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per part seva han estat un regal agradable d’abraçar i un deute que no se si seré capaç
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viii



darrers anys ha estat més ı́ntima :

Un brindis pel Pau, pel Jan, pel Toni, pel Jordi, pel Fèlix, pel Marc i per l’Otger.
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parada. Una abraçada i una promesa : encara hem de compartir moltes coses plegats.

Per tu, per la Núria.
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Resum en català

Astrometria des de l’espai i la missió HIPPARCOS

L’astrometria és la branca de l’astronomia que es dedica a mesurar posicions d’estels

i altres objectes celests, les seves distàncies i moviment. L’astrometria qunatitativa

es remunta, almenys, al astronom grec Hipparcos. En el segle II A.C. va compilar el

primer cataleg d’estels i, fent aixo, va inventar l’escala de brillantor (magnitud este-

lar) que encara s’utilitza en l’actualitat. Es considera que l’astrometria moderna va

començar amb Friedrich Bessel i els seus Fundamenta astronomiae, que proporcionen

la posició mitjana de 3222 estels observats entre 1750 i 17662 per James Bradley.

La historia de l’astrometria està estretament relacionada amb els avenços en els

instruments de mesura astronòmica. La invenció del telescopi data del segle XVI

i va ser a principis del segle XVII quan Galileu va utilitzar-lo per primera vegada

per obtenir medicions astronmiques. Abans d’això, l’astrometria es limitava a les

observacions a ull nu ajudades per instruments com l’astrolabi i el sextant, ambdues

tècniques utilitzades habitualment per a la navegació i la mesura del temps.

Degut a la precisió i la quantitat de temps requerits per a les observacions as-

tromètriques, les primeres paralaxis trigonomètriques (mesures de distancies a altres

estrelles) no van ser obtingudes fins al 1838 per F. Bessel. Va mesurar que la par-
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alaxi anual del sistema binari 61 Cygni era de 0.3 segons d’arc. Les paralaxis d’estels

brillants com Vega i α Cen van obtenir-se poc després per Wilhelm Struve i Thomas

Henderson respectivament.

Les primeres decades del segle XX, van veure millores tant tècniques com instru-

mentals, incloent grans telescopis refractors i l’ús de plaques fotogràfiques. Això es

va traduir en un increment de la precisió tal que durant els any 20 podien mesurar-se

ja paralaxis de l’ordre de 0.01 segons d’arc.

Durant el segle 20, els catalegs estelars han anat creixent tant en quantitat d’estels

com en precisió de les mesures utilitzant noves observacions i recuperant antigues

mesures que són extremadament tils per a obtenir els moviments propis.

També durant el segle 20, es van crear els primers catalegs fonamentals. Un cataleg

fonamental consisteix en una llista d’estels ben comportats distribuits homogèniament

damunt l’esfera celest definint el que s’anomena un marc de referència astronòmic

(Astronomical Reference Frame). Un marc de referència astronomic és una realització

s’un Sistema de Referència Astronómic, que és un conjunt de regles, convencions i

models necessaris per definir a qualsevol instant una triada d’eixos espaials.

La gran revolució en astrometria, però, va arribar amb l’era especial i la missió

HIPPARCOS de l’Agencia Espacial Europea(ESA). A l’espai, les observacions as-

trométriques poden realitzar-se entre estels separats grans angles (¿ 1 grau) gràcies a

l’absència de l’atmosfera. Aquest és un requisit indispensable per tal d’obtenir par-

alaxis lliures d’efectes sistematics locals (els estels al voltant d’una direccio donada

tenen moviment paralàctic similar). La mesura d’estels separats grans angles va ser

el principi de mesura d’HIPPARCOS i és també un element essencial de les missions

d’astrométria des de l’espai com GAIA Perryman et al. (2001) o SIM (NASA, Shao

(1998)).

En particular, els 110 000 estels observats per HIPPARCOS (Perryman et al.
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1997b) son la realització en l’optic del Sistema de referencia astronòmic anomenat

International Celestial Reference System (Sistema Internacional de Refencia Celest),

substituint el cataleg FK5 (Fricke et al. 1994) utilitzat fins a la dècada dels 90.

L’astrometria no està només restringida al domini òptic. Una de les técniques

astromètriques més potents que actualment s’utilitza es l’us de la xarxa de ra-

diotelescopis del VLBI (Very Long Baseline Interferometry) per obtenir mesures as-

trometriques molt precises de fonts radio. En la xarxa VLBI, el retard del mateix

senyal mesurat entre les diferents estacions s’obté amb una precisió molt alta (∼ 20−30

picosegons). Ja que les antenes estant separades uns quants milers de kilometres, la

orientació de la ĺınia de base (linia ficticia que uneix ambdues estacions) pot mesurar-

se de forma molt acurada, obtenint mesures astromètriques millors que ∼ 50µas quant

les condicions ambientals son les apropiades. Un µas (microsegon d’arc) es un mil-

ionesima part d’un segon d’arc i equival al gruix aparent d’una moneda a la superficie

de la Lluna vista des de la terra.

La xarxa VLBI s’utilitza per produir i mantenir l’ICRF en el domini radio. El

sistema ajusta les posicions d’una llista de quasars llunyans a partir dels retards

mesurats entre antenes. Un gran esforç teòric i experimental ha estat necessari per

definir l’ICRS (McCarthy & Petit 2004) ja que, a més, te aplicacions geodètiques

directes (rotació i forma de la terra, d’imporància vital per als satèlits geocèntrics).

L’ICRS pot enllaçar-se amb l’ITRS (International Terrestrial Reference System, Mc-

Carthy & Petit (2004,Chap. 4)) utilitzant els EOP (Earth Orientation Parameters,

Seidelmann (1982)).

L’enllaç entre l’ICRF optic(HIPPARCOS) i la seva contrapartida radio (VLBI),

ha estat discutida i elaborada per diversos autors (veure Stone (1998) o bé Hemenway

et al. (1997) per mencionar-ne alguns d’ells). L’enllaç entre l’ICRF òptic i el ràdio es

realitza per mitjà de mesures astromètriques de camp petit dels quasars juntament
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amb els estels HIPPARCOS veins.

La xarxa VLBI terrestre està aprop d’assolir la seva maxima precisió teòrica degut

a que les linies de base no poden fer-se mes grans que el diametre de la Terra i que

certs retards que ocorren a la troposfera escapen a una modelització acurada. Amb

l’objectiu d’augmentar les ĺınies de base de la xarxa VLBI, una antena a l’espai està

essent utilitzada desde 1996 (veure project VSOP, Levy et al. (1989), Linfield et al.

(1989)). Degut però a les incerteses en la posició orbital de l’antena (∼ 10 metres),

no és possible utilitzar-la per fer astrometria global (de grans angles). Tot i això,

astrometria de camp petit pot realitzar-se a gran precisió (∼ 40µas) tal i com va

demostrar-se per Guirado et al. (2001). Està planejat que es llenci una antena de

nova generació cap al 2010 (Hirabayashi et al. 2007).

A diferència de la contrapartida ràdio, l’ICRF òptic es degrada amb el temps ja

que no pot obtenir-se astrometria global de precisió comparable a HIPPARCOS i en

una quantitat suficient d’objectes des de terra. Hi han alguns esforços per mantenir

l’ICRF optic (Hummel et al. 1999), però la precisió és limitada i el nombre d’objectes

força baix.

En el domini ràdio, la precisió és molt millor però el nombre de fons radio estables

es molt limitat (∼ 200) i moltes regions del cel (especialment a l’hemispheri sud)

estant pobrement poblades de fons de calibració. Dues extensions del catàleg inicial

de fons han estat incorporades durant els darrers 10 anys per intentar homogenitzar la

densitat d’objectes al cel però el nombre de fonts continua sent molt limitat (< 300).

A més, ecenment s’ha detectat que alguns d’aquest quasars mostren moviment del

fotocentre força elevat degut (probablement) a periòdes d’activitat i jets relativistes

movent-se a velocitats superluminiques (aparents).

Diversos projectes per produir versions millorades d’HIPPARCOS han estat

cancelats degut a restriccions financeres de les respectives agències : DIVA–
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Alemanya(Graue et al. 2003) i FAME–USA(Horner et al. 1998). Recenment, el

USNO ha proposat una missió astrometrica per a ser llençada cap al 2015(Johnston

et al. 2004). La mission SIM (Space Interferometry Mission) està tecnològicament

demostrada però les recents reestructuracions de les prioritats de NASA, n’han relle-

gat el llençament fins després de 2015. Actualment, la missió GAIA(ESA, Perryman

et al. (2001)) és l’únic projecte aprovat i amb el finançament garantit que es capaç

d’obtenir astrometria d’altra precisió des de l’espai. El seu llençament està previst

per finals de 2011.

La missió Gaia. Cap a l’astrometria del microsegon

d’arc

Gaia és una missió de l’Agència Espacial Europea (ESA) que preten obtenir astrome-

tria global de tots els objectes celests fins a magnitud ∼ 20, al mateix temps que

s’obté informació espectrofotomètrica i velocitats radials dels objectes observats amb

l’objectiu de crear un mapa tridimensional de la Galàxia. Està previst que es llenci

cap a finals del 2011 en una òrbita de Lissajous al punt lagrangia L2 del sistema

Sol-Terra.

L’instrument consistèix en dos telescopis apuntant en dues direccions separades

per un angle constant, i que convergeixen en un sol pla focal que conté l’instrument

astromètric, l’espectrofotòmetre i l’instrument de velocitats radials. A mida que gira

lentament (1 minut d’arc per segon), escaneja continuament el cel. L’eix instantani

de rotació precessiona lentament al voltant de la direcció instantania del Sol amb un

periode de 2 mesos. El pla focal astromètric cobreix una àrea del cel de 0.7 × 0.7

graus quadrats. Això garanteix que cada direccio del cel serà observada entre 50 i 200
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Figure 1: El pla focal de Gaia. Els camps de visió d’ambdós telescopis es sobreimposen
en aquest pla focal comú que conté 106 de CCDs distribuits en 7 files i 17 columnes.
Cada CCD te 4500 columnes per 1966 files de pixels TDI(ĺınies per on s’arrossega
la càrrega). Cada pixel te un tamany de 10µm en la direcció d’escaneig(horitzonal)
i 30µm en la direcció perpendicular que, traduit a mides angulars, són 59 × 177
milisegons d’arc al quadrat. Les imatges de les estrelles creuen el pla focal de dreta
a esquerra. Els CCDs astrometrics són els pintants en gris clar. Figura cortesia de
EADS Astrium.

vegades durant els 5 anys de missió nominal.

Al pla focal astromètric, hi ha una matriu de 7 files per 9 columnes de CCDs

(veure Fig. 1). A mida que la imatges d’un objecte transita el pla focal, la càrrega

es transportada ṕıxel a ṕıxel sincronitzadament amb la el ritme d’escaneig. Aquest

mode de lectura s’anomena TDI (Time delayed integration) i maximitza el temps útil

d’integració ja que la lectura del xip CCD és fa de forma continuada a la darrera

columna de pixels de cada CCD. Si es promitja l’imatge de l’estrella en la direcció

perpendicular a l’escaneig, s’obté una mesura astromètrica molt precisa fent l’ajust

per centroide del que s’anomena Line Spread Function (versió unidimensional de la

PSF o imatge de difracció d’una font monocromàtica, veure Busonero (2006)). El
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centroide en la direcció d’escaneig és la mesura astromètrica més precisa i elemental

que pot fer Gaia i consisteix essencialment en l’instant de transit del objecte a través

del pixel de la darrera columna de cada CCD. Un objecte transitant pel pla focal

consisteix en 9 d’aquests instants de trànsit.

La posició de les CCDs en el pla focal (calibració geomètrica) i la direcció d’apuntat

com a funció del temps (calibració d’actitud) són a priori desconegudes, i s’han

d’ajustar utilitzant les mesures mateixes. Per aquesta raó, es diu que el procés de

reducció de dades és auto–calibrat, i ha estat desenvolupat curosament durant els

darrers anys. Degut a la gran quantitat de dades en brut generades (∼ Terabyte) i els

diferents modes que es necessiten per accedir a les dades, ESA va crear un contracte

anomenat Gaia Data Access and Analysis Study (GDAAS), que va ser encarregat al

consorci format per GMV (Grupo de Mecànica del Vuelo, Madrid), la Universitat de

Barcelona i el CESCA(CEntre de Supercomputació de Catalunya). El contracte es

va extendre a una segona fase (GDASS2) que va finalitzar amb èxit al Juny del 2006

(Portell et al. 2006). Actualment, l’arquitectura del software i el desenvolupament de

la base de dades es realitza al centre de ESA a Madrid (ESAC, Hobbs et al. (2007)), es-

sent Barcelona un dels principals centres de computació dedicats al desenvolupament

de la Missió. Les instalacions del Barcelona Supercomputing Center (Mare Nostrum)

i el CESCA son utilitzats intensivament per a la simulació de dades (Altamirano et al.

2005) i al desenvolupament del procés anomenat Initial Data Treatment (tractament

inicial de les dates, Serraller et al. (2007).

Gaia és essencialment una missió astromètrica, per tant la definició estricta

dels observables i algoritmes astrométrics hi juguen un paper central. El nucli del

procés de reducció de dades s’anomena AGIS(Astrometric Global Iterative Solution)

i s’encarrega d’ajustar els paràmetres de calibració geométrica, calibració d’actitud i

astrometria dels estels de forma iterativa fins que certs llindars de convergència són
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assolits. També hi ha un petit nombre de paràmetres anomenats globals que afecten

a tots els objectes i totes les observacions i que s’ajusten a part en cada iteració

(per exemple, el parametre post-Newtonià γ, l’acceleració del baricentre del Sistema

Solar,etc.). Un subconjunt d’observacions (entre 10 i 100 milions d’estels ben compor-

tats) seran utilitzats per a construir la solució iterativa global i seran els que defineixin

el nou ICRF en óptic. Per tal de processar tal quantitat de dades, els algorismes que

contenen el model astromètric dins de AGIS han de ser acurats i computacionalment

eficients.

Relativitat i astrometria fonamental

A la precisió d’un µ as, l’astrometria fonamental necessita d’una formulació rela-

tivista estricta de lel procés d’observació. Durant la década dels 90, van dedicar-se

grans esforços per crear el BCRS (Barycentric Celestrial Reference System), que és

essencialment la rerafons f́ısic en termes relativistes utilitzats per descriure l’ICRS

(que pot veure’s com un cas particular on s’especifica quin és el conveni utilitzat per

orientar els eixos espacials en astronomia). El BCRS inclou les propietats de les co-

ordenades utilitzades, la forma del tensor mètric per experiments en el Sistema Solar

i les relacions entre altres sistemes coordenats i escales de temps (per exemple, amb

el Sistema coordenat Geocentric on s’acostuma a donar les òrbites dels satèl.lits al

voltant de la Terra).

La contrucció dels BCRS i les quantitats observables ve donada en l’aproximació

post-Newtoniana parametritzada (parameterized post-Newtonian approximation, o

ppN), tal i com es descriu a McCarthy & Petit (2004).

El model relativista per a les observacions conté diversos elements que estan des-

glosats en la Figura 2. Això inclou, la descripció f́ısica de les fonts a observar, el
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tractament rigurós de la propagació del senyal (fotons en aquest cas), i la correcta

interpretació de les quantitats coordenades observades. Tot plegat ha de quedar inclòs

i descrit dins el context del BCRS.

El model relativista per a les observacions de Gaia

Els diversos aspectes de la modelització relativista de les observacions astrométriques

han estat desenvolupats per diversos autors al llarg del segle XX. Això inclou un dels

test classics de la teoria com la deflexió de la llum per un cos am simetria esfèrica (Ein-

stein 1915), estudis detallats de la descripció dels Sistemes de Referencia Relativistes

i els observadors (Misner et al. 1973,Chap. 6), la descripció dels marcs de referencia

astronomics en termes relativistes (Kovalevsky 1971), comprensió del contingut f́ısic

dels sistemes de coordenades i la llibertat de gauge de les equacions d’Einstein (Will

1980); on només hem mencionat els treballs pioners i algunes referències clàssiques.

El model detallat prou prećıs al microsegons d’arc incloent tots els elements re-

querits per a les observacions astrométriques (Sistemes de referencia, propagacio de

la llum, i observables) fou donat per primer cop per Klioner & Kopeikin (1992). El

treball va ser estimulat pel projecte POINTS(Reasenberg et al. 1988) que suggeria

l’utilització s’un interferometre en órbita per a obtenir astrometria global amb una

precisió de 1µas.

Diferents models relativistes s’han suggerit per a ser utilitzats per a la missió

Gaia (veure de Felice et al. (2006) o bé Kopeikin & Schäfer (1999)), però el que

millor s’ajusta als requisits de la missió i està formulat de forma més compatible

amb la definició del BCRS fou donat per Klioner (2003), que es completa amb la

definició del observador i el seu sistema de referència en Klioner (2004). Aquest darrers

treballs es basen en una formulació estrictament post-Newtoniana de la gravitació en
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TEORIA MÈTRICA
DE GRAVITACIÓ

Relativitat General o bé
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Figure 2: Principis generals per a la descripció relativista d’observacions as-
tronòmiques. Extret de Klioner (2003).
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el Sistema Solar. La propagació de les senyals electromagnètiques també ha estat

formulada de forma prou precisa en el que s’anomena formulació post-Minkowskiana

que parteix d’unes equacions d’Einstein linealitzades que conserven l’invariancia sota

transformacion Lorentz i proporcionen prediccions exactes per a qualsevol potencia de

v
c . En l’aproximació post-Minkowskiana, els termes on s’aplica un desenvolupament

pertorbatiu son només aquells proporcionals a G. Pot demostrar-se que ambdues

aproximacions proporcionen resultats equivalents a la precisió de Gaia.

Resum del treball desenvolupat en aquesta tesi

Si bé és cert que el models són força complerts en un sentit general, contenen molts

detalls i una pila de petits efectes previament indetectables que requereixen un anàlisi

detallat per tal d’entendre què és important, i la informació rellevant que se’n pot

extreure.

Aquesta tesi s’ha concentrat en tres temes espećıfics amb l’intenció de aconseguir,

a través del treball pràctic, una comprensió complerta del model.

Efectes relativistes en l’obtenció d’imatges per un sistema òptic

en rotació

Els instruments de gran precisió com Gaia no poden considerar-se com a observadors

puntuals en el marc d’una formulació relativista de les quantitats observades. De-

sprés d’un anàlisi preliminar dels termes rellevants, s’ha trobat que cal almenys una

descripció especial relativista acurada de les diferents parts de l’instrument (miralls,

pla focal) degut a que estan en continua rotació.

Per fer-ho hem derivat la forma de la llei de reflexió relativista per a superf́ıcies

amb formes i moviment arbitrari en el ĺımit de l’òptica geomètrica (fotons). S’ha
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creat un codi de traçat de rajos que permet obtenir els patrons d’aberració (imatges

de feixos de rajos paralels incidents) per a un sistema òptic amb qualsevol nombre de

superf́ıcies, de forma i en moviment arbitraris. El codi és completament dinàmic, és

a dir, no només es te en compte la llei de la reflexió relativista sino també els retards

de propagació entre superficies i questions de simultaneitat en les observables: al pla

focal, la imatge espaial es correspon als punts d’intersecció dels fotons incidents en

una superficie de de temps coordenat constant. Aquest darrer aspecte requereix que

el traçat s’hagi de fer de forma iterativa ja que, en general, el temps de propagació de

cada fotó dins el sistema òptic serà diferent.

Aquest codi s’ha aplicat a sistemes optics senzills amb les caracteŕıstiques bàsiques

de Gaia per tal d’analitzar l’impacte de cadascun dels efectes. S’ha trobat, que l’efecte

més notori en les imatges, tant la part provinent dels retards llum com la llei de la

reflexió relativista, és un desplaçament constant de tota la imatge respecte al que un

esperaria en una aproximació més clàssica (reflexió newtoniana, velocitat de la llum

infinita). Això no te consequencies astrometriques greus ja que equival simplement

a una direcció d’apuntat efectiva diferent. Per als models òptics simulats, aquest

deplaçament total pot superar els 10µ as. A part d’aquest despaçament, s’observen

distorsions en les imatges al nivell d’1µas, que es preveu que no siguin significants pel

cas de Gaia.

Tot i aixó s’observa que superf́ıcies reflectants molt inclinades respecte l’eix òptic,

són les responsables de l’aparició d’aquestes aberracions. Aquesta mena de superf́ıcies

són habituals en molts instruments astronòmics (combinadors de feix, focus nasmith,

etc.). A més, els efectes dels retards de propagació són proporcionals al tamany dels

instruments i s’espera que grans telescopis o instruments extensos (interferometres de

sintesi d’apertura, hypertelescopis) siguin especialment sensibles a aquestes aberra-

cions de retard.
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És, per tant, una conclusió d’aquest treball que és necessari fer un estudi amb cert

detall d’aquesta mena d’instruments de nova generació per tal de tenir controlades

les aberracions òptiques abans esmentats.

Models astrometrics per a fonts en moviment no lineal

Tant els projectes d’astrometria des de l’espai com els recents desenvolupaments en

śıntesi d’imatges d’alta resolució requereixen d’una revisió dels efectes a tenir en

compte per parametritzar correctament el moviment de les font que segueixen trajec-

tories no lineals. En aquest estudi mostrarem que cal que es tingui en el retard llum

per a aquestes fonts, fins hi tot a distàncies estelars.

Una expresió tancada per incloure el retard llum per a fonts en moviment no

lineal es donada en aquest càpitol i la signatura astromètrica de l’efecte s’obtindrà

per mitjà d’un desenvolupament pertorvatiu dels termes més rellevants. Les expre-

sions que es propocionen poden esser utilitzades de forma pràctica per a la correcta

parametrització i reducció de les trajectories observades per a aquestes fonts.

Mostrem també com els efectes del retard temporal són rellevants per a l’astrometria

al microsegon d’arc o fins i tot al milisegon d’arc depenén del temps que ens dediquem

a observar les fonts. S’obté també, que l’efecte del retard llum pot utilitzar-se per

obtenir informació sobre el moviment radial de les fonts aplicant-ho a sistemes binaris

propers coneguts. Els resultats no són només aplicables Gaia sinó a qualsevol tècnica

que treballi a alta resolució angular (< 1 mas), tal com imatge directe d’exoplanetes o

estels observats al voltant de forats negres supermassius (centre galàctic o en cúmuls

globulars).
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Deflexió de la llum pels planetes del Sistema Solar

Els efectes de la deflexió gravitatoria de la llum en observacions astromètriques de gran

precisió al voltant dels planetes del Sistema Solar seran analitzats i discutits des d’una

perspectiva pràctica. Després d’una breu introducció del model de propagació de la

llum utilitzat, es simularan observacions com les que obtindrà Gaia a fi efecte d’estimar

la precisió amb la que els parametres rellevants del model poden ser obtinguts.

Des d’un punt de vista fenomenològic podem parlar de tres efectes rellevants: la de-

flexió monopolar (provinent de la part del potencial gravitatori amb simetria esfèrica),

la deflexió quadrupolar (deguda a la component quadrupolar del camp gravitatori d’un

planeta) i els efectes derivats del moviment de translació del planeta durant el temps

de propagació del fotó a través del Sistema Solar. Per a cadascun d’aquests efectes,

hem introduit un parametre númeric en el model que val 1 si la predicció de la Rel-

ativitat General és correcte. Els parametres son γ per al monopol, ǫ per al moment

quadrupolar i αr per a l’efecte de la translació.

Per que les simulacions siguin el màxim de realistes possible, s’han utilitzat

catalegs estelars reals (GSC2.3.1 i/o 2MASS), i un model simplificat de la sonda

que te en compte els aspectes fonamentals de la missió (òrbita, llei d’escaneig del

cel, model geomètric dels 2 plans focals, model d’error en funció de la magnitud,etc).

Amb aquesta finalitat hem creat el Simulador de Butxaca de Gaia, per tal de poder

simular i reduir aquestes dades sintètiques sense necessitat de fer us d’un centre de

supercomputació.

Els resultats d’aquesta secció demostren l’avanç important que hi haurà en aquesta

àrea. El parametre γ per Jupiter podrà obtenir-se amb un error relatiu de l’ordre de

10−3, que és millor que la precisió que es va obtenir amb HIPPARCOS per al Sol.

Els efectes del moviment dels planetes també podran mesurar-se de forma que el
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paràmetre αr quedarà determinat amb un error relatiu de l’ordre de 2 10−3, millorant

en dos ordres de magnitud els resultats presentats per Fomalont & Kopeikin (2003)

i que van causar la polèmica de la velocitat de propagació del camp gravitatori. Les

previsions per a la detecció de la deflexió quadrupolar de Jupiter són bones (detecció

per sobre de 3σ sense masses dificultats) però els resultats finals dependran cŕıticament

d’uns pocs esdeveniments favorables (estels brillant prop del planeta al moment de

l’observació). Volem destacar també l’estudi que s’ha fet sobre errors posicionals de

les efemerides del sistema solar (models numérics utilitzats per predir el moviment

dels planetes). En particular, s’ha trovat que, per permetre una correcta estimació

del paràmetre dinàmic αr i del paràmetre de quadrupol ǫ, cal que la precisió en la

posició proporcionada del planeta sigui millor que 100 km, que està en el ĺımit del

que avui es te per Jupiter.

S’ha considerat també la possiblitat d’utilitzar les observacions de les llunes de

Jupiter. S’ha trobat que, si bé l’experiment és potencialment molt prometeder des

d’un punt de vista ideal, els errors posicionals en les orbites de les llunes, les velocitats

no menyspreables i el fet de que són fons exteses i amb estructura pot dificultar o fins

hi tot, impedir que es puguin processar les mesures per obtenir resultats concluents.

El simulador de butxaca i altre programari

El treball realitzat en els darrers anys ha consistit, en gran part, en el desenvolu-

pament de programari. Tota la comunitat cient́ıfica de Gaia ha contribuit en el

desenvolupament del Simulador oficial de missió, que conté models molt detallats per

a la població d’estels de la galàxia, dels instruments i l’adquisició de dades. Aquest

esforç permet a la comunitat obtenir dades en brut amb un aspecte similar al que

tindran les dades reals. Essent tant complet, el simulador oficial de missió requereix
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força potencia de càlcul (ara mateix s’acostuma a fer corre sobre uns centenars de

nodes del BSC/Marenostrum) i no està pensat per fer petits estudis en ordinadors de

sobretaula.

Ja que l’autor de la tesi va estar molt implicat en el desenvolupament inicial del

simulador de Gaia, li ha estat possible d’extreure i reutilitzar el conjunt mı́nim de

models per a implementar una versió a escala del sistema que conté tots els detalls del

model astrometric relativista. Aquesta és la idea darrera del Simulador de butxaca de

Gaia (Gaia Pocket Simulator). Adicionalment, està disenyat per utilitzar directament

catalegs estelars reals com el GSC2.3.1(Guide Star Catalog) o el 2MASS (cataleg en

l’infraroig). En perspectiva de l’elaboració d’aquesta tesis, l’autor s’ha encarregat

també d’incorporar i comprobar la implementació final del elements rellevants per

al model relativista dins el Simulador oficial, que després han estat reciclats dins el

Simulador de butxaca.

També s’ha desenvolupat el programari necessari per a la reducció de les dades

generades pel Simulador de Butxaca, maximitzant la reutilització del codi ja existent.

El conjunt de programes de reducció de dades inclouen unes interficies molt generals

que permeten endollar qualsevol model f́ısic que depengui d’uns pocs paràmetres

dins els algorisme propiament dits. En particular hem implementat diferents versions

d’algorismes de Mı́nims quadrats per a models no lineals, i la integració Montecarlo

de la funció de versemblança (Estad́ıstica Bayesiana).

Conclusions

En aquesta tèsi s’han fet contribucions en els tres àmbits importants del model as-

tromètric relativista : la descripció relativista de l’observador i les mesures (Caṕıtol

2), modelització del moviment de les fonts (Caṕıtol 3) i l’obtenció d’informació sobre
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model de propagació de la llum utilitzant les dades de Gaia (Caṕıtol 4). Aquest no

ha estat un treball exhaustiu, però ha solventat, o almenys ha posat llum sobre di-

versos aspectes foscos que havien estat identificats com a cŕıtics per a la explotació

satisfactoria de la missió.

A més, la major part del treball desenvolupat durant aquests anys, ha estat de-

splegat dins les eines de programari per a Gaia, que estant sent desenvolupades per

al procés de reducció real de les dades per molts investigadors a pertanyents a paisos

membres de l’agència espacial. Una prova d’això n’és el Simulador de Butxaca de

Gaia (Appendix A), que no és més que una compilació de les eines desenvolupades o

integrades per l’autor en el Simulador de missió i el prototip del model de reducció

de dades (dins el contracte GDAAS).

Pel que fa a la modelització de la propagació de la llum en un sistema òptic

en rotació, els efectes rellevants (relativitat especial, velocitat de propagació finita)

han estat identificats i quantificats. S’ha mostrat com les imatges poden patir

d’aberracions d’origen relativista al nivell del µ as (deplaçament de la imatge més

petites distorsions), però s’ha trovat que són força petits i que, de qualsevol manera,

és fàcil de tenir-los calibrats.

També s’ha demostrat que la descripció detallada de la cinemàtica de les fonts es

necessaria per entendre correctament el moviment aparent dels estels. En particular

aqúı s’ha estudiat l’efecte dels retards llum i de canvis de sistema de referencia (sota

transformacions de Lorentz). Tenir en compte els retards llum afegeix certa complex-

itat als models però, per contra, permet obtenir certa informació addicional a partir

d’observacions purament astromètriques.

Finalment, hem analitzat el potencial dels experiments de deflexió de la llum

utilitzant mesures astromètriques d’astres al voltant dels planetes del Sistema Solar.

S’ha vist com experiments molt interessants poden realitzar-se en el cas de Jupiter per
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mitjà de l’ajust d’alguns paràmetres lliures que apareixen en el model post-Newtonià

de les observacions. Les expectatives per a la mesura de la deflexió quadrupolar de

Jupiter són molt altes, i en circumstàncies favorables podem arribar a obtenir una

mesura prou significativa. S’ha trobat que la deflexió de la llum podrà mesurar-se en

tota la resta de planetes visibles per Gaia, amb l’excepció de Mart que és massa poc

massiu per produir una deflexió significativa. S’ha provat també que l’esquema de

reducció de dades (mı́nims quadrats + integració Montecarlo de la funció de versem-

blança proposat és l’adequat tenint en compte la gran quantitat d’observacions a

processar. L’esquema presentat en aquesta tesi assumeix que es disposen de totes les

dades de la missió i que la calibració de les mesures està feta. En aquest sentit, els

valors obtinguts en els paràmetres no tindran la màxima qualitat fins que la solució

astromètrica global per a Gaia no estigui enllestida.

Tal i com hem avançat, en aquesta tesi no hem estudiat tots i cadascun dels

aspectes potencialment interessants per a la missió Gaia des del punt de vista de

la ciencia relativista. Un grup d’experts dins el Consorci de reducció de dades de

Gaia s’encarrega de la tasca de coordinar aquest esforç i s’anomena: Relativistic

Experiments and Models for Astrometry(REMAT). El grup no només es cuida de

l’explotació cient́ıfica de la missió, sinó que proporciona suport expert en temes com

els algoritmes per a reducció astromètrica (dins AGIS) i altres consideracions de

caire relativista (sincronització de rellotges, escales de temps, òrbites, precisió de les

efemerides pel sistema solar, etc.). A continuació us posem una llista de tasques amb

contingut estrictament cient́ıfic que estant essent estudiades dins del grup REMAT :

• Tests globals

– Experiments de deflexió de la llum (**)

– Local Positional Invariance

xxix



– Local Lorentz Invariance

– Soroll aleatori provocat per microlens gravitatories(*)

– Ones gravitatòries primordials

– Acceleració del Sistema Solar (*)

• Tests locals

– Deflexió monopolar en els planetes(**+)

– Deflexió quadrupolar en els planetes(**+)

– Deflexió de la llum per masses en moviment(**+)

– Precessió del periheli, Asteroides (**)

– Effectes dinamics no-Schwarzschild, Asteroides

– Principi d’equivalencia, versió forta, Troians(*)

– J2 del Sol, Asteroides (**)

– Variació de la constant gravitatòria (**)

• Objectes relativistes

– Binaries relativistes(*+)

– Events de microlents

– Macrolents de Quasars(*)

– Forats negres supermassius

Una estrella indica que hi han treballs preliminars sobre el tema. Dues estrelles

indiquen que ja s’ha dedicat força esforç en aquest assumpte i que existeixen publica-

cions revisades o bé notes tècniques amb estimacions precises del efectes detectables.

Les creus són parts on l’autor d’aquesta tesi ha participat directament

xxx



Tenim l’esperança que de que els resultats presentats en aquesta tesi serveixin

com un exemple més de l’excelència i singularitat de la missió Gaia, que ha de ser la

bandera insignia del lideratge europeu en el camp de l’astrometria, l’astrof́ısica i les

ciències de l’espai en general.

xxxi







Traveling through hyperspace ain’t like dusting crops, boy. Without precise calcu-

lations, we’d fly right through a star, or bounce to close to a supernova, and that

would end your trip real quick, wouldn’t it.

–Han Solo

Star wars. A new hope





Chapter 1

Introduction

1.1 Space astrometry and the HIPPARCOS mis-

sion

Astrometry is a branch of astronomy that deals with the positions of stars and other

celestial bodies, their distances and motion. Quantitative astrometry goes back to,

at least, the Greek astronomer Hipparcos (or Hipparchus). In the 2nd century B.C.

he compiled the first catalogue of stars and, in doing so, invented the brightness scale

(stellar magnitude) basically still in use today. Modern astrometry was founded by

Friedrich Bessel with his Fundamenta astronomiae, which gave the mean position of

3222 stars observed between 1750 and 1762 by James Bradley.

The history of astrometry is tightly bound to the advances in the observing de-

vices. The invention of the telescope dates from the 16th century and it was at the

beginning of the 17th century that Galileo used a telescope for the first time to per-

form astronomical observations. Before that, astrometric observations were limited

to naked-eye observations aided by instruments such as the astrolabe and the sextant,

both mainly used for maritime navigation.

Due to the accuracy and amount of time required for astrometric observations

of stars, the first stellar parallax was not actually detected until 1838 by Friedrich

Bessel. He measured the parallax of the 5th magnitude binary star 61 Cygni to be

0.3 arcsec. The parallaxes for the bright stars Vega and α Cen were soon measured

1
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by Wilhelm Struve and Thomas Henderson respectively.

The early decades of the 20th Century saw improved instruments and techniques

including large, long refracting telescopes, and photographic plates started being used.

This added up to improved precision so that by the 1920s parallaxes as small as 0.01

arcsec could be measured.

During the 20th century a number of catalogs with increasing astrometric accuracy

have been created using recent as well as historical observations.

Also during the 20th century, the first fundamental catalogs. A fundamental

catalog consists of a list of well-behaved stars homogenously distributed on the celestial

sphere that define an Astronomical Reference Frame. An Astronomical Reference

Frame is a realization of an Astronomical Reference System, which constitutes the

set of prescriptions and conventions together with the modeling required to define at

any time a triad of axes.



Catalog Wavelength Number of Completeness Accuracy in Positional Epoch Reference
domain Objects proper motions accuracy

Hipparcos Optical 118 218 7.3 1 − 2 mas/year 1 − 3 mas 1991.25 Perryman et al. (1997)
Tycho-2 Optical B,V 2.5 milions 11.0 1 − 3 mas/yeara 10 − 100 mas 1991.25 Perryman & ESA (1997)
UCAC2 Optical R 48 milionsb 16.0 1 − 7 mas/year 20 − 70 mas 2000.0 Zacharias et al. (2004b)
USNO B1 Optical 1 bilion 20.0 in V 10 − 20 mas/year ∼ 200 mas 2000.0 Monet et al. (2003)
2MASS Infrared J,H,K 500 milions ∼ 16.0 in K no proper motionsc > 70mas 2000.0 Cutri et al. (2003)

VLBI ICRF Radio 212 - no proper motiond < 0.1 mas 2000.0 Ma et al. (1998)
Ext.1 +59 - no proper motiond < 0.1 mas 2000.0 Gambis (1999)
Ext2 +50 - no proper motiond < 0.1 mas 2000.0 Fey et al. (2004)

Table 1: There are currently a number of recommended catalogs in use. Each one gives several advantadges over the others. In this list,
only Hipparcos and the VLBI sources are fundamental catalogs. The information on this table is extracted from the USNO web page at :
http://ad.usno.navy.mil/star/star cats rec.html. a Proper motions derived using old catalog data. b Only 86% sky coverage c Proper motions
not provided. The NOMAD (Zacharias et al. 2004a) catalog compilation contains cross references to the optical counterparts. d Distant quasars
should not move.
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The great revolution on astrometry since the invention of the telescope came with

the space era and the HIPPARCOS mission. In the space, astrometric measurements

can be performed on stars separated large angles (> 1 deg) thanks to the absence of

athmosphere. In order to avoid local systematics in the estimation of parallaxes it

is crucial to measure angles between stars separated large angles (> 90 deg). This

was the measurement principle of HIPPARCOS and, this is also an essential element

of the planned astrometric space missions like Gaia(ESA, Perryman et al. (2001)) or

SIM (NASA, Shao (1998)).

In particular, the 110 000 stars observed by the HIPPARCOS mission (Perryman

et al. 1997b) are the optical realization of the ICRS (International Celestial Reference

System), superseding the FK5 catalog Fricke et al. (1994).

Astrometry is not only restricted to the optical domain. One of the most successful

astrometric techniques that is currently fully functional is the usage of the VLBI

network of radiotelescopes to produce extremely precise astrometric measurements. In

the VLBI network, the delay measured for the same signal between different antenas

is obtained with very high accuracy (∼ 20 − 30 picoseconds). Since the antennas

are separated some thousands of kilometers, the orientation of the baseline (virtual

straight line that connects both stations), can be determined with high accuracy,

obtaining astrometric measurements better than ∼ 50µas with favorable weather

conditions.

The VLBI network is used to produce and update the ICRF in the radio domain.

The System is released by VLBI estimates of equatorial coordinates of a set of ex-

tragalactic compact radio sources. A lot of effort was devoted to the definition of

the ICRS(McCarthy & Petit 2004) since it has direct application to geodetic sciences

(earth rotation and shape). The ICRS can be connected to the International Terres-

trial Reference System (ITRS)(McCarthy & Petit 2004,Chap.4) by use of the IERS

Earth Orientation Parameters (EOP), Seidelmann (1982).

The link between the optical ICRF and the radio counterpart has been worked out

by many authors (see Stone (1998) or Hemenway et al. (1997) just to mention some

of them). This link is obtained by local astrometric measurements (relatively small

fields) of the quasars in the optical range compared to surrounding HIPPARCOS

stars.

The earth bound VLBI network is close to its theoretical accuracy due to un-

modeled delays in the troposphere and because the baselines cannot be longer than
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the earth diameter. In order to increase the VLBI network baselines, a space an-

tenna is being used in orbit around earth since 1996 (see VSOP project Levy et al.

(1989), Linfield et al. (1989)). Due to the uncertainties in the orbital motion of the

antenna (∼ 10m), it is not possible to perform global astrometry with the current

Space VLBI. However small field astrometry can be performed with VSOP at very

high accuracy (< 40µas) as was shown by Guirado et al. (2001). A new generation

antenna is planned to be launched by 2010 (Hirabayashi et al. 2007).

The optical ICRF is degrading with time since no global astrometry with compa-

rable accuracy in the same amount of objects can be obtained from the ground. There

are some efforts to upkeep the optical ICRF (Hummel et al. 1999) but the accuracy is

still very limited and the number of observed objects quite low. In the radio domain

the accuracy is much better, but the number of quasars is very limited (∼ 200), and

many regions of the sky (specially in the southern hemisphere) are poorly populated

with calibrating sources (see Table 1.1). Two extensions of the defining QSO have

been realized in the last ten years to solve this problem but the number is still very

limited. In addition, some active quasars are showing large photocentric motion due

to (probably) relativistic jets with superluminal motion(apparent) and unresolved

structure.

Several projects to produce an improved versions of HIPPARCOS have been can-

celled due to financial restrictions of the funding agencies: DIVA(Graue et al. 2003)

and FAME(Horner et al. 1998). Recently, there are some plans at the USNO to

propose a global astrometry mission to be launched by 2015 (Johnston et al. 2004).

The Space Interferometer Mission (NASA,Shao (1998)) is technologically proven but

is also in troubles due to restructuration of the NASA priorities and will not be

launched before 2015. Currently, the Gaia(ESA,Perryman et al. (2001)) mission is

the only fully funded project which is able to perform precise astrometry from space

and the current schedule predicts a launch by the end of 2011.

1.2 The Gaia mission. Towards 1µas accuracy

Gaia is a mission of the European Space Agency (ESA) that aims to obtain global

astrometry of all the objects up to V ∼ 20 at the same time of obtaining spectropho-

tometry and radial velocities. The Gaia probe is planned to be launched at the end

of 2011 in a Lissajous orbit at the Earth-Sun L2 lagrange point.
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It consists on two telescopes pointing at two separate direction with a constant

basic angle, converging to a single focal plane which contains the astrometric instru-

ment, the spectrophotometer and the radial velocity instrument. As it slowly spins

(60′′s−1), it continuous scans the sky. The instantaneous rotation axis slowly precess

around the sun direction with a period of 2 months. The field of view of the astro-

metric instrument is 0.7 × 0.7 deg2. This guarantees that every position of the sky

will be observed between 50 and 250 times during the 5 years nominal mission.

Figure 1.1: The Gaia focal plane. The viewing directions of both telescopes are
superimposed on this common focal plane which features 7 CCD rows, 17 CCD strips,
and 106 large-format CCDs, each with 4500 TDI lines, 1966 pixel columns, and pixels
of size 10µm along scan ×30µm across scan (59 mas × 177 mas). Star images cross
the focal plane from the left to the right. The astrometric CCDs are those depicted
in light gray. Figure courtesy of EADS Astrium.

At the astrometric focal plane, there is an array of 9 columns and 7 CCD rows(see

Fig. 1.1. As the image of an object transits the focal plane, the charge is transported

pixel to pixel synchronized with the constant spin rate. This reading mode is called

TDI (Time Delayed Integration) and maximizes the useful integration time since the

read-out of the pixels is done sequentially as the image of the star reaches the last

pixel column of each CCD. If binned in the direction perpendicular to the scan, a very

precise astrometric measurement is obtained in the scanning direction by centroiding

of the so-called Line Spread Function (1-D version of the PSF, see Busonero (2006)).

This is the Gaia most precise measurement which ideally measures the instant of
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transit of each star through an ideal line on the last pixel column of each CCDs. A

full focal plane transit consists of 9 such transit times.

The position of the CCDs in the focal plane (Geometric calibration) and the

pointing direction as a function of time (Attitude calibration) are a priori unknown,

and must be obtained using the observations. For this reason, a self calibration data

reduction scheme has been carefully developed during the last years. Due to the large

amounts of raw data involved (∼ 1 Tbyte) and the different modes required to access

to the data, ESA released a contract called GDAAS (Gaia Data Access and Analysis

System), which was awarded to the consortia formed by GMV, UB and CESCA.

This contract was extended with a second phase (GDAAS2), which finished during

2006, (Portell et al. 2006). Currently, the system architecture is organized from

ESAC(Madrid)(Hobbs et al. 2007), Barcelona being one of the main computation

centers devoted to the development of the mission. BSC/Mare Nostrum and CESCA

facilities are being intensively used for data simulation(Altamirano et al. 2005) and

Initial Data Treatment (Serraller et al. 2007) studies.

Gaia is essentially an astrometric mission, thus the fundamental definition of the

observables and the astrometric algorithms play a very central role. The core of the

Gaia data reduction is called AGIS (Astrometric Global Iterative Solution), which

performs the attitude calibration, the geometric calibration and solves for the astro-

metric parameters of the stars in an iterative approach. There is also a small set of

Global parameters that affect the whole set of observations. They are also obtained in

an additional step (i.e. relativistic γ pPN parameter, acceleration of the Solar System

Barycenter, etc.). A subset of the observations (∼ 10 − −100 million sources) will

be used to build the astrometric solution and will define an Astronomical Reference

Frame. To process efficiently such amount of data, the algorithms on the core of AGIS

must be accurate and computationally efficient as well.

1.3 Relativity and fundamental astrometry

At the µas accuracy, Fundamental astrometry is no longer independent of the precise

fully relativistic description of the observations. A lot of effort was spend during

the nineties to create the Barycentric Celestrial Reference System, which represents

the relativistic definition of the Astronomical Reference Systems. This includes the

properties of the coordinates used, the form of the metric tensor and the relations
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between timescales. The construction of the BCRS and its observables is done in the

parameterized post-Newtonian formalism as described by McCarthy & Petit (2004).

The relativistic model of the observations contains several parts which are sketched

in Fig. 1.2. This includes, the physical description of the observed sources, the rig-

orous treatment of the signal propagation (photons in this case), and the correct

understanding of the observed quantities. All these issues described in the framework

defined by the BCRS. This is the context where the work presented in this thesis has

been developed.

1.4 The relativistic model for the Gaia observations

Many aspects of the model for very accurate positional measurements have been de-

veloped by many authors during the 20th century. This includes the classical tests

of light deflection by a spherical symmetric body already described by Einstein it-

self (Einstein 1915), detailed studies on the description of the Relativistic Reference

systems (Misner et al. 1973,Chap.6), the description of the Astronomical Reference

Frames (Kovalevsky 1971), physical understanding of the coordinate systems and

gauge freedom (Will 1980); just to mention some pioneering or reference works in

each area.

A detailed model for relativistic astrometric observations including all the required

elements (Reference Systems, light propagation, observable quantities) was first given

by Klioner & Kopeikin (1992) stimulated by an early project for µas astrometry from

space (Reasenberg et al. 1988).

The fully relativistic model for the Gaia observations was developed by Klioner

(2003) and the precise description of the observer was given in Klioner (2004). These

works are fully developed in the parameterized Post-Newtonian approach to the Solar

System gravitation. The solution for the light propagation in the Solar System, has

also been given in the post-Minkowskian approach by Kopeikin & Schäfer (1999). In

the later, the equations for the dynamical fields and for the geodesics are Lorentz

invariant. For this reason, their solutions are exact on all the powers of v/c. The

perturbative approach is only applied to the purely gravitational terms, say those pro-

portional to G. It can be shown that both approaches provide equivalent predictions

for the astrometric observables at the expected Gaia accuracy.
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1.5 Overview of the work presented in this thesis

Despite the models are very complete in a general sense, they contain many details

and a lot effects previously undetectable that require a detailed analysis, study and

understanding.

Three topics have been studied in great detail during the realization of this thesis.

1.5.1 Relativistic effects on imaging by a rotating optical sys-

tem

High accuracy astrometric instruments like Gaia aiming at an accuracy of 1 microarc-

second cannot be considered as point-like observers in the framework of relativistic

modeling of observable quantities. Special-relativistic effects on the imaging by a non-

point-like arbitrarily moving optical instrument should be discussed. To do that, a

special-relativistic reflection law for a mirror of arbitrary shape and motion is derived

in the limit of geometrical optics and the relevant effects in light ray propagation

within a given instrument with reflecting surfaces (such as propagation delays) will

be discussed.

The aberration patterns will be obtained with ray tracing using a full special-

relativistic model for two simple rotating optical instruments that slowly rotate with

a moderate angular velocity of 60 ′′/s. The idea is to reproduce a Gaia-like optical

system to investigate for possible distortions relevant to astrometric measurements at

1µas level.

Special-relativistic optical modeling of future astrometric instruments is indispens-

able if a level of a few microarcseconds is a must.

1.5.2 Astrometric modeling of sources in non-linear motion

Space astrometric projects and recent improvements in imaging capabilities require

a detailed review of the assumptions of classical astrometric modeling. We will show

that Light-Travel Time must be taken into account when modeling the kinematics of

astronomical objects in nonlinear motion, even at stellar distances.

A closed expression to include Light-Travel Time in the current astrometric models

with nonlinear motion will be worked out and by means of a perturbative approach

the expression of the Light-Travel Time signature will be then derived.
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Our main aim is to propose a practical form of the astrometric modeling so that it

can be applied in astrometric data reduction of sources at stellar distances(d > 1pc).

We whill show that the Light-Travel Time signature is relevant at µas accuracy

(or even at mas) depending on the time span of the astrometric measurements and

that information on the radial motion of a source can be obtained through this effect.

Some estimates will be provided for known nearby binary systems. The results are not

only relevant to the Gaia observations but to any technique that works at very high

angular resolution (< 1mas), such as direct imaging of exoplanets and observations

of stars around supermassive blackholes, just to mention a couple of examples.

1.5.3 Light deflection experiments with the planets of the So-

lar System

Relativistic light deflection effects in high-accuracy astrometric observations close to

planets of the solar system will be analyzed using real star catalogs, an appropriate

relativistic modeling and the simulation of Gaia-like observations. The gravitational

deflection effects under study include deflection due to monopole and quadrupole

gravitational fields and due to translational motion of the corresponding body.

We developed a data reduction scheme which combines the speed of the classical

Least Squares solution and incorporates the bayesian analysis as a robust way to

estimate the magnitude of the effects as well as the confidence levels for the fitted

values.

The results will show that important progress will be done in this field with the

Gaia data. The monopolar light deflection deflection effect will be measured with a

relative error of the order of 10−3 for Jupiter alone, which is as accurate as the value

obtained by HIPPARCOS from the Sun. The dynamical effects due to the plane-

tary motion will be measured without problems as well, improving by two orders of

magnitude the accuracy in the determination of the involved parameters. There is

big chance that we will measure the light deflection due to the quadrupolar gravita-

tional field of Jupiter(oblateness), but the final quality will crucially depend on the

observability of a very few good events (bright stars observed close to the planet).
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1.5.4 Gaia Pocket Simulator and other software

This thesis heavily relied on the development of software. The Gaia community has

contributed in the construction of the Gaia Simulator, which contains many detailed

models of the universe, the observing device and the data acquisition. Such an effort

lets the community obtain raw data which is very close to what is to be expected

from the probe. Being very complete, such a system has a need for a high computing

power and it would not suit particular investigations.

Since the author has been deeply involved in the development of the Gaia sim-

ulator, he has been able to extract and reuse the minimal set of physical models to

implement a fully relativistic portable Gaia simulator. This is the essence of the Gaia

Pocket Simulator. Moreover, it is designed to directly use existing star catalogs such

as 2MASS or GSC2.3.1. Having in mind the development of the thesis, the author

has taken care of the final implementation of the models (Anglada–Escudé (2004),

Anglada-Escudé et al. (2004)) in the official Gaia Simulator that, later on, have been

used in the development of the Gaia Pocket Simulator.

A number of data reduction packages have also been developed in Java, using

the philosophy of code reutilization. This includes a very general set of interfaces to

implement any physical model depending only on a few non-linear parameters, and

the algorithms required to perform the fits and extract the scientific information from

a generic model. In particular, we developed the code to implement some nonlinear

Least Squares algorithms, and the Montecarlo integration of the Likelihood function

(Bayesian statistics).

1.6 Generic notation and conventions

Here, we list some notation rules that apply to the whole thesis.

• c is the velocity of light in vacuum.

• Lowercase Latin indices a, i, j, . . . take values 1, 2, 3 and refer to spatial com-

ponents of corresponding quantities.

• Index 0 is used for time components.

• Greek indices α, µ, ν, . . . take values 0, 1, 2 and 3 and refer to all space-time

components of corresponding quantities.



13 1.6 Generic notation and conventions

• The Minkowski metric is denoted by η = diag(−1,+1,+1,+1).

• All Latin indices are lowered and raised by means of the unit matrix δij = δij =

diag(1, 1, 1), and therefore the position of such indices plays no role: ai = ai.

• The symbol εijk is the fully antisymmetric Levi-Civita symbol (ε123 = +1).

• Repeated indices imply the Einstein summation rule irrespective of their posi-

tions (e.g., ai bi = a1b1 + a2b2 + a3b3).

• The spatial components of a quantity considered as a 3-vector are set in boldface:

a = ai.

• The absolute value (Euclidean norm) of a 3-vector a is denoted |a| and is defined

by |a| =
(

a1 a1 + a2 a2 + a3 a3
)1/2

.

• The scalar product of any two 3-vectors a and b with respect to the Euclidean

metric δij is denoted by a · b and is defined by a · b = δija
i bj = ai bi.

• All physical quantities are expressed using the SI units (or MKS) if no particular

comment is added in the text.

• Small angles are usually given in fractions of arcseconds. The most used are the

miliarcsecond (1mas = 10−3 ′′) and the microarcsecond (1µas = 10−6 ′′).





Chapter 2

Relativistic effects on imaging

by a rotating optical system

2.1 Introduction

High accuracy astrometric instruments like Gaia aiming at an accuracy of 1 microarc-

second cannot be considered as point-like observers in the framework of relativistic

modelling of observable quantities. Special-relativistic effects on the imaging by a non-

point-like arbitrarily moving optical instrument are discussed. A special-relativistic

reflection law for a mirror of arbitrary shape and motion is derived in the limit of ge-

ometrical optics. The aberration patterns are computed with ray tracing using a full

special-relativistic model for two simple rotating optical instruments. The effect of

special-relativistic reflection law on the photocenters of the aberration patterns of an

optical system rotating with a moderate angular velocity of 60 ′′/s may be at the level

of 1 microarcsecond if the system involves mirrors significantly inclined relative to the

optical axis. Special-relativistic optical modelling of future astrometric instruments

is indispensable if a level of a few microarcseconds is envisaged.

We investigate possible relativistic effects on the imaging of an optical system

with arbitrary motion. In the framework of relativity one usually considers point-like

observers. The methods to calculate observed quantities for such observers are well

known. It is common to assume that the actual instrumentation of the observer is so

15
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small that one considers the positions and velocities of each part of the instrument to

be the same (and that single position and velocity is called the position and velocity

of the observer). In reality even for an Earth-based telescope the velocities of different

parts of the primary mirror in inertial coordinates (not rotating with the Earth) are

slightly different. However, in the past the accuracy of observations was considered

to be “too low” and the size of the mirror “too small” for differences to be of practical

relevance.

Due to recent technical developments especially for astrometric space missions like

Gaia (de Boer et al. 2000; Perryman et al. 2001; Bienaymé & Turon 2002), JASMINE

(Gouda et al. 2002) and SIM (Shao 1998) the situation has changed. In the case of

Gaia, we deal with a scanning satellite which permanently rotates in space with a

period of 6 hours. The size of the primary mirror of Gaia is 1.4 m, comparable with

the size of the spacecraft itself. The envisaged best accuracy of Gaia is a few µas

(and can be even below that limit in some favorable cases). Therefore, one cannot

neglect a priori the difference of velocities of various parts of the instruments. It is

our purpose to investigate these effects and estimate their magnitude for Gaia.

The general-relativistic model for Gaia has been formulated by Klioner (2003,

2004). The model uses two principal relativistic reference systems: (1) the Barycen-

tric Celestial Reference System (BCRS) and (2) the Center of Mass Reference System

(CoMRS) of the satellite. The former is a global reference system with its origin at

the barycenter of the solar system. It has been recommended by the International

Astronomical Union for relativistic modelling of high-accuracy astronomical obser-

vations (Soffel et al. 2003). This reference system is used to model the dynamics

of massive bodies, space vehicles (e.g., the Gaia satellite) and light rays within the

Solar system. The final Gaia catalogue will contain coordinates of celestial objects

in the BCRS. The CoMRS is the local relativistic reference system of the satellite.

The theory of such local reference systems was laid down by Ni & Zimmermann

(1978) and then elaborated by Klioner & Voinov (1993) and Klioner (2004). The

gravitational influence of massive bodies is reduced in the CoMRS as much as pos-

sible and, according to the equivalence principle, is represented by tidal potentials.

The CoMRS has its origin in the center of mass of the satellite and is kinematically

non-rotating with respect to the BCRS. The CoMRS is physically adequate to model

phenomena occurring in the immediate neighborhood of the satellite: attitude, the

process of observation, etc. According to Klioner (2004) the metric tensor of the
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CoMRS differs from the Minkowski metric in three kinds of terms (the gravitational

field of the satellite is too small and can be neglected safely): an inertial term due

to non-gravitational accelerations of the satellite (for Gaia these accelerations can be

relatively large during orbital maneuvers and only about 2 × 10−13 m/s2 in between,

mainly due to solar pressure); an inertial term due to the slow rotation of the CoMRS

relative to the co-moving Fermi-Walker transported locally inertial reference system

(with an angular velocity of ∼ 3×10−15 s−1 = 2 ′′ per century); and tidal gravitational

potentials (producing relative accelerations of at most 10−12 m/s2 at a distance of 2.5

meters from the satellite’s center of mass). Simple calculations show that all these

terms influence the CoMRS light propagation within a few meters from the satellite’s

center of mass at a level much lower than the goal accuracy of 1 µas. Therefore, all

these terms can be neglected for our purposes and one can consider the CoMRS for a

sufficiently small interval of time as an inertial reference system of Special Relativity.

In Section 2.3 we summarize how to calculate the special-relativistic effects in the

aberration patterns due to the rotation of the instrument. Section 2.4 is devoted to

a description of ray tracing calculations of the relativistic effects in the aberration

patterns for two simple optical systems. The details of the derivation of the special-

relativistic deflection law are given in the Appendix. There we also introduce a general

theoretical scheme we use to treat arbitrarily-shaped and arbitrarily moving mirrors

in special relativity.

2.1.1 Notation and conventions

We summarize some particular notation issues relevant to this chapter. Two reference

systems (t, xi) and (T,Xa) will be used. All quantities defined in xµ = (t, xi) are

denoted by small Latin characters with space-time and spatial indices taken from

second parts of the Greek and Latin alphabet, respectively (µ, ν, . . . , i, j, . . . ). All

quantities defined in Xα = (T,Xa) are denoted by capital Latin characters with

space-time and spatial indices taken from first parts of the Greek and Latin alphabet,

respectively (α, β, . . . , a, b, . . . ).
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2.1.2 Coordinate representation of an arbitrary moving mirror

Let us consider an inertial reference system of Special Relativity (t, xi). We define an

arbitrary mirror in arbitrary motion by a bundle of particles moving along worldlines

xµ
m(t; ξ, η) =

(

t, xi
m(t; ξ, η)

)

. (2.1)

Here ξ and η are two parameters “numbering” the particles. These parameters can be

though of as some non-degenerate “coordinate system” on the surface of the mirror

which is described by xi
m(t; ξ, η) for any fixed time t. Fixing ξ and η we fix a particle on

the surface of the mirror and xi
m(t; ξ, η) is the worldline of that particle in coordinates

(t, xi). Further, we assume that xi
m(t; ξ, η) is differentiable with respect to all its three

parameters. This means in particular that the surface of the mirror is assumed to be

smooth.

Here we do not pay attention to any physical properties of the mirror as a “physical

body” (elasticity, deformations, etc.). We just consider that (2.1) formally defines the

position of each point of the mirror at each moment of time. The source of information

for xi
m(t; ξ, η) for realistic mirrors and the plausibility of these representation of an

arbitrarily shaped and arbitrarily moving mirror is discussed in Section 2.3 above.

Starting from (2.1) for any fixed time t at any fixed point of the mirror character-

ized by some values of ξ and η we have two three-dimensional vectors tangent to the

surface of the mirror at the considered point as

li =
∂

∂ξ
xi

m(t; ξ, η), (2.2)

mi =
∂

∂η
xi

m(t; ξ, η). (2.3)

Then a coordinate vector normal to the surface of the mirror at that point can be

defined as

ni = εijk l
j mk. (2.4)

The order of vectors li and mi in (2.4) is arbitrary and corresponds to a choice of the

sign in the definition of ni (if ni is a normal vector then −ni is also a normal). Not

restricting the generality we assume below that (2.4) defines that ni which is directed

toward the “working surface” of the mirror, that is for any incoming light ray σi which

hits the mirror at the considered point one has σ · n < 0. This normal vector ni has
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no physical meaning since it is defined in some arbitrary coordinate system (t, xi).

However, it is straightforward to compute ni if xi
m(t; ξ, η) is given. Below we show

how to relate ni to a physically meaningful normal vector at some point of the mirror

as observed by an observer instantaneously co-moving with the considered point of

the surface.

The coordinate velocity of any point of the mirror reads

vi
m =

∂

∂t
xi

m(t, ξ, η). (2.5)

2.1.3 Transforming the mirror surface from one inertial refer-

ence system to another

Let us now define another reference system (T,Xa) moving with constant velocity vi

with respect to (t, xi). The coordinates (T,Xa) and (t, xi) are related by a Lorentz

transformation of the form

c t = Λ0
0 c T + Λ0

aX
a, (2.6)

xi = Λi
0 c T + Λi

aX
a. (2.7)

The Λ matrix coefficients are given by

Λ0
0 = γ, (2.8)

Λ0
a = ka γ, (2.9)

Λi
0 = ki γ, (2.10)

Λi
a = δia +

γ2

1 + γ
ki ka, (2.11)

γ = (1 − k · k)
− 1

2 , (2.12)

k =
1

c
v. (2.13)

The inverse transformation reads

c T = Λ̄0
0 c t+ Λ̄0

i x
i, (2.14)

Xa = Λ̄a
0 c t+ Λ̄a

i x
i. (2.15)
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where

Λ̄0
0 = γ, (2.16)

Λ̄0
i = −ki γ, (2.17)

Λ̄a
0 = −ka γ, (2.18)

Λ̄a
i = δia +

γ2

1 + γ
kika. (2.19)

In the reference system (T,Xa) the mirror can be also represented in the same

form as in Section 2.1.2

Xα
m(T ; ξ, η) = (T,Xa

m(T ; ξ, η)) , (2.20)

where fixed values for ξ and η should correspond to the same surface particle in both

coordinate systems. The vectors tangent and normal to the surface read

La =
∂

∂ξ
Xa

m(T ; ξ, η), (2.21)

Ma =
∂

∂η
Xa

m(T ; ξ, η), (2.22)

Na = εabc L
bM c. (2.23)

Here again, Na is a coordinate normal vector that has no physical meaning. The

coordinate velocity of a point of the mirror is given by

V a
m =

∂

∂T
Xa

m(T ; ξ, η). (2.24)

Let us now relate the vectors La, Ma, Na and V a
m to the corresponding ones in

the reference system (t, xi). We consider the coordinate transformation of the events

defined by (2.1) and (2.20)

c T = Λ̄0
0 c t+ Λ̄0

i x
i
m(t; ξ, η), (2.25)

Xa
m(T ; ξ, η) = Λ̄a

0 c t+ Λ̄a
i x

i
m(t; ξ, η). (2.26)

The function Xa
m(T, ξ, η) is thus defined by (2.25)–(2.26) implicitly since (2.25) should

be inverted to give t as a function of T , ξ and η and that t should be substituted into
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(2.26) to give the explicit dependence of Xa
m on T , ξ and η. Clearly, that inversion

cannot be done explicitly for any xi
m(t; ξ, η). However, the partial derivatives of

Xa
m(T ; ξ, η) representing La, Ma and V a

m can be calculated as derivatives of an implicit

function. Some straightforward algebra gives

V a
m = c

Λ̄a
0 + Λ̄a

i k
i
m

Λ̄0
0 + Λ̄0

i k
i
m

, (2.27)

La = S̄a
i l

i (2.28)

Ma = S̄a
i m

i (2.29)

S̄a
i = Λ̄a

i − Λ̄0
i

Λ̄a
0 + Λ̄a

j k
j
m

Λ̄0
0 + Λ̄0

j k
j
m

, (2.30)

or inverting

vi
m = c

Λi
0 + Λi

aK
a
m

Λ0
0 + Λ0

aK
a
m

, (2.31)

li = Si
a L

a, (2.32)

mi = Si
aM

a, (2.33)

Si
a = Λi

a − Λ0
a

Λi
0 + Λi

bK
b
m

Λ0
0 + Λ0

b K
b
m

, (2.34)

with ki
m = c−1 vi

m and Ka
m = c−1 V a

m. Equations (2.27) and (2.31) coincide with the

law for velocity addition in Special Relativity.

To test the invertibility of the transformations between tangent vectors, one can

check by direct calculation that Si
aS̄

a
j = δi

j and S̄a
i S

i
b = δa

b . Using (2.30) and (2.34)

some useful relations can be obtained,

S̄b
j S̄

c
kεabc =

1

γ (1 − k · km)
Si

aεijk, (2.35)

Sj
b S

k
c εijk = γ (1 − k · km) S̄a

i εabc. (2.36)

To prove (2.35)–(2.36) we used the identity

εajc δ
kb + εkac δ

jb + εjkc δ
ab = εajk δ

bc. (2.37)
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Transformation rules of the coordinate normal vectors

We are ready to derive the transformation rules of the normal vectors n and N

since they are required to formulate the reflection law. In order to write Na in the

Mirror Reference System (T,Xa) in terms of a perpendicular vector ni in an arbitrary

reference System (t, xi) where the mirror is moving we use the transformation rules of

the tangent vectors L and M imposing that the velocity cKa = 0 (in the comoving

frame, the coordinate velocity of the mirror is 0). Then

La = P̄ a
i l

i (2.38)

Ma = P̄ a
i m

i (2.39)

P̄ a
i = S̄a

i

∣

∣

Ka=0
= δai + kaki γ2

1 + γ
(2.40)

As given in (2.23),the components of the perpendicular vector in the Mirror Reference

System are

N c = εabcL
aM b = εabcP̄

a
i P̄

b
j l

imj

=
[

εijc + 2B[ij]c

]

limj (2.41)

B[ij]c ≡ 1

2

(

εibck
bkj − εjbck

bki
) γ2

1 + γ
. (2.42)

The object B is antisymmetric with respect to i and j indexes. Then, both terms in

equation (2.41) are antisymmetric with respect to i and j so, only the antisymmetric

part of limj is required. This is,

l[imj] ≡ 1

2

(

limj − ljmi
)

. (2.43)

This object is proportional to the components of the perpendicular vector n to the

surface defined by l and m,

nk = εijkl
imj = εijkl

[imj]. (2.44)
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Then, multiplying at both sides of (2.44) by εfgk we get

εfgknk = εfgk εijk l
[imj] = (δfiδgj − δfjδgi) l

[imj]

= l[fmg] − l[gmf ] = 2l[fmg]. (2.45)

Then, we can substitute l[imj] in the equation (2.41) by (2.45) obtaining,

N c =
1

2

[

εijc + 2B[ij]c

]

εijknk. (2.46)

We can proceed to the contraction of i and j,

εijcε
ijk = δjjδck − δjkδcj

= 3δck − δck

= 2δck, (2.47)

εi′bck
bkjεijk = (δbjδck − δbkδcj) k

bkj

= kbkbδck − kbkcδbk

= k2δck − kkkc, (2.48)

2B[ij]cε
ijk = 2

(

k2δck − kkkc
) γ2

1 + γ
. (2.49)

Making the substitutions in (2.46),

N c =
1

2

[

2δck + 2

(

γ2 − 1

γ2
δck − kckk

)

γ2

1 + γ

]

nk (2.50)

= γ

[

δck − γ

1 + γ
kckk

]

nk, (2.51)

in vectorial form,

N = γ

(

n − (k · n)
γ

1 + γ
k

)

. (2.52)

This expression does not depend at all on the particular choice of vectors l and m.

It is useful to obtain the normalized version of N ; which is required to compute the
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reflection law. Assuming that n̂ = n
‖n‖ is a unit vector (the normal vector to the

surface in the (t, xi) reference system), the the module of N is

‖N‖ = γ

(

1 + k2 γ2

(1 + γ)
2 (k · n̂)

2 − 2 (k · n̂)
2 γ

1 + γ

)1/2

= γ

(

1 +
(γ − 1)(γ + 1)

γ2

γ2

(1 + γ)
2 (k · n̂)

2 − 2 (k · n̂)
2 γ

1 + γ

)1/2

= γ

(

1 + (k · n̂)
2 (γ − 1)

(1 + γ)
− 2 (k · n̂)

2 γ

1 + γ

)1\2

= γ
(

1 − (k · n̂)2
)1/2

. (2.53)

And finally,

N̂ ≡ N

‖N‖ =
1

√

1 − (k · n̂)2

(

n̂ − k · n̂ γ

1 + γ
k

)

(2.54)

(2.55)

The inverse transformation (to obtain n in terms of N) is quite straightforward. One

only must use the same development until equation (2.50) and replace the factor γ2

1+γ

by −γ
1+γ , obtaining

nk =
1

2

[

2δkc + 2

(

γ2 − 1

γ2
δkc − kkkc

) −γ
1 + γ

]

N c

=
1

γ

[

δkc +
γ2

1 + γ
kckk

]

nk. (2.56)

In vectorial form,

n =
1

γ

(

N + k · N γ2

1 + γ
k

)

. (2.57)

Normalizing n and considering that N = N̂ is the normal vector to the surface in

the (T,Xa) reference system one obtains,

n̂ ≡ n

‖n‖ =
1

√

1 + γ2(k · N̂)2

(

N̂ + k · N̂ γ2

1 + γ
k

)

. (2.58)
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2.2 The reflection law

2.2.1 Wave vectors in the two inertial reference systems

In order to consider the light reflection from the mirror we first need to relate the

wave vectors of the incoming and outgoing light rays in the two considered coordinate

systems. In the reference system (t, xi) the incoming light ray is characterized by its

null wave vector pµ (ηµν p
µ pν = 0). The unit light ray direction σi (σ · σ = 1) in

that reference system is related to pµ as σi = pi/p0. In the reference system (T,Xa)

the null wave vector of the same light ray is Pα, and the unit light ray direction

Σa = P a/P 0 (Σ · Σ = 1). The frequencies f and F of the light in the corresponding

reference systems are linearly proportional to p0 and P 0, respectively.

The wave vectors pµ and Pα are related by the Lorentz transformation

Pα = Λ̄α
µ p

µ, (2.59)

which means that the frequencies and unit light ray directions are related as

Σa =
Λ

a

0 + Λ
a

i σ
i

Λ
0

0 + Λ
0

i σ
i
, (2.60)

F =
(

Λ
0

0 + Λ
0

i σ
i
)

f. (2.61)

2.2.2 Reflection as seen by an instantaneously co-moving ob-

server

For an observer instantaneously co-moving with the element of the mirror where the

light ray is reflected the following simple reflection law is valid (in an inertial reference

system of Special Relativity for a mirror at rest)

F ′ = F, (2.62)

Σ′ = Σ − 2 (N̂ · Σ) N̂ , (2.63)

where N̂ is the observable unit normal vector to the surface of the mirror at the point

of reflection as discussed in Section 2.1.3 above. The reflection law (2.63) means that

the component of Σ perpendicular to the surface changes its sign. This automatically

guarantees that the angle of incidence is equal to the angle of reflection and that
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the incoming ray Σ, the reflected ray Σ′ and the normal N̂ are coplanar. The same

equations (2.62) and (2.63) are valid for, respectively, the time and space components

of wave vectors before and after reflection.

We consider this reflection law as given, but is well known the method to derive it

from Maxwell equations for electromagnetic field for a mirror at rest (Jackson 1975).

In the instantaneously co-moving reference system (T,Xa) the coordinate velocity of

the reflecting point vanishes but its acceleration may differ from zero. However, the

acceleration cannot affect the instantaneous process of reflection considering of the

equivalence principle as long as the conditions for geometrical optics are satisfied, i.e.,

as long as the amplitude, polarization and wave vector of an electromagnetic wave

do not change significantly over a distance determined by the wavelength λ. This

implies that the acceleration am of the mirror should satisfy a constraint of the form

am ≪ c2/λ (see, Mashhoon (2005) for a detailed discussion of accelerated observers

in special relativity).

2.2.3 Algebra

We apply the classical Einstein approach to obtain the reflected wave vector in terms

of the incoming light ray that consist on applying known physical laws in the reference

system where they are simpler (comobile with a surface element), and then apply the

required coordinate transformations to obtain the general expression. If σ is the

tangent unit vector to the incoming light ray, then

σi → Σβ → Σ′α → σ′µ → ŝi (2.64)

where Σ is the incoming ray in the reference system at rest with the surface element,

Σ′ is the reflected light ray in the reference system at rest with the surface element,

and σ′ is the reflected light ray on which we are interested. Each step(arrow) can be

written explicitly as

Σβ = Λ̄β
µσ

µ, (2.65)

Σ′α = Σα − 2N̂αN̂βΣβ, (2.66)

σ′ν = Λν
αΣ′α. (2.67)
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that can be combined in a single expression, obtaining

σ′ν = Λν
αΣ′α

= Λν
α

(

Σα − 2N̂αN̂βΣβ
)

= Λν
αΣβ

(

δα
β − 2N̂αN̂β

)

= Λν
αΛ̄β

µ

(

δα
β − 2N̂αN̂β

)

σµ. (2.68)

Using the transformations found in Section and some algebra is sufficient to obtain

the reflection law from (2.68) in terms of σ, k and n̂.

The first thing one can do is to calculate the contraction of the Lorentz transfor-

mation matrices with the δα
β in the equation (2.68). This is,

δα
β Λν

αΛ̄β
µσ

µ = Λν
αΛ̄α

µσ
µ = δν

µσ
µ = σν (2.69)

obtaining for σ′ν ,

σ′ν = σν − 2Λν
αN̂

αΛ̄β
µN̂βσ

µ (2.70)

The equation (2.23) can be used to write N̂ in terms of n̂.

N̂α =
(

0 , N̂a
)

=

(

0 ,
1

F
P k

a n̂
k

)

, (2.71)

N̂β = ηαβN̂
α = δaβN̂

a =

(

0 ,
1

F
P k

b n̂
k

)

F =

√

1 − (k · n̂)
2
, (2.72)

P k
a = δka − kkka γ

1 + γ
. (2.73)

Now, we can calculate separately the temporal part and the spatial part of σ′ν . If we
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arrange the terms as

σ′0 = σ0 − 2Λ0
αN̂

αΛ̄β
µN̂βσ

µ .
= σ0 − 2Λ0

aN̂
a
(

Λ̄0
µN̂0 + Λ̄b

µN̂b

)

σµ

= σ0 − 2Λ0
aN̂

a
(

Λ̄b
0N̂bσ

0 + Λ̄b
jN̂bσ

j
)

, (2.74)

σ′i = σi − 2Λi
aN̂

a
(

Λ̄b
0N̂bσ

0 + Λ̄b
jN̂bσ

j
)

, (2.75)

Let us first calculate the Λν
aN̂

a contractions,

Λ0
aN̂

a = Λ0
a

1

F
P k

a n̂
k = −k · n 1

F
, (2.76)

Λi
aN̂

a = Λi
a

1

F
P k

a n̂
k = n̂i 1

F
. (2.77)

Those terms in (2.74) with Λ̄b
µN̂b give,

Λ̄b
0N̂b = Λ̄b

0

1

F
P k

b n̂
k = k · n 1

F
, (2.78)

Λ̄b
jN̂b = Λ̄b

j

1

F
P k

b n̂
k = n̂j 1

F
. (2.79)

An finally substituting into equation (2.74) it is obtained

σ′0 = σ0 − 2k · n̂ σ · n̂ − k · n̂σ0

F 2
(2.80)

σ′i = σi − 2n̂i σ · n̂ − k · n̂σ0

F 2
. (2.81)

From this preliminary expression we can already notice that the reflected ray lies on

the plane defined by σi and n̂i.

Let us note that up to now we have not imposed that σα is a null vector. Therefore

the reflection law of the equation (2.80) is valid for null or timelike 4-vectors aswell

(i.e. the 4-momentum of a massive particle). For the photons (null particles) it is
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obtained

f ′ = f
1 + (k · n̂) [ n̂ · (k − 2 σ) ]

1 − (k · n̂)2
, (2.82)

σ′ =

(

1 − (k · n̂)
2
)

σ + 2 (k · n̂ − σ · n̂) n̂

1 + (k · n̂)2 − 2(k · n̂) (σ · n̂)
. (2.83)

Here, f ′ and σ′ are the frequency and the unit direction of the reflected light ray in

the reference system (t, xi). These expressions are valid at each point of the mirror

surface in arbitrary motion. Let us remind that k = vm/c, where vm is the coordinate

velocity of the reflecting point of the mirror at the moment of reflection. Velocity vm

can be computed from any mathematical representation of the mirror surface (for

example, from (2.5)).

For a timelike 4-vector p′µ the equivalent expression is obtained as

p′0 = p0 − 2k · n̂
(

p · n̂ − k · n̂ p0

1 − (k · n̂)2

)

, (2.84)

p′i = pi − 2n̂i

(

p · n̂ − k · n̂ p0

1 − (k · n̂)
2

)

, (2.85)

where pµ is wave vector of the particle before the collision. Recalling the relations

between wave vectors and frequencies and directions for a photon we see that Eqs.

(2.84)–(2.85) are equivalent to (2.82)–(2.83).

Let us note two important properties of (2.82)–(2.83), also applicable to (2.84)–

(2.85):

1. In the reference system (t, xi) the reflected direction σ′ also lies in the plane

defined by the incoming ray σ and the normal vector n̂.

2. The reflected ray is only affected by the projection of the velocity vm on the

vector n̂.

The latter property implies that the relation between σ′ and σ coincides with the usual

reflection law (2.63) if the velocity vm is perpendicular to n̂. This case is relevant for

liquid (rotating) mirrors and was discussed by Lightman et al. (1975,problem 1.19),

Ragazzoni & Claudi (1995) and Hickson et al. (1995). Our result (no relativistic
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effects on reflection law in that case) coincides with that of Lightman et al. (1975)

and Hickson et al. (1995).

Multiplying both sides of (2.83) by n̂ and using the following definitions for the

angles between vectors (see Fig. 2.1)

−σ · n̂ = cosα, (2.86)

σ′ · n̂ = cosα′, (2.87)

k · n̂ = k cos
(

ϕ− π

2

)

= k sinϕ, (2.88)

(k = |k| = |vm|/c) one obtains a relation between the angle of incidence α and angle

of reflection α′

f ′ = f
1 + 2 k sinϕ cosα+ k2 sin2 ϕ

1 − k2 sin2 ϕ
, (2.89)

cosα′ =
2 k sinϕ+

(

1 + k2 sin2 ϕ
)

cosα

1 + k2 sin2 ϕ+ 2 k sinϕ cosα
. (2.90)

The latter equation can be also re-written into an equation relating sinα and sinα′:

sinα′ = sinα
1 − k2 sin2 ϕ

1 + 2 k sinϕ cosα+ k2 sin2 ϕ
. (2.91)

Comparing (2.89) and (2.91) one can see that f sinα = f ′ sinα′.

Angles α, α′ and ϕ are illustrated in Fig. 2.1. The angle α lies between 0 and

π/2 (since we always consider that the incoming light ray comes to the mirror from

one particular side of the tangent plane to the mirror’s surface at the point of reflec-

tion). For the same reason we have 0 ≤ α′ ≤ π/2. Angle ϕ lies between −π/2 and

π/2. It is negative if the angle between k and n̂ is greater than π/2 and positive

otherwise. Additionaly, our central results have been derived (2.89)–(2.90) directly

from Maxwell’s equations by a principle of phase matching: the phase of the incoming

wave should agree with the phase of the outgoing one (e.g., Jackson (1975), Section

7.3). This generalizes the work of Bolotovskii & Stolyarov (1989) for a flat mirror

moving with constant velocity. For an accelerated mirror such a treatment, however,

is meaningful only as long as the conditions for geometrical optics are satisfied.
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Figure 2.1: Vectors and angles at the point of reflection.

2.2.4 Low velocity limit

It is useful to derive the first-order expansion of (2.82)–(2.90) in powers of vm/c since

in practice the velocity of the mirror will be small compared to the light velocity. One

gets

f ′ = f
(

1 − 2 (σ n̂) (k · n̂) + O(c−2)
)

, (2.92)

σ′ = σ − 2 (σ · n̂) n̂

+2 (k · n̂)
[(

1 − 2 (σ · n̂)2
)

n̂ + (σ · n̂)σ
]

+ O(c−2), (2.93)

or

f ′ = f
(

1 + 2 k sinϕ cosα+ O(c−2)
)

, (2.94)

cosα′ = cosα+ 2 k sinϕ sin2 α+ O(c−2), (2.95)

sinα′ = sinα− k sinϕ sin 2α+ O(c−2). (2.96)

The first two terms in the right-hand side of (2.93) represent just the usual reflection

law and the rest contains the largest relativistic effects. Eq. (2.95) shows that

α′ − α = −2 k sinϕ sinα+ O(c−2). (2.97)
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This expression can be used to estimate the difference α′ − α for many realistic

situations.

2.3 General scheme of computing relativistic effects

due to the rotation of an optical system

Our goal is to discuss and calculate the influence of relativistic effects on the imaging

by an optical instrument with some non-inertial motion. We simplify our goal in

several directions: (1) we consider here the case of optical instruments consisting of

mirrors only (no lenses are considered), (2) we do not consider the effects of wave

optics and work in the approximation of geometric optics (see, however, the note at

the end of Section 2.5).

For an optical system consisting solely of a number of arbitrarily moving mirrors,

the most important relativistic effect is the special-relativistic modification of the

reflection law. That modified special-relativistic reflection law will produce a change

in aberration patterns as compared to the patterns calculated by using the usual

reflection law (here and below by “usual reflection law” we mean that the angles

between the normal to the surface of the mirror and the incoming and reflected light

ray are equal: α′ = α in Fig. 2.1). These perturbed aberration patterns could affect

astrometric measurements based on an interpretation of the images obtained in the

instrument’s focal plane.

2.3.1 Reflection law

First, we formulate the general principles allowing one to calculate the aberration pat-

terns within the framework of Special Relativity. Given a mirror of arbitrary shape in

arbitrary motion (see Section 2.1.2 for a formal mathematical description of such an

arbitrary mirror and Section 2.3.2 for a discussion of such mirrors from the physical

point of view) and a light ray hitting the surface of the mirror at a given point and

moment of time, we calculate the parameters of the outgoing (reflected) light ray.

The simplified problem of a flat mirror moving with a constant velocity perpendicu-

lar to its surface has been considered by Einstein (1905) in the first paper on Special

Relativity Theory. In the Appendix the most general case of this problem within

Special Relativity is considered in great detail. Slightly modifying the arguments of
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Einstein (1905) we first use Lorentz transformations to transform from a laboratory

inertial reference system (t, xi) to an inertial reference system (T,Xa) instantaneously

co-moving with the element of the mirror where the reflection of a particular light ray

occurs, then apply the known reflection law in that reference system and transform

the reflected light ray back into the laboratory reference system. The relation of that

scheme to direct calculations involving Maxwell’s equations is also discussed in the

Appendix. In our calculations we recover a number of known results for various par-

ticular cases. An overview of these known results and the corresponding comparison

are also given. The main formula used in all the ray tracing calculations of Section 2.4

is the relativistic reflection law given by Eq. (2.83).

2.3.2 Arbitrarily shaped and moving mirrors

A very important point of the whole scheme is that the shapes of the mirrors in

laboratory coordinates (t, xi) and, possibly, the time-dependence of these shapes are

assumed to be given. We describe the shape of each mirror by a two-parameter family

of worldlines of each individual particle of the mirror denoted as xi
m(t; ξ, η). Here ξ

and η are two continuous parameters “numbering” the particles that constitute the

surface of the mirror. Clearly, for fixed values of ξ and η, function xi
m(t; ξ, η) represents

the (t, xi)-parametrization of the world line of the corresponding particle. For fixed t

the same function xi
m(t; ξ, η) represents the instantaneous position and shape of the

mirror in the t = const hyperplane of the coordinates (t, xi). In this case (t = const)

the parameters ξ and η give a non-degenerated two-dimensional coordinate chart on

the surface of the mirror. We consider xi
m(t; ξ, η) to be differentiable with respect to

ξ and η. This means that the coordinate representation of the surface is a smooth

two-dimensional surface for each moment of coordinate time t.

In general there is no inertial reference system where the whole system or any of

its mirrors is at rest. In the special cases when such an inertial rest-frame of a mirror

does exist, one should consider the shape of the mirror in that rest-frame. In the

practical cases considered below such rest-frames do not exist. Moreover, the size of

the mirrors is so large that we cannot assume that the velocities of all points of the

mirror are approximately constant in any inertial reference system.

We do not consider the question of deformations of the mirrors due to their non-

inertial (for example, rotational) motion (i.e., the relation between the intended shapes

of the mirrors during their manufacturing and their shapes, e.g., in a rotating satel-
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lite, in coordinates (t, xi)). The behaviour of a mirror as a physical body is a sep-

arate question, a rigorous relativistic treatment of which would require at least a

special-relativistic theory of elasticity. As long as the angular velocity is constant the

deformations and special-relativistic effects on the shape (e.g. Lorentz contraction)

are also constant. In this case a rigidly rotating mirror can be considered to be Born-

rigid (Pauli 1958,Section 45). We can also argue that the constant deformations are

assumed to be properly taken into account during manufacturing so that the rotating

mirrors have the assumed forms. One may argue that the mirrors could be made

active to retain the prescribed form (which is the case for many larger Earth-bound

instruments, but may appear to be a rather bizarre argument in some other cases).

2.3.3 Observable aberration patterns

The last issue is the definition of the observing (imaging) device. In analogy to

our representation of the mirrors we first define a coordinate “plane” xi
f (t; ζ, χ) in

laboratory coordinates (t, xi) that coincides with the focal “plane” of the instrument

in the Newtonian case. In many cases (e.g. for the case considered in Section 2.4

below) xi
f (t; ζ, χ) can be taken to be a plane in the considered coordinates (that is,

for any moment of time there exist ni(t) independent of ζ and χ such that xf · n =

0). The aberration patterns we calculate below are defined as the set of points at

which the light rays from a source hit that coordinate focal plane at some moment

t = tobs = const. Generally speaking the aberration patterns cannot be considered as

“infinitely small”. This means that there is no inertial coordinate system in which the

part of the detector (that is, of the focal “plane”) registering an aberration pattern

can be considered at rest.

If the patterns are “small enough” (which is the typical case for reasonable high-

quality optical instruments) one could introduce an inertial reference system (τ, ρi)

instantaneously co-moving with some central point of the aberration pattern and de-

fine the “observable” pattern as a set of points at which the light rays from a source

hit that coordinate focal plane at some moment τ = τobs = const (here one should

also take into account the relativistic effects in spatial coordinates and correspond-

ingly treat Lorentz contraction etc.). First, although this approach seems to be more

adequate for non-inertial motion it still gives a coordinate-dependent picture because

of finite extension of the patterns. Second, we have explicitly checked that this addi-

tional Lorentz boost does not influence any of the figures and numerical results given
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below.

Note that we are interesting in prediction of the changes in the aberration patterns

compared to the prediction made for the “same” optical device without rotation and

using Newtonian geometric optics (this latter prediction is typically available from

the manufacturers of the instrumentation). From this point of view, our definition of

“observed” aberration pattern is adequate. In more realistic case one has to model

the process of observation in much more detail (e.g., CCD orientation and position

within the instrument, CCD clocking, averaging, TDI mode etc.). Such a detailed

modelling is however unnecessary for the purposes of this paper.

Summarizing, our aberration pattern modelling consists of (1) fixing the models of

the mirrors xi
m(t; ξ, η) and the focal plane xi

f (t; ζ, χ), and (2) tracing a grid of incoming

light rays, which interact with the optical system only at the moments of reflection

according to (2.83), until the point of intersection with the focal plane xi
f (t; ζ, χ), and

(3) forming the aberration pattern itself and/or calculating its photocenter.

2.4 Relativistic astrometric effects due to rotational

motion of the satellite

In order to evaluate the relativistic effects in the aberration patterns of planned scan-

ning astrometric instruments, we consider an extended optical system rotating rigidly

with a constant angular velocity relative to the inertial reference system (t, xi). For a

scanning astrometric satellite the real angular velocity is not constant (e.g., because of

the required scanning law), but its changes are small and slow, and will be neglected

here. Rigid rotation of the optical instrument means that the whole instrument is at

rest in a reference system (t, yi) related to the inertial laboratory reference system

(t, xi) as yi = Ri
j x

j , Ri
j being an orthogonal (rotational) matrix.

To calculate the aberration patterns of several optical systems discussed below

we have developed a numerical ray tracing code in Java allowing us to calculate

aberration patterns for an arbitrary optical system rigidly rotating in our laboratory

coordinates. Each mirror in the system can be individually shaped and oriented in

those coordinates. The code allows us to control all intermediate calculations as well

as the overall numerical accuracy.
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Parameters of the optical systems (size of the mirrors, focal distance, distance

of the primary mirror from the rotational axis and angular velocity) considered in

Sections 2.4.1 and 2.4.2 below are chosen to qualitatively represent some principal

features of planned astrometric missions like Gaia (Perryman et al. 2001) or JASMINE

(Gouda et al. 2002), where a scanning satellite comprising two astrometric telescopes

continuously rotates with an angular velocity of Ω ∼ 60 ′′/s.
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Figure 2.2: A rotating optical system with one mirror.

2.4.1 A one-mirror optical system

The first optical system that we will study consists of one rotating parabolic mirror.

A diagram of this optical system is given on Fig. 2.2. The parabolic mirror M1 is a

square mirror of size 1.5 m × 1.5 m and a focal distance of df = 46.67 m. The receiver

at the focal plane is considered to be 0.814 m × 0.814 m in size providing a field of view

of ∼ 1 deg×1 deg. This roughly corresponds to the astrometric instruments of Gaia.

The rotational axis goes through the origin O of our coordinates perpendicular to the

plane of Fig. 2.2. The distance from O to the center of the primary mirror (being the

vertex of the parabola) P1 is r = 1.5 m. The distance from P1 to the center of the focal

plane C is obviously the focal distance df = 46.67 m. The whole optical system is

rotating with respect to O with an angular velocity Ω = 60 ′′/s. The optical axis of the

system is defined as the path of the light ray which goes perpendicular to the surface

of the primary mirror through its center provided that the system does not rotate

(represented in Fig. 2.2 by the bold horizontal line going from P1 to C). Without

rotation light rays parallel to the optical axis converge to the single point C in the
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focal plane. The direction of an incoming light ray is parameterized with two angles:

the along scan angle aL (this angle is changing continuously for a given source because

of the rotation; see Fig. 2.2) and the across scan angle aC . The along scan angle is

the angle between the instantaneous directions of the optical axis and the incoming

light ray projected into the plane containing the optical axis and perpendicular to

the vector of angular velocity of the system (i.e., the plane of Fig. 2.2). The across

scan angle is the angle between the instantaneous directions of the optical axis and

the incoming light ray projected into the plane containing both the optical axis and

the vector of angular velocity. The along scan and across scan angles are widely used

in the context of scanning astrometric missions like HIPPARCOS (Perryman et al.

1997a) and Gaia (Perryman et al. 2001).

In order to evaluate the effects due to the rotation of the instrument we calculate

aberration patterns for different values of the field angles aL and aC as well as the

differences of the photocenters for each considered case. To compute aberration pat-

terns a rectangular grid of parallel incoming light rays with direction characterized

by some given aL and aC is generated. These light rays are then traced through the

optical system until they intersect the focal plane. The coordinates of the intersection

points produce the corresponding aberration pattern in the focal plane (see, e.g., Figs.

2.3 and Fig.2.5). The photocenter of a pattern is defined as the mean position of all

points of that pattern.

We distinguish between two different effects changing the aberration patterns (and

their photocenters) of a rotating instrument compared to those of an identical non-

rotating instrument. The first effect is the change of orientation of various reflecting

surfaces during the time delays needed for a light ray to propagate from the primary

mirror to the focal plane. The second effect is the difference between the usual

reflection law and the relativistic one.

Clearly, the propagation delays are related only to the finiteness of the light veloc-

ity. The delays appear also in the non-rotating case, but can be completely ignored

since the orientation of all reflecting surfaces is constant. For a rotating instrument

the propagation delays mean, in particular, that the light rays producing an aberra-

tion pattern (that is, the light rays intersecting the focal plane at the same moment of

time) hit the primary mirror (and, generally speaking, all other mirrors) at different

times. The effect of propagation delays can be directly calculated in our ray tracing

software by using a specially designed iterative scheme.
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Figure 2.3: Aberration patterns for the one-mirror system: a non-rotating instrument
(upper panel), a rotating instrument considering the light propagation delays and
using the usual reflection law (middle panel, and a rotating instrument considering
both the light propagation delays and the relativistic reflection law (lower panel).
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There are several effects related to the propagation delays such as just the constant

shift of the aberration patterns due to the change of the orientation of the instrument

during the propagation time: an image of a star observed at time tobs is produced

by the light rays from the star that hit the primary mirror at time ∼ tobs − df/c

when the orientation of the mirror differed by ∼ Ω df/c from the orientation at tobs.

Similar constant shifts will be caused by intermediate mirrors and by the motion of

the focal plane during the propagation delay: during the light propagation the focal

plane is moving and the photon hits the focal plane at different positions which cor-

respond to different positions on the sky. This can be computed as ∼ Ω (df − r)/c for

the one-mirror system depicted in Fig. 2.2. Note that in the limit when the center of

rotation is infinitely far from the instrument (that is, when all parts of the instrument

effectively have the same velocity), these constant shifts are fully equivalent to the

normal aberration of light. The constant shifts of the aberration patterns, that can

be relatively large, lead only to a constant time shift in the orientation parameters

of the satellite derived from astrometric observations: the orientation obtained from

observations at tobs is actually the orientation the satellite had some small earlier time

interval. This has only slight consequences on the measurements for any existing or

planned astrometric projects. However, the propagation delays also lead to a defor-

mation of the aberration patterns that depends on the field angles. These aberration

pattern deformations together with the deformations due to the relativistic reflection

law can be important as illustrated below. The distortions of the shape of the pat-

terns are caused by different velocities of different parts of both mirrors and slightly

different incident angles for each mirror.

For the one-mirror case these effects are illustrated in Fig. 2.3. The nine patterns

in each of the three panels correspond to nine combinations of the field angles with

aL = −30′, 0′,+30′ (horizontal direction) and aC = −30′, 0′,+30′ (vertical direction).

For the focal length df = 46.67 m, 30′ corresponds to about 407 mm in the focal plane

coordinates. The size of the axes in focal plane coordinates is 0.5 mm × 0.5 mm for

all patterns. The aberration patterns in the upper panel are calculated for a non-

rotating instrument. In the middle panel the aberration patterns are obtained using

the usual reflection law, but the effects of the light propagation delays are taken into

account. In the lower panel both the light propagation delays and the relativistic

reflection law are used. An extremely high angular velocity Ω = 5×109 ′′/s is used to

exaggerate the distortion and make it clearly visible. The three rightmost patterns in
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δaL × 10−3µas δaC × 10−3µas

aC \ aL −30′ 0′ +30′ −30′ 0′ +30′

−30′ 0.9 -1.2 0.9 1.4 0.0 -1.4
0′ 0.2 -1.9 0.2 0.0 0.0 0.0

30′ 0.9 -1.2 0.9 -1.4 0.0 1.4

Table 2.1: The shifts of the aberration patterns for the one-mirror optical system
rotating at Ω = 60 ′′/s after subtracting the mean value δa d

L + δa r
L = 18.3834 µas.

both the middle and the lower panels are much larger than all other patterns. These

six patterns extend to the left from the edge of the Figure by about 3 times the size

of the horizontal axis in each pattern. These parts of the patterns are not shown in

Fig. 2.3. The axes for each pattern are centered at the corresponding photocenter.

Note that these photocenters are significantly shifted between the three panels due to

the constant propagation time effects discussed above.

Since for the one-mirror instrument the angle of each light ray with respect to the

normal to the mirror at each point of the surface is not greater than 30′, the effect

of the relativistic reflection law on aberration patterns is very small. At point P1 the

velocity vector is perpendicular to the normal to the mirror. Therefore, at this point

for any aL and aC the relativistic reflection law coincides with the usual one (see Eq.

(2.83)). A light ray going through that point will intersect the focal plane at the same

point for both the usual and relativistic reflection laws. The light rays of the same

grid not going through P1 have different images when using the usual reflection law

and the relativistic one.

For realistic Ω = 60 ′′/s the mean shift of the photocenters due to the propagation

delays amount to δa d
L = 18.3842 µas. Note that this number can be reproduced with

good accuracy by Ω (2df − r)/c = 18.3807 µas as discussed above. The field-angle

dependent change of the photocenters is at the level of 0.001 µas and is shown in

Table 2.1. The change of the photocenters due to the relativistic reflection law is a

shift in the along-scan direction δaL ≈ δa r
L = −0.0008 µas and is independent of aL

and aC at the level of 0.0001 µas.
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Figure 2.4: Two-mirror optical system.

2.4.2 A two-mirror optical system

Real optical systems usually have more than one mirror. Often the instruments

involve mirrors inclined by about 45 deg to the optical axis (i.e., Nasmith focus, beam

combiners, beam splitters, etc.). In this case the effects of the relativistic reflection

law on the aberration pattern are significantly larger than in the case discussed above.

Here we consider an optical system consisting of one parabolic primary mirror and

one flat secondary mirror as depicted in Fig. 2.4. A flat secondary mirrorM2 has been

added to the optical system depicted in Fig. 2.2. The distance from P1 to center of

the flat mirror P2 is d12. The whole system is again rigidly rotating with a constant

angular velocity Ω in laboratory coordinates. The flat mirror is inclined at an angle

θ with respect to the optical axis of the primary mirror. The focal plane position

depends on the angle θ. The distance from P1 to P2 is d12 = 3 m, and the distance

from P1 to the rotational axis O is r = 1.5 m. The distance from P2 to the center C

of the focal plane is df − d12 = d2f = 43.67 m. The bold line in Fig. 2.4 representing

the optical axis goes from P1 to P2 and then to the focal plane center C.

We repeat the ray tracing calculations as described in Section 2.4.1 above with

this additional flat mirror. We use three different configurations of the flat mirror

with inclination angles θ = +45 deg, θ = 0, and θ = −45 deg. Figure 2.5 shows the
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aberration patterns obtained with θ = 45 deg (again for a large angular velocity of

Ω = 5×107′′/s, 100 times lower than for Fig. 2.3, was used in order to make the effects

visible). The same 9 combinations of aL and aC , and the same size and centering of

the axes are used for each panel as described above for Fig. 2.3. The upper panel

shows the aberration patterns for a non-rotating instrument (Ω = 0). These patterns

are identical to those in the left panel of Fig. 2.2. Clearly, the aberration patterns for

the rotating instrument, the middle and the lower panel look differently to Fig. 2.3.

Numerical values of the shifts of the photocenters δaL and δaC for Ω = 60 ′′/s are

presented in Table 2.2 for inclination angles θ = 45 deg, 0 deg,−45 deg. The mean

constant shift δa d
L of the patterns due to the light propagation delays and δa r

L due

to the relativistic reflection law are given at the top of each table. The tables show

the part of the total shifts dependent on the field angles. The position-dependent

effects in δa d
L and δa r

L have opposite signs and are 2-3 times larger than the total

shift δaL = δa d
L + δa r

L. On the contrary, the effects in δa d
C and δa r

C are of the same

sign and are about 2 times less than in the sum δaC = δa d
C + δa r

C .

As for the one-mirror system, for any value of θ the shifts due to the light propa-

gation delays exceed the level of 1 µas and amount to δa d
L ∼ 2µas. For the two-mirror

system δa d
L is significantly lower than for the one-mirror system since the effects of the

motion of the primary mirror and the motion of the focal plane largely compensate

each other if just one intermediate mirror is present.

For θ = 0 the shifts due to the relativistic deflection law are again very small as

was the case for the one-mirror system. The situation with these shifts is different for

θ = ±45 deg where the mean shift δa r
L ∼ 0.3µas. For θ = ±45 deg all the light rays

hit the flat surface at an angle of about α = ±45 deg with respect to the normal and

the factor |sinα| appearing in (2.97) is of the order of 1/
√

2 ≈ 0.7. Each light ray of

the grid hits the mirror at a slightly different value of α, but the main perturbation

due to the relativistic reflection law can be estimated considering the light ray going

along the optical axis. Using (2.97) we obtain

δ2 ≃ 2
v

c

d2f

df
sin2 θ, (2.98)

where d2f is again the distance between P2 and the focal plane center as shown in

Fig. 2.4, and v is the velocity of the point of the mirror lying on the optical axis
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Figure 2.5: Aberration patterns for the two-mirror system with θ = 45 deg: non-
rotating instrument (upper panel), rotating instrument considering the light propaga-
tion delays and using the usual reflection law (middle panel), and rotating instrument
considering both the light propagation delays and the relativistic reflection law (lower
panel).
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θ = −45 deg : δa d
L = 1.7422µas, δa r

L = −0.2776µas

δaL × 10−3µas δaC × 10−3µas

aC \ aL −30′ 0′ +30′ −30′ 0′ +30′

−30′ 4.6 0.0 −4.5 4.8 4.9 4.9
0′ 4.5 −0.1 −4.6 0.0 0.0 0.0

30′ 4.6 0.0 −4.5 −4.8 −4.9 −4.9

θ = 0 deg : δa d
L = 2.0246µas, δa r

L = 0.0006µas

δaL × 10−3µas δaC × 10−3µas

aC \ aL −30′ 0′ +30′ −30′ 0′ +30′

−30′ 0.0 0.0 0.0 0.0 0.0 0.0
0′ 0.0 0.0 0.0 0.0 0.0 0.0

30′ 0.0 0.0 0.0 0.0 0.0 0.0

θ = +45 deg : δa d
L = 1.7422µas, δa r

L = −0.2776µas

δaL × 10−3µas δaC × 10−3µas

aC \ aL −30′ 0′ +30′ −30′ 0′ +30′

−30′ −4.5 0.0 4.6 −4.9 −4.9 −4.8
0′ −4.6 −0.1 4.5 0.0 0.0 0.0

30′ −4.5 0.0 4.6 4.9 4.9 4.8

Table 2.2: The shifts of the aberration patterns for the two-mirror optical system
rotating at Ω = 60 ′′/s for three values of θ after subtracting the specified mean
values δa d

L + δa r
L.

(v = Ω (d12 − r) for the case depicted in Fig. 2.4). One can check that the mean

constant shifts δa r
L as shown in Table 2.2 can be recovered from (2.98) almost exactly.

If more flat (or almost flat) mirrors are added, the expression can be generalized by

|δi| ≃
∣

∣

∣

∣

2
vi

c

dif

df
sin θi sinϕi

∣

∣

∣

∣

. (2.99)

The index i is used to enumerate the surfaces along the light path, i = 1 corresponding

to the primary mirror. In our case i = 1 is the parabolic mirror M1 and i = 2 is the



45 2.5 Concluding remarks

flat mirror M2. The angle ϕi is the angle between the velocity and the surface at the

intersection of the mirror Mi with the optical axis applying the conventions described

on Fig. 2.1. θi is the angle between the optical axis and the normal to the surface at

the point of intersection. The quantity dif is the distance from the center of the focal

plane C to the point where the optical axis crosses the i-th mirror. As defined above

df is the focal distance of the optical system.

The presence of the factor dif/df in (2.98) and (2.99) can be explained by a small

perturbation ∆ of the propagation direction of a light ray by a mirror located at a

distance dif from the focal plane causing a linear shift in the focal plane dif ∆ which

is efficiently interpreted as an angular shift of dif/df ∆. In the more general case

when the intermediate reflecting surfaces are not flat, Eq. (2.99) is no longer valid,

but gives a reasonable idea of the magnitude of the effect provided that all reflecting

surfaces are not too different from a flat mirror. The cumulative effect of a series

of (almost) flat mirrors will not be a direct addition of all δi since the relativistic

perturbation may occur at different planes. An analytic expression in vector form

can be derived for the combined effect, but since the resulting formula is complicated

and still a rough approximation it will not be discussed here. Eq. (2.99) also has been

checked for some other optical systems involving more reflecting surfaces of different

shapes, sizes and velocities. A good agreement with the numbers from numerical ray

tracing was obtained in all cases.

2.5 Concluding remarks

We have considered in detail the main relativistic effect on the imaging by a rotating

optical system which is produced by the relativistic modification of the reflection

law. We have considered two simple optical systems containing one and two mirrors.

Although the size of the primary mirror, the focal length and the angular velocity

of rotation of both systems were defined to agree with the corresponding parameters

of Gaia, it is not clear how large these effects will be for the real optical scheme of

Gaia. We have seen that the effects are small for the one-mirror system and that they

may amount of 0.3 µas for the two-mirror system. For a real Gaia optical scheme the

effect may be much larger because of the presence of several inclined mirrors. The two

examples of a rotating optical system considered above do not allow us to predict the

relativity-induced photocenter shifts for a real optical system like Gaia. A detailed
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calculation of the photocenter shifts in principle can be done using the ray tracing

software developed for this investigation.

The part of the effect that does not depend on the position in the focal plane can

be interpreted as a constant change in the orientation of the satellite (as discussed at

the end of the previous Section for propagation delay effects). Moreover, if a satellite

(like Gaia) has two optically different telescopes, the difference in the main effects

for these two telescopes can be interpreted as a change in the angle between the two

instruments.

In this paper we confined ourselves to ray tracing in the geometric optics limit. A

more strict way to analyze the imaging by a rotating optical system is to apply wave

optics and calculate corresponding intensity patterns (PSF or similar characteristics).

The intensity patterns would then allow us to predict the observable shifts of the pho-

tocenters more reliably than the aberration patterns used in this paper. Preliminary

calculation with a simplified model fosters the hope that at optical wavelengths the

differences in the photocenter shifts calculated from ray tracing and from wave optics

are negligible. However, the effects of propagation delays due to the rotation of the

telescope may play a role. This deserves separate investigation.



Chapter 3

Astrometric Light-Travel

Time signature of sources

in nonlinear motion

3.1 Introduction and notation comments

Advances producing very precise astrometric measurements come essentially from

space-borne astrometric missions like SIM(Shao 1998), GAIA(Perryman et al. 2001)

or JASMINE (Gouda et al. 2002), and require a revision of the classic astrometric

assumptions at many levels. Some of the concepts that are being reviewed care-

fully are those involving light signal propagation (Klioner 2003; Le Poncin-Lafitte

& Teyssandier 2004) and the description of the astronomical sources and observers

(Klioner 2004) in the context of the IAU resolutions (Soffel et al. 2003) that aim to

define a consistent framework to model astronomical observations.

This effort involves many groups and individuals around the world and one relevant

aspect is the appropriate description of stellar motion. This chapter focuses on the

impact of Light-Travel Time (LTT) on the observed direction of a source outside the

solar system. Such considerations are as old as modern astronomy itself; in the 17th

century Ole Römer used it to give the first estimation of the velocity of light.

In solar system dynamics, light travel delays are already widely considered and

47
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applied. Our aim is to show that it is also relevant for distant objects(d > 1 pc) and

to develop analytic expressions to include the astrometric LTT signature in precise

astrometric modeling. We will provide an expression which is algorithmically efficient

and fully compatible with the IAU standards (Soffel et al. 2003) to the required level

of accuracy. A full scheme of a more general astrometric model compatible with the

BCRS is given in Klioner (2003). The present work may be seen as a refinement of

the formulae given there to generalize stellar motion.

The first two Sections are devoted to establishing the physical framework and

defining the relevant quantities. Section 3.3 is devoted to determining the relation

between the emission time interval ∆te and the observation time interval ∆tobs to the

required accuracy for astrometric purposes.

The baseline astrometric model is stated in Section 3.4.1 where the expression

for a point source in linear motion is developed. There we define the concept of

Linear Reference Motion(LRM) which will be very useful in the later developments.

The same development for the source in linear motion was proposed by Klioner &

Kopeikin (1992), where the LTT due to the observer’s position was already included.

Light-Travel Time effects on sources in linear motion and their relation to constant

radial velocities is a topic extensively discussed in the literature and directly related

to apparent superluminal motion. A good review of this issue is found in Lindegren

& Dravins (2003). In Section 3.4.2, the astrometric model is naturally extended

to sources in nonlinear motion. A more detailed study of radial nonlinear motion

using spectroscopic measurements in the post-Newtonian framework can be found in

Kopeikin & Ozernoy (1999). Since the spectroscopic techniques are more sensitive to

the local environment of the sources, a more sophisticated model using a larger set of

reference systems is required there, and very precise information can be extracted.

Section 3.5 obtains a quantitative description of the astrometric LTT signature

for a point source. The LTT signature appears as a second order correction as the

astrometric radial velocity described in Lindegren & Dravins (2003)).

In Section 3.6, a series of examples show how the LTT signature carries informa-

tion about the radial geometry of the trajectory of a source. This is of particular

interest in binary systems or objects in Keplerian orbits(such as exoplanetary sys-

tems), because resolved LTT signatures may lead to the determination of the full set

of orbital parameters without spectroscopic measurements, as is commonly required

(see Batten 1973,chap. 1).
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Section 3.8 provides heuristic relations to evaluate the significance of the LTT

effects in the geometrical characterization of any astronomical structure.

The use of LTT effects in epoch observations to determine properties of sources

at stellar distances was first proposed by Irwin (1952), whose work is applicable to

binary systems with at least one variable component. See Ribas et al. (2002) as an

example of the use of this technique. Similar and more sophisticated models are used

in precise pulsar timing. The timing measurements have been very fruitful in the field

of millisecond pulsars in multiple systems. A pulsar works as an ultrastable clock and

the time of arrival of the pulses can be measured very precisely in the radio range. A

precise theoretical scheme using pulsar timming observations to test general relativity

and obtain physical information of a given system is provided in Kopeikin (1995) and

Kopeikin (1996). From the observational point of view, some of the most remarkable

works are the detection of the first exoplanetary system around PSR1257+12 as re-

ported by Wolszczan & Frail (1992), and the tests of general relativity carried out

observing PSR J0437-4715 by van Straten et al. (2001).

We summarize some notation issues which only apply to this chapter.

• 〈a〉 means that the vector must be normalized using its own Euclidean norm

〈a〉 = a
‖a‖ .

• A symbol p inside square brackets [. . .] after a symbol f , means that f [p] is

an explicit function of p. This notation is used thoughout this chapter since

the arguments of some functions function may appear ambiguous to the reader.

In this chapter, round brackets (. . .) are exclusively used to group algebraic

expressions.

3.2 Trajectories, quantities and reference system

Our purpose is to determine the observed direction of a moving object from the

position of an observer at rest with respect to the barycenter of the solar system

in absence of gravitational fields. To do that, one must describe the motion of a

source in terms of the observation instant tobs instead of the emission instant te.

The relation between an emission time interval ∆te and its corresponding observation

time interval ∆tobs will be nonlinear and time dependent due to the nonlinear change
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of the distance a light signal must cover. This nonlinear time dependence will add

additional apparent nonlinear terms to its motion on the celestial sphere.

We restrict the discussion to a particular inertial frame of special relativity

where the space-time metric is assumed to be the Minkowsky metric with signature

( − + + +). All the quantities and vectors refer to the BCRS spatial coordinates

xi and the time coordinate t describing the events is TCB – see Brumberg & Groten

(2001). The BCRS metric is not a Minkowsky metric, but since the astrometric LTT

signature is already very small, the gravitational light bending and the kinematical

aberration can be treated as a posteriori effects to the observed direction (see Klioner

(2003)). The trajectory of a point source is described as a Linear Reference Motion

xLRM [t] plus a nonlinear shift D [t]. The spatial part of the trajectory of the source

in BCRS coordinates is given by

xs [t] = xLRM [t] + D [t] , (3.1)

xLRM [t] = x0
LRM + v0

LRM

(

t− t0e
)

, (3.2)

where x0
LRM are the coordinates of the LRM at some instant t0e. This initial instant

will be discussed more precisely below. Formally, the constant velocity term v0
LRM

could be included in D [t], but it is very useful to keep it apart in order to define

properly the Barycentric astrometric parameters(see Section 3.4.1) and relate them

to the physical quantities in (3.1). As an example, x0
LRM and v0

LRM describe the

motion of the center of mass of a binary system and D describes the orbital motion

of one of the components.

The value of coordinate time t at the emission event E is denoted by te = t [E].

The spatial coordinates xs at the emission event (which coincide with the spatial

coordinates of the source) are denoted by xs [te]. In the same way the value of the

coordinate time at the observation event is t [Obs] = tobs and the spatial coordinates

of such an event are xobs [tobs]. Please note that te and tobs are both given in the

same time scale, which is TCB.

Since in Minkowsky space-time the light rays follow straight lines, the spatial

vector joining an event of emission at te and an event of observation at tobs defines

the observed unit direction as
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Figure 3.1: Scheme of the vectors involved in the computation of the observed direc-
tion at a given event of observation. The vector xLRM is used to define a fiducial
Linear Reference Motion, which could be, for example, the trajectory of the center of
mass of a binary system. The shift vector D is the nonlinear contribution to the mo-
tion. Using again the example of the binary systems, it might be the orbital motion
of a component around the center of mass of the system. The little vector r is the
observed direction of the incoming light ray at the event of observation.

r = 〈xs [te] − xobs [tobs]〉 . (3.3)

For the later developments, we need to identify the small time intervals

O(ǫ) ∼ v0
LRM∆t

c
;

D

c
;
xobs

c
. (3.4)

The vectors in (3.4) have dimensions of time and have typical absolute values going

from some minutes to several hours or days (or even years). They are small compared
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to the time that a light signal takes to propagate from the emitting source to the

observer (typically several years for galactic objects).

From now on, the module ‖x0
LRM‖ will be written as x0

LRM to simplify the nota-

tion. It is also useful to introduce the small adimensional quantities

O(1) ∼ v0
LRM∆t

x0
LRM

;
D

x0
LRM

;
xobs

x0
LRM

. (3.5)

Relations (3.5) impose that the initial distance between the source and the observer

x0
LRM must be much larger than all the other time-dependent displacements v0

LRM∆t,

D and xobs. This requirement is usual in the astrometric modeling of objects beyond

the solar system. We define the barycentric reference direction l0 as the unit vector

l0 =
x0

LRM

x0
LRM

, (3.6)

which is the direction towards the position of the LRM (i.e. the center of mass of a

binary system) given by an observer at the BCRS origin at a given reference instant

t0obs, usually called barycentric reference epoch.

With the exception of the initial direction parameterized through two angles,

only the parameters producing time dependent changes in the observed direction will

produce measurable effects. Despite the frequent appearance of t0e throughout the

paper, this parameter is not directly measurable. The physical quantities producing

time dependent effects are x0
LRM , v0

LRM , D. They depend only on t0e in their formal

definition implicitly given in (3.1).

3.3 Equation of time delay

In the most general case, the interval of time between the event of observation and

the event of emission is related to the spatial coordinate distance as



53 3.3 Equation of time delay

(tobs − te) =
1

c
‖xobs [tobs] − xs [te] ‖ (3.7)

+ ∆BCRS [te, tobs] + ∆ext [te, tobs]

+ O(2) .

The ∆ terms on the right side can include additional space-time effects due to gravi-

tational contributions due to the BCRS fields (∆BCRS) and other external fields ∆ext

that the photon may feel along its long trajectory. This gravitational contribution is

usually known as the Shapiro effect. For a detailed discussion of the Shapiro effect see

Kopeikin & Schäfer (1999). We are interested in the relation between the emission

interval ∆te and the observation interval ∆tobs. Then, using the relation (3.7) for two

different events of emission E0 and E and their respective observation events Obs0

and Obs we obtain

∆tobs − ∆te =
‖xobs [tobs] − xs [te] ‖

c
(3.8)

− ‖xobs

[

t0obs

]

− xs

[

t0e
]

‖
c

+ ∆BCRS [te, tobs] − ∆BCRS

[

t0e, t
0
obs

]

+ ∆ext [te, tobs] − ∆ext

[

t0e, t
0
obs

]

,

∆te = te − t0e , (3.9)

∆tobs = tobs − t0obs . (3.10)

For most of the stars the absolute value of ∆ext may be very large since the gravi-

tational fields of the galaxies and other mass distributions may contribute; however,

in most circumstances, it will not change significantly during the lifetime of a space

astrometric mission (even over some hundreds of years). An exception may be objects

orbiting large concentrations of mass or gravitational lensing events. In such cases,

the model for the observations must be carefully derived not only from the point of

view of the LTT. This might be the case for stars moving close to the Milky way’s
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central black hole (see Ghez et al. 1998). An example of such a detailed model is

found in Fragile & Mathews (2000). Despite the use of such models to include very

sophisticated space-time effects, the astrometric LTT signature due to the nonlin-

ear motion is ignored. The contributions ∆BCRS will heavily depend on the relative

position of the observer and the sources of gravitational fields (i.e. Sun, planets).

Considering that the physical diameter of such bodies is some orders of magnitude

larger that their Schwarschild radius, this Shapiro term adds a very small time shift

(a few milliseconds at most). In such an interval of time, the direction of observation

will not change more than a few nanoarcseconds which is, by far, an undetectable

astrometric quantity with current techniques. From now on we will omit both ∆

terms.

The equation of time delay (3.8) depends on the module of the relative position of

the observer and the source, and in general, it cannot be used to obtain a closed exact

expression of ∆te in terms of ∆tobs. This is due the nonlinear nature of the module

operations on the right side of (3.8) and the intrinsically nonlinear dependence of xs

with respect to time. A perturbative approach is chosen here to obtain the lowest

order contribution that is relevant enough to produce an astrometric shift at µas level

of accuracy. With some algebra whose details are given in Appendix B.1, and using

the definitions of small quantities provided in (3.4)–(3.5) it is obtained that, at first

order

∆te = αs (∆tobs (3.11)

− 1

c
l0 · ∆D [tobs]

+
1

c
l0 · ∆xobs [tobs]

)

+ O(ǫ2);

In (3.11) some notation shortcuts are applied. These are

αs =
1

1 + l0 · v0

LRM

c

, (3.12)

∆xobs [tobs] = xobs [tobs] − xobs

[

t0obs

]

, (3.13)

∆D [tobs] = D
[

t0e + αs∆tobs

]

− D
[

t0e
]

. (3.14)

The factor αs multiplying the full expression(3.11) is the one responsible for apparent
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superluminal velocities.

3.4 Astrometric model for point-like sources

The aim of this section is to provide expressions that complete the astrometric models

at µas accuracy incorporating the LTT. Under the assumptions of Section 3.2 and

Section 3.3, the observed direction of a point-like source given by an observer at rest

at the event of observation is

r [tobs, te] =
〈

x0
LRM + v0

LRM∆te (3.15)

+ D
[

t0e + ∆te
]

− xobs [tobs]
〉

.

The next subsections provide general purpose parametric expressions to be used in

the astrometric model for a point-like source outside of the solar system. We applied

the formalism of the local triad as described in Murray (1983). Section 3.4.2 extends

the astrometric model to sources in nonlinear motion including the LTT amplitudes.

At this point, the expression of the observed direction (3.15) depends on the emission

instant te.We will include the LTT in the astrometric model using just the relation

between ∆te and ∆tobs given by (3.11) in (3.15).

3.4.1 Linear reference motion

This is the simple case where the source is moving in linear motion (i.e. a single star).

Substituting (3.11) in (3.15) and imposing D [t] = 0 for any instant of time t, we

obtain

rLRM [tobs] = 〈l0 (1 + µr0∆TLRM) (3.16)

+ (µδ0p + µ∗
α0q)∆TLRM

+ π [tobs]〉 ,



Chapter 3: Astrometric Light-Travel Time signature of sources

in nonlinear motion 56

p = (− sin δ0 cosα0, (3.17)

− sin δ0 sinα0,

cos δ0) ,

q = (sinα0, (3.18)

cosα0,

0) ,

l0 = (cosα0 sin δ0, (3.19)

sinα0 sin δ0,

sin δ0) ,

µ∗
α0 = µα0 cos δ0 =

αsv
0
LRM · q
x0

LRM

, (3.20)

µδ0 =
αsv

0
LRM · p
x0

LRM

, (3.21)

µr0 =
αsv

0
LRM · l0
x0

LRM

, (3.22)

π [tobs] =
xobs [tobs]

x0
LRM

=
Π0

AU
xobs [tobs] , (3.23)

∆TLRM = ∆tobs +
1

c
l0 ·∆xobs [tobs] . (3.24)

These definitions extend those given for the HIPPARCOS catalog (see Perryman et al.

1997a,vol. 1) and include the Roemer correction due to observer’s motion, which was

already introduced by Klioner & Kopeikin (1992). The vectors p and q are unit

vectors tangent to the celestial sphere at l0 direction, pointing towards the direction

of increasing declination and right ascension respectively. The quantities α0, δ0, Π0,

µ∗
α0, µδ0 and µr0, are the so-called barycentric astrometric parameters for a point-like

source in rectilinear motion at the barycentric reference epoch t0obs. The angles α0

and δ0 are the right ascension and the declination of the equatorial coordinate system

given in radians. The parameter Π0 is the parallax in radians. The symbol µ∗
α0 is

the proper motion in the α0 direction multiplied by cos δ0, which provides the correct

angular shift taking into account the distortion of the spherical coordinates towards

the poles, and µδ0 is the proper motion in the declination direction; both expressed in

rad s−1. The parameter µr0 is known as astrometric radial velocity (see Lindegren &

Dravins 2003) given in s−1. AU is the Astronomical Unit which is currently defined
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as a constant.

3.4.2 Nonlinear motion

The expression that generalizes to point-like sources in nonlinear motion is straight-

forward. The six astrometric parameters described in Section 3.4.1 are used to define

a fiducial LRM while D contains the nonlinear contributions,

r [tobs] = 〈l0 (1 + µr∆T ) (3.25)

+ (µδ0p + µ∗
α0q)∆T

+
D
[

t0e + αs∆T
]

x0
LRM

+ π [tobs]〉 ,

∆T = ∆tobs (3.26)

− 1

c
l0 · (∆D [tobs] − ∆xobs [tobs]) .

These expressions are sufficient to include LTT in an astrometric data reduction

algorithm at µas. In classic astrometry, the LTT terms with D inside ∆T were safely

neglected since the astrometric measurements were not precise enough. In the next

section we will analyze the effect of this LTT term on the observed direction, which

is the LTT astrometric signature.

3.5 Analytic estimation of the LTT signature

To estimate the astrometric LTT signature we need to compare (3.25) with the clas-

sical approach for the observed direction rc. As the classical approach we define

rc = 〈l0 (1 + µr∆Tc) (3.27)

+ (µδ0p + µ∗
α0q)∆Tc

+
D
[

t0e + αs∆Tc

]

x0
LRM

+ π [tobs]〉 ,

∆Tc = ∆tobs ; (3.28)

where the difference with respect to (3.25) is essentially in ∆Tc, which classically
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Figure 3.2: Astrometric LTT signature in a binary system. The elliptic orbital motion
of a companion is shown in the case where the inclination is 90 deg. The horizontal
dashed line is the semi-major axis of the orbit and is perpendicular to the line of
sight given by l0. The white circles represent the nonretarded positions of the star at
different moments of the orbit. The gray circles are the apparent positions corrected
by the Light-Travel Time appliying only the LTT correction due to the instantaneous
orbital velocity V orb. The black circles are the final apparent position after also
considering the motion of the barycenter of the binary system. The proper motion of
the system is omitted to simplify the visualization of both the LTT signatures. The
pure orbital correction V orb∆TLTT changes its orientation continuously depending on
the orbital position(gray circles) and it is larger when the object is closer to the center
of mass of the system (right side of the figure). On the other hand, the proper motion
contribution v0

LRM∆TLTT (dark circles) always contributes in the same direction
changing only the sign and the amplitude of the perturbation. The projection of the
shifts on the plane perpendicular to the line of sight are the astrometrically measurable
quantities.
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does not include the LTT contribution due to the nonlinear motion of the source

with respect to the LRM, and due to the position of the observer with respect to

the barycenter of the solar system. Despite the Römer term (dependence in the

position of the observer ∆xobs [tobs]) is already taken into account in the current

accurate astrometric models (Klioner & Kopeikin 1992), but we prefer to put in r for

consistency.

The comparison of r and rc is performed by direct subtraction of (3.25) and

(3.27) up to O(2), considering O(1) ∼ O(ǫ) all those terms containing expressions

proportional to those in (3.4)–(3.5). Then, the astrometric LTT signature δr is defined

as

δr = r [tobs] − rc [tobs] , (3.29)

and, after some algebra

δr = l0 × (δ × l0) + O(3) + O(1) ×O(ǫ2) + O(2) ×O(ǫ1) (3.30)

δ = −αs

v0
LRM + V orb

[

t0e + αs∆tobs

]

x0
LRM

∆TLTT (3.31)

∆TLTT =
l0 · (∆D [tobs] − ∆xobs [tobs])

c
. (3.32)

The presence of the orbital velocity vector V orb is justified in Appendix B.1. It is called

orbital velocity by direct analogy with the binary system. The LTT shift δr is an

astrometric detectable quantity since it is in the perpendicular direction to the line of

sight l0, as is explicit in (3.30). The LTT shift depends on the radial projection of the

orbital motion l0 · ∆D. This implies that using accurate astrometric measurements

one would, in principle, be able to constrain the radial motion of the source or, on

the other hand, if some information of the radial motion of the source is provided (i.e.

radial velocities), the fit of the astrometric orbit might be more robust and accurate.

In Section 3.6, the relevancy of the astrometric LTT signature will be shown in some

well known multiple systems. The apparent position of a source is advanced or delayed

with respect to the nonretarded trajectory. That is why the expression (3.31) is just

the instantaneous proper motion multiplied by the time interval ∆TLTT , which is also

time dependent.
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In formula (3.31) two velocities appear instead of the instantaneous total velocity.

They are kept separate since the ways they affect the observed direction (their astro-

metric signature) have quite different properties. The proper motion term v0
LRM is

constant and the time dependence of this part of the astrometric LTT signature will

come only from the variations of the ∆TLTT interval. However the orbital velocity

V orb is intrinsically time dependent, periodic in most cases, and its coupling with the

∆TLTT interval will produce a more sophisticated astrometric signature. As shown

in Section 3.6, when applied to binary systems, the scaling law of each contribution

with respect to the orbital elements is significantly different.

In addition,the term D
[

t0e
]

may be included in x0
LRM by imposing D

[

t0e
]

= 0.

However, this assumption may not be useful in practical cases (i.e. when applied to

fitting the orbital parameters of a binary system). We will keep the current expression

unless we need to implement LTT in the particular modelling of an object.

The LTT signature is one among other astrometric effects becoming relevant at

second order astrometric accuracy. These effects include perspective acceleration (or

astrometric radial velocity), and all the couplings of the parallax with the proper

motion or the non-linear motion. A comprehensive list can be found in Dravins et al.

(1999). All of them are naturally included in (3.16) and (3.25), since our expressions

are directly derived from the kinematical model of the source. Expanding (3.25) up

to O(2) in the small terms (3.5), the vectorial expressions of all such contributions

are explicitly obtained. Any astrometric study aiming to obtain information using

any second order contribution must properly consider the LTT signature explained

in this work.

3.6 Some numerical estimates

Let us naively use the expression (3.31) to obtain some order of magnitude estimates

of the LTT signature. The semiamplitudes (denoted by δr) of the astrometric LTT

signatures for a component in a binary system in circular orbit can be estimated as

δrproper ∼ 15.812 µas
a′′µmas/year

πmas
sin i , (3.33)

δrorbital ∼ 99 353 µas
a′′2

πmasPyear
sin i. (3.34)
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For simplicity, these expressions are obtained imposing ∆xobs = 0. Relations (3.33)–

(3.34) are provided using catalog-like parameters where a′′ is the projected semi-major

axis in arcseconds, µmas/year is the proper motion module in mas year−1 and πmas

is the parallax in mas. The effect is modulated by the inclination of the orbit.

Kepler’s third law can be used to obtain the expressions (3.33) and (3.34) as powers

of the orbital period P and the orbital semimajor axis R. It is found that δrproper

scales as R1 (or P 2/3), while δrorbital scales as R1/2 (or P 1/3). This illustrates that

for systems with long period orbits the LTT signature due to the coupling with the

proper motion will be more significant. This is expected since v0
LRM does not depend

on the semimajor axis of the orbit(it is only related to the velocity of the center of

mass of the system), while V orb becomes smaller at larger orbital distances (i.e. in

the solar system, distant planets have lower orbital velocities).

The semiamplitudes obtained using (3.33) and (3.34) for some nearby systems are

provided in Table 3.1.

A detailed model to include the astrometric LTT signature in a strict orbital solu-

tion of binary systems will be provided in a later work, since some detailed discussion

of the definition of the orbital parameters must be provided to keep the astrometric

model accuracy at the µas level.

As shown in Table 3.1, long period binaries usually have larger LTT signatures

coming from the coupling with the proper motion term. This is the case of 61 Cyg. In

that situation, the LTT signature could be resolved using available long-term lower

precision astrometry.

3.6.1 Extened Thiele-Innes elements

The LTT can be introduced in the classical approach by the procedure described in

this section. A dynamical model must be assumed. We consider here a binary system

in classical keplerian motion. It implicitly assumes Newtonian dynamics and galilean

transformations. A more general case is described in the next section.

Let us assume the normal triad pql0 computed using the same definition given in

section 3.4.1.
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Table 3.1: The data in this table were prepared using the WDS Sixth Catalog of
Orbits of Visual Binary Stars (Hartkopf et al. 2004) and the HIPPARCOS catalog
(Perryman et al. 1997a). The value of some of the orbital parameters shown are
average values. The numbers shown here are orientative since the circular model
applied is very unrealistic. It can be seen that both contributions, δrproper and
δrorbital, may have quite different signification depending on the binary system. In
very eccentric systems, like α Cen, the orbital term can be considerably larger than
the numbers shown here around the perihelion. Another feature that is blurred by the
applied approximations is that if the components of the system have different masses,
each component might show very different astrometric LTT signatures. The values
for AB pic-b are very approximated and are based on very recent and sparse data
of this candidate to planetary system (Chauvin et al. 2005). This values are added
here as an example of the applicability of the astrometric LTT signature to general
purpose orbital solutions. In this case, the LTT signature would not be very useful
to improve the orbital solution due to the very long period and tininess of the signal.

System Period a′′ i Parallax Proper motion ∆σproper ∆σorbital

years arcsec deg mas mas/year µas µas
61 Cyg 722.0 14.9 51.85 294 5227 3293 81.7
α Cen 79.9 8.75 79 742 3672 670 415
HD 110314 3.09 0.021 122.9 14 191.9 3.80 0.86
HD 2475 5.65 0.146 64 118 31.01 0.54 2.85
AB pic-b ∼ 3000 0.753 ?? 21.97 47.36 ∼ 50 ∼ 1

In the Thiele-Innes approach the offset vector D is obtained as,

D(tobs, Tobs) = [BX +GY ] p (3.35)

+ [AX + FY ]q

+ [CX +HY ] l0
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A = a(+ cosw cosΩ − sinw sin Ω cos i) (3.36)

B = a(+ cosw sin Ω + sinw cosΩ cos i)

F = a(− sinw cosΩ − cosw sin Ω cos i)

G = a(− sinw sin Ω + cosw cosΩ cos i)

(3.37)

where we have to introduce two additional elements that contain the information of

the radial motion

C = a(+ sinw sin i)

H = a(+ cosw sin i)

This two elements contain are used to account for the perspective effects and the

travel time effects. X and Y are the adimensional elliptic coordinates that contain

the time dependency through the eccentric anomaly E,

X = cosE − e , (3.38)

Y =
√

(1 − e2) sinE . (3.39)

The eccentric anomaly, E, is obtained solving iteratively the Kepler equation

2π

P

(

t̃− T
)

= E − e sinE . (3.40)

To introduce the travel time, the time interval t̃− T must be related to the time

arguments (tobs and Tobs). Let us note that T (Time of passage through the periastron)

is also affected by travel time. Up to O(2) it is sufficient to iterate once using

t̃− T = αs

[

tobs − Tobs − l0
D′

c

+ l0 (xobs(tobs) − xobs(Tobs))]

= αs

[

tobs − Tobs −
[CX ′ +HY ′]

c

+ l0 [xobs(tobs) − xobs(Tobs)]]
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where

X ′ = cosE′ − e

Y ′ =
√

(1 − e2) sinE′

and E’ is obtained solving Kepler’s Equation for tobs and Tobs,

2π

P
(tobs − Tobs) = E′ − e sinE′ (3.41)

The Tobs is True Time of passage through the periastron and may be regarded as

an additional parameter to be fitted. Using the True Time of passage through the

periastron is crucial if one is including Light Travel Time effects in the modeling of

the motion of a source since,

• The periastrion will not generally lie on the local tangent plane (i.e. l0D(T ) = 0

not generally holds). Not using the True T introduces an spurious amplitude

as great as the LTT correction itself

• Classical T depends on the particular position of the observer at the initial epoch

t0obs. Furthermore the predicted future Times of Passage through the periastron

will fluctuate with respect the nominal value depending on the observer’s posi-

tion at other observation times

With this procedure the astrometry of source in a binary system is described by,

lc(tobs) = 〈l0+ (3.42)

+ (µpp + µqq + µrl0)∆t)

+
D(tobs, Tobs)

x0
LRM

− xobs(tobs)

x0
LRM

〉
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∆t = tobs − t0obs (3.43)

− 1

c
l0
[

D(tobs, Tobs) − D(t0obs, Tobs)
]

+
1

c
l0
[

xobs(tobs) − xobs(t
0
obs)
]

All the terms different from D are the same as defined in section 3.4.1.

The strict definition of the orbital parameters w,Ω, i, P, T and a can be found in

any textbook of essential astrometry, i.e. Batten (1973). The conventions used here

have been copy/pasted from those used in the HIPPARCOS catalog(see Perryman et

al Perryman et al. (1997a)).

3.7 Lorentz transformation for relativistic astrom-

etry

It is common that dynamical models for stelar motion are given in some Object

Reference System (T,Xa) (i.e. center of mass of a binary or a gas cloud) which is

considered inertial. Since our natural coordinate system to describe the observations

is the BCRS (t, xi), let us assume that the Star System is far from the Solar System

barycenter (Minkowsky space-time) and that the local gravitational fields are negli-

gible. Then the proper time τ of an observer at the barycenter of the Star System

can be used to parameterize the trajectories in the (T,Xa) Reference System (this is

equivalent to say that τ = T ). For more compact systems or other kind of observable

quantities (pulsar timing, frequency shifts), this assumption cannot be applied and

the post-Newtonian metric and coordinate transformations should be more adequate.

Assuming that the barycenter of the Star System moves with constant coordinate

velocity v in the BCRS, the coordinates (T,Xa) and (t, xi) are related by a Lorentz

transformation of the form

c t = Λ0
0 c T + Λ0

aX
a , (3.44)

xi = Λi
0 c T + Λi

aX
a . (3.45)
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The Λ matrix coefficients are given by

Λ0
0 = γ, (3.46)

Λ0
a = ka γ, (3.47)

Λi
0 = ki γ, (3.48)

Λi
a = δia +

γ2

1 + γ
ki ka, (3.49)

γ = (1 − k · k)
− 1

2 , (3.50)

k =
1

c
v . (3.51)

The inverse transformation reads

c T = Λ
0

0 c t+ Λ
0

i x
i, (3.52)

Xa = Λ
a

0 c t+ Λ
a

i x
i. (3.53)

where

Λ
0

0 = γ, (3.54)

Λ
0

i = −ki γ, (3.55)

Λ
a

0 = −ka γ, (3.56)

Λ
a

i = δia +
γ2

1 + γ
kika. (3.57)

In the SSRS the world line equations for the Star System Barycenter and the target

source take the form

Xα
b (Tb) =

(

Tb, X
i
b [Tb]

)

= (Tb, X
a
b0) , (3.58)

Xα
e (Te) =

(

Te, X
i
e [Te]

)

= (Te, X
a
b0 + Da [Te]) . (3.59)

where Xb0 is the constant position of the Barycenter of the Star system with respect

to some arbitrary coordinate origin. The e symbol is used for events related to the

emitting source and b is used for the events related to the Star System Barycenter.

T0 is some reference instant which will be discussed below. Let us assume that the

dynamical model which describes the motion of the source in the SSRS is provided
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by through D (i.e. Keplerian motion).

In the BCRS, it is useful to parameterize the stellar motion as a Linear motion

term xi
b [t] plus a nonlinear shift, say

xi
e [t] = xi

b [t] +Di [t] (3.60)

xi
b [t] = xi

b0 + vi(t− t0) (3.61)

When transforming the world-line equations from the SSRS to the BCRS, it is ob-

tained

xi
e [te] = Λi

0 c Te + Λi
a (Xa

b0 + Da [Te]) , (3.62)

xi
b [tb] = Λi

0 c Tb + Λi
aX

a
b0 , (3.63)

c te = Λ0
0 c Te + Λ0

a Da [Te] , (3.64)

c tb = Λ0
0 c Tb + Λ0

aX
a
b0 . (3.65)

Let us assume that we choose two events (e) and (b) that satisfy

Te − Tb = 0 , (3.66)

which means that they are simultaneous in the Star System Reference System (3.66).

Using (3.66) into (3.62) and (3.63) and subtracting them it is obtained

xi
e [te] − xi

b [tb] = Λi
a Da [Te] , (3.67)

where Xa
b0 has disappeared. Note that the time arguments on the left hand-side of

(3.67) are not equal (loose of simultaneity), so this expression cannot be used directly

to obtain the desired D(t), which should only depend on one t.

However, we can use the subtraction of (3.64)–(3.65)

c te − c tb = +Λ0
a Da [Te] , (3.68)

and insert it in the left hand side of (3.67) in such a way that tb can be removed
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obtaining

xi
e [te] − xi

b [te] + c−1Λ0
aDa [Te] v

i = Λi
a Da [Te] . (3.69)

Grouping terms and defining D as

Di = xi
e [te] − xi

b [te] (3.70)

we find that

Di =
(

Λi
a − c−1Λ0

av
i
)

Da [Te] (3.71)

As mentioned before, the time measured by an observer at rest in the Object Reference

System is assumed to coincides with the coordinate time T . Then, using (3.44) it

can be shown that

Te = T0 + γ−1 (te − t0) (3.72)

which provides the last required relation to write D as a function of te alone. In addi-

tion, since the origin of the time coordinate in (T,Xa) is arbitrary, a very convenient

choice of the initial instant is T0 = t0 = t0e, where t0e has been discussed on Section

3.2. As a last step, we can substitute in the Λ coefficients ((3.47) and (3.49)) into

(3.71) obtaining

D [te] = D [Te] −
γ

1 + γ
(k · D [Te])k (3.73)

k =
v0

LRM

c
(3.74)

Te = t0e + γ−1
(

te − t0e
)

(3.75)

where we substituted v by v0
LRM , obtaining full compatibility with the astrometric

model presented in Section 3.4.2.

Once it is introduced in the astrometric model of Section 3.4.2, one can check

that the second term in the right part of (3.73) introduces an astrometric signal
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proportional to

D

x0
LRM

(

v0
LRM

c

)2

(3.76)

which is an O(3) effect, thus negligible even at Gaia accuracy. For example, a vi-

sual binary with a separation D
x0

LRM

∼ 1′′ and a spatial velocity with respect to the

barycenter of v0
LRM ∼ 200 km/s, the maximal astrometric effect of the special rela-

tivistic term in (3.73) is 0.5µas. The expression (3.73) essentially contains the effect

of the Lorentz contraction and the simultaneity related issues. Therefore we find that

using

D [te] = D
[

t0e + γ−1
(

te − t0e
)]

, (3.77)

is sufficient for practical purposes at the required level of accuracy (∼ 1µas).

3.8 Conclusions

We have shown that the LTT must be taken into account to obtain accurate models

of the observable quantities in precise modern astrometry. Furthermore, since LTT

is an object-dependent effect, precise relative astrometric measurements are sufficient

to resolve the astrometric LTT signatures. The astrometric LTT signature may be

used in highly precise ground-based observations to obtain additional information on

a given object. The expressions derived in (3.30)–(3.31) can be applied using O − C

techniques with the available astrometric data. LTT must be taken into account in

the interpretation of data obtained by the planned space astrometric missions which

that will attempt to reach astrometric accuracies of a few µas. As an example, the

coupling of the Römer delay with the proper motion and the orbital velocity of a star

can mimic the astrometric wobble caused by a planetary mass object with a period

of around one year (considering an observer traveling on the vicinity of the earth) if

LTT is not properly included in the astrometric model.

It has been found that the LTT signature is boosted by the proper motion of

the system. Multiple systems with high proper motions (thick disk, globular clusters,

nearby halo objects) might be objects of investigation if properly adapted astrometric

models are used.
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If the astrometric LTT signature is large, information on the radial geometry of

a system can be obtained. In the case of binary systems this information allows us

to solve or at least constrain, the full set of orbital elements (and the true masses)

without information about radial velocities. Despite that, the amplitudes appearing

in Table 3.1 are rather small, even at µas accuracy level). It seems unfeasible to

use the astrometric LTT signatures to significantly improve the knowledge of a given

system since radial velocity curves are much better measured. The suggestion here

is to use the radial velocity measurements as an input to improve the astrometry of

a given source using the LTT-corrected orbital description. How to proceed properly

in such cases depends on the information available for each object.

When imaging capabilities of exoplanetary systems become available, the fitting

of an LTT orbit might lead to constraining the size of the orbit in the line-of-sight

direction without the use of spectroscopic measurements, which may be impracticable

on such faint objects unless interferometric techniques improve significantly.

The relations (3.33)–(3.34) can be used as a good indicator of whether LTT as-

trometric effects must be taken into account for more general objects (open clusters,

globular clusters, galaxies, fast orbiters around massive black holes) in nonlinear mo-

tion. For this purpose we define the LTT astrometric signal as

LTT ≡ V

c

L

d
, (3.78)

where V and L are the characteristic velocity and size of the system, respectively; c

is the speed of light in the same units as V ; and d is an estimation of the distance to

the source given in the same units as L. LTT is an adimensional quantity that can

be directly interpreted as an angle(in radians). If this number is of the order of the

astrometric accuracy used to describe an astronomical object outside the solar system,

then the LTT should be taken into account in order to obtain a correct interpretation

of the data.

For some purposes (such as the construction of an astrometric catalog) it is some-

times useful to make the abstraction that at the reference epoch t0obs the observer is

located at the barycenter of the Solar System. If this is done, the initial direction

r
[

t0obs

]

will not depend on the Römer delay l0 ·xobs

[

t0obs

]

due to the observer position

at t0obs as it does in expressions (3.24) and (3.26) or in the astrometric LTT signature
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formula (3.31). Then we can substitute xobs [tobs] − xobs

[

t0obs

]

by simply xobs [tobs]

in both equations (3.24) and (3.26) or in (3.31). This consideration is very useful to

create an astrometric catalog for a given reference epoch independently of the relative

initial position of observer xobs

[

t0obs

]

and the barycentric reference direction of each

source l0.

The application of the LTT has been demonstrated for the case of classical Keple-

rian orbits. Even for a more sophisticate model, one iteration of the process given in

Section3.6.1 is sufficient to account for the LTT to the required accuracy (1µas). We

have shown that the coordinate transformation between the Star System reference

system and the BCRS do not contribute significantly and that classical predictions of

special relativity (Lorentz contraction, loose of simultaneity) cannot be tested with

astrometric observations at 1µas accuracy. It is expected (but not demonstrated

here) that the local gravitational fields of a given star system are of the same order

of the Lorentz effects and that their contribution is not significant to the astromet-

ric modeling. This statement only concerns the coordinate transformations, not the

light propagation issues which can certainly produce observable effects (microlensing,

shapiro delay, etc.) and are discussed with greater detail by (Kopeikin & Schäfer

1999).





Chapter 4

Light deflection experiments

on the Solar System planets

4.1 Introduction

Thank to space astrometry we will able to reach a few microarcsecond accuracy 1

in the position and the motion of the celestial objects (stars and other solar system

bodies). When dealing with such precise with so precise measurements, a fully rela-

tivistic model for the light propagation and the relativistic reference systems involved

have to be used. This, far from being a disadvantadgeous, offers the possibility to

fit some parameters in the model, thus testing the fundamental theory of gravitation

used (that is General Relativity) and its alternatives with unprecendent accuracy.

The standard approach to do that is the parameterized post-Newtonian approxima-

tion(ppN)(Will 1980), which provides a version of the solar system metric depending

on a number of numerical parameters with a clear phenomenological interpretation

(Lorentz invariance properties of the metric, equivalence principle, preferred reference

frames, etc.).

Concerning the model for light propagation, it has been shown (Klioner 2003)

that the gravitational field of the planets of the Solar system must be taken into

account. Therefore, using observations of stars close to the planets some fundamental

1one microarcsecond is the thickness of a coin at the surface of the moon or the size of a car at

Jupiter as seen from earth.

73
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parameters of the theory can be obtained. At least, three different aspects of the model

for light deflection can be phenomenologically studied. They are, the monopolar light

deflection that the spherical part of the gravitational field of a planet, the quadrupolar

deflection caused by the oblateness of the planet, and the effect of the motion of the

gravitating source which forces to consider explicit time-dependecies in the metric

and during the integration of the equations of motion for the photons. These three

issues have been discussed in great detail by many authors (see for example Klioner

& Kopeikin (1992), Will (2003) or Kopeikin (2006a), just to list some of them).

Jupiter is ,without a doubt, the most interesting object, being the most massive

body in the Solar System (after the Sun), besides it has a relatively large barycentric

velocity, it can be observed very close to its surface and its oblateness is sufficient to

cause a significant effect on the light deflection. As for the rest of the planets (with,

the exception of Saturn), only the monopolar deflection is relevant even at the Gaia

accuracy.

In order to reproduce the Gaia observations with outmost realism, a fully dy-

namical model has been implemented. It must contain the relevant aspects of the

instrument affecting precise astrometric measurements (scanning law, a model for the

focal plane, barycentric motion of the probe), and the relevant aspects of the rela-

tivistic model for light propagation (precise formulation of the model in the BCRS

coordinate system, motion of the sources during the observations, realistic Solar Sys-

tem ephemeris, etc.). In this sense, the Solar System ephemeris play a central role,

since such kind of measurements are expected to be quite sensitive to positional errors

of the planets. The degree of sensitivity to positional errors is also studied and the

requirements for the ephemeris at the time of the Gaia are discussed.

To obtain the maximum scientific outcome, a flexible and robust data reduction

scheme has been applied. We present an hybrid approach using nonlinear least squares

and the integration of the Bayesian Probability function. The later provides much

more information about the significance of the obtained results than the nonlinear

least squares.
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4.2 Light propagation in the parameterized post-

Newtonian approximation

The aim of this section is not to provide a rigorous derivation of the equations of

motion for photons (which has been done by many others before), but to give the

reader a simple theoretical background in order to interpret the proposed experiments

and results in the framework of the parameterized post-Newtonian approximation for

the BCRS observable astrometric quantities.

Let us summarize the most important notations which are relevant to this chapter

• β and γ are the parameters of the parametrized post-Newtonian (ppN) formal-

ism which characterize possible deviation of the physical reality from general

relativity theory (β = γ = 1 in general relativity);

• the capital italic subscripts A,B,C, · · · = 1 . . .N refer to the gravitating bodies

of the Solar system;

• the subscript ’o’ indicates quantities related to the observer (satellite): e.g. xo

denotes the position of the observer and to is the is the instant of observation

in the Barycentric Celestial Reference System (BCRS);

• the subscript ’p’ denotes quantities related to the light ray (photon): e.g. xp(t)

denotes the BCRS position of the light ray at some moment of time t;

• the subscript ’s’ denotes quantities related to the source: e.g. xs denotes the

BCRS position of the source;

• the light particles (massless null particles), which are the objects under study,

are called photons.

The light deflection model used is the one described by Klioner (2003). The

relativistic model of the observations contains several parts discussed in the Chapter

1. The effects discussed in this chapter are related to light propagation only.

4.2.1 Relativistic modeling of astrometric observations

Only the signal propagation will be discussed with some detail(Equations in signal

propagation in Fig. 1.2) , since it contains all the relevant information for this study.
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The described approach is a synthesis of the model developed by S.A. Klioner and

his collaborators in a series of papers. In particular, it heavily relies on the results

presented in Klioner (2003), Klioner & Peip (2003) and Klioner (2004). The nomen-

clature and the notations have been taken from there. First, we proceed giving the

metric and deriving the equations of motion (Section 4.2.2). Then we sketch the

procedure to integrate the equations of motion of a photon when the massive bodies

move with constant velocities obtaining the analytical form of the coordinate velocity

for the photon(Section 4.2.2). All the features of the light deflection effect are derived

in that part. Finally, a few lines describe the formula used to project the coordi-

nate velocity of the photon into the observer reference system obtaining the desired

observed direction (Section 4.2.3).

As a general comment, let us note that we work in the limit of geometrical optics,

where the light is assumed to propagate as point-like particles (no wave equation,

(Misner et al. 1973,Chap.22.5)). The mathematical expression for this, is that the

geodesic equation is used instead of the General relativistic version of the Maxwell

Field equations.

4.2.2 The equations of motion for the photons

Since the standard post-Newtonian approach deals with weak gravitational fields and

small velocities for the gravitating bodies (Will 1980), it is standard to write the

post-Newtonian metric as the Minkowsky metric ηαβ = diag [− + ++] plus a small

perturbing tensor hαβ

gαβ = ηαβ + hαβ (4.1)

h00 =
2

c2
ω (t,x) + O(c−4) , (4.2)

hi0 = − 4

c3
ωi (t,x) + O(c−5) , (4.3)

hij =
2

c2
δijω (t,x) + O(c−4) . (4.4)
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where ω and ωi are the newtonian gravitational potential and the so-called gravito-

magnetic field respectively,

ω =
∑

A

GMA

rA
+

1

2

∑

A

GIpq
A

r3A

(

−δpq + 3
rp
Ar

q
A

r3A

)

+ . . . , (4.5)

ωi =
∑

A

GMA

rA
ẋi

A (t) + . . . , (4.6)

where rA = |rA|,
rA (t,x) = x − xA (t) , (4.7)

xA is the position of body A, and ẋA is the velocity of body A. The first term

on the right–hand side of (4.5) is the spherically symmetric part of the Newtonian

gravitational potential (monopole) and the second one is the quadrupolar component

of the gravitational field (which depends on the symmetric traceless quadrupolar

moment Iij
A of body A, and is explicitly given in Section 4.2.2). In (4.6) the terms due

to the body rotation have been omitted since they only produce negligible astrometric

effects at µas accuracy (see Klioner (1991)).

This form of the metric coefficients comes from the integration of the Einstein

Field equations(not discussed here) and the choice of a suitable coordinate gauge.

Here we are working in the so-called harmonic gauge, which can be expressed as the

following constrain on the metric coefficients

hβ
α,β −1

2
hβ

β ,α = 0. (4.8)

The Minkowsky metric ηαβ is used to raise and lower the indices. The explicit

dependence of the metric tensor with the position is entirely included in the hαβ

coefficients. In the limit of geometric optics (see Misner et al. (1973)), the motion for

a photon is described by the null geodesic equation

d2 xα

dλ2
+ Γα

µν

d xµ

dλ

dxν

dλ
= 0 (4.9)

which depends on an arbitrary curve parameter λ, also called affine parameter. The

Γ symbols are the so-called Cristoffel symbols which are directly obtained from the
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metric tensor as

Γα
µν =

1

2
gαβ (gµβ ,ν +gνβ ,µ −gνµ,β ) (4.10)

Using the equation for the x0 (time) component and the null vector condition

dxα

dλ

dxβ

dλ
gαβ = 0 (4.11)

the equations of motion can be then written in terms of the coordinate time t instead

of the affine parameter λ. To the post-Newtonian order (Will 1980), they read

d2 xi

dt2
=

1

2
c2h00,i − h00,kẋ

kẋi −
(

hik,l −
1

2
hkl,i

)

ẋkẋl − 1

2
h00,tẋ

i

−
(

1

c
h0k,j −

1

2c2
hjk,t

)

ẋj ẋkẋi − c (h0i,k − h0k,i) ẋ
k

− hik,tẋ
k − ch0i,t + O(c−2) (4.12)

Let us assume that the coordinate trajectory of a photon can be described as a straight

line xp plus a small perturbation due to the gravitational fields

xp = x0 + cσ (t− t0) + ∆xp (4.13)

where x0 is some position at the t0 instant. The coordinate velocity is obtained

deriving the equation of the trajectory with respect to the coordinate time t

c−1ẋp = σ + c−1∆ẋp , (4.14)

where c−1∆ẋp is the perturbing term to the direction coordinate velocity induced by

the gravitational fields.

Substituting (4.13) into (4.12), it is obtained that the equations of motion for the
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perturbing term ∆xp are

∆ẍp
i = F i

pN + F i
Q , (4.15)

F i
pN = −

∑

A

GMA

r3A

(

Ri
A (4.16)

+ c−2
[

ẋp
2ri

A − 4 (xp · rA) ẋi
p − 4 (ẋp · vA)Ri

A

+ 4 (ẋp · rA) vi
A + 3 (vA · rA) ẋi

p

]

+ c−4
[

4 (ẋp · rA) (ẋp · vA) ẋi
p − (vA · RA) ẋ2

px
i
p

])

+ O(c−2) ,

F i
Q = 6

∑

A

G

R5
A

Ipq
A rq

A

(

δip − 2

c2
ẋj

pẋ
p
p +

5

c5
(ẋp · nA) ẋi

pn
p
A − 5

2
ni

An
p
A

)

,(4.17)

+ O(I3
A) + O(c−2) .

ni
A =

ri
A

rA
, (4.18)

vi
A =

ẋi
A

c
. (4.19)

Integration of the equations of motion and light deflection.

Assuming that the gravitational field of the Solar system vanishes at infinity (h→ 0),

the metric is asymptotically Minkowskian. This provides a natural choice of the first

boundary condition which is that the perturbation to the photon coordinate velocity

vanishes very far from the sources of the gravitational fields,

lim
t→−∞

∆ẋp(t) = 0 . (4.20)

Imposing that the post-Newtonian perturbation to the photon trajectory vanishes at

the event of observation, the second boundary condition is obtained

∆xp(to) = 0, (4.21)

and the second order equations of motion in (4.15) can be integrated. We omit the

details here for the sake of brevity. A detailed procedure to do that can be found in

Klioner (1991). The perturbation to the coordinate velocity can be written in two
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parts

c−1∆ẋp = c−1∆ẋpN + c−1∆ẋQ (4.22)

where c−1∆ẋpN contains the monopolar deflection and c−1∆ẋQ the deflection due

to the quadrupole.

An analytic expression for the velocity of the photon at any time can be obtained

by direct integration (see Klioner (1989)) if the motion of the deflecting bodies are

assumed to be rectilinear. In practice, it is enough to suppose that the motion of the

bodies is rectilinear during the time interval required by the photon to travel through

the solar system.

The advantage of this approach (Klioner 1989) is that it accounts for the motion

of the bodies with the required accuracy (linear motion is enough for Solar System

applications) without further assumptions. A more sophisticate solution in the post-

Minkowskian approach was derived by Kopeikin & Schäfer (1999). It has been proved

that both approaches are equivalent at the µas level astrometric of accuracy (Klioner

& Peip 2003).

It is useful to define the unit propagation direction σ at the past null infinity as

lim
t→−∞

1

c
ẋp(t) = σ (4.23)

If the object is far enough from the Solar System (say > 1 pc), then −σ is equivalent

to the instantaneous apparent direction of the source obtained by simple Euclidean

considerations. To the corresponding post-Newtonian order, the projection to the

BCRS tetrad of the propagation direction can be expressed as the n unit vector given

by

n = σ + δσpN + δσQ . (4.24)

The expressions for δσpN and δσQ are given and discussed in the subsequent sections.
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Monopolar deflection : PPN γ parameter

The expression for the monopolar part of light deflection reads δσpN is

δσpN = σ × 1

c
∆ẋ (to) × σ , (4.25)

1

c
∆ẋ (to) = −

∑

A

1 + γ

2

2GMA

c2

(

d̂A
1

c
İA + gA

1

c
J̇A

)

+ O(c−4) , (4.26)

1

c
İA =

|gA|
|roA| (|gA||roA| − gA · roA)

, (4.27)

1

c
J̇A =

|gA|
|roA|

, (4.28)

d̂A = σ × (roA × gA) , (4.29)

roA = xo (to) − xA (to) , (4.30)

gA = σ − c−1vA (to) . (4.31)

where d̂A is the vector distance of closest approach to the A-th gravitating body(up to

terms O(2). This statement is proven in Appendix C.2). The vector d̂A is similar to

the impact parameter vector dA = σ×(roA × σ), but includes the coordinate velocity

vector of the gravitating body vA. The γ parameter is a well-known parameter in the

standard parameterized post-Newtonian approximation as described by Will (1980)

and general relativity predicts that its value is 1 for all the bodies. The best estimates

for γ come from the measured light deflection and related effects by the Sun, as shown

in Tab. 4.1. Some first attempts to obtain γ from Jupiter are also given.
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Figure 4.1: Monopolar light deflection applied to a random number of sources around
Jupiter. The central circle indicates the instantaneous position of Jupiter (at the
retarded instant). The shifts have been exaggerated.
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Year Method Value Uncertainity Publication

1918 Light deflection, Optical ≃ 1.0 0.30 Eddington (1919)
1918–1960 Light deflection, Optical ≃ 1.0 0.10 Various authors
1960–1980 Light deflection, Radio and VLBI 1.00 ≃ 0.05 Various authors
1995 Light deflection, VLBI 0.9996 0.0017 Lebach et al. (1995)
1997 Light deflection, Optical(HIPPARCOS) 0.997 0.003 Froeschle et al. (1997)
2004 Global VLBI solution, Radio 0.99992 0.00023 Shapiro et al. (2004)
2003 Shapiro time delay, Doppler tracking 1.000021 0.000023 Bertotti et al. (2003)
1991 Shapiro time delay, VLBI on Jupiter ≃ 1.0 0.3–0.4 Treuhaft & Lowe (1991)
2006 Light deflection, HST optical ≃ 1.0 0.12 Whipple et al. (1996)

Table 4.1: Review of of direct measurements of the γ parameter through light propagation effects
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d
v Aobs

σ
n

t
A

roA

Figure 4.2: Scheme of the vectors involved in light deflection formula (4.25). The dark
circle on the right is the position of the massive body at the instant of observation tobs

, while the white one is the position of the body at the instant of closest approach.
The vector σ is tangent to the unperturbed trajectory of the photon (dashed line).
The vector tangent to the trajectory of the photon(solid curve from the star to the
observer) at the instant of observation is n. The position of the observer at the instant
of observation is illustrated with a white box. The vector d̂ is the minimal distance
between the trajectory of the photon and the massive body.

The dependence of the light deflection effect with the mass obtained dynamically

(say GMA product) from the integration of the Solar System ephemeris (asteroids,

satellites, planets and the Sun) is a fundamental prediction of the theory. An observed

significative discrepancy would seriously compromise the consistency of General Rel-

ativity at a very deep level (strong equivalence principle, Einstein field equations or

geometric interpretation of the gravitational field). This fully justifies the effort to

obtain γ for each planet independently.

The first published work that explicitly measures the Jupiter monopolar deflection

was presented by Treuhaft & Lowe (1991), who statistically confirmed the presence

of the light deflection effect, but did not really give an estimate of γ. From their

results one can infer an accuracy of 30%−−40% in the determination of γ. A similar

experiment with a very bright star transiting close to Jupiter was performed by the

Astrometry group of the Hubble Space Telescope, Whipple et al. (1996). Using the

discussion given on the report, one can infer that they checked the value of γ = 1 with

an error of 12%. Despite that the observations performed by Fomalont & Kopeikin

(2003) seem sensitive enough to provide an estimation of γ, they chose to assume

its nominal value from the Sun estimations (γ = 1). This issue is discussed again in
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Section 4.2.2.

Just to mention other indirect measurements of γ, the current VLBI full sky

solution contains a global γ = 1, obtaining the ICRF orientation at the level of a

few tens of µas (McCarthy & Petit 2004). The Solar System ephemeris are also

sensitive to a combination of γ and the post-Newtonian parameter β but it is not a

light deflection experiment and their constrains have been only analyzed in the global

context (just a global γ as it comes from the metric) where the Sun (Pitjeva 2005) is

the main contributor.

Planet motion: the dynamical αr parameter

The standard post-Newtonian theory for light deflection predicts that the observed

deflection pattern depends explicitly on the state of motion of the deflecting body.

Acceleration terms come only from the gravitational interaction with the Sun during

the propagation of the photon through the Solar System and produce negligible effects

(< 0.5µas). Assuming linear motion the deflection formula (4.25) explicitly depends

on the instantaneous velocity of the body at the instant of observation. A numerical

coefficient multiplying the velocity can be inserted in (4.31) as

ĝA = σ − αrc
−1vA (to) (4.32)

where αr equals 1 if the integration of the photon trajectory under the assumptions

of general relativity is correct.

The compactness of the solution given in (4.25) hides that the motion of the

massive bodies enters in the equations of motion for the photon in two ways. One is

through the h0i components of the metric (the so-called gravitomagnetic field), which

explicitly depends on the instantaneous velocity of the bodies vA(see (4.6)). The other

one is through the explicit dependence of the gravitational potentials onthe motion

of the bodies(h00 and hij components). In (4.2)–(4.4) all the relative position vectors

rA depend on time through the Newtonian potential in (4.5). This experiment (and

Gaia observations in general) are only sensitive to the explicit dependence on time

in the position of the bodies since the gravitomagnetic contribution is too small (see

Appendix C.3). Therefore we call αr the dynamical parameter.

It has been claimed by Nordtvedt (1991), that gravitomagnetism (effect of the h0i

components in the motion of the bodies) was already confirmed by the LAGEOS and
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Lunar Laser Ranging experiments. This claim has been recently criticized by Kopeikin

(2007), arguing confusion of real torques with spurious coordinate effects. Gravity

probe B, tries to obtain a direct measurement of the gravitomagnetism through the

analysis of the precession of gyroscopes in free fall. Their results are expected to be

released during 2007.

Concerning this explicit dynamical dependence of light deflection, only the mea-

surements performed by Fomalont & Kopeikin (2003) on Jupiter have confirmed the

prediction of General Relativity since αr was explicitly obtained from their data with

an accuracy of 20%. Despite their parameterizations is slightly different from the

one used here, it is possible to show that they are equivalent (Klioner & Peip 2003).

They used the most precise astrometric VLBI technique which consist in measuring

the differential gravitational time delay between VLBI stations.

Cassini radio link experiment (Bertotti et al. 2003) was also sensitive to αr for the

Sun, but it was not directly fitted during their data reduction (see Kopeikin (2006b)

for a detailed discussion of the issue). The experiment consisted in measuring the

gravitational frequency shift of radio signals as Cassini transited behind the Sun in

his route to Saturn.

An alternative way to introduce the dynamical effects has been recently spread by

S.Kopeikin since it emerges naturally in the post-Minkowskian approach to General

Relativity. In this approach, the positions of the deflecting bodies are considered at

some retarded instant trA with respect to the instant of observations tobs

trA = tobs − αr
1

c
|xobs(tobs) − xA(trA)| . (4.33)

which must be solved iteratively (one Newtonian iteration is sufficient, see Klioner

& Peip (2003)). Then, the formula to be used for δσpN is the same as (4.25) with
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vA = 0 for all the bodies and their positions evaluated at trA,

δσpN = σ ×
(

1

c
∆ẋ (to, tA) × σ

)

, (4.34)

1

c
∆ẋ (to, tA) = −

∑

A

2GMA

c2

(

drA
1

c
İA + σ

1

c
J̇A

)

+ O(c−4) , (4.35)

1

c
İA =

1

|rr
oA| (|rr

oA| − σA · rr
oA)

, (4.36)

1

c
J̇A =

1

|rr
oA|

, (4.37)

dr
A = σ × (rr

oA × σ) , (4.38)

rr
oA = xo (to) − xA (trA) , (4.39)

By expanding (4.25) in powers of v
c , it can be shown that the leading terms of both

equations coincide down to 1µas accuracy for any situation in the Solar System con-

text.

The formal equivalence of both approaches (dynamical and retarded) has derived

in an intensive discussion on the interpretation of the light deflection experiment

carried out by Fomalont & Kopeikin (2003), where the authors claimed that the

obtained value of αr is a direct measurement of the speed of propagation of the

gravitational field. In their approach the use of the retarded position is directly

related to the retarded gravitational potentials that appear when solving the Einstein

equations in the post-Minkowskian approach.

We prefer to interpret the αr parameter in the dynamical sense and in our code,

we use the standard formula (4.25) as it comes from the direct integration of the

trajectories for the photons.

Since the accelerations in the Solar System are small, it is easy to realize that a

value of αr different from 1 is equivalent to a positional shift of the gravitating body

along its trajectory in the retardation approach. That is, we should be evaluating the

position of the body at a wrong instant of time along its trajectory. This is also true

(but not so evident) in the fully dynamical picture (see equations (4.25)–(4.31)).

A positional error in the center of mass of a gravitating body can be also in-

terpreted as a spurious mass dipolar moment of the gravitational field (Kopeikin

2006a).By definition, the center of mass is chosen by imposing that the mass dipo-

lar moment of the gravitating body must be zero. The reason is that only positive
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Figure 4.3: Visual representation of the effect of a dynamical parameter different
than 1 applied to a random number of sources around Jupiter. A dipolar structure
is clearly seen in the deflection pattern. The shift vectors have been exaggerated to
make the image more visual.
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gravitational charges(masses) can exist in the standard paradigm. It can be clearly

seen in Fig. 4.3 that the deflection pattern reflects this dipole nature of the dynam-

ical/positional effects. Then, if such dipole becomes apparent in the Gaia data, two

explanations will naturally emerge. One is that, the value of αr is not equal to one,

thus general relativity does not give the correct prediction(whatever the reason is),

or the accuracy of the ephemeris for Jupiter is not as good as they are supposed to

be.

In review, positional errors along the instantaneous velocity of the gravitating

body given by the ephemeris are virtually undistinguishable from discrepancies in αr.

By chance, the required accuracy (∼ 100 km, this is shown in 4.4.4) coincides with

the current accuracy of the ephemeris. Any dipole-like effect, if present, must be

examined very carefully.

Quadrupolar deflection : ǫ parameter

The deflection of the quadrupolar part of the gravitational field emerges naturally from

the equations of light propagation in the first post-Newtonian approximation. As it

happens for the trajectories of massive bodies, it is expected that the mass multipoles

do have an influence on the trajectories of massless particles. Since it has a strong

dependence on the impact parameter, it has not been yet measured on any solar

system body, but it is assumed to be very relevant on the gravitational macrolenses

in clusters of galaxies. In that cases, the quadrupolar deflection is assumed to be that

given by GR and it is used to infer the properties and density profiles of the lenses

(Kopeikin 2006a). So far, only the quadrupolar deflection from Jupiter is expected to

be measured with a reasonable signal to noise ratio. The nominal mass quadrupole of

the planets is estimated dynamically from the ephemeris integration and the observed

rotation axis.

A numerical value multiplying the quadrupolar deflection term can be added in

(4.24) as ǫδσQ. The expression for the quadrupole deflection is rather complicate.

We use the prescription given by (Klioner & Blankenburg 2003) which is based on
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the the work of Klioner (2003).

δσQ =
1

2c2
(1 + γ)G

∑

A

(4.40)

(

α′
A

1

c
U̇A (to) + β′

A

1

c
ĖA (to) + γ′A

1

c
ḞA (to) + δ′A

1

c
V̇A (to)

)

,

α′
A = 2fA − 2 (fA · σ) − (gA · σ + 4fA · hA)hA , (4.41)

β′
A = 2 (fA · σ) hA , (4.42)

γ′A = − (gA · σ − fA · hA)hA (4.43)

δ′A = 2gA − 2 (gA · σ)σ − 4 (fA · σ) hA , (4.44)

1

c
U̇A (to) = dA

2roA− σ · roA

r3oA (roA − σ · roA)
2 , (4.45)

1

c
ĖA (to) = a

r2oA − 3 (σ · roA)
2

r5oA

, (4.46)

1

c
ḞA (to) = −3dA

σ · roA

r5oA

, (4.47)

1

c
V̇A (to) = − 1

r3oA

, (4.48)

where the following notation shortcuts have been applied

roA = xo (to) − xoA (to) , (4.49)

roA = |roA| (4.50)

dA = σ × (roA × σ) , (4.51)

dA = |dA| , (4.52)

hA =
dA

dA
, (4.53)

f i
A = IA

ijh
j
A , (4.54)

gi
A = IA

ijσ
j , (4.55)

The matrix Iij
A is symmetric and traceless and has, therefore, five independent com-

ponents which can be calculated from the second zonal harmonic coefficient J2 A

(in the case of the giant planets other second order coefficients are negligible), the

mass MA and the equatorial radius LA of the planet, and the equatorial coordinates
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Figure 4.4: Quadrupolar light deflection applied to a random number of sources
around Jupiter. The quadrupolar structure of the deflection pattern is very obvious
in the figure. The length of the shift vectors has been exaggerated to make the image
more visual.
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(αA
pole, δ

A
pole) of the north pole of its figure axis (Klioner 2003) :

IA
ij = MA L

2
A J2 A







A B C

B D E

C E −A−D






, (4.56)

A =
1

3
− cos2αA

pole cos2δA
pole, (4.57)

B = −1

2
sin 2αA

pole cos2δA
pole, (4.58)

C = −1

2
cosαA

pole sin 2δA
pole, (4.59)

D =
1

3
− sin2αA

pole cos2δA
pole, (4.60)

E = −1

2
sinαA

pole sin 2δA
pole. (4.61)

Deviations from the predicted value should indicate wrong assumptions on the hydro-

dynamical models for the planets (i.e. the presence of a fast rotating core) or a failure

on the prediction of the light deflection effect by the standard theory of light prop-

agation, thus compromising the dark matter estimations on galaxy clusters inferred

from the light deflection contribution (Kopeikin 2006a).

The values of the angular coordinates used of the poles are given in Tab. 4.2.2,

which has been obtained from Seidelmann et al. (2005). It is available in electronic

form through http://astrogeology.usgs.gov/Projects/WGCCRE/.

Ephemeris uncertainties: δl,δm shifts

The light deflection effect observed for a given planet clearly depends on the actual

position of its center of mass (xA). Given some coordinates (say BCRS coordinates),

the trajectory of the center of mass of a body are the events where the mass dipole

of the body vanishes for any t. Then, an error on the expected position of a body

provided by the ephemeris of the solar system can be observed as a spurious dipolar

gravitational field. This analogy is used by some authors (Kopeikin 2006a) to describe

the associated light deflection pattern as a dipolar deflection effect. We prefer to avoid

such an interpretation since it is a purely coordinate effect which obfuscates the real

issue, the positional accuracy of the ephemeris required for testing the light deflection
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Figure 4.5: Reference system used to define orientation of the planet.

Table 4.2: Recommended values for the direction of the north pole of rotation of the
Sun and planets (2000)
α0, δ0 are standard equatorial coordinates with equinox J2000 at epoch J2000.

Approximate coordinates of the north pole of the invariable plane are α0 = 273.◦85,
δ0= 66.◦99.

T = interval in Julian centuries (of 36525 days) from the standard epoch.

The standard epoch is 2000 January 1.5, i.e., JD 2451545.0 TCB.

Sun α0 = 286.◦13 δ0 = 63.◦87
Mercury α0 = 281.01− 0.033T δ0 = 61.45 − 0.005T
Venus α0 = 272.76 δ0 = 67.16
Earth α0 = 0.00 − 0.641T δ0 = 90.00 − 0.557T
Mars α0 = 317.68143− 0.1061T δ0 = 52.88650− 0.0609T
Jupiter α0 = 268.05− 0.009T δ0 = 64.49 + 0.003T
Saturn α0 = 40.589− 0.036T δ0 = 83.537− 0.004T
Uranus α0 = 257.311 δ0 = −15.175
Neptune α0 = 299.36 δ0 = 43.46
Pluto α0 = 313.02 δ0 = 9.09
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roA

l

m

Figure 4.6: Ortonormal unit vectors used to correct the position given by the
ephemeris.

effect.

We introduce a parameterized two dimensional shift to the body nominal position

as

xA = x
eph
A + δllA + δmmA (4.62)

where x
eph
A is the position of the solar system body A provided by the ephemeris (i.e.

Standish (2004), Fienga et al. (2006), or Pitjeva (2005)). The two unit vectors lA

and mA are constructed on the instantaneous position of the body at the instant of

observation as

lA =
〈

v
eph
A

〉

(4.63)

mA = 〈rOA × lA〉 (4.64)

where lA is a unit vector in the instantaneous direction of motion, mA is perpen-

dicular to the instantaneous velocity and to the apparent direction the planet. This

parametrization is chosen to introduce all the correlation of the positional errors with

the dynamical parameter αr in δl.
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The ephemerides shifts cannot be obtained as full mission parameters since they

depend on the uncertainty of the ephemeris as a function of time. If the ephemeris

shifts can be obtained with the required accuracy, each transit will provide a positional

measure of the planet. The quality of the equivalent measurement of the planet

position clearly depends on how many bright stars are observed close to the planet

during each transit.

4.2.3 Observed unit direction and aberration

Just for the sake of completeness, let us briefly describe the formula used to compute

the direction measured by an inertial observer at the satellite position (Center of

Mass Reference system, see Klioner (2004)). In general, the observed unit direction

is given by the projection of the tangent null vector to the local tetrad of an arbitrary

observer. The observer’s local tetrad can be determined from its trajectory and

the BCRS metric up to a spatial rotation which must be fixed by convention. One

standard convention is to impose that the spatial axis of the satellite reference system

are chosen to be oriented as the BCRS (kinematically non-rotating tetrad). In such

a way, some non-inertial forces are introduced. They can be completely neglected (as

the tidal gravitational fields) as long as the observer is small (a few meters) and the

data acquisition process is not too long (a few minutes). A detailed discussion on this

issue can be found in Klioner (2004).

We adopt the approach given in Klioner (2003). The observed unit direction by a

given inertial observer whose spatial axis are assumed to be kinematically non-rotating

can be computed as

s =

(

n +

{

Γ

c
+ [ Γ − 1 ]

v · n
|v|2

}

v

)

1

Γ (1 + v · n/c) , (4.65)

Γ =
1

√

1 − |v|2/c2
, (4.66)

v = ẋo

(

1 +
1

c2
(1 + γ)ω(xo)

)

+ O(c−4). (4.67)

where v is the BCRS coordinate velocity of the observer at the instant of observation.

This expression is the general relativistic version of the light aberration described by

special relativity (setting ω = 0 the special relativistic formula is recovered).
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4.3 Local tests. Overview of the experiment

This study is focussed on the determination of the parameters in the relativistic

model for light propagation using Gaia observations close to the planets of the Solar

System. In order to make it realistic, a number of relevant features inherent to the

Gaia observations must be taken into account. They are; an schematic model of the

Gaia focal plane, an astrometric error model, realistic Solar System ephemeris and

the nominal Gaia orbit, a realistic scanning law, and a fully relativistic model for

the light propagation in the Solar System (as described in the previous sections). To

perform this experiment several conceptual simplifications with respect to the actual

Gaia design have been applied. The relevant features of the adopted approach are

detailed in the next subsection.

4.3.1 Relevant aspects of the Gaia mission and Simulated data

Two astrometric focal planes

The instrument consists on two independent fields of view pointing towards two dif-

ferent directions. Each field of view consists on a patch of the sky of 0.7 deg×0.7 deg

parameterized using two angular coordinates aL and aC . The across scan aC is the

angle between a star and the instantaneous plane of rotation. The along scan angle

aL is the angle between the source and the center of the field of view projected in

the scanning direction. The angle aL is much better measured than aC and contains

most of the relevant astrometric information.

Simulation process and astrometric error model

Each FoV contains nine CCD columns2(see Fig. 4.7). The along scan angles of the

nine CCD columns are assumed to be known and constant. As the satellite slowly

rotates, the stars slowly cross the CCD columns in the aL direction. The instant at

which a star crosses the nominal position of a CCD column 3 is the simulated quantity

that is used in the data reduction as the input.

The full simulation process to produce the instants of CCD transits is described

below step by step

2They are also organized in 9 CCD rows but this is irrelevant for our discussion here
3position of the last pixel in a CCD column
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Figure 4.7: The Gaia focal plane. The viewing directions of both telescopes are
superimposed on this common focal plane which features 7 CCD rows, 17 CCD strips,
and 106 large-format CCDs, each with 4500 TDI lines, 1966 pixel columns, and pixels
of size 10µm along scan ×30µm across scan (59 mas × 177 mas). Star images cross
the focal plane from left to right. The astrometric CCDs are those depicted in light
gray. Figure courtesy of EADS Astrium.

• The approximate position of a planet is computed in the CoMRS each ∆ = 30

minutes as tnp = tn+1
p + ∆ with t0p = JD2012.

• If it the planet is observed close enough to the central position of one of the FoV,

we have a planetary transit. A catalog input stream of all the sources around

the planet is initialized. The source in the catalog are stored in 1 deg×1 deg

files. Typically, 9 catalog files are processed at each planetary transit.

• The information of one star is retrieved from the catalog.

• The along scan angle of the CCD column aCCD
L is retrieved from the instrument

model.

• Here starts the core iteration process to determine the instant of transit. The

seed value for the instant of transit is tnp .

• The astrometric model of an object, the light propagation model, and the

ephemeris information of the observer (position and velocity) are used to obtain

the observed direction of a source in the CoMRS.
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• The scanning law(and a simple instrument model) is used to build the rotation

matrix (attitude matrix) required to transform the observed direction to its

current FoV coordinates. The difference between the along scan angle of the

source and the current CCD column is obtained as δ(i) = ai
L − aCCD

L . If the

across scan angle is larger than the size of the focal plane, the iterative process

is interrupted and the star is discarded since it falls outside the focal plane.

• If |δ| > 0.5µas, the current instant of time is corrected by t(i+1) = t(i) −
δΩ, where Ω = 60′′s−1 is the scanning rate. This process is repeated until

convergence is reached or the maximum number of iterations is overpassed.

• The astrometric error model is used to add the noise to the measurements as a

function of the star photometric information in the catalogs.

• This process is repeated for each CCD column

• A telemetry segment is generated containing the catalog information (astrom-

etry and photometry) the Field of view and the nine instants of transit. The

telemetry segment is stored in the telemetry file generated for this planetary

transit.

• The process is repeated until there are no more stars in the catalog input stream.

The telemetry file is closed. This closes the cycle of a single transit simulation.

• The full process is repeated until the end of mission instant is reached by tp.

This simulation cycle is sketched in the block diagram in Fig. 4.8.

The error model applied is very simple and (in our simplified version) only depends

on the V magnitude. Using a random number generator, Gaussian noise is added to

each instant of CCD transit. The standard deviation of the noise generator is given

by

σt =
A15

Ω
× 100.2(V −15) . (4.68)

where V is the visual magnitude of the star, A15 = 300µas is the accuracy per CCD

transit reached for a star of magnitude 15 and Ω = 60′′ s−1 is the scanning rate.

For stars brighter than V = 12 the accuracy does no longer depend on the limiting

magnitude and it is fixed to 90µas. Stars brighter than V < 8 are not considered since

they are too bright and it is not clear if good quality astrometry can be obtained.
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The result of a full mission simulation one telemetry file per planetary transit.

Typically 120 telemetry transit files are obtained. It is an ASCII file, and each line

contains the information of a stellar transit. A telemetry file looks like

RA DE B V FoV t1 ... t9

226.50150 -17.6458 16.78 15.78 -1 2956.265197 ... 2956.265626

226.50166 -17.9079 17.15 15.90 -1 2956.265271 ... 2956.265701

...

where RA is the Right Ascension in degrees, DE is the declination in degrees, B and

V are Johnson magnitudes and t1 . . . t9 are the instants of transit for each CCD. FoV

is a flag to identify which FoV is used (+1 or −1). Each row represents one star.

Gaia scanning law

The Gaia scanning law has been carefully designed to assure full sky coverage each 6

months with a reasonable sampling rate. At the end of mission it is guaranteed that

each part of the sky will observed between 50 and 250 times, being 80 the average

number of observations per object (this not applies to solar system objects because

they continously change their position). Figure 4.9 shows an example of the sky

coverage rate at the end of the 5 years mission assuming that the nominal scan law

is preserved along the mission.

The satellite slowly rotates on the plane perpendicular to the instantaneous rota-

tion axis z completing a revolution each 6 hours. The z axis precesses very slowly

(roughly one precession cycle each 2 months) on a cone of 45 deg around the instanta-

neous direction of the Sun. The angle that regulates the 6 hours revolution period is

called ”revolving phase” and the angle on the cone around the sun is called ”precession

phase”.

Given the initial instant, the nominal scanning law has two free parameters, the

initial revolving phase and the initial precession phase, which determine the whole

sequence of observations.

Since the precession rate is very small, the initial revolving phase η0 is not very

relevant for the number of times a star is going to be observed, but it is important in

our experiment because the relatively fast motion of the planets. Jupiter takes 3 hours

to move a distance equal to its radius. A star that provides a very strong measurement
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Figure 4.9: Diagram of the sky coverage. The color indicates the number of times a
given direction is observed after a 5 years mission. The horizontal axis corresponds to
the right ascencion angle (in degrees) and the vertical axis is declination (in degrees).



Chapter 4: Light deflection experiments on the Solar System planets 102

of the quadrupole, can be observed with almost null quadrupolar deflection a couple

of hours later.

A careful combination of both, can greatly improve the local deflection experiment,

specially for the Jupiter quadrupolar deflection. Section 4.3.2 is devoted to this issue.

The sky Catalog

The Catalog used is GSC2.3.14 which contains around a billion objects Spagna et al.

(2006). Despite it is not highly reliable at the faintest magnitudes (V > 19), it is

statistically comparable to the expected Gaia catalog. The GSC2.3.1 catalog provides

the photometry of the stars in three photograhpic bands Fpg,Jpg and Npg; and B and

V Johnson colors for for brighter objects. In order to obtain the B and V magnitudes

for the faint sources (12 < V < 20), at least two relations are required. One them is

provided by the GSC 1.1 catalog realization (Russell et al. 1990), which relates the

photographic Fpg with B and V as

Jpg = V + α (B − V ) (4.69)

where α = +0.72. The additional relation has been obtained from the statistical

properties of the bright stars. Assuming that the (Fpg−Jpg) color index is proportional

to (B − V ) it is obtained that

(Fng − Jng) = κ (B − V ) (4.70)

where κ is obtained from a linear fitting using the bight stars of the catalog and is

equal to ≃ 0.8. On very faint stars, only one magnitude is known(Jpg or Fpg). In

this case, the average (Fpg − Jpg) color index obtained again from the bright objects

is used to obtain approximated B and V colors.

The stars are considered static and their position is assumed without uncertainties.

The uncertainties emerging from potentially poor astrometric characterization of the

sources are assumed to be contained in the error model given in (4.68).

4as available through the web site http://galex.stsci.edu/GSC2/GSC2WebForm.aspx
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4.3.2 Preliminar considerations. Optimizing the initial param-

eters of the scanning law

The scientific outcome of the Gaia mission concerning the tests on the Giant planets

critically depends on favorable conditions at the moment of observation of the planet.

This is a critical issue for the measure of the Jupiter Quadrupolar deflection and

the gravitomagnetic effect, since both contributions show a strong dependence on

the angular separation of the star with the planet (ψ−3 and ψ−2 respectively). For

the quadrupole, it is expected to achieve most of the accuracy from a few good

observational events; this is, bright stars observed close to the planetary limb. Only

stars observed beyond 1.1 times the radii of the planet are considered since it is a

hard limit to the Gaia observational capabilities close to bright extended sources.

A typical process of simulation/reduction has a typical duration of three or four

days (running on a single Pentium4-like machine). In order to test a large number of

different initial conditions, instead of preforming the full simulation-reduction process,

we define the Signal-to-Noise Ratio of a parameter P as

SNRP =

√

∑

i

SNR
(i) 2
P , (4.71)

P = γ, ǫ, αr, . . . , (4.72)

where SNR
(i)
P is the Signal-to-Noise Ration of the i-th observation alone(full focal

plane transit of a star). For a single observation, the SNR is the contribution of each

effect (monopole, quadrupole, dynamical) projected in the instantaneous scanning

direction divided by the error of the measurement. Therefore, the SNR contribution

of the i-th observation is

SNR
(i)
P =

u · s(i),P
σ(i)

, (4.73)

s(i),P =
∂s(i)

∂P
, (4.74)

where u is the instantaneous scanning direction, s(i) is the observed direction in the

Satellite Reference System, ∂s(i)/∂P is the partial derivative of the observed direction

s with respect to the parameter K and σ(i) is the formal error of the i-th measure

(obtained from the error model, see (4.68)). The inverse of SNR should coincide with
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Figure 4.10: Full mission SNR obtained for the parameters of Jupiter as a function
of the initial revolving angle. The initial revolving angle is sampled at each 0.5 deg
from 0 deg to 360 deg.

the relative error σP /P . Explicity, it is expected that

σP

〈P 〉 =
1

SNRP
. (4.75)

A full SNR of γ, the dynamical coefficient and the quadrupolar deflection can be

numerically obtained in a couple of minutes if a limited version of the catalog up to

V < 16 is used. This permits to test many different configurations

As an example, we show the SNR obtained for the three parameters in the model

for different choices of the initial precession phase(see Fig. 4.10–4.13). JD2012 is used

as the start of mission used and initial revolving phase is fixed to 0. The results for the

retardation parameter and the J2 coefficient are shown in Fig. 4.10. It is clear that

a careful choice of the initial precession phase ξ0 can improve the expected accuracy
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Figure 4.11: Full mission SNR for the γ parameter for the other relevant planets.

of such parameters (specially for the quadrupolar deflection, that has a peak when

ξ0 = 245 deg.).

Similar analysis can be carried out on Saturn and the other planets. In the case

of Saturn, the SNR for the monopolar deflection predicts that it will be measured

with reasonable accuracy (σγ ∼ 5 10−3). Concerning the quadrupole, even in the best

situation one can only expect a SNRJ2
∼ 3 in very favorable circumstances. For the

dynamical parameter, a good choice of the initial phases can produce a complementary

measurement to the one obtained from Jupiter alone. It would be a lucky coincidence

that the optimal ξ0 for Saturn coincides with the one for Jupiter.

The numbers shown in this section are only estimations, and are given only to

illustrate the different quality of the results that can be obtained under different

potential scenarios.

In the analysis discussed in the following sections, we generate simulated data
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Figure 4.12: SNR for the αr parameter for the other relevant planets.
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Figure 4.13: SNR for the ǫ parameter for the other relevant planets.
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under two of such potential scenarios. The first data set is generated for an average

quality ξ0 selection (say ξ0 = 0 deg). Let us call it Standard SNR and this provides

the expected accuracy under normal mission operation circumstances. Let us note

that unfortunate combinations of the initial conditions can lead to even poor results

(see Fig. 4.10). The second data set is generated choosing ξ0 which provides the best

SNR expectation for the measure of the quadrupole deflection J2 (ξ0 = 246 deg, see

Fig. 4.10). In both datasets, the start of mission instant is assumed to and be JD2012

and the initial revolving phase is set to 0.

4.3.3 Data analysis

Given a simulated dataset, we can limit the number of objects used in the reduction

by restricting the maximal angular distance ψmax at which the stars are considered

from the planet and by using objects than brighter than a limiting magnitude Vl.

The adopted data reduction procedure is performed in two blocks. First an itera-

tive Least-square solution is used to get an approximation to the best solution. After-

wards, the Montecarlo integration of the Bayesian Probability Distribution Function

(PDF) is applied to obtain the expected values, the correlations and the the standard

deviations of the parameters.

Nonlinear Least square

This step of the data reduction consists into obtaining the set of parameters contained

in the model that minimize the sum of quadratic differences between the expected

and the actually measured focal plane positions.

Ξ2 =
∑

i

(

F obs(ti) − F teo(ti; γ, αr, ǫA, . . .)
)2

σ2
i

(4.76)

where F(i)
obs is the focal plane position of a CCD column in the along scan direction

and F(i)
teo is the along scan angle of the star image predicted by the model.

Since the model for F(i)
obs is not linear with the parameters, we used an iterative

procedure to get the best fit values. The mathematical details of the procedure can

be found in any basic textbook on statistics (i.e. Press et al. (1992)). Given a set

of values for the parameters λ0(seed values), a first order Taylor expansion of the
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function is obtained around λ0.

F(i) ≃ F(i)(λ(0)) +
∂F(i)

∂λk

∣

∣

∣

∣

λ0

δλk (4.77)

The partial derivatives are obtained numerically. If NS is the number of full transits

and for each transit we have 9 instant of CCD transits, we haveNS×9 linear condition

equations of the form

F obs
(i) − F teo

(i)

σ2
i

=
1

σ2
i

∑

k

∂F(i)

∂λk

∣

∣

∣

∣

λi

δλk (4.78)

where λi is the i-th refinement of the parameters. The three unknowns are the

corrections δλk to be applied to each relativistic parameter in order to get closer

to the Least Square solution. With the updated parameters, the partial derivatives

and the residuals F obs
(i) − F teo

(i) are recomputed and a new set of condition equation is

solved until convergence is reached. Since the problem is well behaved, the solution

is reached in two or three iterations.

Since we are dealing with a large number of observations (a few millions), the

normal equations (see Press et al. (1992)) are built directly adding the observations

one by one instead of building first the condition equations. This saves a lot of memory

and processing time. Such a standard least-square solution is the most economical

way to proceed but it is only reliable under well defined conditions (Gaussian noise,

no biases in the data, no local minimas, etc.). The covariance matrix containing the

correlations between the parameters is also obtained. They are used in the next step

of the data reduction (Montecarlo intergation of the Bayesian probability function) to

set the limits of integration (only parameter values at 5 σ of the least square solution

are used).

Bayesian analysis

After the least-square solution is found, a bayesian analysis is used to obtain the

probability density function of the parameters given the data. Since it is a quite

intensive computer task it is not used to perform the initial fit of the parameters

(least squares approach works quite faster) but it is a robust way to estimate and

evaluate the quality of the obtained values.
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The details of the Bayesian procedure are described in the Appendix C.1. The

Probability Distribution Function for the parameters given the data is sampled around

the least-squeare solution, and Montecarlo integration is used to compute the central

moments of the PDF and obtain the expected values, variances and correlations of

the parameters. This is the final product of our data reduction scheme.

Data reduction block diagram

The block diagram describing the data reduction process is given in Fig. 4.14. The

process can be described as follows

• Initialize all the required modules (ephemeris, satellite model, etc.)

• Put all the telemetry files inside one single file (full mission telemetry file).

• Open the full mission telemetry file and check which stars satisfy the reduction

conditions. This is if they are bright enough V < Vl and if they are observed

close enough to Jupiter Ψ < Ψmax).

• A list with the good sources is generated (the list of good sources is uploaded

in memory if they are not too much to speed-up computations).

• Begin the non-Linear Least square loop

• A telemetry segment of a good star is readed.

• For each CCD transit instant, the predicted field angle and the partial deriva-

tives with respect the parameters are computed.

• The information of each single CCD transit is accumulated in the normal equa-

tions (the condition equations would require a lot of memory). Each equation

is weighted depending on the mangitude of the star. The weight is computed

from the expected noise amplitude obtained from the error model as a function

of the star brightness in the V band.

• When all the CCD transits of all the stars are processed, the normal equations

are solved and the relativistic parameters updated.

• The non-Linear Least Square loop is done at least 3 times to be sure that the

system has converged.



111 4.3 Local tests. Overview of the experiment

Good
Source?

More
sources?

Least square
iteration

More
sources?

More
iterations?

Good
Sources

Model for the
Observations

Compute predicted
field angle

Store

Model for the
ObservationsCompute predicted

field angle

More
sources?

noise
Model for the

noise
Model for the

END

Initialize

Compile Telemetry

Read Source

Telemetry

File
Parameters’

yes

no

yes

no

Read good source

Add to normal
equations

yes

no

Compute partial
derivatives

yes no

Read good source

random sets
Generate N

Get nominal error

likelihood
Update sampled

Generate output
resukts

Compute the
integrals

B
ay

es
ia

n 
bl

oc
k

L
ea

st
 s

qu
ar

e
bl

oc
k

Figure 4.14: Block diagram of the simulation cycle. The dashed lines indicate that
a query and some information is sent to some independent piece of code (circles).
The circles contain pieces of code or libraries which job depends on the particular
models used for the simulations. In Fortran, each circle should be a library with some
subroutines, in Java one interface should be defined with at least one implementing
class for each circle. The details on the software implementing this block diagram are
given in Appendix A.
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The results of this first block are the best fit values for the parameters, and the

covariance matrix. Then the bayesian part begins using this information

• A collection of N different combinations of parameters is generated. The gen-

eration is restricted up to ±5 standard deviations from the Non-linear Least

Squares solution.

• A telemetry segment of a good star is readed. For each CCD transit time,

the likelihood function is computed (see Appendix C.1)at each point of the

collection. In such a way, the likelihood function is updated as new observations

are readed and processed.

• The normalization and the numerical integrals of the likelihood function are

computed and the expected values, the confidence intervals, the correlations

and the higher moments of the bayesian probability distribution function are

obtained.

The least square solution is relatively faster than the Bayesian procedure. For

the whole set of observations (using all the stars within 30′ up to V ∼ 20), it takes

around four days of computing time in a single PC (PentiumIV–3GHz, 1Gb RAM,

under Linux/OS).

4.4 Obtained results. Jupiter

4.4.1 Monopolar deflection

As it is shown in Table 4.3, the measure of the Jupiter deflection alone is potentially

capable to provide an independent measure of γ better than the one obtained by the

full HIPPARCOS mission for the Sun (see Tab. 4.1. The final accuracy will depend

on the final instrument performance and the initial conditions for the scanning law,

but not very critically.

Since, for small angles, the monopolar deflection falls as ψ−1, stars relatively far

from the apparent direction of the planet still contribute significantly to the measure.

This is clearly seen in Fig. 4.15–4.16, where different maximum angular distances are

used. Despite the improvement is not very spectacular it is clear that, at least, sources

up to 10′ should be considered in the fit of γ. The dependence with the limiting
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Figure 4.15: (Left)Standard deviation on the accuracy of the γ determination as
a function of the maximum angular distance permited and the limiting magnitude.
Slight improvement is achieved enlarging the area around the planet. A much stronger
dependence on the limiting mangitude is evident. (Right) Corresponding least square
values for the γ parameter
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Figure 4.16: Same as Fig.4.15 but using an an optimized choice of the initial coindi-
tions. The optimization is based on the SNR of J2 but is clearly seen in the figure
that the value of γ is also significantly improved.
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magnitude is much more obvious in Fig. 4.15. Despite the faintest stars provide

inaccurate measures, the number of them grows exponentially with the magnitude.

From the catalog statistics NV ∼ 100.45Vl and the error model in (4.68), it can be

obtained that the astrometric SNR of any parameter scales as

SNR ∼ 100.025Vl . (4.79)

Since the index in the exponent is positive, increasing the limiting magnitude always

helps to the solution in a statistical sense. Very faint objects may be strongly affected

by systematics, thus using stars up to V ∼ 17 seems to be a good compromise. This

discussion is also for other relativistic parameters for all the other planets as well.

Since the correlation of γ with the other two parameters is not very large in a

full mission reduction (never larger than a 30%), all of them can be fitted simultane-

ously. The situation is slightly more delicated for single transit experiments, which is

discussed in Section 4.4.4.

Compared to previous estimations of γ ((Treuhaft & Lowe 1991) and Whipple

et al. (1996)) from the Jupiter deflection alone, we conclude that the Gaia measure of

the Jovian monopolar deflection is a very competitive experiment, quite independently

from the initial scanning law parameters.

4.4.2 Quadrupolar deflection

The final accuracy at which J2 can be measured strongly depends on many observa-

tional factors. The strong SNR dependence on the scanning law initial conditions has

been shown in Fig. 4.10. Since the quadrupolar effect strongly depends on the angular

separation of the source and Jupiter, it should be clearly stated which is the minum

distance from the Jupiter limb at which measurements can be performed. Since this

is not clear at the present stage, we consider the best case, which assumes that all

the source can be observed at 0.1 planet radii from its surface.

Contrary to the situation discussed by Kopeikin (2006a) where only a few number

of objects is available, J2 is not highly correlated in a global sense with the other

parameters relevant to the deflection process. Despite the quadrupolar deflection has

tangent components to the relative position of the star and the center of mass of

Jupiter, the orientation and the structure of such shifts are quite different from the

dynamical correction(i.e. the rotation axis of Jupiter is sensibly tilted with respect
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Figure 4.17: (Left)Standard deviation on the accuracy of the ǫ parameter determi-
nation as a function of the maximum angular distance permited and the limiting
magnitude. A strong dependence on the limiting mangitude is clearly seen. (Right)
Corresponding least square values for the ǫ parameter. Despite the formal disper-
sion does not improve with the increase of the angular separation, the values with
25′ (black circles on the right pane show better stability around the nominal value
(ǫ = 1), even at lower magnitudes.
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Figure 4.18: Same as Fig.4.17 but using an an optimized choice of the initial coindi-
tions. The optimization is based on the SNR of J2.It is clearly seen that in this case,
the bright stars already contribute a lot to the accuracy of J2 even if they are a few.
As the number of stars grows with the limiting magnitude a weak improvement is
visible. Again, to increase the maximal angular distance does not contribute to the
solution.

to the ecliptic pole). The degree of correlation depends, of course, on the number of

observed sources and their geometrical distribution around the planet.

The accuracy obtained from the data reduction experiments, agree with the SNR

a priori expectations (see Fig. 4.10). Examining the transit events occured by a good

choice of the intitial scanning conditions, one can realize that most of the accuracy of

the SNR ∼ 10 solutions come from 1 or two favorable transits. The analysis of one

of such events is detailed in 4.4.4.

Up to the date, there is no direct measurement of the quadrupolar light deflec-

tion from Jupiter. As for the Solar System ephemeris, there exists some constrains

in the value of J2 coming from the integration of the orbits of the Solar System

bodies(Essentially asteroids in the main asteroid belts) and the Jovian moons.



Chapter 4: Light deflection experiments on the Solar System planets 118

12 14 16 18 20
Limiting V magnitude

0

0,005

0,01

0,015

0,02

St
an

da
rd

 d
ev

ia
ti

on

4’
6’
8’
10’
15’
25’

12 14 16 18 20
Limiting V magnitude

0,99

0,995

1

1,005

1,01

P
ar

am
et

er
 v

al
ue

Figure 4.19: (Left)Standard deviation on the accuracy of the αr parameter deter-
mination as a function of the maximum angular distance permited and the limiting
magnitude. A strong dependence on the limiting mangitude is evident and no im-
provement is obtained using larger angular distances. (Right) Corresponding least
square values for the αr parameter.

4.4.3 Dynamical coefficient

Up to the date, the effect on the deflection of the motion of a gravitating body

has only been measured explicitly by Fomalont & Kopeikin (2003). Independently

of the controversy generated by their interpretation, the experiment confirmed the

prediction of General Relativity with an accuracy of 20%.

If one expands the expression for the light deflection effect by a moving body up

to Gv
c order, it is obtained that the main contributions arise from the explicit motion

of Jupiter which amplitude is proportional to ∼ Gv
cψ

−2. This produces a very strong

signal for sources observed close to the Jupiter limb. The expansion contains other

terms proportional to Gv
cψ

−1, which are too small to produce observable effects.

Among this smaller terms, there is the explicit dependence of light deflection with
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Figure 4.20: Same as Fig.4.19 but using an optimized choice of the initial coindi-
tions. The optimization is based on the SNR of J2.As for the quadrupole the bright
stars contribute very much and no significant improve is observed when using large
maximal angles. Despite the formal dispersion decreases when increasing the limiting
mangitude, the obtained value becomes more unstable that the results obtained from
the the non-optimized situation. This is caused by a few bright V=14 sources with
a high SNR in a transit where the correlation between this parameter and the J2 is
high.

the so-called gravitomagnetic part of the metric, say h0i, which produce a maximal

deflection of 1.6µas at the limb of Jupiter (see Appendix C.3). Therefore, the Gaia

observations are not suitable to measure gravitomagnetic effects on light deflection

by the planets of the Solar system.

We find that the dynamical coefficient can be fitted up to a few parts in 10−3

without difficulties, which will improve by two orders of magnitude the measure given

by Fomalont & Kopeikin (2003). This parameter is heavily correlated with positional

errors of the ephemeris in the instantaneous direction of motion of the body. Due to

that, it is not possible to fit simultaneously the dynamical coefficient and ephemeris
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Body ψ Vl N 〈γ〉 ± σ 〈αr〉 ± σ 〈ǫ〉 ± σ

Standard 4′ 16 1690 1.003 ± 0.0016 1.000± 0.0034 0.82 ± 0.28
25′ 20 337621 0.9980± 0.0011 1.0001± 0.0028 0.55 ± 0.24

J2 optimized 4′ 16 7565 1.0003± 0.001 1.0031± 0.002 1.11 ± 0.07
25′ 20 288574 1.0007± 0.0008 1.001 ± 0.002 0.91 ± 0.06

J2 Best single transit 4′ 16 76 1.0001 0.0012 1.0012
25′ 20 5386 1.0007± 0.009 1.001 ± 0.011 0.91 ± 0.12

Table 4.3: Expected values and standard deviations obtained from the Montecarlo
integration of the bayesian Probability Distribution Function for a few illustrative
cases. Let us remark that the best single transit(last row) for optimized initial condi-
tions gives better estimates of J2 than the full mission case with non optimal initial
conditions(first row)

positional corrections in the direction of motion of the body. This is discussed in

great detail in Section 4.4.4.

γ αr ǫ
γ 1.000 0.170 −0.000
αr – 1.000 0.186
ǫ – – 1.000

Table 4.4: Correlation matrix obtained from the solution with optimized initial con-
ditions using 25′ as the maximal angular distance permited and a limiting magnitude
of 20. No relevant correlations are observed for the full mission solution between the
three parameters. This is not the case for a single transit analysis (see Section 4.4.4).

4.4.4 Single transit analysis and ephemeris shifts of Jupiter

Let us now check the sensitivity of the light deflection effect to positional errors

coming from some solar system ephemeris. This is done by fitting the free parameters

in (4.62) in addition to the relativistic parameters. It is expected that for one single

planetary transit, the parameters and the positional errors will be highly correlated.

Let us analyze what happens with the best single transit for Jupiter (with higher

SNR for J2) that is obtained from the optimized initial conditions (ξ0 = 246 deg).

We can start by assuming that the values of the relativistic parameters are known.

In this case, the expected values of the shifts are 0 since the ephemeris used in the

data reduction process are the same used in the data simulation. The obtained results
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are shown in Table 4.5).

Body Angular Limiting Number of 〈δl〉 ± σ 〈δm〉 ± σ
apperture magnitude stars (km) (km)

Jupiter 4′ 16 76 85 ± 130 −65 ± 340
25′ 20 5386 26 ± 130 330± 340

Table 4.5: Correction to the ephemeris position of Jupiter obtained through fitting
the light deflection effect in favorable observing circumstances. Note that the solution
using only 4′ and stars up to V = 16 (76 objects) provides the same accuracy as the
one with 25′ and stars up to V = 20(5386 objects). This is because the sensitivity of
light deflection to positional errors is proportional to the square of the inverse angle
between the star and the planet, say ψ−2.

In addition we study the relation between the ephemeris shifts and the relativistic

parameters by computing the correlation matrix between all five parameters (γ, αr,

ǫ δl and δm). The correlation matrix in Table 4.6 is obtained evaluating (but not

solving) the normal equations of the linearized Least square problem with the nominal

values of all the parameters (Press et al. 1992).

When the correlation between two parameters is close to 1, only one parameter

(say P1) can be safely obtained (or a combination of both). The other parameter(say

P2) must be known a priori. An error in the assumed value of P1 at 1–σ level, directly

perturbs the fitted value of P2 at 1–σ level as well. Table 4.6 shows that only the γ

parameter can be simultaneously fitted with the ephemeris shifts for a single transit.

Both αr and ǫ are very correlated with the ephemeris shifts.

The high correlation between ǫ, αr and δl occurs because most of the signal sig-

nal comes from one star per transit (see Fig. 4.21). This has some consequences.

Using the discussion about the high correlated parameters, the accuracy from the

ephemeris must be at the level of the accuracy obtained if only the shifts were fitted

(see Tab. 4.5). In the case under analysis, this implies that the positional accuracy

provided by the ephemeris must be better than 100 km, otherwise the value obtained

for the relativistic parameters is not reliable. Since a few transits contribute to the

value of ǫ and αr, this is a full mission requirement.

In principle, the ephemeris shifts could be fitted from the observations by solving

together with the relativistic parameters. This is, however, worthless because the

maximal accuracy that can be achieved for each single transit is not competitive

with simpler ground based techniques and the current version of the Solar System
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γ αr ǫ δl δm
γ 1.000 0.220 0.102 0.204 −0.561
αr – 1.000 0.958 0.999 0.374
ǫ – – 1.000 0.959 0.570
δl – – – 1.000 0.385
δm – – – – 1.000

Table 4.6: Correlation matrix obtained when trying to fit simultaneously the rel-
ativistic parameters and the ephemeris shifts for a single transit analysis. Since a
discrepant value of the αr is equivalent to a positional shift along the trajectory of
the planet δl, they are almost 100% correlated. The quadrupolar coefficient is also
highly correlated with the positional errors since most of the signal comes form one
single star, and there is no way to distinguish between a positional error or a stronger
quadrupolar effect. This is not the case of γ where many stars contribute to its value.
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Figure 4.21: Snapshots of the field under study at the instant of observation. On
the left pane, the plot is obtained from the catalog information. The size of the
disks indicate the brightness of the stars. The central red circle is the appar-
ent size of Jupiter and the largest red circle indicates the area within 4 Jupiter
radii. The right pane is the same field as can be retrieved from the Aladdin Applet
http://aladin.u-strasbg.fr/java/nph-aladin.pl (Bonnarel et al. 2000). One
can identify all the bright sources on both images by paying attention to the image
scales.
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ephemeris. This is shown in Appendix C.4.

This is not strictly true for a few number of transits which coincide with those

that are significant for the estimation of ǫ and αr. As it is shown in Table 4.6,

the high correlation does not permit to estimate the parameters and the positional

corrections independently. The conclusion is that the accuracy of the ephemeris must

be guaranteed at the level of 100 km in order to permit significative results for the

quadrupole and the αr parameter.

4.5 Other planets

The light deflection can be observed and some parameters can be measured with a

different degree of success in the other planets of the Solar System observed by Gaia

(this excludes Mercury and Venus).

In the case of Saturn, the monopolar deflection will be observed and measured

with good accuracy. This is not the case for the quadrupolar deflection, since the

expected signal-to-noise ratio will never exceed 3 (see Fig. 4.13). Even in such fa-

vorable circumstances, the rings and the dusty environment of Saturn will severely

disturb the measurements. For the retardation coefficient, the expected sensitivity is

considerable and the Saturn observations could be combined with those from Jupiter

to fit the retardation parameter in a global sense.

For Uranus and Neptune, the monopolar deflection will be detected with a good

degree of confidence but they will not produce such competitive measurements as in

the case of Jupiter and Saturn. The quadrupole of this planets will be definitely much

below the detection level(see Fig. 4.13). For the retardation coefficient, the situation

is slightly better, and some estimation of its value can be achieved from these planets

alone.

The monopolar deflection of Mars is at the limb of being detectable. A SNR larger

than 2 for Mars γ is not expected in any case. A determination of the quadrupole

and the retardation are completely excluded.

4.6 Observing the jovian satellites. Overview

Jupiter is permanently surrounded by its satellites, being some of them very bright

objects in terms of the Gaia standards. Since many of them will be observed during
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Body N. of Observations 〈γ〉 ± σ 〈αr〉 ± σ 〈ǫ〉 ± σ
Saturn 4 654 612 1.003 ±0.004 0.991 ±0.005 1.52 ±0.40
Uranus 625 234 1.02 ± 0.04 0.97 ± 0.04 −
Neptune 521 241 0.95 ± 0.06 1.01 ± 0.04 −
Mars 3 519 346 1.0 ± 0.5 1.2 ± 0.2 −

Table 4.7: Best case Standard deviations in the relevant parameters obtained for the
other planets observed by Gaia.

each transit, we have checked the potential outcome of their observations in terms

of the relativistic parameters of the light deflection. Despite the philosophy of the

experiment is quite the same (observed shift with respect the non perturbed direction),

the astrometric observations of the Jovian Satellites differ in many aspects from the

stellar observations and are rather complex.

• They are always observed at a few radii from the planet. Observing them does

not critically depend on the choice of the initial conditions of the scanning law.

Therefore, their observations will be anyway available.

• The larger ones (Galilean satellites) are not point-like sources as seen by Gaia.

Most likely, they will not be processed by the on-board detection system because

of their size.

• All of them move significantly during a Gaia transit causing a distorted PSF.

• Their orbits contain many uncertainties, being the position of the center of

mass of Jupiter one of them. Positional uncertainties of 100 meters correspond

to 30µas at the distance of Jupiter.

• They show time dependent motion of the photocenter motion due to their rota-

tion and irregular shapes. Their photocenter is related to the position of their

center of mass in a complicate way.

Their intrinsic proximity to Jupiter is the only advantage of the previous list. All the

other comments in the previous list are serious troubles. However, a simple experiment

to determine the potential SNR contribution to the relativistic parameters can be

easily performed. This is the purpose of this section.
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Satellite Diameter Angular V Semi-major Period i
(km) size(mas) (mag) axis(a/Rj) (days) (deg)

Io 3643 1000 5.0 6.2 1.77 0.04
Europa 3122 860 5.3 9.5 3.55 0.47
Ganymede 5262 1450 4.6 15.3 7.16 0.17
Callisto 4821 1330 5.7 26.9 16.69 0.19

Metis 12 12 17.5 1.83 0.30 0.019
Adrastea 16 4.4 18.7 1.84 0.30 0.054
Amalthea 168 43 14.1 2.59 0.50 0.380
Thebe 98 27 16.0 3.17 0.68 1.080

Table 4.8: Physical data and orbital parameters of relevance obtained from
http://ssd.jpl.nasa.gov. Only the satellites that can be observed close enough to
Jupiter are listed. All the quantities are average values.

4.6.1 Orbits and data

In what follows, the moons are considered as point like sources with a time de-

pendent position. The orbits of the moons with respect to Jupiter are assumed

to be known with sufficient accuracy (say σ < 300 meters which is probably very

unrealistic). The orbits are computed using the orbital elements obtained from

http://ssd.jpl.nasa.gov. The useful list of moons and their relevant features for

this study (apparent diameter, brightness, orbital radius, inclination, etc.) are given

in Table4.8.

4.6.2 Light deflection and Signal to Noise Ratio

Despite Jupiter has around 60 natural satellites, only a few of them lie on the line of

sight between Gaia and Jupiter. It is found that only, the Inner group and the Galilean

moons, can potentially provide significant measurements of the light deflection effect.

This is depicted in Fig. 4.22 and Fig. 4.23.

Since no observations from the Galilean satellites will be obtained by Gaia (their

angular size is too large for the on-board detection system), only the members of

the inner group have chances to provide some significant results. The SNR along

its orbit is illustrated in Fig. 4.23. In this sense, the larger moon Amalthea is the

more promising one, since it can produce many observations with a moderately high

SNR and the accumulated observations during the mission can potentially provide a
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Figure 4.22: Signal to noise Ratio of the monopolar (top) and quadrupolar (bottom)
light deflection along the orbit of the Galilean satellites as seen from the earth. Since
the orbital periods of the moons are much smaller than the Gaia mission, they will
be observed in random positions along their orbits. The points missing correspond to
instants where the satellite is in directly in front or behind the Jupiter disk.
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Figure 4.23: Signal to noise Ratio of the monopolar (top) and quadrupolar (bottom)
light deflection along the orbit of the inner satellites as seen from the earth. Since
the orbital periods of the moons are much smaller than the Gaia mission, they will
be observed in random positions along their orbits.

reasonable good value for J2, which can potentially overpass the value obtained from

the stars only. This assessment is just a guess since the observation of good events is

very random.

4.6.3 Full mission prospects

In order to assess the maximal accuracy reachable from the moons, we ran a number

of full mission simulations with different scanning law initial conditions and different

start of mission instants. The results are very sensitive to the initial conditions because

the moons move very fast, and the final outcome is highly unpredictable.

However, we can obtain a guess of the expected SNR for the different parameters

under study (γ and ǫ) by trying many different initial conditions (Montecarlo tests).

The results are shown in table 4.9.

We have excluded the analysis of the dynamical parameter since it is intrinsically
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Average SNR Accumulated SNR
Parameter Maximal SNR per single transit after 80 transits Final accuracy

γ 180 143 1280 0.0008
ǫ 3.5 1.25 11.2 0.09

Table 4.9: Maximal and typical signal to noise ration using the observations of the
inner satellites for a single planetary transit. These values have been obtained by
simulating and averaging the results obtained by a large number of Jupiter transits.
The potential final accuracy in each parameter is shown in the last column.

correlated with positional uncertainties of Jupiter in addition to the uncertainties in

the moons orbits, which can perturb too much the interpretation of the obtained

results. Despite Table 4.9 give very promising numbers, we suspect that this exper-

iment will not lead to significant results due to the required accuracy in predicting

the position of the moons.

4.7 Conclusion

Gaia is (potentially) a highly competitive experiment observing light deflection from

planets. Without any doubt, it will provide the measurement of γ and the dynamical

parameter αr (at least for Jupiter) with an unprecedent accuracy, even compared

to VLBI observations, which are limited to a very few number of radio sources that

can be observed close enough to the planet. It is clear that a careful choice of the

initial conditions of the scanning can boost significantly the scientific outcome of such

experiments.

Our data reduction approach (nLS+bayes) seems appropriate to process the data.

In such an approach, the relativistic parameters of the planets will be obtained at

full accuracy at the end of the mission. Even though, their values can be updated on

each public data release of Gaia.

However, the situation of the measure of the quadrupole is quite uncertain. It

has been shown that specific initial conditions for the scanning law can greatly im-

prove the chances of obtaining a good measure of the quadrupolar light deflection by

Jupiter. Some technical issues not discussed here, such as the stray light or the dusty

environment of Jupiter can severely compromise the chances to obtain a reasonable
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measure of the quadrupole. This issue is under investigation, but will not be settled

down until the industrial development of the probe is more advanced. The most se-

rious issue is the minimal angular distance at which an astrometric measure can be

obtained with reasonable accuracy. We assumed the best case limit, which is that

stars as close as 0.1 Jupiter radii from its surface.

The Jovian moons could potentially provide interesting and even, very competitive

measurements of the relativistic parameters (specially γ and J2). The observations

of the moons will be there anyway, and if most of the complications can be handled

(fast motion, extended sources, very close to Jupiter), they will be used to improve

the values of the relativistic parameters. For technical reasons, it seems now clear that

the Galilean satellites will not be even catched by the on-board detection algorithm.

Therefore, the best hope lies upon the largest inner satellites Amalthea and Thebe.

Once the issue about the proximity at which an object can be observed from Jupiter

and the centroiding of extended sources become clear, further work is planned in this

sense if some chances of obtaining good observations still remain.





Chapter 5

Conclusions

Since each chapter contains its own section of conclusions, we will not further discuss

them at this point. Only general comments will be given in this section. In this thesis

we tried to understand the relativistic modeling of the observations by working in

specific parts of the model from the relativistic description of the observer (Chapter

2), accurate description of star kinematics (Chapter 3), and extraction of relativistic

information from the Gaia data (Chapter 4). This work may not be exhaustive, but

it solved, or at least clarified, several gray points which were identified as critical for

the successful exploitation of the Gaia mission.

In addition, most of the work of these last years has been deployed inside the Gaia

Software tools, that are being developed for the real data reduction pipeline by many

people across the ESA member states. A proof of this is the Gaia Pocket Simulator

(Appendix A), that is a compilation of the software tools developed by the author to

be used in the real data simulation and data reduction software being used currently.

Concerning the relativistic modeling of optical devices in rotation, the relevant

(special) relativistic effects have been identified and quantified. It has been shown

that the images can be affected from relativistic effects at the µas level (image shifts

and small distortions) but they can easily be handled or absorbed by the current Gaia

data calibration procedure.

It has been shown that detailed kinematic description is required to describe the

motion of the stars including the light travel time effects. This adds some complexity

to the models but permits us to obtain additional information from the astromet-
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ric measurements. We also found that the coordinate transformations between the

object reference systems to the BCRS are not relevant to the interpretation of the

observations and that the classical kinematical models can be safely applied.

Finally we have analyzed the potentiality of the light deflection experiments using

astrometric observations of stars (or moons) around the planets of the Solar System.

It has been shown that in the case of Jupiter, very good and accurate tests of the

standard light deflection model can be done by adjusting some free parameters in the

post-Newtonian approach to General relativity. Most likely, the light deflection from

the quadrupolar gravitational field of Jupiter will be detected, and even measured

with a good degree of accuracy if certain fine tuning of the scanning law is allowed.

The light deflection will be measured in all the other planets visible by Gaia, except

for Mars which is too small to produce significant deflection. The data reduction

approach (least squares + integration of the likelihood function) has been proven

sufficient and adequate.

As mentioned, not all effects studied in this thesis will finally be useful for the Gaia

mission, but we only know this after a careful study of each one. There are still many

small pieces of the puzzle which may be put together. This work will continue until

the launch of Gaia in the context of REMAT (RElativistic Models And Tests), group

inside the Gaia Data reduction consortium responsible for the relativistic aspects of

the Gaia observations). A comprehensive list of remaining tasks can be found in the

list below1.

• Global tests

– Light deflection experiments (**)

– Local Positional Invariance

– Local Lorentz Invariance

– Random microlensing noise (*)

– Primordial Gravitational Waves

– Acceleration of the Solar System (*)

• Local tests

– Monopolar light deflection (**+)

1extracted from http://www.ari.uni-heidelberg.de/gaia/CU3talks/Splinter1/klioner1.pdf
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– Quadrupolar light deflection (**+)

– Gravitational sources in motion (**+)

– Perihelion precession (**)

– Non-Schwarzschild effects

– Strong Equivalence principle with Trojans, (*)

– J2 of the Sun (**)

– Variation of the gravitational constant (**)

• Relativistic objects

– Relativistic binaries(*+)

– Microlensing events

– QSO macrolensing (*)

– Super-massive blackholes

One star indicates that some work has been done or there is already somebody taking

care of it. Two stars indicates that a lot of work has been done and the topic is in an

advanced state. Further preparatory work is expected to be done by the community

until the mission launch and beyond. The plus sign flags the task were the author

has contributed.

We hope that the work presented in this thesis will be added to the growing

number of examples that show the excellence and uniqueness of the Gaia mission,

flagship of the European expertise, not only in astrometry, but also on astrophysics

and space sciences.





Appendix A

Gaia Pocket Simulator

A.1 Introduction and the Java language

In this work, we have reused a considerable amount of the code that was previously

developed for other parts of the Gaia mission. Our software is fully coded in Java,

and heavily relies on object oriented programming techniques and a few number of

design patterns which have shown to be very useful. The Gaia Pocket simulator is,

essentially, a set of interfaces, implementing classes and factories providing the tools

to generate Gaia-like observations for testing purposes.

The Java language provides a natural tool to implement code reutilization and

encapsulation; the interface. An interface is a class (piece of code that is usually in

a separate file) that establishes how a set of algorithms will appear to the rest of the

world, quite independently of their particular implementation.

In the block diagram of 4.8, the core of the simulation processing is depicted. The

circles represent the independent pieces of code that will be represented by java inter-

faces. In such a way, once the simulation core is prepared, one can freely move from

one algorithm implementation to another with minimal effort(even during runtime).

Each circle is clearly related to a very particular task.

The full mission simulations are conducted by a class (driver or main class) that

initializes a set of factories (pieces of code that provide implementations of interfaces

under request) and implements the block diagram described in Fig. 4.8. The factories

contain static methods that can be recalled at any level of the software project, and
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provide universal access to the models chosen by the user during initialization.

In the following section, only the most used interfaces and methods are discussed

in terms of their tasks. More detailed information can be found in the code documen-

tation and the technical notes that describe the algorithms.

A.1.1 Design patterns

Design patterns are rules of good programming which have been extensively used by

many years by the code developers in any software language.

We used some of them. Design patterns will be described as required in the

explanation of the code below. The ones more extensively used are

• Singleton, see A.2.1

• Wrapper, see A.2.1

• Interface, see A.1.2

• Object factory, see A.2.1

• Abstract object factory, see A.2.3

In general, the programming languages do not contain specific instructions to apply

the design patterns, and their particular implementation changes from one language

to another. Object Oriented languages (as Java or C++) are better suited to design

patterns since they have been specifically created to solve complex software engi-

neering problems. By contrast, design patterns are much more difficult to handle in

procedural languages such as old versions of Fortran (or ANSI C) and require a deep

understanding of the languages and the compilers to be used.

A.1.2 Some Java programming concepts

A number of basic Java language programming concepts are required to understand

the following sections. Java is an Object Oriented language which permits the utiliza-

tion of advanced software engineering concepts as the design patterns listed above.

It should be noted that this is not an introduction to the Java language or seman-

tics. Therefore, it is assumed that the reader is familiar with concepts of standard

programming.
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Java classes and instances

The Java code is created in standard ASCII files. Usually each file contains the

definition of a class, which is the most elementary building block of a Java program.

A class is a model of an Object. Therefore, a class contains methods and attributes

that describe the object and define how it interacts with the world. A method is the

analog of a subroutine and the attributes (some numbers or other Objects) contain

information of the object. Thinking in a real world example, an attribute is the

color of a car, and a method would be the action to turn on the engine. A runtime

realization of a class is called an instance. Many instances of the same class can exist

simultaneously.

Let us think naively of a simple example. The code of a Java class representing a

parrot is

public class Parrot{

public String race;

public double age;

private boolean isAlive;

public Parrot(String newrace, double newage) {

race = newrace;

age = newage;

isAlive = true;

}

public void say(String message) {

if(isAlive) System.out.println( message.replaceAll("a","e") );

}

public void describeYourself() {

say("I’m a " + race + ". I’m " + age + " years old.");

}

public double getYourAgeInDays() {

double ageindays = age*365.25;
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return ageindays;

}

public void killParrot() {

say("aaaargh!");

isAlive = false;

}

}

Let us explain what actually does each piece of code

• public class Parrot{ is the declaration of the name of the object defined by

this class. The word ’public’ means that this class can be used by any piece of

code and that we can forget it by now.

• public double age; The Parrot has an age, this is, the number of years from

the instant he emerged from the egg. It is stored as a double precision number

which is one of the numeric Java basic types. The others are short, int, long

and float. The short, int and long types are integer numbers of 16, 32, 64 bits

respectively. The float and double types represent floating point numbers

with 32 and 64 bits respectively.

• public String race; Our Parrot class, as the real ones, is of one race. We

define it as a ”String”, the Java standard way to deal with texts. String is not

a basic type like double, but it is a Java standard class (distributed with the

compiler by Sun). Thanks to that, the String object contains many methods

to manipulate it’s content in a very straightforward way (see the replaceAll

method below).

• private boolean isAlive;. The boolean type can only take two values :

true or false. This attribute will be used to check if the parrot is able to

speak or not. It is declared as private since the external user does not need to

know this information to perform normal ”Parrot” operations. The permissions

are discussed in the next section.

• public Parrot(String newrace, double newage) {...} This is the con-

structor. This ”method” will be used to create an instance of a Parrot; say, a
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living copy in memory of our Parrot object. To create a Parrot, the race and

the age must be provided as arguments of the constructor. It will automatically

set the Parrot to life by setting the variable isAlive to true.

• public double getYourAgeInDays() This method will make some operations

with the age attribute of the Parrot and return the result in days. The answer

will be given as a double. This is why the keyword double is in the method

definition.

• public void say(String message) {...} . This is a method that will make

the parrot repeat the message if he is still alive, this is, if the boolean isAlive

is true. The System.out.println(...) is just the way to say to Java that a

message must be given to the standard output (i.e. display). Since our parrot is

not very clever, it will confuse all the ”a” by ”e”. To do that, we take advantage

of the method replaceAll of the String object. You will see the results in a

few moments. The void tag indicates that this method does not return any

information to the code that is calling it.

• public void describeYourself() {...} Calling this method, the Parrot

will describe himself using directly its own race and age attributes and calling

its own method say. This is a standard example of a method which provides

some processed information in terms of the current values of some attributes.

• public void killParrot() {...} This method will set the boolean isAlive

to false, thus the parrot will not be able to say anything else.

Then our Parrot is ready to be used. Let us create another class, called Main, which

will do some stuff with Parrots.

public class Main {

public static void main(String args[]) {

// Creating an instance of a Parrot

Parrot myParrot = new Parrot("African grey", "Grey",100.0);

// Creating an instance of another Parrot

Parrot anotherParrot = new Parrot(

"Blue Eyed Cackatoo", "white",100.0);
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// Let us speak a little bit with the African grey

myParrot.say("Hello world!");

myParrot.describeYourself();

myParrot.killParrot();

myParrot.say("That’s all folks!"); // despite of the effort,

// it is too late for him

// The other parrot says a few words about his partner

double ageOfTheFirstParrot = myFirstParrot.getYourAgeInDays();

mySecondParrot.say("The first parrot lived "

+ ageOfTheFirstParrot + ".");

}

}

The first line declares that a class called Main is defined here. The public static

void main is just the standard way to tell to the Java Virtual Machine that this

method is the one that must be executed when the class is executed through the

command line. The rest of the code is self commented. Let us show the output

> Hello world!

> I’m e Africen grey. I’m 100.0 yeers old.

> eeeergh!

> The first perrot lived 36525.0 deys.

Java permissions

In the previous examples, we have used the public keyword extensively in the method

and variable declaration. Since most of the Parrot methods were public, we were able

to call them without problems. By contrast, the isAlive flag was declared private.

A private attribute or method can only be used or modified from the same class;

say, only methods inside Parrot can modify the value of isAlive(the constructor and

the killParrot() method). If one tries

myParrot.killParrot();

myParrot.isAlive = true
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in the Main example, the program will not even compile. This programming tech-

nique permits to create complex software structures which are hidden to the user and

protected against misusage. It is a recommended practice to declare all the attributes

in a class as private and add the methods to modify or retrieve them, if required.

Static methods

The static keyword was used by the Main class in the main method. This keyword

can be used in any method or attribute. In an attribute, it means that all the instances

of this class will share the same value of the attribute. In a method, it means that it

can be accessed without creating an instance of the class. The static attributes and

methods are also called class attributes and methods.

The static methods and attributes mimic global variables in other computing

languages and its a good coding practice to avoid using them except in very particular

applications, such as parameter container classes (i.e. Gaia Parameter database) or

Object factories (discussed below).

Heritage and wrappers

A typical feature of the Object Oriented programming languages is heritage. A class

can inherit the methods and attributes of another one by extending it, adding more

functionality to the mother class, usually called super-class. The best way to see it

is with an example. Let us create another class called CleverParrot, that does not

make mistakes repeating messages and includes a method to revive it

public class CleverParrot extends Parrot {

public void say(String message) {

if(isAlive) System.out.println(message);

}

public void reviveParrot() {

if(!isAlive) say("I have returned!");

isAlive = true;

}

}



Chapter A: Gaia Pocket Simulator 142

Apart from improving the say method, we have added a new functionality which

permits to revive the CleverParrot and let him speak again. Let us remark that

in addition to the newly defined methods, the CleverParrot contains also all the

methods and variables of the mother class.

Let us put this in practice with another class with a main method.

public class MainClever {

public static void main(String args[]) {

// Creating an instance of another a CleverParrot

CleverParrot myCleverParrot =

new CleverParrot("Blue Eyed Cackatoo", "white",100.0);

// Let us speak a little bit with the African grey

myCleverParrot.say("Hello world!");

myCleverParrot.describeYourself(); //

myCleverParrot.killParrot();

myCleverParrot.say("That’s all folks!");

// now it is dead, it will not work!

// now we revive it

myCleverParrot.reviveParrot();

myCleverParrot.say("Hello world again!");

}

}

Notice that describeYourself nor killParrot were not in the definition of

CleverParrot, but thanks to inheritance we can use this methods as with the Parrot

case. Each class can only inherit methods and attributes from one class, it can only

have a superclass.

To gather the functionalities of several classes into a single one, there is a design

pattern (programming strategy) called Wrapper. A wrapper class includes several

classes as private attributes and provides access to them by explicit recoding of the

desired methods. Let us show it with an example. Let us create a Bunch of Parrots

as

public class BunchOfParrots {
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private Parrot oldparrot;

private CleverParrot youngParrot;

private CleverParrot unpoliteParrot;

public void say(String message) {

oldParrot.say(message);

unpoliteParrot.say("Stupid!");

youngParrot.say("Spell it correctly! " + message);

}

}

This silly example shows how a wrapper works. It is often more desirable to use

wrappers than to extend classes, since it has a lower impact on the structure of a

software project. The wrapper combined with the Java interface, provides a very

powerful tool for software developing that preserves encapsulation, code recycling

and functionality.

The Java interfaces

A Java interface is the abstract concept of how an object must behave. It is coded

as a class, but only the methods and attributes are declared, without specifying what

they actually do. Let us define an interface called TalkingEntity,

public interface TalkingEntity {

public void say(String message);

}

Since all the previously defined classes contain a say method (Parrot,CleverParrot,

BunchOfParrots) all of them are candidate implementation of the TalkingEntity

interface. This must be specified in the code by modifying their first line,

public class Parrot implements TalkingEntity {...}

public class CleverParrot extends Parrot implements TalkingEntity{...}

public class BunchOfParrots implements TalkingEntity {...}

Doing this, we can define methods that will blindly accept any object implementing a

desired interface without specifying if this is a Parrot, a BunchOfParrots or whatever.

Let us write an example
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public class InterfaceExample {

public static void main(String args[]) {

// Creating an instance of Parrot

Parrot myParrot =

new Parrot("Blue Eyed Cackatoo", "white",100.0);

// Creating an instance of CleverParrot

CleverParrot myCleverParrot =

new CleverParrot("Blue Eyed Cackatoo", "white",100.0);

// Creating an instance of a bunch of parrots

BunchOfParrots myBunch = new BunchOfParrots();

Example.saySomething(myParrot);

Example.saySomething(myCleverParrot);

Example.saySomething(myBunch);

}

public static void saySomething(TalkingEntity talker) {

talker.say("Something!");

}

}

Notice that the saySomething method will work quite independently of what

the talker object is actually. We have used the static quality of the method

saySomething to call it without creating an instance of InterfaceExample. The

interfaces are a very powerful tool to decouple different parts of a software project,

and permit the usage of advanced design patterns. Interfaces are widely used in the

Gaia Pocket Simulator.

A.2 The simulator code

Let us now review the most important pieces used to simulate Gaia-like observations.

They are discussed in terms of their interaction (interfaces) and the details of what

algorithms are actually doing can be found elsewhere.
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A.2.1 Attitude

The attitude interface contains only one public method. It transforms a unit direc-

tion in the Center of Mass Reference System (Klioner 2004) given in a 3-dimensional

double array (a unit vector), to the rotated coordinates each focal plane applying a

spatial rotation computed through the scanning law. Despite there are many docu-

ments describing and optimizing the details of the attitude implementation, from the

user level all the details are hidden to him behind a simple interface

public interface Attitude {

/**...*/

public double[] getDirection(double att_ep0, double tobs,

double[] svec);

}

There are three implementations of the Attitude interface. They are

attitude.EulerAttitudeMatrix

attitude.LennartAttitude

attitude.NoneAttitude

The first is the most used one. It builds the rotation matrix directly from the Euler

Angles from the scanning law (attitude.MignardScanLaw.java) and it’s optimum

for simulation purposes. The scanning law cannot be directly accessed by the user,

and in this sense, the implementations of the Attitude interface wrap it together

with the algebraic algorithms to manipulate matrices, vectors or quaternions. This is

an example of the wrapper design pattern.

The implementations of the attitude interface contain several buffered attributes

in order to avoid unnecessary calculations of the rotation matrix in repetitive

calls. The second one (attitude.LennartAttitude) builds the rotation ma-

trix through the quaternion formalism producing exactly the same results as

attitude.EulerAttitudeMatrix. This was the first one implemented since it was

directly extracted from the Fortran subroutines for GDAAS2-Source updating, pro-

vided by Lennart Lindegren. The third one is a dummy attitude which applies no

rotation to the given direction (rotation matrix is the identity) and it is used for test

purposes only.
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All the constructors of the implementing classes of the Attitude interface have

private access. In addition, only one instance of the attitude interface can be uploaded

in memory. This strong encapsulation prevents overloading the memory with many

copies of the same thing. The only way to obtain the current instance of the Attitude

implementation is through an Object factory(see below) designed with this purpose.

The strategy of only permitting a single instance of an object to be uploaded in

memory is known as the Singleton design pattern.

Attitude Factory

In order to provide access to all the code levels to the attitude interface implemen-

tations, an Object Factory design pattern is used. An object factory is a class with

public and (most likely) static methods that generate Instances of classes (usually,

each factory produces instances from only one interface), that can be recalled for

other pieces of code. The AttitudeFactory class has as public methods

public static void setDefaultAttitude(int attID);

public static Attitude getAttitude(int attID){...}

public static Attitude getAttitude() {...}

Several int static flags are available to choose between implementations (see code

documentation).

At any moment, any part of the code can retrieve an instance of the default atti-

tude implementation through getAttitude(), and even change the default returned

implementation through setDefaultAttitude(int attID).

A.2.2 Solar System Ephemeris

The Solar System ephemeris and the Gaia orbit are implemented under the

SolarSystemEphemeris interface. The public methods are

public interface SolarSystemEphemeris {

public double[] getR(double tcb, int obID);

public double[] getV(double tcb, int obID);

}
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that provide the position and the velocity of the planets and the Gaia probe as

a function of the BCRS time coordinate TCB. A number of static int flags are

available to specify the object of interest. The details of the parameters and the

implementation can be found in the code documentation and the reference documents

Mignard (2003a) and Mignard (2003b).

Three implementations of this interfaces are used,

gaia.gaiaephemeris.GaiaEphemeris.java

gaia.gaiaephemeris.RealEphemeris.java

gaia.gaiaephemeris.GaiaNoisyEphemeris.java

The first one provides the nominal orbits for the planets and Gaia. The second one is

based on the nominal orbits but it is able to introduce positional and velocity shifts.

The third one introduces periodic sinusoidal variations to the position of the planets

to emulate periodic positional errors.

Another implementation of SolarSystemEphemeris is DE405Ephemeris.java,

which provides access to the popular JPL ephemeris. This implementation has not

been used, since it does not contain the Gaia probe orbit (for obvious reasons), and

the combination of the standard Gaia ephemeris with DE405 could lead to some

fundamental inconsistencies (Klioner 2006).

The ephemeris are also accessible to all the code levels through an EphemerisFactory.

A.2.3 Catalog access

An abstract catalog provides access to lists of sources of any kind (not only stars, see

ObservableSource in Sec. A.2.6) This is

public interface AbstractCatalog {

public ObservableSource getSource(int ID);

public int getNumberOfSources();

}

The implementations of AbstractCatalog interface are responsible for reading the

catalog files (whatever the format used) and for parsing them to ObservableSource

objects. We used three implementations of AbstractCatalog,

cataloginterfaces.CatalogReader.java
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cataloginterfaces.EmptyCatalog.java

universe.jupiter.JovianSystemCatalog.java

where the first one is devoted to read from our intermediate catalog format (we

previously parsed GSC2.3.1 and 2MASS a compressed format, with the minimum

amount of information required from the sources). The second one is a catalog without

sources (which is sometimes required). The third one contains the moons of Jupiter

as ObservableSources. This is a good example of the advantages of using interfaces.

In some sense, the implementations of AbstractCatalog are ObjectFactories of

ObservableSources. When an interface is used to define factories, it is usually said

that an Abstract object factory design pattern is used.

A.2.4 Error model

The error model is implemented via the AstrometricErrorBudget interface

public interface AstrometricErrorBudget {

public double getAL_Noise(

ObservableSource source,double ep0, double tobs);

public double getAC_Noise(

ObservableSource source,double ep0, double tobs);

}

that provides the standard deviation of the astrometric measure from a source at

a certain moment. The details can be found in the code documentation. The

AstrometricErrorBudget has three implementations,

errorbudget.FlatAstrometricErrorBudget

errorbudget.NullAstrometricErrorBudget

errorbudget.Gaia2AstrometricErrorBudget

The NullAstrometricErrorBudget is used to produce noiseless data. The Flat-

AstrometricErrorBudget assumes that the error is the same for all the objects (for

testing purposes) and Gaia2AstrometricErrorBudget is used to add noise to the

observations according to the Gaia2 design version (see Section 4.3.1). There is also

a factory
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public class AstrometricErrorBudgetFactory {

...

public static void setDefaultErrorBudget(int errID){...}

public static AstrometricErrorBudget getErrorBudget(int errID){...}

public static AstrometricErrorBudget getErrorBudget() {...}

}

which provides universal access to the error model used and is widely used through

our code (similar to the attitude factory in Section A.2.1 ).

A.2.5 Instrument model

The schematic model of the instrument and the methods to generate the tran-

sit times for the telemetry segments are performed by the implementations of the

GaiaAstrometricInstrument interface. This permits to implement the changing

specifications of the Gaia model used as the design evolves. Typically, the classes

implementing this interface make extensive use of the Gaia Parameter Database (de

Buijne 2006), which is included in the code directly from the file distributed on the

web page.

public interface GaiaAstrometricInstrument {

public double[] CCD_readOutAngle(int FoV, int row, int col);

public int checkFoV(double[] f,

double AL_TOLERANCE,

double AC_TOLERANCE);

public double[] getObservationTimes(ObservableSource source,

double att_ep0,

double catalog_ep0,

double tobs);

public double[] getAcrossArray(ObservableSource source,

double att_ep0,

double catalog_ep0,
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double tobs);

public double getAC_SIZE();

public double getAL_SIZE();

public double getBASIC_ANGLE();

public double getSCANNING_RATE();

public double[] getCloseTransitTimes(ObservableSource source,

double att_ep0,

double catalog_ep0,

double tobs);

public double getSingleTransitTime(ObservableSource source,

double att_ep0,

double catalog_ep0,

double tobs);

}

This interface has an Object Factory called GaiaAstrometricInstrumentFactory.

This factory is able to provide GaiaAstrometricInstrument implementations in

agreement with Gaia1 and Gaia2 designs. They are

gaia.instrument.AstrometricInstrumentGAIA2.java

gaia.instrument.AstrometricInstrumentGAIA_old.java

where the main difference between these two versions are the number and geometric

distribution of the CCDs and the focal length of the telescope(size of the fields of

view).

A.2.6 Observable source

A very important part of the code relies on the ObservableSource interface. All

the astrometric related issues (kinematics, light deflection, etc.) are internally man-

aged by the classes implementing this interface, greatly simplifying the task of the

instrument model implementation (see previous Section). The interface reads,

public interface ObservableSource {
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public int getSourceID();

public double[] getInitialDirection();

public double[] getCoMRS(double ep0, double tobs);

public double[] getInitialPosition();

public double[] getInitialVelocity();

public double getVmag(double ep0, double tobs);

public double getBmag(double ep0, double tobs);

public double[] astrometricCatalogEntry();

public double[] physicalCatalogEntry();

}

This interface contains a lot of methods. To simplify the task of the developer an

Adapter design pattern is used in this case. (universe.Star object is an adapter).

An adapter is a class (usually abstract) which implements all the methods of an

interface in the most generic and simple way. The developer can still reimplement the

methods by himself if required by extending the adapter (heritage is a feature of the

Jave language). The class universe.Star.java is an example of such an adapter.

The most used implementations of ObservableSource are

universe.Star

universe.DummySource.java

universe.FrozenStar.java

universe.jupiter.Satellite.java

...

which we will not detail here for brevity’s sake. The observable sources are generated

by implementations of the AbstractCatalog interface. Let us note that, from the

interface point of view, a star and a Satellite from Jupiter are perfectly equivalent.

A.2.7 Relativistic Model

The relativistic and astrometric model is implemented via the AstrometricModel

interface

public interface AstrometricModel {

public double[] getDirection(ObservableSource source,
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double ep0,

double tobs);

public double[] getDirection(double[] qso_dir,

double ep0,

double tobs);

}

Several implementing classes have been developed which are essentially updates of the

original one (relativisticmodel.lennart.GaiaAstrometricModel) including new feaures

as different γA for each body, the dynamical parameter αr (in the retardation and

the dynamical picture), the quadrupolar part of the light deflection, etc. Some of the

are listed bellow

relativisticmodel.lennart.GaiaAstrometricModel

relativisticmodel.lennart.EnhancedAstrometricModel

where EnhancedAstrometricModel essentially wraps GaiaAstrometricModel and in-

cludes the methods to get/set the relativistic parameters. These classes are managed

by the implementations of the ObservableSource interface, and are perfectly hidden

to the client algorithms (instrument model, attitude, etc.), since such algorithms do

not require the details of the relativistic model. In this sense, ObservableSource

implementations are wrappers of the AstrometricModel.

A.3 Data reduction code

A data reduction framework have been developed with the philosophy of having a

small set of generic classes with the minimal methods required to apply classical and

advanced data reduction techniques. It is very flexible and could even be used to

solve more general problems that the one discussed in this thesis.

There are two data reduction packages. The fitting.function essentially

contains the interface to plug any physical model into the algorithms of the

fitting.algorithms.

A.3.1 The fitting.function package

It contains a very simple interface
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public interface FittingFunction {

public void setParameters(double[] parvals);

public double[] getParameters();

public double getValue(double[] x);

public double[] getPartial(double[] x);

}

and an, even simpler, adapter

public abstract class FittingFunctionAdapter implements FittingFunction{

public abstract double getValue(double[] x, double[] par);

...

}

where the . . . represent all the implemented methods of the FittingFunction inter-

face. To implement any physical model, the developer only has to define what must

be given by the getValue method, given some input data (i.e. the instant of observa-

tion and the astrometric parameters of a star) and some values of the parameters to

be fitted in the model (the double[] par array, the values of the relativistic param-

eters). Defining this method alone, the FittingFuntionAdapter class is able to do all

the operation required by the FittingFunction interface. As an example, the partial

derivatives are computed internally by calling the getValue with slightly perturbed

values of the parameters. The FittingFunctionAdapter also contains other useful

methods,

public void setDeltaValues(double[] in_delta)

public double getPartial(double[] x, double[] par,int parNumber)

Let us note that if the user wants to implement the analytical computation of the

partial derivatives of some of the parameters, he only has to implement again the

public double[] getPartial(double[] x);

method when extending the FittingFunctionAdapter. This approach enabled us to

test different models and parameterizations, with a minimal code redesign.

A.3.2 The fitting.algorithms package

There are a few algorithms implemented that have been used for this work. They are

contained in this package. The classes containing the algorithms are
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fitting.algorithms.IterativeMultilinearRegression.java

fitting.algorithms.LeastSquaresSolution.java

fitting.algorithms.bayes.BayesianInference.java

fitting.algorithms.bayes.MontecarloIntegration.java

The details of how they work can be found in the documentation of the code. Let us

add a few words of the main features of each algorithm.

• LeastSquaresSolution. This class implements the classical non-linear Least

Squares algorithm described in Press et al. (1992). The observations are gath-

ered and all the condition equations are stored in memory. The normal equations

are build by algebraic manipulation of the condition equations and solved by

standard methods. It is fast and easy to use but requires a lot of memory if the

data set is large.

• IterativeMultilinearRegression. The same as LeastSquaresSolution but

it does not store the condition equation and the normal equations are built

directly. It saves a lot of memory. It is not as fast as LeastSquaresSolution

since the observations must be reinserted at each iteration of the non-linear fit,

but it is very suitable for large sets of data.

• BayesianInference. It samples the Bayesian PDF in a rectangular grid on

the parameter space, and the integrals of the PDF are computed on the grid

permitting the usage of very optimal integration routines. Nevertheless the

number of grid elements grows very fast with the number of parameters. This

is ∼ sN , where s is the number of grid points for each parameter and N is the

number of parameters. If we have 5 parameters in the model and we want to

have 10 values per parameter, the number of grid points is 105.

• MontecarloIntegration. This class performs the integration of the PDF in

a random collection of parameter values. It enables to reduce the number of

required points. This class is the one used to produce the results presented in

this work.

A.3.3 Data reduction core classes

The data reduction code consists on a class extending the FittingFunctionAdapter

and a driver class which prepares the data and applies the desired algorithms described
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above.

The implementation of the FittingFunctionAdapter is called PlanetaryFunction.java.

It is a quite complex extension of the adapter which permits to specify which parame-

ters are fitted, and the target planet under study. It computes numerically the partial

derivatives of all the parameters except for the quadrupole, which is obtained in a

semi-analytical way (since the effect is not large, it is very sensitive to floating point

errors).

The driver class is the bin.PlanetParameterFit.java, whose methods permit to

specify the telemetry file to be processed, the limiting magnitude of the used stars,

the maximal angular separation from the planet, the algorithm used, etc. Again, the

details of the implementation and all its methods can be found in the code documen-

tation. It can be executed on a shell supporting a java virtual machine. In this case,

the data reduction parameters must be provided in a formatted ascii file. A sample

parameters file is distributed with the code.

A.4 A data simulation example

public class SimulatorExample {

public static void main(String args[]) {

CatalogBuffer catalogBuffer;

AbstractCatalog catalog;

PlanetTelemetryGenerator telemetryGenerator;

int counter;

String telemetryName;

double catalogBuffer

double previousInstantOfTime;

double t;

// The simulator will look for the first planetary transit from

// this date

previousInstantOfTime = 0.0; // in days from JD2010
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// Defines the time step applied to check if there is a planet

// close to the Field of view

time_interval = 0.01; // in days

// This class manages the interaction of the instrument with

// the sources, the catalogs and does most of the work

telemetryGenerator = new PlanetTelemetryGenerator();

// This parameter determines how many catalog files will be

// processed. Each catalog file contains 1x1 deg. A large

// tolerance will slow down the process since many more

// sources will be processed unnecessarily.

bufferTolerance = 1.0*Math.PI/180.0;

// Initialize the catalog buffer. A catalog buffer generates

// AbstractCatalog objects from the catalog files.

catalogBuffer = new CatalogBuffer();

// Setting up the factories

// Choosing the version of the instrument

GaiaAstrometricInstrumentFactory.setDefaultInstrument(

GaiaAstrometricInstrumentFactory.GAIA2);

// Choosing the error model

AstrometricErrorBudgetFactory.setDefaultErrorBudget(

AstrometricErrorBudgetFactory.GAIA2);

// Choosing the attitude representation

AttitudeFactory.setDefaultAttitude(AttitudeFactory.EULER);

// Compute the precise transit instant
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t = telemetryGenerator.getNextPlanetTransitTime(

previousInstantOfTime,

EphemerisMonitor.JUPITER, //Planet observed.

0.5*Math.PI/180, // Maximum angular

// of the planet from

// the center of the FOV

time_interval); // In days. Time interval

// used to seek for

// planetary transits.

telemetryGenerator.initTelemetryFile("demo.TM");

// The catalog buffer prepares the access to

// the stars around the position of the planet

catalogBuffer.generateBufferAround(

body,t,catalogBufferTolerance);

// Get the first catalog

catalog = catalogBuffer.retrieveNextCatalog();

// Loop over the catalog files

while(cat!=null) {

// simulate for this planetary transit.

telemetryGenerator.generate(

Ephemeris.JUPITER,

cat,

t-2*time_interval, // Initial simulation instant.

t+2*time_interval, // Final simulation instant.

ep0); // Catalog reference epoch,

// in days from 2010).

// retrieve the next catalog. If not more catalogs

// are available a "null" value is returned

cat = cat_buff.retrieveNextCatalog();
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}

telemetryGenerator.closeTelemetryFile();

}// End of the "main" method

} // End of the class



Appendix B

Additional material to :

Astrometric Light-Travel

Time signature

of sources in nonlinear motion

B.1 First order derivation of Equation of time delay

The first term on the right side of the equation (3.8), to first order as defined in

(3.4)–(3.5), reads

|xobs [tobs] − xe [te]|
c

≃ 1

c
x0

LRM (B.1)

+ l0 · v0
LRM∆te

c
+ l0 · D [te]

c

− l0 · xobs [tobs]

c
+ O(2);

The second term of the right hand of (3.8) is straightforward using t0e instead of

te in the last expression (B.1). After some algebra the emision time interval ∆te can
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be written as

∆te =
1

1 + l0 · v0

LRM

c

( ∆tobs (B.2)

− l0 · D [te] − D
[

t0e
]

c

+ l0 · xobs [tobs] − xobs

[

t0obs

]

c

)

+ O(2);

The term multiplying the full expression is responsible for apparent superluminal

velocities. For this reason we call this term superluminal factor

αs =
1

1 + l0 · v0

LRM

c

; (B.3)

In spite of the suppression of the second order terms there is still a dependency

on te on the right hand of equation(B.2) in D. This equation is enough to solve ∆te

iteratively. But our purpose is to obtain a closed form accurate to O(1). To solve this

we consider

D [te] − D
[

t0e
]

= D
[

t0e + αs∆tobs + δt
]

(B.4)

− D
[

t0e
]

,

δt = − αs l0 · D [te] − D
[

t0e
]

c
(B.5)

+ αs l0 · xobs [tobs] − x0
obs

[

t0obs

]

c
∼ O(1);

Taking this into account, we can write to first order in δt
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D [te] − D
[

t0e
]

c
= (B.6)

D
[

t0e + αs∆tobs

]

− D
[

t0e
]

c

+
V orb

[

t0e + αs∆tobs

]

c
δt+ O(2)

In (B.6) the term V orb

c δt is of O(2) and will be neglected in (B.2). The development

(B.6) is also used to justify the appearance of V orb in equation (3.31). These are all

the ingredients needed to obtain the relation of ∆te in terms of ∆tobs to first order

∆te = αs (∆tobs (B.7)

− l0 · D
[

t0e + αs∆tobs

]

− D
[

t0e
]

c

+ l0 · xobs [tobs]) − xobs

[

t0obs

]

c

)

+ O(2)

which is the same as equation (3.11) with the suitable notation shortcuts explained

in (3.12)–(3.14).





Appendix C

Additional material : Light

deflection experiments

on the the Solar System

planets

C.1 Building the a posteriori Probability Density

Function

In a simulation/reduction process, all the features of the data are perfectly controlled

and a set of different data sets can be used to compute confidence levels and expected

values of the parameters. But real data contain uncontrolled features like outliers,

non-gaussian behavior of the errors, unmodeled biases, etc. In order to obtain the

full statistical characterization of the parameters, we proceed by using a Bayesian

approach.

Our purpose is to obtain the expected values and the standard deviations of the

parameters using the a posteriori Probability Density Function (PDF) of the param-

eters and compare them with those provided by the least square solution.

Consider a set of statistically independent observations Xi ∈ X̂ and a continuous
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set of plausible models describing the observations specified by the values of some

parameters

θs = [θs
1, θ

s
2, . . . θ

s
N ] (C.1)

where N is the number of free parameters and s is used to enumerate the possible

elections of the parameter values. The probability that a given election of θs satisfies

the data X̂ is provided by the Bayes Theorem as

P (θs| X̂) =
P (X̂|θs)P (θs)

∑

s′ P
(

X̂|θs′
)

P (θs′)
(C.2)

On the right hand side P (θK) reflects our previous knowledge of the problem (state-of-

art, previous experiments, faith,etc.) and is called the a priori probability of θK being

true. The term P (X̂|θK) is the probability that the new data fits the model assuming

the θK is true. Note that it is not equal to P (θK | X̂) which is the probability that

the model satisfies the data, given that the data is true. Roughly speaking, the new

observations X̂ update our knowledge of trueness of θK . In the denominator we have

the sum over all the possible values of the parameters θK weighted again by their

a priori probabilism P (θK). This denominator is not really important and can be

determined by usual normalization methods (analytically or numerically depending on

the particular problem). If no a priori knowledge of θ is available, P (θ̂) is assumed

to be a uniform distribution. The left side of (C.2), P (θK | X̂), is the Probability

Density Function we are looking for.

The P (X̂|θK) can be obtained from the data as follows. Assuming statistical in-

dependence of the elements in X̂, the probability of observing all the X̂ independently

is the product of the probabilities of each individual Xi to happen,

P (X̂|θ̂) ≃ L(X̂; θ̂) =
∏

P (Xi|θ̂) (C.3)

where P (Xi|θ) is the probability that each individual observation Xi fits the model

for a given set of θK . L is the so-called Likelihood function and is proportional to

P (X̂|θ̂) except for an arbitrary normalization factor which, again, is unimportant

until we need to normalize the PDF.

Assuming that the instrument provides the error of each measurement, and using
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the error model (a Gaussian one in our case but it is not necessary), we have

L(X̂ ; θK) =
∏

i

1√
2πσi

exp

[

(

Xi −Xteo(θ
K)
)2

σ2
i

]

(C.4)

Let us remark that different noise models can be used (Poisson, Log-Normal distri-

bution, etc.) and that the free parameters of the noise models could also be inserted

in the θ̂ set. For computational reasons, it is simpler to work with the logarithm of

L (the product is then a sum) and recover at the end the PDF at the same time as

the normalization is obtained.

In our procedure, the model to be tested enters in Xteo which is computed using

a given θ̂K . Let us note that there is an infinite number of K combinations of

parameter values. Instead of obtaining a grid sampling the PDF, we can directly

obtain the moments of the distribution using Montecarlo integration. In such a way

we can obtain the expected values and the standard deviations of the parameters as

Z =

∫

V

L(θ̂; X̂)P (θ̂)dΩ (C.5)

〈θk〉 =
1

Z

∫

V

θ2k L(θ̂|X̂)P (θ̂)dΩ (C.6)

σθk
=

√

〈θ2k〉 − 〈θk〉2 (C.7)

where Z is the normalization factor. Note that an homogeneous grid of N parameters

using n different values for each parameter contains nN points. This is, if we fit 4

parameters using 10 values for each one, we need to compute 10 000 points!. If the

likelihood function is smooth enough, the accuracy of the Montecarlo integration scale

is 1√
N

, independently of the number of parameters.

In our approach we generate randomly 1000 parameter sets uniformly distributed

around the Least-square solution in the interval θK ± 5σK .
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C.2 Instant of closest approach and impact param-

eter

Let us write the trajectory of a photon and a massive body as two particles moving

with constant velocities(straight lines) as

xp (t) = xp0 + cσ (t− t0) , (C.8)

xA (t) = xA0 + cµA (t− t0) , (C.9)

µ =
vA

c
(C.10)

where xp0 is some arbitrary position of the photon along its trajectory and xA0

is some arbitrary position of the massive body along its trajectory. Then we can

freely choose t0 as the instant of observation. Then the instant of closest approach is

obtained minimizing the distance vector xp0 is the position of the photon/observer

at that instant and xA0 is the position of the massive body. The instant of closest

approach is obtained through the minimization of the module of the separation vector

rA(t) as

d

dt
|r|A = 0 (C.11)

rA (t) = xp (t) − xA (t) (C.12)

where (C.12) can be written as

rA (t) = rA0 + cg (t− t0) , (C.13)

rA0 = xp0 − xA0 , (C.14)

g = σ − µA . (C.15)

Then, the minimum distance condition in (C.11) provides the instant of closest ap-

proach as

tca = t0 −
rA0 · g
c g2

, (C.16)
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Subtracting (C.8) and (C.9) and using (C.16) it is obtained that

r (tca) = rA0 −
1

g2
g (rA0 · g) , (C.17)

that can be writen as

r (tca) =
g × rA0 × g

g2
(C.18)

We can perform a taylor expansion keeping only the terms proportional to µ = v/c

obtaining that r (tca) is equivalent to

r (tca) = σ × (rA0 × g) + O(c−2) = d̂A , (C.19)

which is the vector in equation (4.29).

C.3 Gravitomagnetic light deflection

In order to evaluate the amount of deflection caused directly by the non-diagonal

term h0i in the metric, let us rewrite the equations of motion for the photon using

only the spherical symmetric part of the gravitational field and putting a numerical

coefficient α multiplying h0i. To simplify the notation, let us assume that only one

body is causing the light deflection and that it moves in rectilinear motion, say

x (t) = x0 + vt . (C.20)

Let us assume that the unperturbed trajectory of the photon is given by

xN (t) = x0N + cσt , (C.21)

where xN is the newtonian unperturbed trajectory of the photon and k is its unper-

turbed propagation direction. After some algebra it is found that the equations of

motion can be rewritten as

δẍp = δẍp|α=1 + 4 (α− 1)GM
(v · σ)

c

σ × (r × σ)

r3
+ O(G1 v

2

c2
) (C.22)

r = xp (t) − x (t) (C.23)
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where δẍp|α=1 are the same equations of motion as in (4.15). Let us note that if α = 1

the second term vanishes and the standard solution is recovered. Therefore, one can

easily integrate (C.22) (the required integral can be found in Klioner & Kopeikin

(1992)) and find that the gravitomagnetic contribution to the light deflection at the

post-Newtonian order is

1

c
δẋpG = 4α

GM

c2
σ × (r × σ)

r (r − σ · r)

v · σ
c

+ O(G1 v
2

c2
) (C.24)

which is simply the classical Schwarschild deflection times a term proportional to v/c

which is of the order of ≃ 10−4 for any solar system body. We can write (C.24) in

terms of the aspect angle ψ (apparent angle between the planet and the direction of

the source). It reads

δG = 2δSch
v · σ
c

, (C.25)

δSch =
2GM

c2
1

r
c tan

ψ

2
. (C.26)

As an example, for Jupiter it means 2 · 16000 mas ·0.5 · 10−4 = 1.6µas the maximal

effect. The Sun is more massive, but it moves slower, thus obtaining a maximal

amplitude of 1.75′′×0.5 ·10−7 = 0.16µas, which is even smaller than for Jupiter. The

effect is maximal when the velocity and the direction of the source are parallel. The

gravitomagnetic deflection caused by the planet rotation gives similar numbers. A

detailed treatment of this case can be found in (Klioner & Kopeikin 1992).

C.4 Ephemeris positional measurements
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Table C.1: Ephemeris correction to the position of Jupiter obtained from observation
of the light deflection effect during a simulated full Gaia mission. Only transits giving
an astrometric accuracy(last column is in arcseconds) better than the instantaneous
size of the planet are given.

Julian date Year Used stars δl ± σ km δm ± σ km σ′′

2456117.5661 2012.5 109 35267.2± 23721 135698.7± 41486.4 6.87
2456271.9115 2012.9 153 −4583.9± 13397.5 13193.7± 23331 3.52
2456271.9805 2012.9 156 −4607.1± 3653.9 −10414.4± 0 0.48
2456284.4080 2013.0 139 48372.3± 32880.2 82122.4± 40040.5 6.87
2456284.4770 2013.0 137 −14870.1± 25815.2 −26661.8± 47701.1 7.21
2456325.6688 2013.1 100 −2965.5± 8818.3 9576.4± 7065.2 1.59
2456473.2722 2013.5 84 16284.1± 11364.5 20740.4± 8787.4 2.12
2456473.3411 2013.5 148 −3479.7± 14760.2 −9932.1± 30330.9 4.98
2456681.1259 2014.1 293 44115.7± 11405.9 −97012.6± 45583.8 6.38
2456714.5827 2014.2 261 2847.9± 5726.6 20825.2± 24122 3.56
2456714.6516 2014.2 325 5809.7± 8199 −19455.2± 20615.5 3.18
2456738.3180 2014.2 295 −6687.3± 25545.5 −37527.2± 37095.2 6.70
2456738.3869 2014.2 294 −9793.7± 25912.4 22799.1± 36642.8 6.68
2456831.8702 2014.5 262 −73885.6± 29698.4 −54745.9± 34194.7 6.81
2456849.5427 2014.5 238 5189.3± 13484.6 44262± 36331.5 5.68
2456849.6117 2014.5 236 −2074.2± 12819.4 59303.6± 39743.6 6.12
2456887.5590 2014.6 237 4162.1± 12204.1 −14978.4± 20943.6 3.34
2457061.7040 2015.1 248 63920.2± 46243 6319.8± 9904.5 6.36
2457095.3453 2015.2 471 10544.2± 8212.1 19866.3± 12705.2 2.16
2457095.4142 2015.2 361 −7739.6± 7573.8 −2936.6± 12180 2.05
2457242.7653 2015.6 446 −10229.7± 9398.2 23841.7± 12969.3 2.27
2457242.8342 2015.6 300 −5652.5± 6614.3 −674.6± 13988.3 2.20
2457278.2175 2015.7 447 638.3 ± 4854.8 −3963.9± 4136.9 0.85
2457278.2867 2015.7 433 2861.8± 4024.4 −7013.4± 11188 1.59
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Julian date Year Used stars δl ± σ km δm ± σ km σ′′

2457300.4557 2015.8 293 −6858.8± 18933.2 −8080.5± 20245.2 3.60
2457400.6842 2016.0 627 −27957.6± 24300.2 −13093.8± 11246.6 3.42
2457400.7532 2016.0 759 7333.2± 14585.5 12012.4± 32011.2 4.51
2457400.9342 2016.0 950 12917.7± 10426.6 12267± 9770.3 1.83
2457401.0032 2016.0 951 5267.1± 3193.8 −7768.7± 6307.1 0.91
2457401.1842 2016.0 963 9335.6± 10330.1 153.1 ± 15232.8 2.36
2457401.2532 2016.0 963 37265.6± 28031.1 −30291.8± 22199.4 4.58
2457401.4341 2016.0 989 −6731.9± 16980.7 2587.3 ± 11762.6 2.64
2457401.5031 2016.0 987 899.5 ± 15394.7 3493.2 ± 13710.3 2.64
2457401.6835 2016.0 991 46197.2± 34101.9 22232.9± 14063.6 4.72
2457401.7526 2016.0 992 −35179.4± 16069.6 10357.8± 22141 3.51
2457401.9335 2016.0 898 −29264.3± 19014.3 28391.7± 11166.5 2.82
2457402.0026 2016.0 854 7280± 4556.9 6908.9± 5962.5 0.96
2457402.1835 2016.0 752 −5206.9± 8479 13305.2± 13123.2 2.00
2457402.2525 2016.0 708 1930.7± 9613.6 −9242.1± 11191.4 1.89
2457402.4335 2016.0 622 14750.1± 13920.3 17814.9± 17862.8 2.90
2457402.5025 2016.0 593 7624.5± 6364.4 30358± 24463.2 3.25
2457402.6835 2016.0 541 4747.8± 5283.1 1769.8± 7967.7 1.23
2457402.7525 2016.0 536 −744.6± 14264.8 992.6 ± 10918.6 2.30
2457402.9335 2016.0 517 −8027.3± 8915.9 −2049.2± 6019 1.38
2457403.0025 2016.0 532 −1554.5± 16164.2 15369.2± 13705.9 2.72
2457403.1835 2016.0 591 −4620.7± 25134.5 882.8 ± 34577.2 5.49
2457403.2525 2016.0 629 29348.2± 24829.6 28865.3± 30720.4 5.07
2457403.4343 2016.0 716 −3234.2± 10832.1 −10102.2± 16096.1 2.49
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Julian date Year Used stars δl ± σ km δm ± σ km σ′′

2457403.5034 2016.0 771 −19285.5± 8084.6 223.4 ± 5320.6 1.24
2457403.6843 2016.0 891 498.3 ± 2578.2 3908.9± 6220.6 0.87
2457403.7533 2016.0 934 3646.5± 16344.9 2563.5 ± 20252.1 3.34
2457403.9343 2016.0 995 −16920.7± 15454.3 −23883.5± 24502.4 3.72
2457404.0032 2016.0 1000 55870.1± 21041.4 35791.1± 18569.1 3.60
2457404.1843 2016.0 978 3040.2± 26448.3 20495± 14696.2 3.88
2457404.2532 2016.0 984 11683.1± 22210.9 −28282± 31046.4 4.91
2457404.4341 2016.0 981 8321± 8573.3 11943.5± 14267.1 2.14
2457404.5031 2016.0 984 −2411.4± 0 −4471.2± 0 0.00
2457404.6841 2016.0 975 6942.8± 10494.9 25983± 12624.2 2.11
2457404.7531 2016.0 911 −2690.9± 17470.4 −5557.5± 13527.7 2.84
2457404.9341 2016.0 548 9870.8± 14678.2 14951.5± 24186.2 3.64
2457450.6896 2016.2 1722 25943.9± 9394.3 −31403.7± 14671.9 2.39
2457492.0588 2016.3 1800 −2651.9± 6548.4 6189.6± 8350.9 1.56
2457492.1278 2016.3 1794 2790± 7865.2 737.1 ± 5512 1.41
2457492.3087 2016.3 852 12461.7± 15260.4 8630.9 ± 10435.5 2.71
2457503.1270 2016.3 743 3149.1± 5373.9 −6956± 7317.1 1.35
2457503.3079 2016.3 1574 −1062.5± 3280.8 −339.5± 4311.9 0.81
2457503.3769 2016.3 1570 −3793.9± 4061.8 −3690± 3549 0.80
2457503.5578 2016.3 975 −2720.2± 4178.1 460 ± 7275.8 1.25
2457598.8610 2016.6 653 −3673.8± 7057.2 −1958± 4697.3 1.24
2457625.2685 2016.6 373 −13671.3± 12030.7 −3044.2± 12642.8 2.44
2457625.3372 2016.6 645 6777.1± 14104.8 −17091.1± 10675 2.47
2457657.2340 2016.7 883 −4431.6± 20001.2 1714.6± 7989.3 2.86
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Julian date Year Used stars δl ± σ km δm ± σ km σ′′

2457657.3029 2016.7 686 −8335± 6884.3 385.8 ± 5961 1.21
2457806.1468 2017.1 9618 −1464.6± 2996.6 448 ± 1774 0.46
2457806.2156 2017.1 7957 2301.5± 2354.9 −539 ± 1463.6 0.37
2457837.6102 2017.2 11129 −495.2± 1455.1 −1059.9± 2404.5 0.39
2457837.6790 2017.2 11114 497.7± 2200 1076± 2483.6 0.46
2457864.1583 2017.3 9437 −690.8± 1525.7 660.9 ± 1399.6 0.30
2457864.3390 2017.3 5367 556.7 ± 6371.3 1528.5± 13138 2.13
2457959.5721 2017.6 4809 −193.7± 2618.7 2376.2± 3171.3 0.61
2457959.6411 2017.6 4914 −2691.1± 2225.3 5939.2± 2303.7 0.48
2457959.8221 2017.6 4888 776.3 ± 1612.3 361 ± 3051.9 0.51
2457959.8911 2017.6 3645 −87.2± 2554.6 −600.6± 2096.5 0.49
2457970.5693 2017.6 2882 −3887.3± 15768.4 199.7 ± 5097.5 2.43
2457970.6382 2017.6 2887 6271± 6442.1 −3347.7± 5025 1.20
2457970.8192 2017.6 1966 2702.7± 2623.8 −8191.2± 7809.3 1.21
2458012.3287 2017.7 1966 −3230.2± 4774.4 −4820.2± 6226.4 1.08
2458055.9451 2017.8 7999 5740.7± 2885.2 1467.9± 2679.5 0.51
2458056.0141 2017.8 8022 −3328.8± 3928.2 1041.9± 4634.8 0.78
2458056.1950 2017.8 8040 −1100.9± 2079.8 1975± 2189 0.39
2458056.2640 2017.8 6501 1878.3± 2825.5 1951± 2751.8 0.51
2458064.5144 2017.8 5076 3229.8± 1555.8 1820.7± 1641.4 0.29
2458064.6954 2017.8 8409 951.4 ± 4248.1 2965.4± 3938.4 0.74
2458064.7644 2017.9 8410 810.5 ± 3432.7 3126.1± 3668.7 0.64
2458064.9454 2017.9 8381 3738.6± 3586.2 −4134.4± 1670.5 0.50
2458065.0144 2017.9 6965 −302.8± 2106.5 −234.6± 1824.8 0.36
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Table C.2: Ephemeris correction obtained from observations of Saturn using the light
deflection effect during a simulated full Gaia mission. The last column is the positional
error translated to astrometric displacement.

Julian date Year Used stars δl ± σ km δm ± σ km σ′′

2456117.5661 2012.5 109 35267.2± 23721 135698.7± 41486.4 6.87
2456271.9115 2012.9 153 −4583.9± 13397.5 13193.7± 23331 3.52
2456271.9805 2012.9 156 −4607.1± 3653.9 −10414.4± 0 0.48
2456284.4080 2013.0 139 48372.3± 32880.2 82122.4± 40040.5 6.87
2456284.4770 2013.0 137 −14870.1± 25815.2 −26661.8± 47701.1 7.21
2456325.6688 2013.1 100 −2965.5± 8818.3 9576.4± 7065.2 1.59
2456473.2722 2013.5 84 16284.1± 11364.5 20740.4± 8787.4 2.12
2456473.3411 2013.5 148 −3479.7± 14760.2 −9932.1± 30330.9 4.98
2456681.1259 2014.1 293 44115.7± 11405.9 −97012.6± 45583.8 6.38
2456714.5827 2014.2 261 2847.9± 5726.6 20825.2± 24122 3.56
2456714.6516 2014.2 325 5809.7± 8199 −19455.2± 20615.5 3.18
2456738.3180 2014.2 295 −6687.3± 25545.5 −37527.2± 37095.2 6.70
2456738.3869 2014.2 294 −9793.7± 25912.4 22799.1± 36642.8 6.68
2456831.8702 2014.5 262 −73885.6± 29698.4 −54745.9± 34194.7 6.81
2456849.5427 2014.5 238 5189.3± 13484.6 44262± 36331.5 5.68
2456849.6117 2014.5 236 −2074.2± 12819.4 59303.6± 39743.6 6.12
2456887.5590 2014.6 237 4162.1± 12204.1 −14978.4± 20943.6 3.34
2457061.7040 2015.1 248 63920.2± 46243 6319.8± 9904.5 6.36
2457095.3453 2015.2 471 10544.2± 8212.1 19866.3± 12705.2 2.16
2457095.4142 2015.2 361 −7739.6± 7573.8 −2936.6± 12180 2.05
2457242.7653 2015.6 446 −10229.7± 9398.2 23841.7± 12969.3 2.27
2457242.8342 2015.6 300 −5652.5± 6614.3 −674.6± 13988.3 2.20
2457278.2175 2015.7 447 638.3 ± 4854.8 −3963.9± 4136.9 0.85
2457278.2867 2015.7 433 2861.8± 4024.4 −7013.4± 11188 1.59
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Julian date Year Used stars δl ± σ km δm ± σ km σ′′

2457300.4557 2015.8 293 −6858.8± 18933.2 −8080.5± 20245.2 3.60
2457400.6842 2016.0 627 −27957.6± 24300.2 −13093.8± 11246.6 3.42
2457400.7532 2016.0 759 7333.2± 14585.5 12012.4± 32011.2 4.51
2457400.9342 2016.0 950 12917.7± 10426.6 12267± 9770.3 1.83
2457401.0032 2016.0 951 5267.1± 3193.8 −7768.7± 6307.1 0.91
2457401.1842 2016.0 963 9335.6± 10330.1 153.1 ± 15232.8 2.36
2457401.2532 2016.0 963 37265.6± 28031.1 −30291.8± 22199.4 4.58
2457401.4341 2016.0 989 −6731.9± 16980.7 2587.3 ± 11762.6 2.64
2457401.5031 2016.0 987 899.5 ± 15394.7 3493.2 ± 13710.3 2.64
2457401.6835 2016.0 991 46197.2± 34101.9 22232.9± 14063.6 4.72
2457401.7526 2016.0 992 −35179.4± 16069.6 10357.8± 22141 3.51
2457401.9335 2016.0 898 −29264.3± 19014.3 28391.7± 11166.5 2.82
2457402.0026 2016.0 854 7280± 4556.9 6908.9± 5962.5 0.96
2457402.1835 2016.0 752 −5206.9± 8479 13305.2± 13123.2 2.00
2457402.2525 2016.0 708 1930.7± 9613.6 −9242.1± 11191.4 1.89
2457402.4335 2016.0 622 14750.1± 13920.3 17814.9± 17862.8 2.90
2457402.5025 2016.0 593 7624.5± 6364.4 30358± 24463.2 3.25
2457402.6835 2016.0 541 4747.8± 5283.1 1769.8± 7967.7 1.23
2457402.7525 2016.0 536 −744.6± 14264.8 992.6 ± 10918.6 2.30
2457402.9335 2016.0 517 −8027.3± 8915.9 −2049.2± 6019 1.38
2457403.0025 2016.0 532 −1554.5± 16164.2 15369.2± 13705.9 2.72
2457403.1835 2016.0 591 −4620.7± 25134.5 882.8 ± 34577.2 5.49
2457403.2525 2016.0 629 29348.2± 24829.6 28865.3± 30720.4 5.07
2457403.4343 2016.0 716 −3234.2± 10832.1 −10102.2± 16096.1 2.49
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Julian date Year Used stars δl ± σ km δm ± σ km σ′′

2457403.5034 2016.0 771 −19285.5± 8084.6 223.4 ± 5320.6 1.24
2457403.6843 2016.0 891 498.3 ± 2578.2 3908.9± 6220.6 0.87
2457403.7533 2016.0 934 3646.5± 16344.9 2563.5 ± 20252.1 3.34
2457403.9343 2016.0 995 −16920.7± 15454.3 −23883.5± 24502.4 3.72
2457404.0032 2016.0 1000 55870.1± 21041.4 35791.1± 18569.1 3.60
2457404.1843 2016.0 978 3040.2± 26448.3 20495± 14696.2 3.88
2457404.2532 2016.0 984 11683.1± 22210.9 −28282± 31046.4 4.91
2457404.4341 2016.0 981 8321± 8573.3 11943.5± 14267.1 2.14
2457404.5031 2016.0 984 −2411.4± 0 −4471.2± 0 0.00
2457404.6841 2016.0 975 6942.8± 10494.9 25983± 12624.2 2.11
2457404.7531 2016.0 911 −2690.9± 17470.4 −5557.5± 13527.7 2.84
2457404.9341 2016.0 548 9870.8± 14678.2 14951.5± 24186.2 3.64
2457450.6896 2016.2 1722 25943.9± 9394.3 −31403.7± 14671.9 2.39
2457492.0588 2016.3 1800 −2651.9± 6548.4 6189.6± 8350.9 1.56
2457492.1278 2016.3 1794 2790± 7865.2 737.1 ± 5512 1.41
2457492.3087 2016.3 852 12461.7± 15260.4 8630.9 ± 10435.5 2.71
2457503.1270 2016.3 743 3149.1± 5373.9 −6956± 7317.1 1.35
2457503.3079 2016.3 1574 −1062.5± 3280.8 −339.5± 4311.9 0.81
2457503.3769 2016.3 1570 −3793.9± 4061.8 −3690± 3549 0.80
2457503.5578 2016.3 975 −2720.2± 4178.1 460 ± 7275.8 1.25
2457598.8610 2016.6 653 −3673.8± 7057.2 −1958± 4697.3 1.24
2457625.2685 2016.6 373 −13671.3± 12030.7 −3044.2± 12642.8 2.44
2457625.3372 2016.6 645 6777.1± 14104.8 −17091.1± 10675 2.47
2457657.2340 2016.7 883 −4431.6± 20001.2 1714.6± 7989.3 2.86
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Julian date Year Used stars δl ± σ km δm ± σ km σ′′

2457657.3029 2016.7 686 −8335± 6884.3 385.8 ± 5961 1.21
2457806.1468 2017.1 9618 −1464.6± 2996.6 448 ± 1774 0.46
2457806.2156 2017.1 7957 2301.5± 2354.9 −539 ± 1463.6 0.37
2457837.6102 2017.2 11129 −495.2± 1455.1 −1059.9± 2404.5 0.39
2457837.6790 2017.2 11114 497.7± 2200 1076± 2483.6 0.46
2457864.1583 2017.3 9437 −690.8± 1525.7 660.9 ± 1399.6 0.30
2457864.3390 2017.3 5367 556.7 ± 6371.3 1528.5± 13138 2.13
2457959.5721 2017.6 4809 −193.7± 2618.7 2376.2± 3171.3 0.61
2457959.6411 2017.6 4914 −2691.1± 2225.3 5939.2± 2303.7 0.48
2457959.8221 2017.6 4888 776.3 ± 1612.3 361 ± 3051.9 0.51
2457959.8911 2017.6 3645 −87.2± 2554.6 −600.6± 2096.5 0.49
2457970.5693 2017.6 2882 −3887.3± 15768.4 199.7 ± 5097.5 2.43
2457970.6382 2017.6 2887 6271± 6442.1 −3347.7± 5025 1.20
2457970.8192 2017.6 1966 2702.7± 2623.8 −8191.2± 7809.3 1.21
2458012.3287 2017.7 1966 −3230.2± 4774.4 −4820.2± 6226.4 1.08
2458055.9451 2017.8 7999 5740.7± 2885.2 1467.9± 2679.5 0.51
2458056.0141 2017.8 8022 −3328.8± 3928.2 1041.9± 4634.8 0.78
2458056.1950 2017.8 8040 −1100.9± 2079.8 1975± 2189 0.39
2458056.2640 2017.8 6501 1878.3± 2825.5 1951± 2751.8 0.51
2458064.5144 2017.8 5076 3229.8± 1555.8 1820.7± 1641.4 0.29
2458064.6954 2017.8 8409 951.4 ± 4248.1 2965.4± 3938.4 0.74
2458064.7644 2017.9 8410 810.5 ± 3432.7 3126.1± 3668.7 0.64
2458064.9454 2017.9 8381 3738.6± 3586.2 −4134.4± 1670.5 0.50
2458065.0144 2017.9 6965 −302.8± 2106.5 −234.6± 1824.8 0.36
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nou, F., Froeschlé, M. & Petersen, C. S. (1997b) The HIPPARCOS Catalogue.

A&A323:L49–L52.

Perryman, M. A. C., de Boer, K. S., Gilmore, G., Høg, E., Lattanzi, M. G., Lindegren,

L., Luri, X., Mignard, F., Pace, O. & de Zeeuw, P. T. (2001) GAIA: Composition,

formation and evolution of the Galaxy. A&A369:339–363.



185 BIBLIOGRAPHY

Pitjeva, E. V. (2005) High-Precision Ephemerides of Planets–EPM and Determination

of Some Astronomical Constants. Solar System Research 39:176–186.

Portell, J., Figueras, F., Fabricius, C., Lpez-Mart́ı, B., Luri, X., Jordi, C. & Torra,

J. (2006) Final revision of the GDAAS2 Large-Scale Test (LST). ”Gaia Technical

Note p. 72.

Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. (1992) Numerical

recipes in FORTRAN. The art of scientific computing. Cambridge: University

Press, —c1992, 2nd ed.

Ragazzoni, R. & Claudi, R. U. (1995) An unusual aberration of very large liquid

mirror telescopes. A&A297:L53.

Reasenberg, R. D., Babcock, R. W., Chandler, J. F., Gorenstein, M. V., Huchra,

J. P., Pearlman, M. R., Shapiro, I. I., Taylor, R. S., Bender, P., Buffington, A.,

Carney, B., Hughes, J. A., Johnston, K. J., Jones, B. F. & Matson, L. E. (1988) Mi-

croarcsecond optical astrometry - an instrument and its astrophysical applications.

AJ96:1731–1745.

Ribas, I., Arenou, F. & Guinan, E. F. (2002) Astrometric and Light-Travel Time

Orbits to Detect Low-Mass Companions: A Case Study of the Eclipsing System R

Canis Majoris. AJ123:2033–2041.

Russell, J. L., Lasker, B. M., McLean, B. J., Sturch, C. R. & Jenkner, H. (1990)

The Guide Star Catalog. II - Photometric and astrometric models and solutions.

AJ99:2059–2081.

Seidelmann, P. K. (1982) 1980 IAU theory of nutation - The final report of the IAU

Working Group on Nutation. Celestial Mechanics 27:79–106.

Seidelmann, P. K., Archinal, B. A., A’Hearn, M. F., Cruikshank, D. P., Hilton, J. L.,

Keller, H. U., Ost, J., Simon, J. L., Stooke, P., Tholen, D. J. & Thomas, P. C.

(2005) Report of the IAU/IAG Working Group on Cartographic Coordinates and

Rotational Elements: 2003. Celestial Mechanics and Dynamical Astronomy 91:203–

215.

Serraller, I., Fabricius, C., Portell, J., Figueras, F., Torra, J. & Jordi, C. (2007) IDT

implementation. ”Gaia Technical Note p. 45.



BIBLIOGRAPHY 186

Shao, M. (1998) SIM: the space interferometry mission. In: Proc. SPIE Vol. 3350, p.

536-540, Astronomical Interferometry, Robert D. Reasenberg; Ed. pp. 536–540.

Shapiro, S., Davis, J., Lebach, D. & Gregory, J. (2004) Measurement of the solar grav-

itational deflection of radio waves using geodetic very-long-baseline interferometry

data, 1979–1999. Phys. Rev. Lett. 92:121101.

Soffel, M., Klioner, S. A., Petit, G., Wolf, P., Kopeikin, S. M., Bretagnon, P., Brum-

berg, V. A., Capitaine, N., Damour, T., Fukushima, T., Guinot, B., Huang, T.-Y.,

Lindegren, L., Ma, C., Nordtvedt, K., Ries, J. C., Seidelmann, P. K., Vokrouh-
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Eṕıleg

M’acomiado amb unes paraules que a molts us semblaran extranyes per que, de

ben segur, seran familiars a la part de l’audiència que ja ha passat per aquest

trangul. No deixar-ne testimoni seria trair a la realitat, i no vull deixar a l’atzar

de la memoria taidora una part important de la lliçó que he après.

Encara que sembli un tòpic he acabat molt fart de tot plegat. No conservo

molts bons records dels darrers mesos, en els que he dedicat una bona part del

temps a la redacció d’aquesta tesi. Hi han hagut moments llargs, massa llargs,

de desesperació i ostracisme, on la muntanya semblava massa alta, la pendent

massa forta i el camı́ estava totalment desdibuixat. I he seguit endevant, no tant

per l’ilusió oblidada dels meus primers dies com a doctorant, sinó per l’inèrcia

d’una promesa: que des del capdamnunt estant, hom pot girar-se i satisfet

afirmar que el camı́ recorregut ha valgut la pena.

He arribat al capdamunt però era de nit. No puc explicar-vos les maravelles

del viatge perquè ara mateix estic massa cansat per mirar enrera. Només em

queden forces per estirar-me i contemplar el cel cobert d’estels, la guia, la musa.

Ara resta esperar que amb el pas dels dies, la boira d’aixequi i el sol m’inspiri

per rempendre de nou el camı́ amb la força i la serenitat perdudes.

Comença una nova etapa. O més ben dit, n’acaba una altra. Permeteu-me

doncs, aixecar el cap i mirar endevant amb optimisme i preguem perquè les

ferides obertes pel cinisme no tardin a cicatritzar.
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