separate executable module, that
is executed after the execution of the mandatory portion
(Mi) of the respective task, Ti. The length of the jth version
of task Ti (lenj

i) can be defined as: lenj
i = Mi + Oj

i .
Note that, lenj

i includes the cycles required for accessing
LLC, which we obtain by executing an individual task for
a particular configuration. We define result-accuracy Accji
of T j

i as the executed optional part of the task, Oj
i (i.e.,

Accji = Oj
i). Thus, the overall system level result-accuracy

(QoS) is now defined as the sum of the executed cycles
of Oj

i for all the tasks [9], which can be represented as:
QoS =

∑n
i=1 O

j
i | Ti = T j

i . Note that, in addition with
execution of the Mi for each task, we also need to execute at
least one version of Oi within deadline.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3228751

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XXXXXX XXXX 4

4 PROBLEM FORMULATION

In order to present a formal model of the problem and its
objective, we have formulated it as a constraint optimization
problem. Let us consider a binary decision variable Ziktη ,
where i = 1, 2, ..., n; k = 1, 2, ..., ki; t = 0, 1, ..., DPTG, and
η = 1, 2, ...m. Here, the indices i, k, t and η, denote task
ID, corresponding version ID, timestamp, and processor ID,
respectively. The variable Ziktη is 1, if the kth version of
Ti (T k

i) starts its execution at tth timestamp on processor
η. This will eventually enforce that Ziktη for Ti will be zero,
for all other possible combinations, i.e. it cannot start on any
other processors with other versions at any time stamp. We
now present the objective function with constraints on the
binary variables to model the scheduling problem.

Maximize QoS (1a)

QoS =

n∑
i=1

m∑
η=1

ki∑
k=1

DPTG∑
t=0

Oki · Ziktη (1b)

Subject to:
ki∑
k=1

DPTG∑
t=0

m∑
η=1

Ziktη = 1 ∀i ∈ [1, n] (1c)

n∑
i=1

ki∑
k=1

t∑
t′=ψ

Zikt′η ≤ 1 ∀t : 0 ≤ t ≤ DPTG & ∀η : 1 ≤ η ≤ m (1d)

ψ = max(0, t− exeki + 1)

stj ≥ eti ⟨Ti, Tj⟩ ∈ E (1e)
stn + eln ≤ DPTG (1f)

stj =

m∑
η=1

kj∑
k=1

DPTG∑
t=0

t · Zjktη (1g)

eli =

m∑
η=1

ki∑
k=1

DPTG∑
t=0

exeki · Ziktη (1h)

eti = sti + eli (1i)

Equation 1b presents the objective function in the above
formulation, whereas Equation 1c enforces the constraint
that each task must start its execution on a particular pro-
cessor at a unique timestamp with a unique version. In this
scheduling problem, resource bounds for processors must
be satisfied at each timestamp. Any processor can execute
at most one task at a given time without any preemption
(Equation 1d). Equation 1e and 1f enforce execution de-
pendency and deadline satisfaction constraints, respectively,
whereas start time (stj), execution length (eli) and end time
(eti) are defined in Equation 1g, 1h, and 1i, respectively.

Our scheduling problem stated above amicably lends
itself towards its computation using a standard optimization
tool, CPLEX. However, the presence of numerous decision
variables and constraints makes this problem computation-
ally highly complex. Therefore, solution techniques using
standard optimizers, like CPLEX, are often computationally
expensive in terms of time and space even for moderate
problem sizes with respect to number of tasks, number
of processors, nature of inter-task dependencies, etc. We
reiterate here that the main motivation towards encoding
of our problem as above is the clarity it lends in de-
tailed understanding and appreciating the structure of the
scheduling problem at hand. Such realization is immensely
useful towards designing and analyzing an efficient lower

Algorithm 1: DELICIOUS-Offline
Input:
i. Task graph G(T,E)
ii. ki: Number of versions of each task Ti
iii. lji : Execution length of jth version of task Ti
iv. DPTG: The deadline of the task graph.
v. Accji : accuracy achieved by executing the jth version of Ti
Output:
i. Task Schedule /* Selected Task versions (ζi), Execution start
times (sti), Mapped Processor id: (P ji i.e. ith task on jth
Processor, Obtained Accuracy) */
ii. Achieved system-level QoS.

1 ∀Ti ∈ T , Set ζi= ki (highest version) /* Set the selected
version to the highest version*/

2 while Algorithm 3 does not yield TRUE do
3 Store ALAP time in a priority list of non-decreasing order

returned by Algorithm 3
4 ∀Ti ∈ (T | ki > 1), Compute the Penalty Factor

PF (Ti, ζi), using Equation 2
5 Create a min-heap of tasks in T with the PF (Ti, ki)

values as the key;
6 if Multiple Ti have same PF then
7 Select Ti from the priority list (with highest ALAP

value) ;

8 Extract the task Tj at the root of the min-heap;
9 ζj = ζj − 1; /* Decrease the current version of Tj by one;

*/
10 Compute the PF (Tj , kj) and reheapify;

11 Calculate QoS(A) as: QoS(A) =
∑|T |
i=1 Acc

ζi
i ;

12 Return QoS(A) ;

overhead heuristic strategy for the problem. We next present
DELICIOUS-Offline, an efficient heuristic algorithm for the
problem discussed above.

5 DELICIOUS-Offline PHASE

Typically, list scheduling-based heuristic techniques are em-
ployed to compute feasible schedules for PTGs executing
on multi-cores. They attempt to construct a static-schedule
for the given PTG, to minimize the overall schedule length,
while satisfying resource and precedence constraints. On
the contrary, our heuristic strategy tackles the problem of
scheduling a PTG consisting of task nodes with multiple
versions, to maximize overall system accuracy, while satis-
fying the deadline constraint. For this purpose, we devise
our heuristic algorithm, DELICIOUS-Offline, to generate a
schedule by setting all task nodes to their highest version.
Since DELICIOUS-Offline attempts to maximize the overall
system level accuracy, the resulting schedule length may
however violate the given deadline. This situation can then
be refrained by degrading the versions of tasks, while re-
ducing impact on overall system accuracy.

5.1 DELICIOUS-Offline Algorithm
Our heuristic algorithm for DELICIOUS-Offline is repre-
sented in Algorithm 1, that first attempts to generate a
feasible schedule with considering the highest version of
all the tasks by calling Algorithm 3, Sched-Gen (line 1 to
2). Sched-Gen yields TRUE, if a feasible schedule is possible
by satisfying the resource and deadline constraints for each
task, and returns FALSE and ALAP2 times (generated by Al-
gorithm 2), otherwise. By considering all tasks with their
respective highest versions may not be feasible due to their

2. It implies As Late As Possible.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3228751

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XXXXXX XXXX 5

Algorithm 2: ALAP Time Calculation
Input:
i.The task graph G(T,E)
ii. ζi: selected version of each task Ti
iii. lenζi : Execution length for the ζth version of Ti
iv. DPTG: The deadline of the task graph.
Output:
i. elai : latest start time of each task Ti

1 for Ti ∈ T do
2 if Ti is a sink task in PTG then
3 elai = DPTG −min (lenζi)

4 else
5 Calculate the minimum of the latest start times

min (elaj) ∀ Tj ∈ Succ(Ti) ;
// Let task Tsc has the minimum value of

the latest start times among all
successors of Ti

6 elai = elasc −min (lenζi) ;

high temporal requirements. If Sched-Gen yields FALSE, then
DELICIOUS-Offline enters into a while loop until a feasible
schedule for a chosen set of task versions is generated or
all tasks have been reduced to their lowest versions (line 4
to 10). This while loop maintains the tasks in a priority
queue organized as a min-heap with a parameter called
Penalty Factor(PF) as key (Equation 2). For a given task,
Ti, with its current version ζi, PF (Ti, ζi) is defined by the
reduction in achieved accuracy as Ti’s version is lowered
from ζi to ζi − 1, and is calculated as:

PF (Ti, ζi) = Oζi
i −Oζi−1

i (2)

If two tasks exhibit the same PF values, then the task with
lower ALAP value will be selected from the ordered list
(line 6 to 7). This is mainly due to the fact that in such a
priority list based on task’s ALAP times, the actual value
of the ALAP time of a task provides an estimate of the
remaining computational demand before completion of the
sink task. For any given deadline bound, a relatively lower
ALAP time for a task indicates a higher remaining pro-
cessing requirement. Hence, DELICIOUS-Offline attempts to
lower the version of a task having higher ALAP value, i.e.
having lower processing requirement and less dependency.

In each iteration of the loop, DELICIOUS-Offline extracts
the task (Tj) at the root of the min-heap (task with the
minimum PF value), reduces its version by one, and check
if the Sched-Gen returns TRUE or not (line 9 to 10). If Sched-
Gen yields TRUE, then it indicates that a feasible schedule is
obtained. DELICIOUS-Offline will then calculate and return
the obtained system level QoS as output (line 11 to 12).

5.2 Schedule Generation (Sched-Gen)
DELICIOUS-Offline calls Sched-Gen (Algorithm 3) to deter-
mine a valid schedule for a stipulated set of task versions
chosen by Sched-Gen.

Initialization and Task Prioritization (line 1 to 8): Algo-
rithm 3 begins its execution by creating an array denoted as
FP , which implies the number of free processors available.
Sched-Gen uses a relative priority order amongst all tasks
based on the tasks’ ALAP start time, considering each task
Ti at its currently selected versions ζi. This priority list based
on task’s ALAP times ensures that inter-task precedence re-
lationships are always satisfied (ALAP time of a predecessor
task is always less than the ALAP times of all its successors).

Algorithm 3: Schedule Generation (Sched-Gen)
Input:
i. lζii : Execution length of the selected ζthi version of Ti
ii. DPTG: Deadline of the task graph
Output: TRUE/FALSE: Feasible or infeasible schedule

1 /*........................... INITIALIZATION......................................*/ /*
Let FP denote the set of processors currently available for
execution; */

2 Initialize FP = P ;
3 ∀ Pi ∈ FP , Set PLi= FALSE; /* Initialization, PLi : A flag

which is set to FALSE if the Processor is available for
execution; TRUE, otherwise; initially all processors are free
*/

4 /* Let FT denote the task-set currently finished their
execution; */

5 FT = NULL;
6 /*.....................TASK PRIORITIZATION......................*/
7 Calculate ALAP start time (elai) for each task Ti

using Algorithm 2 at its currently selected version ζi
8 τ̂ = T /* Copy tasks into τ̂ */
9 /*...........TASK MAPPING & EXECUTION..............*/

10 for t = 0; t ≤ DPTG AND T ̸= NULL; t++ do
11 for each processor in parallel do;
12 if There exists tasks (Tj ∈ T) | All predecessors of Tj have

finished their execution AND FP ̸= NULL then
13 Select processor Pi with PLi == FALSE ;
14 Set PLi = TRUE /* Set Pi to busy; */
15 Map Tj in processor Pi;
16 stj = t /* Set current time t as the execution start time

of Tj*/
17 PBPi= l

ζj
j ; /* start execution of Tj ; PBPi: an integer

variable denoting Procsseor Busy Period which
holds the remaining time required to finish the
current task in pi */

18 FP = FP \ Pi; /* Remove Pi from set FP */

19 else
20 PBPi = PBPi − 1; /* Decrement remaining time */
21 if (PBPi == 0) then FP = FP ∪ {Pi}; /* Add Pi to

the set of free (available) processors */
22 PLi = FALSE; * Set Pi back to free; */
23 FT = FT ∪ Tj /* Add Tj to set FT of finished tasks */
24 T = T \ Tj ; /* Delete Tj from set T */

25 if |FT | ̸= |τ̂ | then
26 # Store the ALAP order;
27 Return FALSE;

28 else
29 Return TRUE;

Task Mapping and Execution (line 9 to 29): Sched-
Gen assigns the task with no predecessors to a separate
processor. Then it continues to consider tasks only when
all its predecessor task(s) finish(es) their executions. Such
task to processor assignments eventually enable that the
beginning of the task will be the latest finishing time of
its predecessors. In case, if a task has a single predecessor,
then DELICIOUS can start to consider the task right after the
finishing time of its predecessor. When a task has multiple
predecessors, DELICIOUS considers the predecessor which
has the latest finishing time. The successor task may be
assigned to the same processor assigned to its predecessor
with the latest finishing time. All tasks executing at a given
time, run in parallel in the available processors. A task
(say, Tj) mapped to a processor (say, pi) will continue its
execution until the execution requirement of the task is
finished. The variable PBPi denotes the “Processor Busy
Period”, which in turn provides the remaining execution
requirement of Tj in pi and thus, PBPi becomes zero when
Tj finishes its execution (line 20 to 21). After a task finishes

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3228751

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XXXXXX XXXX 6

its execution, it will be added to the set FT and will be
removed from T (line 22 to 23). The set FT is finally
stored in the dispatch table. The above processes of task
mapping and execution continue iteratively either until all
tasks in T complete their executions, or the deadline DPTG

is encountered. In line 24 to 29, DELICIOUS will check
whether the number of finished tasks (FT) is equal to the
number of tasks given in the input set T . Any mismatch
will infer an incomplete schedule, otherwise, it will denote
a successful one and DELICIOUS-Offline will return TRUE.

Our heuristic algorithm is associated with a few carefully
selected, restricted design choices, that assist in controlling
the complexity. It can be observed, that distinct schedules
can be generated with each task (Ti), assigned to any of the
available processors (P), with Ti being actually scheduled
in any of the designated processors. Hence, the number of
schedules depends on the number of tasks and processors.
The schedule with enhanced accuracy could be any one of
the subsets of the schedules that satisfy precedence, resource
and timing constraints. However, to limit the complexity of
this compute-intensive problem, our heuristic uses a phase-
based approach. At first, it generates an accuracy maximized
schedule, by restricting all tasks to their respective highest
versions. Given the order and task-to-processor assignments
as provided by the first phase, the task-versions are adjusted
in the second phase, whilst meeting the deadline.

TABLE 2: Parameters and their values, for example task-set

Tasks Mi Oi Tasks Mi Oi
(#cycles) (#cycles) (#cycles) (#cycles)

T 1
1 4 2 T 1

4 20 7
T 1
2 10 5 T 2

4 20 12
T 2
2 10 8 T 1

5 19 2
T 3
2 10 10 T 2

5 19 6
T 1
3 10 5 T 3

5 19 14
T 2
3 10 7 T 1

6 10 2
T 3
3 10 10 T 2

6 10 4

Example DELICIOUS-Offline: Let us consider a repre-
sentative example with the task-set given in Table 2, which
is pictorially represented in Figure 2. These tasks have to
be scheduled on two processors (m = 2), with a deadline
DPTG = 70 time units. In Figure 3[A], we have shown that,
if the tasks are scheduled only with their respective highest
versions, this will lead to deadline failure. Hence, by choos-
ing different versions of the tasks, our algorithm generates
the feasible schedule, which is depicted in Figure 3[B]. Here,
T2 and T6 are executed with lower versions to satisfy the
deadline. Our total obtained QoS value is 48.

Theorem 1. The amortized complexity of DELICIOUS-Offline
(Algorithm 1 to 3) is O(n

DPTG
) per time-slot.

Proof. Algorithm 1 is the heart of DELICIOUS-Offline. A
step-wise analysis of computational overhead of Algo-
rithm 1 due to the called functions/algorithms is as follows:

1) ALAP Time Calculation: Complexity of Algorithm 2
for calculating ALAP resembles the complexity of topo-
logical sorting of a DAG. Hence, complexity of Algo-
rithm 2 can be written as O(n+ |E|), where n = |T |.

2) Schedule Generation: We determine the complexity of
Algorithm 3 by deducing the overheads of the individ-
ual steps: (1) line 2, 3, and 5 can be performed in con-
stant time, and complexity of ALAP time is considered

T3 T6P2

Slack Task with highest version Task with lower version

0

6

6

26 59

7358 Time

V/F

DPTG = 70

T1P1

[A]

T2

26

T3 T4 T6
P2

0

6

6

24 55

Time
DPTG = 70

T1
P1

[C]

T2

26 58

T4

T5

T5

59

T3 T6P2

0

6

6

24 57

58 Time
DPTG = 70

T1P1

[B]

T2

26

T4

T5

V/F Spiking

Exploited

Sleep at Slack
Execute
higher Oi

V/F

V/F Online Slack

 T2 and T6 have been
upgraded to highest version

Dead block Detection and
Eviction + Way shutdown

 At LLC

V/F Spiking

 At Cores

Reduces
Runtime (Mi)

 At Cores At Cores
Energy and

Thermal Benefits

 Online

 Offline

Infeasible Schedule with
Tasks’ highest Versions

Feasible Schedule by
DELICIOUS-Offline

Deadline
Violated

T2

V/F

P1

Version
upgraded

Span of Mi reduced
Due to V/F Spiking

Online slack after
Applying V/F Spiking

Upgraded version
(Oi) in Online

Lower version
(Oi) Scheduled
in Offline

T2

Scheduled end time
Mi + Oi of T2

[D]

Magnifying accuracy
enhancement of T2
by exploiting V/F
Spiking

Deadline
Met

Fig. 3: Generated Schedule and online LLC induced V/F
spiking (not to scale).

as O(n+ |E|). Similarly, 8 can also be done in constant
time. (2) The for loop (line 9 to 24) executes for each
time step up to DPTG. Inside this for loop, all indi-
vidual operations consume an overhead of O(1). Thus,
Algorithm 3 has a complexity of O(n+|E|)+O(DPTG),
which can be written as O(n+DPTG) for any standard
graph.

3) DELICIOUS-Offline: Operations at line 1 of Algorithm 1
can be done in constant time. Each iteration of the
while loop (line 2 to 10) calls Algorithm 3 to check
the feasibility of the schedule that could be generated.
Let us assume, K is the maximum number of possible
versions for given tasks. Hence, it may be concluded
that the while loop iterates at most K times. All other
steps within the while loop take constant time. Thus,
the complexity of this algorithm is dominated by the
overhead of Algorithm 3. Finally, the overall complexity
of DELICIOUS-Offline becomes O(K · (n+DPTG)).

4) The amortized complexity of DELICIOUS-Offline is
O(n

DPTG
), where K typically consumes a small value.

6 DELICIOUS-Online PHASE

To improve the accuracy or energy/thermal efficiency of the
generated schedule, the selected V/F setting can be changed
dynamically, but that might cause deadline failures, if not
managed carefully. DELICIOUS-Online attempts to reduce
core-temperatures by employing a dynamic LLC resizing
that generates on-chip thermal buffers by shutting down
cache ways with close vicinity to the cores (see Figure 3[C]).
Such gained thermal benefits are traded off by a TDP cog-
nizant V/F scaling of the cores, named here as V/F Spiking,
that reduces the execution length of the tasks. DELICIOUS-
Online uses this performance increase either to improve task
accuracy while the core-temperature is kept in check, or
to enhance energy and thermal efficiency by power gating

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3228751

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XXXXXX XXXX 7

the core (sleep mode) during generated slack. The possi-
ble task level changes by DELICIOUS-Online is illustrated
in Figure 5, however, we magnified the V/F Spiking induced
version upgrade for a task (T2) in Figure 3[D]. Our LLC
resizing selectively evicts dead blocks by periodic runtime
analysis and trims LLC to improve the energy/thermal
efficiencies without any noticeable performance impact.

6.1 Detecting Dead Blocks and Thermal Management
at LLC

It is a well known fact that much of the data stored in the
LLC is dead, i.e., the data will never be accessed before
being evicted. In fact, a substantial amount (more than
80%) of all cache blocks at any particular time are dead as
well as dead on arrival (DOA) [18], [31]. Hence, proactive
eviction of dead blocks can offer a significant amount of
spare cache space to the current application, which can be
either used for more live blocks to enhance performance,
or turned off to save energy. However, as the LLC is the
final defense before approaching off-chip accesses, dead
block detection and eviction should be done prudentially
to maintain performance.

Detecting dead blocks at the block level granularity
requires individual counters for each LLC block, where the
size of individual counters can incur implementation over-
heads. To simplify our implementation and by considering
time-criticality, we decided to detect only DOA blocks and
to eventually evict them. We employ a single bit, called
the Dead bit, to track if a block is DOA. When a block is
brought into the cache, the bit is set and is cleared if it
is further accessed. We periodically check the Dead bit and
evict the block if the bit is still set. The check is performed
one block at a time, iterating through all blocks within
the predetermined period. Note that, for checking of the
dead-bits and eviction of the dead blocks, a small time-
slice is reserved at the end of each period, called back up
period (BackPer). For our baseline 16-way set-associative
and 4MB LLC, the storage overhead for implementing the
Dead bit is negligible at around 0.2%.

After detecting the dead blocks, DELICIOUS proactively
evicts them from the LLC and turns off LLC ways to gener-
ate on-chip thermal buffers and to reduce core-temperature
in its vicinity [11], [12]. Basically, the temperature of any
on-chip component is guided by the basic superposition and
reciprocity principle of heat transfer, which is driven by three
factors: (1) the component’s own power consumption, (2)
heat abduction by ambient, and (3) conductive heat transfer
with its peers [45]. Hence, prudential selection of these LLC-
ways for shutting down on-the-fly can potentially reduce
the chip temperature [12], by (a) curtailing its own power
consumption and (b) incorporating heat transfer with the
peers at the generated on-chip thermal buffers, while main-
taining performance. As a significant number of LLC entries
are DOA, which, if evicted, generates a large LLC portion
as spare. But, such proactively generated empty locations
might be scattered throughout the LLC, which has to be
compacted to enable power gating of a complete cache
way. This will generate continuous large thermal buffers,
which will help in reducing temperature of the adjacent
cores. Hence, we incorporate a simple but effective block

swapping mechanism, discussed later, that prioritizes in-
validation over write-back, and eventually empties an LLC
way at the edge of the LLC bank before turning it off. By
periodically monitoring the DOA blocks, and availability
of the spare cache space after eviction, DELICIOUS-Online
dynamically decides the number of LLC ways that can be
power gated.

6.2 V/F Spiking: Effects and Amelioration

Increasing the V/F for a short duration, so called V/F
Spiking, can enhance results accuracy if the core temperature
can be kept in check by addressing the following issues:

• When should V/F Spiking be triggered?
• How long can the core maintain the increased V/F?

To answer these questions, one should consider the dynamic
and leakage power consumption of the cores at different
V/F settings and temperatures, along with the TDP of the
cores. During task execution, DELICIOUS evenly divides the
entire execution span into multiple periods, where at the
end of each period, a decision on V/F Spiking will be taken.
At the end of a period, if the core temperature is detected
to be sufficiently below the critical temperature, then the
power consumption of the core is evaluated to determine if
an increased V/F that can be maintained without violating
the power constraint. The dynamic power consumption
(Dynpow) at the target increased V/F is derived by employing
the following equation: Dynpow = α · C · Vdd

2 · f , where α
and C are circuit related constants, and Vdd and f represent
the supply voltage and core-frequency, respectively. By con-
sidering the current temperature (T) and the target increased
voltage, the leakage consumption (Leakpow) of the core can
be derived at the end of the period through the following
equation: Leakpow = A1 · T 2 · eA2·Vdd+A3 +A4 · eA5·Vdd+A6 ,
where, A1 to A6 are technology dependent constants. DE-
LICIOUS inspects the available V/F levels and selects the
maximum possible V/F setting for the upcoming period so
that TDP is not violated during the next period. The span of
a period can be determined empirically or from processor
characteristics, during which the core temperature can be
assumed to remain unchanged.

Maintaining a higher V/F setting for a period of time
increases the core temperature, resulting in an increase in
leakage power, which in turn generates heat in a self-
reinforced cycle and can potentially affect the functional
correctness of the chip. Employing an analytical formulation
that estimated the generated heat from the power values
can be a solution to determine the duration of the increased
V/F residency [48]. But, the dynamic LLC resizing of DE-
LICIOUS-Online, which significantly impacts the core ther-
mal status, needs to be accounted for to correctly estimate
the temperature, where the LLC resizing depends on the
application’s cache access behavior. In fact, our TDP based
mechanism safeguards the core from thermal overshoot, but
analytically determining the duration of the increased V/F
residency might be unable to exploit the thermal benefits of-
fered by LLC resizing. Hence, DELICIOUS-Online monitors
the core temperature periodically using thermal sensors.
Once the core temperature reaches the maximum threshold
(TempMax), the V/F is reduced to the level at which the

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3228751

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XXXXXX XXXX 8

task is scheduled, and thus the duration of V/F Spiking is
determined dynamically.

6.3 Proposed Online Technique
DELICIOUS-Online consists of two modules, the LLC Re-
sizing module, which is implemented at the LLC controller
for each LLC bank (discussed in Sec. 6.3.1), and the V/F
Spiking module, which is implemented at the controller of
the cores (discussed in Sec. 6.3.2). We illustrate the tech-
nique of DELICIOUS-Online in Algorithm 4. A complete
schedule of the task-set is generated offline, called a Frame,
details of which are kept in the dispatch table, where timing
parameters of the tasks are converted into cycles prior to
insertion. As long as all tasks are not selected from the
Dispatch Table, each task (Ti) within a Frame is fetched
as per the schedule and the execution is initiated (line 1-4).
For each LLC bank, Algorithm 5 is executed simultaneously
with respect to each other at the LLC controller, to create on-
chip thermal buffers by prudentially managing dead blocks
(line 5-6). This gained thermal benefits are traded off to
improve accuracy by employing V/F Spiking at each core
during task execution (line 8-10). Note that, Algorithm 6 is
executed at the respective core controllers, and is transpar-
ent to Algorithm 5.

Algorithm 4: DELICIOUS-Online Mechanism
1 for each Frame do
2 for all Ti in Dispatch Table do
3 Get schedule details of Ti from the Dispatch Table;
4 Fetch Ti and start execution;
5 for each LLC bank do
6 Call Algorithm 5;
7 # Execute simultaneously at each bank;

8 for each Core do
9 Call Algorithm 6;

10 # Execute simultaneously at each core;

6.3.1 LLC Resizing Technique
DELICIOUS-Online is primarily built on the LLC Resizing
mechanism that stimulates thermal efficiency of the cores
adjacent to the power gated LLC portions. Figure 4 depicts
the effects of power gated ways by illustrating the heat
transfer from its adjacent cores. Before gating the ways, DE-
LICIOUS-Online proactively evicts the dead blocks from the
LLC by prudentially selecting them. After eviction of these
dead blocks, a number of cache ways will be made empty by
employing a swapping based compaction technique within
each individual set. Once the selected way(s) is(are) empty,
it is power gated.

L1
I/D$

C0
L2-0

L1
I/D$

C1
L2-1

L1
I/D$

C2
L2-2

L1
I/D$

C3
L2-3

Power Gated LLC ways
Heat Transfer

Reduces Core
Temperature

Power Gated
LLC Ways

Scope to Spike
Core’s V/F

Fig. 4: Power Gated LLC ways offer scopes for V/F
Spiking.

Algorithm 5: LLC Resizing
Input: POWER DOWN , POWER UP , Limit, BackPer,

Floorplan
1 while A task (Ti) is being executed do
2 if Curr Interval −BackPer is over then
3 for each LLC bank B do
4 ratio[B] =

#misses(B)
#accesses(B)

;
5 if ratio[B] < POWER DOWN) and

(#Off ways[B] < Limit) then
6 #Select a way W as victim, which will be

turned off and is in proximity to a core;
7 for each set S do
8 for each block blk having #Dead bit[blk]

== 1 do
9 if blk is clean then

10 #Invalidate the block;
11 else
12 #Write it back off-chip;

13 if W at S is not empty then
14 if S has at least an empty location then
15 #Select an empty location, and

move block from W ;
16 else
17 if S contains a CN block then
18 #Invalidate the block;
19 else
20 if W has NMRU block then
21 #Write it back;
22 else
23 #Select an NMRU block

in S, and write it back;

24 #Move block from W ;

25 #Power-gate W , and #Off ways[B] + +;
26 else
27 if (ratio[B] > POWER UP) and

(#Off ways[B] ≥ 1) then
28 #Turn on an LLC way, and

Off ways[B]−−;

29 #Execute the task normally upto end of
Curr Interval;

30 else
31 #Execute the task normally;

The entire LLC Resizing mechanism is illustrated in Al-
gorithm 5. The whole task execution span is evenly divided
into multiple time-intervals (Curr Interval), and a small
time-span, BackPer (back up period), is taken from the
end of each Curr Interval during which all the resizing
related operations are performed. On completion of each
Curr Interval − BackPer, the current performance of
the bank (B) is determined by its miss ratio (ratio[B]
line 4). If the miss ratio is less than a preset threshold
(POWER DOWN) and the number of turned off LLC
ways (#Off ways[B]) is within a preset limit (Limit),
then a way (W) adjacent to a core is selected as the victim
(line 5 to 6). The location details of the LLC ways and their
adjacency to the cores are determined from the Floorplan
of the CMP, which is an input to our algorithm [11], [12]. For
each set (S) the presence of dead blocks (blk) is determined
by inspecting if their respective Dead bit[blk] is set (line 8).
If a dead block is clean, it is invalidated, else it is written
back to the main memory (line 9 to 12).

On completion of the dead block eviction process, a set
might not have an empty location at the victim way W
(line 13). Hence, set S will then be checked if there is any

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3228751

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XXXXXX XXXX 9

empty location, and once an empty location is found, the
block will be moved to there from W (line 15). However, if
S does not have any empty location at the moment, then
search for a clean NMRU (CN) block in S is performed, and
will be invalidated on its presence. Otherwise, an NMRU
block is selected from W , if available, or from any other
random location of S and will be written back subsequently.
Next, the block from W will be moved to this empty location
(line 17 to 24). Once W is empty for all sets, it will be gated
with updating #Off ways[B] (line 25). If at the end of a
Curr Interval, ratio[B] is higher than a preset threshold
(POWER UP), and B has at least one way turned off, a
way will then be turned on (line 27 to 28). No LLC reconfig-
uration is permitted within Curr Interval−BackPer and
on completion of resizing process (line 29 and line 31).

The block swapping needs to be performed by accessing
the peripheral circuitry of the bank, performance of which
is hence limited by the number of ports available per bank.
However, the power and performance overheads incurred
by this swapping mechanism are negligible [12]. Addition-
ally, our LLC resizing technique can serve the outstanding
cache requests during BackPer, unlike prior art [11]. The
only difference is that, on an eviction caused by a cache
miss, the selected way to be evicted cannot be the victim
way. However, the performance impact of LLC resizing is
also included in our simulation.

6.3.2 Proposed V/F Spiking
LLC resizing technique can potentially reduce temperature
(hence the leakage power) of the cores adjacent to the
gated LLC ways. Reduced core temperature therefore offers
enough room for maintaining the increased V/F through
V/F Spiking for a certain amount of time while keeping
the core temperature below the critical value. Our pro-
posed Algorithm 6 shows how DELICIOUS-Online exploits
the thermal benefits of Algorithm 5 to enhance core V/F
without violating the thermal constraint.

Algorithm 6 takes TempMax, TDP , and TLim as inputs,
where TempMax is the maximum allowable temperature
for a core. We set TempMax to 2 °C lower than the critical
temperature of the core, to ensure that the core temperature
will never reach at the critical value. During task execu-
tion, at the end of each Interval, each core temperature
(Temperature[C]) will be observed (line 2 to 5). If the
Temperature[C] is lower by TLim than the TempMax,
leakage power of the core (Leakpow[C]) will be computed
by considering Temperature[C] and supply voltage (line 6).
Next, the highest possible viable V/F level (VH/FH) is
determined, so that total (calculated) power consumption
(DynH

pow[C] + Leakpow[C]) is not violating the TDP (line 7).
Our algorithm also considers the power of on-chip voltage
regulator (V RPow). On availability of such VH/FH , the
core’s V/F is set at VH/FH , and the task execution will
be resumed (line 8 to 9). Executing tasks at higher V/F
leads to early completion, that results into change in the
generated schedule. Basically, higher V/F can potentially
execute more number of cycles for a certain time-span than
the execution at the Vsched/Fsched. Hence, we employ a
counter (Cyc Ctr) to keep track of the cycles executed at the
higher V/F (line 10). Note that, the input TLim safeguards
the core from any potential chattering effects in V/F by

V/F

L

sched

Time

Execution with V/F Spiking
Normal Execution

t’ t0
Δcyc = number of cycles

can be executed at
Vsched/Fsched during the

interval (t’, t)

Mi

Cyc_Ext_End_Ti

Oi with actual schedule

without upgrade
with upgrade and
generates slack
with upgrade but
no slack is generated

O
i s

ta
rt

ed
 e

ar
lie

r
fo

r V
/F

 S
pi

ki
ng

No V/F Spiking
during Oi

slack

Cyc_ctr++

Fig. 5: V/F Spiking and version upgrade.

allowing V/F Spiking only when the core temperature is
sufficiently below the TempMax.

During task execution, the core temperature will be mon-
itored continuously, and once the Temperature[C] reaches
at TempMax, the V/F will be lowered to Vsched/Fsched[C]
(line 15). To keep track of the extra cycles completed at
the higher frequency, Cyc Ctr is exploited at the end of
each V/F spike. By computing the elapsed time along with
considering Vsched/Fsched[C], the amount of extra cycles is
derived (line 14 to 17). This cycle surplus during executing
Mi is stored at ∆cyc, which will be used next for Oi execu-
tion. We illustrate V/F Spiking process in Figure 5 at the task
level granularity, that depicts when Cyc Ctr is updated and
how V/F Spiking helps in finishing the task early.

As per our example in Figure 5, Mi completes at t′

with V/F Spiking, where its scheduled completion time was
at t (t′ < t). Hence, to execute Oi, the time left is the
summation of ∆cyc (which can be executed during interval
(t′, t) at Vsched/Fsched[C]) and the cycles left before execu-
tion of the next task, which we termed as extended end
time of Ti (Cyc Ext End Ti) (line 18). Note that, for the
sink task, Cyc Ext End Ti will be set at the end of the
current Frame. However, if the highest version of Ti is
not scheduled earlier, a checking is performed if Oi can be
upgraded (line 19 to 23). After selecting the best possible Oi,
the execution will be started with Vsched/Fsched[C] (line 26).
Upgrading Oi may generate slack before completion of
Cyc Ext End Ti (line 24 to 25), which can be utilized
to power gate the core for improving energy/thermal ef-
ficiency. All the possible cases regarding upgrading Oi are
depicted in Figure 5. By employing a counter and consider-
ing the processor’s Break Even T ime (given as an input),
the span of power-gate is traced, and the core will be turned
on (line 31) before the starting time of the next task/frame.

6.4 Hardware Mechanism
Both Algorithm 5 and 6 can be implemented separately
at the respective controllers. The way-shutdown logic at
the LLC controller adopts power gating [40] at the way-
level granularity of the LLC. Power gating is a conventional
circuit based technique integrated with caches as well as
cores in modern CMPs [4], [34]. By exploiting conventional
control bits (e.g., valid bit, dirty bits, etc.) and the exist-
ing performance monitoring counters at the LLC [21], the
ratio and Dead bit can be periodically monitored for LLC
resizing. Moreover, implementing Dead bit will not incur

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3228751

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XXXXXX XXXX 10

Algorithm 6: V/F Spiking
Input: TempMax, TDP , TLim, Break Even T ime

1 ∆Cyc = 0 ;
2 while Mi is being executed do
3 if Curr Interval is over then
4 for each core C in parallel do
5 if Temperature[C] < TempMax − TLim then
6 #Compute Leakpow[C];
7 #Get highest V/F, VH/FH , so that

DynHpow[C] + Leakpow[C] + V RPow <
TDP [C];

8 if Such VH /FH exists then
9 V/F [C] = VH/FH ;

10 #Start execution and start increasing
Cyc Ctr;

11 else
12 #Execute the task normally;
13 if Temperature[C] == TempMax and V/F [C] >

Vsched/Fsched[C] then
14 T ime elaps = Cyc Ctr

F [C]
;

15 #Set V/F [C] = Vsched/Fsched[C];
16 ∆Cyc+ = Cyc Ctr - (T ime elaps× Fsched[C]) ;
17 Cyc Ctr = 0 and stop incrementing Cyc Ctr ;

18 Cyc remOi
= ∆Cyc + (Cyc Ext End Ti − Cyc End Mi) ;

19 if Highest Oi is not scheduled then
20 # Call the function that returns optional part with highest

possible accuracy which can run within Cyc rem ;
21 Oi = get Oi(Ti, Cyc rem) ;
22 if O i then
23 #Fetch the Oi ;

24 if Cyc remOi
> Cyc Oi then

25 Slack = Cyc rem Oi − Cyc Oi ;

26 #Start Execution of Oi at Vsched/Fsched[C] ;
27 if Oi is finished and Slack > Break Even T ime then
28 #Power gate the core ;
29 while Slack > 0 do
30 Slack--;

31 #Turn on the core ;

any noticeable overheads, as discussed earlier. To efficiently
scale V/F at the cores, on-chip voltage regulators [17] can be
attached, which are also common in contemporary CMPs.
Note that, on-chip thermal sensors will be used to observe
the core temperature on-the-fly.

7 EVALUATION

In this section, first we show the efficacy of DELICIOUS-
Offline approach (Sec. 5) followed by the benchmark based
evaluation of the DELICIOUS-Online (Sec. 6).

7.1 DELICIOUS-Offline
First, we define Normalized Achieved QoS (NAQ), which
is the ratio between the actually achieved QoS for the
PTG, and the maximum achievable QoS by executing the
highest versions of all tasks. We formulate NAQ as: NAQ =∑n

i=1 Accji∑n
i=1 Acc

ki
i

, where ki represents the highest version of task

Ti. Next, we model a multicore along with the task-set:

• Processor System: A homogeneous multicore platform
equipped with 4 Intel x86 cores (i.e., m = 4) has
been considered. The TDP of the each core is scaled
and set as 10.5W, by considering the Intel Xeon’s
datasheet [1] and the runtime core power is obtained
through McPAT [30].

• Task-set: The task characteristics have been taken
from a prior technique, Prepare [10], that framed
tasks by using PARSEC benchmark applications.
The total execution requirement of a PTG (CPTG)
is the sum of the execution times of its subtasks,
CPTG =

∑n
i=1 ETi. Thus, utilization Ui of a PTG

can be presented as CPTG

DPTG
. The average utilization

of a PTG is taken from a normal distribution, by
considering a normalized frequency of 0.6. Given
the PTG’s utilization, we further obtain the total
utilization of the system (Sysuti) by summing up the
utilization of all PTGs. Given the Sysuti, the total
system workload (SysWL) / system pressure can be
derived by: SysWL = Sysuti

m . For a given Sysuti, all
of our PTGs have been generated by following the
method proposed in Prepare [10]. Given a SysWL, a
set of DAGs have been created. The number of DAGs
(ρ) within a set can be calculated as: ρ = m×SysWL

Ui
.

In our generated PTGs, the minimum number of
tasks is equal to 5 and the maximum number of tasks
is set to 20. For each PTG in the set, the number of
tasks have been generated randomly within a preset
limit. Note that, as the individual Ui of a DAG is
lower than the given SysWL, the number of DAGs
(ρ) within the set will always be higher than m.

• Task Temporal Parameters: For each Ti, based on which
portion of the leni is considered as the mandatory
portion (Mi), we consider the following cases [15]: (i)
man low : Mi ∼ U(0.2, 0.4)× leni (low portion of a
task Ti’s length (leni) is for the mandatory portion).
(ii) man med :Mi ∼ U(0.4, 0.6)×leni (medium por-
tion of a task Ti’s length (leni) is for the mandatory
portion). (iii) man high : Mi ∼ U(0.6, 0.8) × leni

(high portion of a task Ti’s length (leni) is for the
mandatory portion).

Scalability analysis of DELICIOUS-Offline. Figure 6
depicts the mean solving time per number of tasks in each
PTG while applying the scheduling heuristic of DELICIOUS,
and the ILP based scheduling of Prepare [10]. This result
shows that, our proposed heuristic has better scalability
with the number of tasks than the ILP based algorithm. With
significantly lower running time, this heuristic generates
nearly optimal schedule like ILP. In fact, with 20 tasks, the
ILP based scheduling has almost 4× higher execution time
than our scheduling heuristic.

Effects of System Workload. Figure 7 depicts the
NAQ achieved by DELICIOUS-Offline for different values of
SysWL. The NAQ is derived by running each of the DAGs
that belongs to the set. Then, we have taken the average
over the obtained individual NAQ values. We observed
that, DELICIOUS is able to achieve 80% QoS, when the
system workload is low. However, the QoS is reduced by
20% on average, when the workload is scaled up by 40%.
Other two insightful observations can also be derived from
this figure. Firstly, as the system workload is increased in
order to maintain the number of DAGs (ρ) in the system, the
individual Ui also increases and this eventually contributes
to low NAQ values. This happens as increasing Ui results in
higher execution length of each task and thus the possibility
of obtaining sufficient free slots in the scheduling period

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3228751

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XXXXXX XXXX 11

Fig. 6: Running time: Prepare (ILP) vs.
DELICIOUS-Offline.

Fig. 7: Change in QoS (NAQ) for differ-
ent system loads.

Fig. 8: Change in QoS (NAQ): Compar-
ison with Prior Arts.

reduces within the deadline. Insufficient free slots in turn
reduces the probability of obtaining feasible schedules by
selecting higher tasks’ versions.

Secondly, in case of manhigh, the reduction in achieved
NAQ is reduced comparatively lower than the manmed and
manlow, while increasing the value of SysWL. This can
be attributed to the fact that, when mandatory portions of
the individual tasks are high, the length of the optional
portions will be low. This results into the variance among
the different versions of a task become less. Due to fewer
variations among the optional parts of a task, there will be
less impact on the achieved accuracy. On the other hand,
in case of manlow, we observe that, the reduction in NAQ is
higher than the other two, and manmed offers a performance
between manhigh and manlow. However, the NAQ sharply
decreases while SysWL goes up. We also compared our
strategy with prior arts, Task Deploy [37] and Prepare [10]
and the results are shown in Figure 8. Towards a fair
comparison with Task Deploy, we computed the overall
energy constraint based on the considered TDP of the exper-
imental framework of DELICIOUS. This power limit is also
used in case of Prepare. Next, we consider our comparison
by uniformly choosing Mi of the tasks between 20% to
80% of leni. As execution demand of individual tasks goes
up (due to increase in SysWL), DELICIOUS maintains im-
proved QoS by achieving higher NAQ than Task Deploy.
DELICIOUS is able to maintain 70% QoS at 70% workload
where Task Deploy achieves 60% QoS. This is because
the considered overall energy limit in Task Deploy would
scale up with the higher SysWL. Moreover, Task Deploy
also allows unlimited tasks migration, that incurs additional
overhead. However, for all workloads, Prepare shows better
NAQ among all policies due to employment of ILP based
optimal scheduling, but, heuristic based strategy of DELI-
CIOUS-Offline also offers a performance close to this optimal
values, with a remarkably low computational time.

7.2 DELICIOUS-Online

7.2.1 Simulation Setup
In this work, a homogeneous tiled CMP having 4 tiles is
simulated in the gem5 full system simulator [8]. Each tile
has an Intel x86 Xeon OoO core along with its private
L1 data and instruction caches. The L2 cache is logically
shared, yet physically distributed among the tiles, where
each tile contains an L2-bank of the same size. After col-
lecting the periodic performance traces from gem5, it is
sent to McPAT [30] to generate the power traces. Basically,
we derive dynamic power consumption for individual on-
chip components by executing McPAT. As McPAT assumes
uniform on-chip temperature for estimating leakage power,

TABLE 3: V/F settings and Dynamic Power values for Intel
x86 OoO core (at 22nm node)

V/F setting (V/GHz) 0.6/2.4 1.0/3.0 1.2/3.4 1.5/3.9

Dynamic Power (W) 3.759 4.498 5.214 5.942

TABLE 4: Temperature vs Leakage Power for Intel x86
OoO core (at 22 nm node)

Temperature (°C) 67 77 87 97 107 117

Leakage Power (W) 0.364 0.516 1.021 1.956 3.106 5.235

which is impractical, we compute the component-wise leak-
age power by considering the temperatures of individual
on-chip components at the end of the last period [24], [25],
[26]. Eventually, we derive the total power consumption
from dynamic and leakage power estimations, the power
values are sent to HotSpot 6.0 [48] towards generating
temperature traces. Based on prior analyses [11], [12], the
span of this periodic interval is set to 0.33 µs (i.e. 1.0M
cycles at 3.0GHz frequency), during which we assume the
temperature across the CMP is stable. We set BackPer as
last 5% time-span of the interval. The HotFloorPlan module
of HotSpot 6.0 generates floorplan of the CMP once at the
beginning by considering the component wise area estima-
tion from McPAT. Our detailed system parameters used in
the simulations by considering 22nm technology nodes are
listed in Table 5.

Table 3 lists the V/F values for Intel x86 Xeon cores,
for which power values are obtained from McPAT. The
changes in leakage power for different temperatures are
also obtained from McPAT and are shown in Table 4, where
the leakage increases at higher rate at the higher tempera-
tures. To simplify our online computation in Algorithm 4,
we adopt piecewise linear approximation for each range
of 10 °C to compute leakage consumption at any temper-
ature [11], [12]. In our simulation framework, each core
runs at the Base V/F level with the effective frequency
(feff) of 3.0GHz. For our experiments, we also consider
another V/F magnitude (Med) between Turbo and Base.
Note that, a core can execute tasks in all of these V/F,
however, core can maintain Base V/F without any potential
thermal threats, but the remaining two values are suggested
to be maintained for particular time-spans, provided by the
vendor. We set TLim (of Algorithm 6) as 4 °C.

To set Curr Interval, we evaluated nine PARSEC appli-
cations for DOA blocks on our baseline system with 0.5M −
2.0M in 0.5M increments, by executing each application for
100M cycles within RoI, and the results are shown in Fig-
ure 9. The results show that, the cache access patterns for
DOA blocks converge at 1.0M for most of the applications,
which is hence considered here as Curr Interval, which
is also in line with prior research [12]. For a 1.0M period-

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3228751

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XXXXXX XXXX 12

TABLE 5: System parameters [CC: clock cycle]

Parameter Value Parameter Value

ISA Intel x86 L1-I 64KB, 4Way, 3CC
#Cores (type) 4 (Xeon) L1-D 64KB, 4Way, 3CC
Base V/F (Base) 1.0V, 3.0GHz L2 1MB, 16Way, 12CC
Med. V/F (Med) 1.2V, 3.4GHz Cache LRU, 64B blocks
Turbo V/F (Turbo) 1.5V, 3.9GHz #Cache-Levels 2
VR-Speed 20 mV/ns Cache model SNUCA
Power gate overhead 60 ns DRAM latency 70 ns
ROB Size 200 Technology 22 nm
Dispatch/Issue width 8 Ambient Temp. 47 °C

length, our evaluation shows that 89−93% of the LLC blocks
are DOA, on average. Such salient presence of DOA blocks
further justifies the sufficiency of using Dead bit to detect
the dead entries in Algorithm 5.

Fig. 9: Amount of DOA Blocks for different Curr Interval.

7.2.2 Task-set
Our tasks are generated by using PARSEC benchmark
suite [7], which can be fitted in an AC based paradigm
through the loop perforation technique [3], [43]. Based on
these prior studies, we framed our task-set by defining
each task with a couple of PARSEC applications, where
the former one is executed as Mi and the latter one is
representing Oi. For creating multiple versions of Oi, the
latter application will have different executable files, with
various execution lengths. We have constructed each Mi

and Oi by using two copies of two different PARSEC
applications, for example, for a task, T1, M1 is framed by
two copies of Black, whereas the O1 is constructed by two
copies of Body. The task-set is detailed in Table 6, where the
execution lengths (Exec Length) are given in million cycles
in the region of interest (RoI) for the respective Mi’s and
Oi’s. For example, while running T2 with its first version of
Oi (having a length of 100M cycles), 2 copies of Stream will
be executed for 200M cycles concurrently in our considered
CMP to complete Mi, and after that, to complete Oi, 2
copies of Can will be executed concurrently on the same
set of cores. Note that, the execution length of each task
in Table 6 is set by scaling the task lengths given in Table 2.
The versions of Oi selected by DELICIOUS-Offline (Sel. Oi
[EL]) are also given in Table 6. We have used a 4 core based
CMP, where each task’s Mi and Oi run on 2 cores. Two cores
of this CMP implies a single processor-core, Pi in Figure 3.

7.2.3 LLC Resizing, Peak Temperature, and Performance
Improvements
DELICIOUS-Offline schedules the task-set where T2 and T6

are scheduled with lower Oi. Both of these tasks’ Mi’s
consist of memory intensive PARSEC applications (stream
and x264). Presence of dead blocks at the LLC for stream
and x264 enables Algorithm 5 to turn off a number of cache
ways, that assists Algorithm 6 to maintain Turbo V/F for a

TABLE 6: Tasks formation with PARSEC. (Acronyms:
Blackscholes (Black), Bodytrack (Body), Canneal (Can),
Dedup (Ded), Fluidanimate (Fluid), Freqmine (Freq),

Streamcluster (Stream), and X264 (X264)). The execution
lengths (ELs) are in million cycles. Black (2) implies 2

copies of Black, which is the same for others.

Tasks Benchmarks (Mi, Oi) EL ([Mi], [Oi]) Sel. Oi [EL]

T1 Black (2), Body (2) [80], [40] #1 [40]

T2 Stream (2), Can (2) [200], [100, 160, 200] #2 [160]

T3 Ded (2), Fluid (2) [200], [100, 140, 200] #3 [200]

T4 Fluid (2), Freq (2) [400], [140, 240] #2 [240]

T5 Body (2), X264 (2) [380], [40, 120, 280] #2 [280]

T6 X264 (2), Ded (2) [200], [40, 80] #1 [40]

longer time. We also experimented with a Med V/F level,
higher than Base V/F but lower than Turbo, by running the
core at this level during V/F Spiking. The cores can execute
tasks at Med for longer time, as the rate of temperature
change at this level is slower than Turbo. Our simulation
results in Figure 10 show the reduction in execution lengths
of each task for Med and Turbo, where the offered thermal
benefits at Med is however compensated by the perfor-
mance benefits of the Turbo. Both Med and Turbo offer
almost similar performance benefits by reducing execution
length 8.5% and 8.2%, respectively, without violating the
temperature threshold. However, the execution length for
Turbo is slightly higher for T4, a memory intensive task,
that is able to maintain Turbo residency for a longer time
at some initial execution phases, which results into higher
temperature, and thus it lacks some chances of V/F Spiking
later. In DELICIOUS, we have chosen Turbo for executing
tasks during V/F Spiking, however, one can also choose Med
as a promising alternative.

Figure 11 shows the average and minimum LLC sizes
maintained for each task, and the respective reductions in
core temperature are also depicted. Algorithm 5 is able
to reduce peak temperature by 5.8 °C on an average by
leveraging the generated thermal buffers through gated LLC
ways, that elongates the vendor defined span (of 10ms)
remarkably by 7% on an average (Figure 10), at Turbo.
Overall, DELICIOUS-Online improves QoS by executing all
tasks at their highest version, and the reduction in execution
span also generates slacks at the end of each task. The
generated amount of online slacks are significant, which are
in the range of 6.2 − 10.1% of their actual execution span
(generated offline) across the tasks. The updated versions
and the amount of generated slacks are listed in Table 7.
However, by employing LLC resizing induced V/F Spiking,
DELICIOUS-Online noticeably improves achieved QoS (by
DELICIOUS-Offline) of the task-set by 8.3%.

7.2.4 Comparison with Prior Works

We compared DELICIOUS with two recent prior works,
Prepare [10], that refines the schedule (generated offline)
by employing an LLC miss induced DVFS technique, and,
GDP [33], that employs a threshold temperature based tech-
nique to apply DVFS. Figure 12 depicts how DELICIOUS
outperforms the prior policies in terms of the maximum
reduction in peak temperature of the cores during the slacks.
The longer slack intervals in DELICIOUS offer a maximum

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3228751

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XXXXXX XXXX 13

Fig. 10: Comparing Execution Length:
Med and Turbo during V/F Spiking.

Fig. 11: Reduction in LLC size and Peak
Temperature.

Fig. 12: Maximum Reduction in Peak
Temperature at Slacks.

TABLE 7: Outputs of DELICIOUS-Offline and Online

Tasks Mapped Scheduled Updated Amount of
Core Version (Offline) Version (Online) Slack

T1 P1 1 1 8.7%

T2 P1 2 3 9.3%

T3 P2 3 3 10.1%

T4 P2 2 2 7.05%

T5 P1 2 2 6.2%

T6 P2 1 2 9.7%

Improvement in Achieved QoS 8.3%

TABLE 8: Comparison with Prior Works
Techniques DELICIOUS Prepare [10] GDP [33]

Online QoS Scaled up 8.3% 5.3% Not Applicable
Average Runtime Peak

5.8 °C 5.1 °C 4.9 °C
Temperature Reduction

reduction of up to 9.2 °C, which is up to 7.8 and 6.7 °C
for Prepare and GDP, respectively. Table 8 shows, DELI-
CIOUS surpasses the prior techniques in terms of online
QoS improvement, as eviction of dead blocks also plays a
significant role in boosting up the performance along with
the V/F Spiking. Prepare offers an online QoS improvement
by 5.3%, which is 8.3% in case of DELICIOUS-Online (not
applicable for GDP). In fact, our LLC resizing is also able
to reduce core peak temperature by 5.8 °C, which is 5.1
and 4.9 °C for Prepare and GDP, respectively. The threshold
temperature based DVFS in GDP scales down the core’s
V/F that does not allow thermal overshoot, whereas our
V/F Spiking mechanism considers both TDP and critical tem-
perature to prevent temperature overshoot with elongated
time-span for Turbo frequency. Prepare, on the other hand,
controls peak temperature by introducing energy-adaptive
DVFS at the cores.

8 CONCLUSION

Improving result-accuracy in AC based real-time paradigms
without violating power constraints of the underlying hard-
ware has recently become an active research avenue. Ex-
ecution of the AC real-time applications is split into two
parts: (i) the mandatory part, execution of which provides
a result of acceptable quality, followed by (ii) the optional
part, which can be executed partially or fully to refine
the initially obtained result towards improving the result-
accuracy without deadline violation. In this paper, we intro-
duce DELICIOUS, a novel hybrid offline-online scheduling
strategy for AC real-time dependent tasks. By employing an
efficient heuristic algorithm, DELICIOUS first generates a
schedule for a dependent AC task-set at a base process-
ing frequency with an objective to maximize the results-
accuracy, while respecting the system-wide constraints. At

runtime, DELICIOUS next employs a prudential way on-
off based LLC resizing induced thermal management to en-
hance the processing speed at the cores for a stipulated time-
span without violating power budget, called as V/F Spiking,
to reduce the tasks’ execution lengths. The generated slack
by the reduced execution length can be exploited either to
enhance QoS further by dynamically adjusting the optional
part or to reduce temperature by enabling sleep at the cores.
In addition with surpassing the prior art, DELICIOUS offers
80% result-accuracy with our scheduling strategy, which is
enhanced by 8.3% in online, while reducing runtime peak
temperature by 5.8 °C on average within deadline, as shown
by a benchmark based evaluation on a 4-core based CMP.

ACKNOWLEDGMENTS

This work is supported by the UK Engineering and Phys-
ical Sciences Research Council (EPSRC) through grants
EP/X015955/1 , EP/V 000462/1, and is also funded by
Marie Curie Individual Fellowship (MSCA-IF), EU (Grant Num-
ber 898296).

REFERENCES

[1] “12th generation intel® core™ processor family,”
https://www.intel.com/content/www/us/en/products/docs/
processors/core/core-technical-resources.html, accessed: 2022-
03-28.

[2] “Overview information for intel turbo boost technology,”
https://www.intel.com/content/www/us/en/support/articles/
000007359/processors/intel-core-processors.html, accessed:
2022-08-31.

[3] S. Achour and M. C. Rinard, “Approximate computation with
outlier detection in topaz,” SIGPLAN Not., 2015.

[4] M. Arora et al., “Understanding idle behavior and power gating
mechanisms in the context of modern benchmarks on cpu-gpu
integrated systems,” in HPCA, 2015.

[5] H. Aydin et al., “Optimal reward-based scheduling for periodic
real-time tasks,” IEEE TC, 2001.

[6] A. Bhuiyan et al., “Energy-efficient real-time scheduling of DAG
tasks,” ACM TECS, 2018.

[7] C. Bienia et al., “The PARSEC benchmark suite: Characterization
and architectural implications,” in PACT, 2008.

[8] N. Binkert et al., “The gem5 simulator,” SIGARCH CAN, 2011.
[9] K. Cao et al., “QoS-adaptive approximate real-time computation

for mobility-aware IoT lifetime optimization,” IEEE TCAD, 2019.
[10] S. Chakraborty et al., “Prepare: Power-Aware Approximate Real-

Time Task Scheduling for Energy-Adaptive QoS Maximization,”
ACM TECS, 2021.

[11] S. Chakraborty and H. K. Kapoor, “Exploring the role of large cen-
tralised caches in thermal efficient chip design,” ACM TODAES,
2019.

[12] S. Chakraborty and M. Själander, “WaFFLe: Gated cache-ways
with per-core fine-grained DVFS for reduced on-chip temperature
and leakage consumption,” ACM TACO, 2021.

[13] T. Chantem et al., “Temperature-aware scheduling and assignment
for hard real-time applications on mpsocs,” in DATE, 2008.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3228751

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.intel.com/content/www/us/en/products/docs/processors/core/core-technical-resources.html
https://www.intel.com/content/www/us/en/products/docs/processors/core/core-technical-resources.html
https://www.intel.com/content/www/us/en/support/articles/000007359/processors/intel-core-processors.html
https://www.intel.com/content/www/us/en/support/articles/000007359/processors/intel-core-processors.html

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XXXXXX XXXX 14

[14] J. Donald and M. Martonosi, “Techniques for multicore thermal
management: Classification and new exploration,” in ISCA, 2006.

[15] A. Esmaili et al., “Energy-aware scheduling of task graphs with im-
precise computations and end-to-end deadlines,” ACM TODAES,
2019.

[16] ——, “Modeling processor idle times in MPSoC platforms to
enable integrated DPM, DVFS, and task scheduling subject to a
hard deadline,” in ASPDAC, 2019.

[17] S. Eyerman and L. Eeckhout, “Fine-grained DVFS using on-chip
regulators,” ACM TACO, vol. 8, no. 1, 2011.

[18] P. Faldu and B. Grot, “Leeway: Addressing variability in dead-
block prediction for last-level caches,” in PACT, 2017.

[19] Y. Ge et al., “Distributed task migration for thermal management
in many-core systems,” in DAC, 2010.

[20] ——, “A multi-agent framework for thermal aware task migration
in many-core systems,” IEEE TVLSI, 2012.

[21] B. Goel et al., “Chapter two - techniques to measure, model, and
manage power,” ser. Advances in Computers (Elsevier), 2012.

[22] Z. Guo et al., “Energy-Efficient Multi-Core Scheduling for Real-
Time DAG Tasks,” in ECRTS, 2017.

[23] ——, “Energy-efficient real-time scheduling of dags on clustered
multi-core platforms,” in RTAS, 2019.

[24] V. H. and S. V., “Energy-efficient operation of multicore processors
by DVFS, task migration, and active cooling,” IEEE TC, 2014.

[25] V. Hanumaiah et al., “Maximizing performance of thermally con-
strained multi-core processors by dynamic voltage and frequency
control,” in ICCAD, 2009.

[26] V. Hanumaiah et al., “Performance optimal online DVFS and
task migration techniques for thermally constrained multi-core
processors,” IEEE TCAD, 2011.

[27] K. Kanoun et al., “Online energy-efficient task-graph scheduling
for multicore platforms,” IEEE TCAD, 2014.

[28] J. Kong et al., “Recent thermal management techniques for micro-
processors,” ACM CSUR, 2012.

[29] J. Lee and N. S. Kim, “Analyzing potential throughput improve-
ment of power- and thermal-constrained multicore processors by
exploiting DVFS and PCPG,” IEEE TVLSI, 2012.

[30] S. Li et al., “McPAT: an integrated power, area, and timing mod-
eling framework for multicore and manycore architectures,” in
MICRO, 2009.

[31] C. Mazumdar et al., “Dead page and dead block predictors:
Cleaning TLBs and caches together,” in HPCA, 2021.

[32] I. Méndez-Dı́az et al., “Energy-aware scheduling manda-
tory/optional tasks in multicore real-time systems,” International
Transactions in Operational Research, 2017.

[33] A. Mirtar et al., “Joint work and voltage/frequency scaling for
quality-optimized dynamic thermal management,” IEEE TVLSI,
2015.

[34] S. Mittal, “A survey of architectural techniques for improving
cache power efficiency,” Sustainable Computing: Informatics and
Systems, 2014.

[35] ——, “A survey of techniques for approximate computing,” ACM
Comput. Surv., vol. 48, no. 4, 2016.

[36] L. Mo et al., “Energy-quality-time optimized task mapping on
DVFS-enabled multicores,” IEEE TCAD, 2018.

[37] ——, “Approximation-aware task deployment on asymmetric
multicore processors,” in DATE, 2019.

[38] S. Narayana et al., “Exploring energy saving for mixed-criticality
systems on multi-cores,” in RTAS, 2016.

[39] S. Pagani et al., “Energy and peak power efficiency analysis for the
single voltage approximation (SVA) scheme,” IEEE TCAD, 2015.

[40] M. Powell et al., “Gated-Vdd: A circuit technique to reduce leakage
in deep-submicron cache memories,” in ISLPED, 2000.

[41] R. Rao et al., “An optimal analytical solution for processor speed
control with thermal constraints,” in ISLPED, 2006.

[42] J. Roeder et al., “Energy-aware scheduling of multi-version tasks
on heterogeneous real-time systems,” in ACM SAC, 2021.

[43] S. Sidiroglou-Douskos et al., “Managing performance vs. accuracy
trade-offs with loop perforation,” in ACM SIGSOFT, 2011.

[44] G. L. Stavrinides and H. D. Karatza, “Scheduling multiple task
graphs with end-to-end deadlines in distributed real-time systems
utilizing imprecise computations,” JSS, 2010.

[45] K. Stavrou and P. Trancoso, “TSIC: thermal scheduling simulator
for chip multiprocessors,” in Proceedings of the 10th Panhellenic
Conference on Advances in Informatics, 2005, pp. 589–599.

[46] C. Tan et al., “Approximation-aware scheduling on heterogeneous
multi-core architectures,” in ASP-DAC, 2015.

[47] H. Yu et al., “Dynamic scheduling of imprecise-computation tasks
in maximizing QoS under energy constraints for embedded sys-
tems,” in ASPDAC, 2008.

[48] R. Zhang et al., “HotSpot 6.0: Validation, acceleration and exten-
sion.” in University of Virginia, Tech. Report CS-2015-04, 2015.

[49] J. Zhou et al., “Energy-adaptive scheduling of imprecise computa-
tion tasks for QoS optimization in real-time MPSoC systems,” in
DATE, 2017.

Sangeet Saha is currently associated with Department of Computer
Science, University of Huddersfield, as a Lecturer and also a visiting fel-
low University of Essex (UK). His current research interests include real-
time scheduling, scheduling for reconfigurable computers, real-time and
fault-tolerant embedded systems, and cloud computing. He published
many of his research contributions in conferences like CODES+ISSS,
ISCAS, NASA AHS, etc. and in journals like ACM TECS, IEEE TCAD,
etc.

Shounak Chakraborty is associated with Department of Computer
Science, NTNU, Norway as a Post-Doc researcher. His research in-
terests include High Performance Computer Architectures, Emerging
Memory Technologies, Thermal Aware Architectures, etc. He published
several of his research contributions in conferences like DATE, ASAP,
CODES+ISSS, GLS-VLSI etc. and in journals like ACM TACO, ACM
TECS, IEEE TCAD, etc.

Sukarn Agarwal is a Research Associate at University of Edinburgh
(UK). His research interests include emerging memory technologies,
memory system design and network-on-chip design. He published many
of his research contributions in conferences like ASAP, VLSI-SoC, GLS-
VLSI, ISVLSI, etc. and also published several of his research outcomes
in journals like IEEE TVLSI, ACM TECS, IEEE TC, etc.

Rahul Gangopadhyay is associated as a researcher at St. Petersburg
State University, Russia. His broad research domain is in Graph Theory,
and specifically his research interests include hypergraph, rectilinear
crossing, etc. He has published many of his research outcomes in
journals like Computational Geometry, Graphs and Combinatorics, etc.

Magnus Själander is working as a Professor at the Norwegian Univer-
sity of Science and Technology (NTNU) and a Visiting Senior Lecturer
at Uppsala University. Before joining NTNU in 2016 he has been a
researcher at Chalmers, Florida State University, and Uppsala Uni-
versity. Själander’s research interests include hardware/software co-
design (compiler, architecture, and hardware implementation) for high-
efficiency computing.

Klaus McDonald-Maier is currently the Head of the EIS Laboratory,
University of Essex, UK. He is also the founder of UltraSoC Technologies
Ltd., the CEO of Metrarc Ltd., and a Visiting Professor with the University
of Kent. His current research interests include embedded systems and
SoC design, security, development support and technology, parallel and
energy-efficient architectures, computer vision, data analytics, and the
application of soft computing and image processing techniques for real-
world problems. He is a member of VDE and a Fellow of the BCS and
IET.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3228751

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

	Introduction
	State-of-the-Art
	DELICIOUS Over Prior Arts

	System Model and Assumptions
	Problem Formulation
	DELICIOUS-Offline Phase
	DELICIOUS-Offline Algorithm
	Schedule Generation (Sched-Gen)

	DELICIOUS-Online Phase
	Detecting Dead Blocks and Thermal Management at LLC
	V/F Spiking: Effects and Amelioration
	Proposed Online Technique
	LLC Resizing Technique
	Proposed V/F Spiking

	Hardware Mechanism

	Evaluation
	DELICIOUS-Offline
	DELICIOUS-Online
	Simulation Setup
	Task-set
	LLC Resizing, Peak Temperature, and Performance Improvements
	Comparison with Prior Works

	Conclusion
	References
	Biographies
	Sangeet Saha
	Shounak Chakraborty
	Sukarn Agarwal
	Rahul Gangopadhyay
	Magnus Själander
	Klaus McDonald-Maier

