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Abstract
The aimof this work is to investigate in-roomproton radiographies to compensate realistic rigid and
non-rigid transformations in clinical-like scenarios based on 2D–3Ddeformable image registration
(DIR) framework towards future clinical implementation of adaptive radiation therapy (ART).Monte
Carlo simulations of proton radiographies (pRads) based on clinical x-rayCT of a head andneck, and
a brain tumor patients are simulated for two different detector configurations (i.e. integration-mode
and list-mode detectors) including high and lowproton statistics. A realistic deformation, derived
from cone beamCTof the patient, is applied to the treatment planning CT. Rigid inaccuracies in
patient positioning are also applied and the effect of small,medium and largefields of view (FOVs) is
investigated. A stopping criterion, as desirable in realistic scenarios devoid of ground truth protonCT
(pCT), is proposed and investigated. Results show that rigid and non-rigid transformations can be
compensated based on a limited number of low dose pRads. The rootmean square error with respect
to the pCT shows that the 2D–3DDIR of the treatment planning CTbased on 10 pRads from
integration-mode data and 2 pRads from list-mode data is capable of achieving comparable accuracy
(∼90%and>90%, respectively) to conventional 3D–3DDIR. The dice similarity coefficient over the
segmented regions of interest also verifies the improvement in accuracy prior to and after 2D–3DDIR.
No relevant changes in accuracy are found between high and lowproton statistics except for 2 pRads
from integration-mode data. The impact of FOV size is negligible. The convergence of themetric
adopted for the stopping criterion indicates the optimal convergence of the 2D–3DDIR. This work
represents a further step towards the potential implementation of ART in proton therapy. Further
computational optimization is however required to enable extensive clinical validation.

Introduction

Proton computed tomography (pCT) is intensively investigated as a potential replacement for treatment
planning in proton therapy (Parodi 2014, Johnson 2017,Meyer et al 2019,Meyer et al 2021). The rationale relies
on the potential replacement of the empirically calibrated x-ray treatment planningCTwithmore accurate
tissue relative (towater) stopping power (RSP). The pCT is obtained bymeans of tomographic image
reconstruction of proton radiographies (pRads), as thewater equivalent thickness (WET)measured by the pRad
can bemodeled as the integral RSP along the proton trajectory. For this reason, themost promising detectors for
pCThave been conceived as combination and synchronization of trackers with an absorption detector to
measure theWET for each individual proton, so called in ‘list-mode’ (Schneider et al 2005, Schulte et al 2008).
Tracking systems typically consist of thin silicon strips upstream and downstream the object of interest.
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Individual ions are therefore tracked and fully absorbed. The absorption detector can be designed either as a
range telescopemade of a series of absorption layers interleaved by detection layers or as a single or segmented
calorimetermeasuring the energy loss and thus, the range of the energetic ions traversing the object of interest.
The residual energy or range is calibrated toWET relying on proper detector calibration. List-mode data are
defined by assigning theWET to the tracked ion (Sølie et al 2020). Simplified imaging prototypes composed by
only the absorption detector without tracking systemhave been proposed for pencil beams, typically referred to
as ‘integration-mode’ detectors. This detector configuration infers themixed residual energy or range
components of the pencil beam (due to lateral inhomogeneity) through either the total energy loss inmultiple
absorption and detection layers or the time resolved energy loss ofmultiple initial beam energies in a single thin
absorption and detection layer. Thesemixed components for each pencil beam can be resolved bymeans of
linear decomposition of the spatial signal (total energy loss inmultiple absorption and detection layers) or the
temporal signal (energy loss in a single thin absorption and detection layer). This way, information about range
variations due to lateral inhomogeneities can be retrieved. Relying on the calibration of the resolved components
toWET, aWEThistogram expressing the relative occurrence of eachWET component is obtained for each
pencil beam (Schneider and Pedroni 1995,Meyer et al 2017). Integration-mode data are defined by theWET
histogram assigned to the straight pencil beamdirection, as provided by the synchronization of the absorption
detector with the pencil beam scanning system. TheWEThistogram enables the computation of a weighted
meanWET (WETcomponents weighted by the relative occurrences and averaged) and amodeWET (WET
componentwith themost frequent relative occurrence), thus referring to integration-modemean andmode,
respectively.

The role of the Rads standalone has been pioneered in the context of treatment (range) verification already
in the 1990s (Schneider and Pedroni 1995). ThemeasuredWET can be compared to the expected one derived
from the calibrated x-ray CT and in case of relevantmismatches, the subsequent (or remaining) fraction of the
treatment delivery can be paused and the treatment planning CT can be repeated for re-planning.When
patient positioning verification is performed relying on in-room tomographic imaging prior to treatment
delivery, treatment adaptation is enabled, according to the commonly defined adaptive radiation therapy
(ART). Typically, x-ray cone beam computed tomography (CBCT) is mounted on rotating beam gantry,
nozzle, robotic arm and even the treatment couch, perpendicular to the therapeutic beam direction (Fattori
et al 2015, Landry andHua 2018). The deformation field expressing the inter-fractional anatomical changes
between the CBCT and the treatment planning CT is derived bymeans of deformable image registration
(DIR) (Peroni et al 2012, Landry et al 2015, Park et al 2015) based on tomographic (‘3D’) imaging, thus 3D–3D
DIR. The deformed treatment planning CT is then adopted to repeat the treatment planning. Alternatively,
when scatter correction is applied, the treatment planning is recalculated directly based on the CBCT (Kurz
et al 2016). If a rotating gantry is available, the pCT can be potentially adopted for patient positioning
verification (Cassetta et al 2019) (instead of the CBCT) and directly for treatment planning adaptation (instead
of the deformed treatment planning CT or the scattered corrected CBCT) in proton therapy. However,
geometrical and dosimetric constraints can prevent the rotation of the ion imaging detectors and thus a
proper tomographic image reconstruction (Gianoli et al 2014, Gianoli et al 2016). Therefore, a 2D–3DDIR
that adapts the treatment planning CT (‘3D’) to the pRads (‘2D’) is an attractive workflow to be explored,
which could relax demands on in-room integration of proton imaging and could considerably reduce imaging
dose for ART.

This study extends previous work using controlled transformations in analytical simulations of
anthropomorphic phantoms (Palaniappan et al 2020) to clinical-like scenarios based on two patient datasets. A
realistic deformation is derived fromaCBCTof the same patient and applied to the treatment planningCT to
investigate the compensation of inter-fractional anatomical changes with respect to the pRads. Rigid
transformations between the treatment planningCT and the pRads are also applied to provide the investigation
with the contribution of inaccuracies in patient positioning.Monte Carlo simulations of integration and list-
mode pRads are performed based on the x-rayCT. The extension of the investigation to realistic clinical-like
scenarios addresses also the development of stopping criteria, specifically intended to handle the convergence of
the 2D–3DDIR in absence of the ground truth pCT, and the implementation of computational optimization
(i.e. random sampling of the objective function computation), thus paving theway for envisioned
computational efficiency of the 2D–3DDIR algorithm towards future clinical application. In addition, the
influence of the compromise between proton statistics and number of pRads is studied to investigate the
accuracy of the 2D–3DDIRunder comparable imaging dose conditions. Finally, the role of the axialfield of view
(FOV) on the accuracy of the compensation of the rigid transformations, for different proton statistics, is
assessed.
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Materials andmethods

Clinical data andMonteCarlo simulations
A clinical x-rayCT of a head and neck cancer patient (patient#1 in the following) and a brain tumor patient
(patient#2 in the following) treatedwith intensitymodulated photon therapy at theDepartment of Radiation
Oncology at theUniversitätsklinikumder Ludwig-Maximilians-UniversitätMünchen are considered to
simulate different clinical-like scenarios. TheCT is converted to the ground truth pCT relying on a clinical-like
monotonic calibration curvemapping theHounsfieldUnits (HUs) of theCT intoRSPs. The ground truth pCT is
adopted in FLUKA-basedMonte Carlo simulations of pRads for list-mode and integration-mode detector
configurations in clinical-like pencil beam scanning, relying on a customized simulation framework (Meyer et al
2019). List-mode and integration-mode data are stored proton-wise and pencil beam-wise, respectively, for each
Rad angle and slice. For integration-mode data, themodeWET (theWET valuewithmaximumoccurrence) is
calculated from the obtainedWEThistogram. The nominal pencil beam energy is set equal to 199.44MeV and a
beam spot size of full width at halfmaximum equal to 8.5 mm is considered (Parodi et al 2012). For patient#1,
two different proton statistics of 400 and 10000 primary protons per pencil beam are considered, thus
corresponding to low andhigh imaging dose conditions. Small, intermediate and large FOVs are defined based
on the consideration of a different number of slices. The small FOV (10 slices, 3 cm) includes the lower part of
the brain and the nasal cavity. The intermediate FOV (20 slices, 6 cm) extends to the chiasm and the large FOV
(40 slices, 12 cm) includes also the upper part of the brain. For the large FOV, the physical dose for each pRad is
quantified as∼0.01mGy and∼0.26mGy, for low and high proton statistics, respectively. For patient#2, only
the low imaging dose condition in combinationwith the small FOV is considered. Geometrical parameters
adopted inMonteCarlo simulations of pRads are summarized in table 1.

Investigated clinical-like scenarios
A realistic deformation field is obtained bymeans of 3D–3DDIR of the clinical x-rayCT to aCBCT, acquired for
patient positioning verification prior to treatment delivery. TheCBCT is selected according to the largest time
distance (i.e. seven and threeweeks for patient#1 and patient#2, respectively)with respect to the x-ray CT.
Subsequently, each component of the deformation field ismultiplied roughly by a factor of 2 to amplify the
anatomical changes while keeping them realistic. The deformation field is then applied to the ground truth pCT
to reproduce inter-fractional anatomical changes in the treatment planningCT. The treatment planningCT,
originally calibrated as the ground truth pCT, is providedwith typical calibration inaccuracies by applying
controlled RSP inaccuracies to the (accurate) calibration curve. The inaccuracies are randomly sampled from a
uniformdistribution limitedwithin±0.05 (Gianoli et al 2020). Rigid transformations are also considered, thus
eventually complementing the anatomical changes with the contribution of inaccuracies in patient positioning
(i.e. couch and pillow alignment). The treatment planningCT is either translated by 6 pixels along latero-lateral
and cranio-caudal directions or rotated by 5° for rigid transformations.

For list-mode data, only the 2 pRads are selected due tomemory limitation (250GB), whereas for
integration-mode data each of the 10 pRads are considered (table 1). Relying on integration-mode data from
patient#1, the effect of large,medium and small FOVs on the accuracy of the compensation of the rigid
transformations is investigated.Moreover, for small FOV, the high proton statistics is progressively reduced
while increasing the number of pRads, thus investigating the compromise under comparable imaging dose
conditions. Proton statistics reduction is implemented as a random selection of the proton trajectories for each
pencil beam and the increasing pRads are selectedwhilemaximizing the angular separation. The imaging dose is
thereforemaintained approximately constant.

Anoverviewof the 2D–3DDIR framework considering investigated clinical-like scenarios is shown infigure 1.
Relying on the results of our previouswork (Palaniappan et al2020), the normalizedmutual information is
adopted as ametric in radiographic domain,wherefixed image are thepRads and themoving image is the

Table 1.Geometrical parameters adopted inMonte Carlo simulations of pRads.

Geometrical parameters

Patient data Patient#1 Patient#2

Pixel size 0.1074×0.1074 cm 0.1074×0.1074 cm
Slice thickness 3 mm 3 mm

Image size 314×314 pixels 314×314 pixels
Number of slices 10, 20, 40 10

Rad angles 0°, 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°, 90°, 100°, 110°, 120°, 130°,
140°, 160°, 170°

0°, 20°, 40°, 60°, 80°, 90°, 100°, 120°,
140°, 160°
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treatment planningCT, calibrated according to both accurate or inaccurate calibration curves.Within each
iteration of the 2D–3DDIR, the treatment planningCT is compensatedby theoptimized deformationfield and the
corresponding radiographies are calculated according to the specific forward-projectionmodel of the detector
configuration (Palaniappan et al2020). The Frobenius norm (orEuclideannorm)of the Jacobian of the
deformationfield (FNorm) is proposed as ametric to define a stopping criterion of the iterative optimization
(Peroni et al2016). As the Jacobian of the deformationfield is thematrix of thefirst-order partial derivative of the
deformations (Vercauteren et al 2013), it carries information about the local smoothness of thedeformationfield.
Therefore, its normcorrelateswith the global smoothness of thedeformationfield. The2D–3DDIR foresees 15
iterations in 3 stages at 64, 32 and16 as grid spacing, completed only for integration-modedata. In each stage, the
global parameters of the rigid transformation are taken over by the local parameters of thenon-rigid
transformation,which represents a challenge for thedeveloped algorithm.The stages for list-modedata are limited
to two, due to computational time (fewdays for high proton statistics). Relying on the integration-mode data from
patient#1, a randomsampling of the objective function computation is implemented and investigated to
optimize the computational performance of the optimization algorithm (Klein et al 2007).

Performance quantification
The performance of the 2D–3DDIR is evaluated in comparison to the conventional 3D–3DDIR of the
accurately or inaccurately calibrated treatment planningCTwith the ground truth pCT, providedwith the same
registration parameters as the 2D–3DDIR. Relying on the ground truth pCT (excluding air, treatment couch
and patient pillow), the RMSE (intensity-based in image domain) and the dice similarity coefficient (volume-
based) are adopted asmetrics for accuracy quantification. Relying on clinical segmentation of regions of interest
(including organs at risk) on the ground truth pCT, the left and right eyes, brain and brain stem are chosen for
the volume-based quantification for patient#1. To do that, the regions of interest are deformed according to the
obtained rigid and non-rigid transformations.

Results

Rigid transformations
The intensity-based quantification in function of the iterationswhen compensating the rotation and translation
from integration-mode data using 2 pRads and 10 pRads is shown infigure 2 for patient#1 (infigure A1 for
patient#2). The compensation of the applied transformations from list-mode data using 2 pRads are shown in
figure 3 for patient#1 (infigure A2 for patient#2). The volume-based quantification in function of the stages
when compensating the rotation and translation fromboth list-mode and integration-mode data is reported in
appendix (figures A5 andA6). The small difference between the two proton statistics, appreciable with 2 pRads,
vanishes with 10 pRads. This difference is not necessarily in favor of the high proton statistics (figure 2(c)). The
impact of the inaccurate calibration of the treatment planningCT results negligible.

Figure 1.Anoverview of the proposed 2D–3DDIR framework investigated in clinical-like scenarios.

4

Phys.Med. Biol. 67 (2022) 045003 PPalaniappan et al



Non-rigid transformations
The compensation of the applied deformation and the combination of rigid (translation and rotation) and non-
rigid (deformation) transformations for integration-mode data frompatient#1 and patient#2 is reported in
figures 4 and 5 respectively. The corresponding compensation from list-mode data is shown infigures 6 and 7,
respectively. List-mode data achieve the accuracy of the conventional 3D–3DDIR for patient#1 and remains
inferior to the conventional 3D–3DDIR for patient#2. Conversely, integration-mode datawhen compensating
the deformation do not accurately converge with 2 pRads but tend to approach the accuracy of the conventional
3D–3DDIRwith 10 pRads, although remaining less stable and less accurate. The impact of the proton statistics
and the inaccurate calibration of the treatment planningCT results negligible in a similar way to the
compensation of rigid transformations. The volume-based quantification in function of the stages for the
compensation of the applied deformation is reported in appendix (figure A7 for integration-mode data and list-
mode data). The overlay of ground truth pCT and calibrated treatment planningCTprior to and after 2D–3D
DIRwhen compensating the combination of rigid and non-rigid transformations for both patients is shown in
figure 8.

Figure 2.Compensation of the rotation in patient#1 by using 2 (a) and 10 (b) pRads and the applied translation in patient#1 by using
2 (c) and 10 (d) pRads from integration-mode data for low andhigh proton statistics (400 P and 10000 P, respectively), assuming as
moving image either the accurately (‘acc’) or the inaccurately (‘inacc’) calibrated treatment planningCT.

Figure 3.Compensation of the rotation (a) and translation (b) in patient#1 by using 2 pRads from list-mode data for low and high
proton statistics (400 P and 10000 P, respectively), assuming asmoving image either the accurately (‘acc’) or the inaccurately (‘inacc’)
calibrated treatment planningCT.
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Stopping criteria
The FNormwhen compensating both rigid and non-rigid transformations is reported infigures 9(c) and (d) for
10 pRads and 2 pRads from integration-mode data, respectively, and infigure 10(b) for 2 pRads from list-mode
data for patient#1. The corresponding RMSE calculatedwith respect to the ground truth pCT is shown in
figures 9(a) and (b) for integration-mode data and infigure 10(a) for list-mode data for patient#1. The FNorm

Figure 4.Compensation of the applied deformation in patient#1 by using 2 (a) and 10 (b) pRads and the combination of rigid and non-
rigid transformations in patient#1 by using 2 (c) and 10 (d) pRads from integration-mode data for low andhigh proton statistics
(400 P and 10000 P, respectively), assuming asmoving image either the accurately (‘acc’) or the inaccurately (‘inacc’) calibrated
treatment planningCT.

Figure 5.Compensation of the applied deformation in patient#2 by using 2 (a) and 10 (b) pRads and the combination of rigid and non-
rigid transformations in patient#2 by using 2 (c) and 10 (d) pRads from integration-mode data for low proton statistics (400 P),
assuming asmoving image either the accurately (‘acc’) or the inaccurately (‘inacc’) calibrated treatment planningCT.
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starts to increase after the RMSE reaches a plateau (rigid transformations) or aminimum (non-rigid
transformations). Similar trend is noticed for patient#2 infigures A3 andA4 for integration-mode and list-
mode data, respectively.

Investigated clinically orientated parameters
The intensity-based quantification as a function of the iterationswhen compensating the translation for large,
intermediate and small FOVs is reported infigure 11. At low proton statistics, no remarkable differences are
observedwithin different FOVs and between the accurate and inaccurate calibrated treatment planningCT. At
high proton statistics, the larger FOV seems to benefit the accuracy; however, the smaller FOV in combination
with the inaccurate calibrated treatment planningCTperforms similar to the large FOV. Results for different
random sampling of the objective function computation in the iterative optimization of the 2D–3DDIR are
summarized infigure 12(a). A random sampling equal to 30%guarantees the accuracy of the full samplingwith a
13.5% computation time reduction of the objective function. The impact of proton statistics with respect to
progressively increasing number of pRads is reported infigure 12(b). By keeping the imaging dose constant
(corresponding to the high proton statistics), themaximization of the Rad angles demonstrates to improve the
accuracy of the 2D–3DDIR.

Discussions

The results of this work confirm and complement previousfindings of Palaniappan et al (2020) in realistic
clinical-like scenario. As expected, the list-mode outperforms the integration-mode in terms of achievable
accuracywhen compensating both rigid and non-rigid transformations in different patient datasets. The
obtained accuracywhen compensating the combination of rigid and non-rigid transformations for patient#1
using 2 pRads from list-mode data (RMSE equal to 0.0605) and 10 pRads from integration-mode data (RMSE
equal to 0.0638) is comparable to conventional 3D–3DDIR (RMSE equal to 0.0551). However, the accuracy of

Figure 6.Compensation of the deformation (a) and the combination of rigid and non-rigid transformations (b) in patient#1 by using 2
pRads from list-mode data for low and high proton statistics (400 P and 10000 P, respectively), assuming asmoving image either the
accurately (‘acc’) or the inaccurately (‘inacc’) calibrated treatment planningCT.

Figure 7.Compensation of the deformation (a) and the combination of rigid and non-rigid transformations (b) in patient#2 by using 2
pRads from list-mode data for lowproton statistics (400 P), assuming asmoving image either the accurately (‘acc’) or the inaccurately
(‘inacc’) calibrated treatment planningCT.
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2 pRads from integration-mode data (RMSE equal to 0.0929) is slightly inferior. The attained accuracy using 2
pRads from list-mode datawhile compensating standalone rigid or non-rigid transformations is comparable to
conventional 3D–3DDIR. For patient#1, the anatomical changes derived from theCBCT shows a large setup
error to be compensated, besides anatomical (figure 8), so that the 2 pRads for list-mode data capture theirmajor
components (figure 6(a)). For patient#2 instead, the list-mode remains superior compared to integration-
mode but not able to keep upwith the 3D–3DDIR, especially when compensating the deformation (figure 7(a)).
The anatomical changes derived from theCBCTof this patient data arewidespreadwithin the brain and nasal
cavity (figure 8). Therefore, the 2 pRads for list-mode data does not fully compensate for the anatomical changes.

Figure 8.Overlay of the ground truth pCT and the calibrated treatment planningCT, prior to (a), (f) and after (for the different stages)
2D–3DDIR compensating the combination of rigid and non-rigid transformations for high proton statistics (patient#1) and low
proton statistics (patient#2), and accurately calibrated treatment planningCT. Along the rows, 2 pRads from list-mode data (b), (g),
10 pRads (c), (h) and 2 pRads (d), (i) from integration-mode data and the conventional 3D–3DDIR (e), (j) for patient#1 and patient
#2.
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Proton statistics do not play a crucial role for list-mode data as well as for integration-mode data. The
stability of the results is affected by the limited amount of information provided by integration-mode data,
especially for 2 pRads. In compensating rigid transformation, the redundant information provided by larger
FOVs is expected to provide better accuracy. Different from local deformations, the rigid displacement involves
the entire patient/couch.However, the influence of redundant information is observed only for high proton
statistics, with exceptionwhen combining the small FOVwith the inaccurately calibrated treatment planning
CT. The typical calibration inaccuracies do not negatively affect the 2D–3DDIR for both patients. Similar to
what observed in previous work (Palaniappan et al 2020), the reduced accuracy of the information enables the
searching space of the 2D–3DDIR to broaden. In this work, this effect penalizes the benefit of a higher proton
statistics over a lower proton statistics when only 2 pRads are provided,makes irrelevant larger FOVs over
smaller FOVs in low proton statistics and plays a positive role with smaller FOV in presence of additional
inaccuracies in high proton statistics. TheMonte Carlo simulation of pRadswas in a clinically acceptable
imaging dose level. The imaging dose of 180 pRads ismuch lower than the commercial x-ray tomography
(Meyer et al 2019).

Figure 9.Evaluation of intensity-based quantification compensating the translation, rotation, deformation and the combination of rigid
and non-rigid transformations in patient#1 by using 10 (a) and 2 (b) pRads and the corresponding FNorm (c) and (d) (including air,
treatment couch and patient pillow) from integration-mode data for high proton statistics, assuming asmoving image accurately
calibrated treatment planningCT.

Figure 10.Evaluation of intensity-based quantification compensating the translation, rotation, deformation and the combination of
rigid and non-rigid transformations on patient#1 by using 2 pRads (a) and the corresponding FNorm (b) (including air, treatment
couch and patient pillow) from list-mode data and for lowproton statistics, assuming asmoving image accurately calibrated treatment
planningCT.
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The superiority of list-mode data is computationally limited to perform infiner grid spacing thus unable to
foresee themaximumachievable accuracy. Around 30% random sampling of the objective function
computation is sufficient to achieve the same accuracy as for 2D–3DDIRwith full sampling (100%). Further
reductions (15%or 10% random sampling) require additional iterations to achieve comparable results of the full
samplingwith a reduction in computation time of∼28%or∼48%.The latter improvement contributes as
∼11%of the overall 2D–3DDIR computation time, which includes the transformation of the compensated
image (i.e. B-spline parameterization) and the analytical calculation of the corresponding radiographies (i.e.
forward-projection). Therefore, in combinationwith the random sampling of the objective function
computation, specific optimization of the computational efficiency relevant to the constitutional elements of the
2D–3DDIR framework is required. Specifically, the rigid transformation could be retained to the first stage of
the registration, thus being disentangled by the non-rigid transformation in the subsequent stages. This is
expected to provide an alternative to the combination of both rigid and non-rigid transformations within each
stage of the deformable image registration algorithm, aiming at faster convergence.

InDIR, the stopping criteria aremainly determined by setting amaximumnumber of iterations as a
parameter of the optimization algorithm.When the stability of the convergence of the 2D–3DDIR degrades
with iterations due to limited amount and accuracy of the information provided by the pRads, stopping criteria
alternative to amaximumnumber of iterations are necessary. The FNormdemonstrates to be indicative of the
convergence of the optimization algorithm and the FNorm in function of iterations remains approximately
constant until a break-up point (i.e. when it starts increasing). This break-up point could be unequivocally
identified as an abrupt change in thefirst derivative of the FNorm trend, correlatingwith an unwanted
deterioration of the smoothness of the deformation field.When compensating rigid transformations from list-
mode data, the FNormdoes not increase, as the optimization algorithm robustly converge to the applied
deformation fieldwithout deteriorating in function of iterations. Therefore, the eventual deterioration,
identifiable by the FNorm trend, depends on the amount and the accuracy of the information provided by the
pRads.Moreover, the FNorm is put forward to solve the ambiguity in previous findings (Palaniappan et al 2020)
of the disagreements between theRMSE and the dice similarity coefficient with respect to the ground truth pCT.

Figure 11.Compensation of the translation in patient#1 by using 2 pRads from integration-mode data with different FOVs for high
(a) and low (b) proton statistics (400 P and 10000 P, respectively), assuming asmoving image either the accurately (‘acc’) or the
inaccurately (‘inacc’) calibrated treatment planningCT.

Figure 12.Compensation of the applied translation in patient#1 by using 10 pRads from integration-mode data with different
random sampling of the objective function computation (a). Comparison between proton statistics reduction and increasing of the
number of pRads (b).
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When the 2D–3DDIR is far from convergence (especially in the second stage), the RMSE can improvewhile the
dice similarity coefficient can decrease. In these cases, the RMSEdemonstrates better correlationwith FNorm
than the dice similarity coefficient.

Conclusion

In this work, a 2D–3DDIR for adapting the treatment planningCT to applied realistic anatomical changes
complemented by rigid transformations is investigated for a clinical head and neck tumor and a brain tumor in
two patient datasets. A limited number of low dose proton radiographies are considered as in-room imaging.
Theworks demonstrates the feasibility of the 2D–3DDIR for an adaptive workflow in presence of realistic inter-
fractional anatomical changes. The influence of ideal integration- and list-mode detector configurations is
largely perceptible in terms of accuracy, unlike the negligible impact of proton statistics. In integration-mode,
themaximization of the number of pRads plays themajor role over the proton statistics. Despite the effort to
minimize the clinical gap using a dedicated stopping criterion and improving the computational efficiency
through random sampling of the objective function, further computational optimization of the 2D–3DDIR is
required to achieve themaximum convergence for list-mode data. In future, this computationally optimized
framework is expected to enable an extensive clinical validation of the 2D–3DDIR inART.
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Appendix

Figure A1.Compensation of the rotation in patient#2 by using 2 (a) and 10 (b) pRads and the applied translation in patient#2 by
using 2 (c) and 10 (d)pRads from integration-mode data for lowproton statistics (400 P), assuming asmoving image either the
accurately (‘acc’) or the inaccurately (‘inacc’) calibrated treatment planningCT.

11

Phys.Med. Biol. 67 (2022) 045003 PPalaniappan et al



Figure A2.Compensation of the rotation (a) and translation(b) in patient#2 by using 2 pRads from list-mode data for low proton
statistics (400 P), assuming asmoving image either the accurately (‘acc’) or the inaccurately (‘inacc’) calibrated treatment planningCT.

Figure A3.Evaluation of intensity-based quantification compensating the translation, rotation, deformation and the combination of
rigid and non-rigid transformations in patient#2 by using 10 (a) and 2 (b) pRads and the corresponding FNorm (c) and (d) (including
air, treatment couch and patient pillow) from integration-mode data for low proton statistics, assuming asmoving image accurately
calibrated treatment planningCT.

Figure A4.Evaluation of intensity-based quantification compensating the translation, rotation, deformation and the combination of
rigid and non-rigid transformations in patient#2 by using 2 pRads (a) and the corresponding FNorm (b) (including air, treatment
couch and patient pillow) from list-mode data and for lowproton statistics, assuming asmoving image accurately calibrated treatment
planningCT.
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Figure A 5.Dice similarity coefficients for the ROI prior to and after 2D–3DDIR (in comparison to conventional 3D–3DDIR) for
patient#1, based on the accurately calibrated treatment planningCT, when compensating the rotation by using 2 and 10 pRads from
both integration- and list-mode data, andwith low (400 P) and high (10000 P) proton statistics, for each of the three stages. The ROI
of segmented organs corresponds to left eye (a), right eye (b), brainstem (c) and brain (d).

Figure A 6.Dice similarity coefficients for the ROI prior to and after 2D–3DDIR (in comparison to conventional 3D–3DDIR) for
patient#1, based on the accurately calibrated treatment planningCT,when compensating the translation by using 2 and 10 pRads
fromboth integration- and list-mode data, andwith low (400 P) and high (10000 P) proton statistics, for each of the three stages. The
ROI of segmented organs corresponds to left eye (a), right eye (b), brainstem (c) and brain (d).
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