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Chapter 1

Introduction

The Importance of Renewable Energy

The ever growing appetite of the world population for energy, to fuel its social and economic
development, has put an increasing stress on Earth climate system due to the emissions of green-
house gases originated in the larger part from the use of fossil fuel energy sources such as coal,
oil and gas. In addition to these environmental concerns, geopolitical constraints have also been
a factor to consider in the security and sustainability of the energy supply.

This is the background, described byOwusu andAsumadu-Sarkodie (2016), where alternative
sources of energy such as hydro, geothermal, wind, ocean or solar have gained prominence as
means to satisfy energy demand. Solar in particular can be used in different ways, either to
produce thermal energy or using the photovoltaic (PV) technology to produce electricity. These
renewable energy sources (RES) are considered to be clean in the sense that they don’t produce
greenhouse gas emissions, only generate minimal waste and can be a mitigation for the global
emissions keeping the global warming within reasonable limits.

The European Union roadmap and strategy addressing sustainable development, climate tar-
gets and environment goals is depicted in the European Green Deal reviewed by Wolf, Teitge,
Mielke, Schütze, and Jaeger (2021) and Fetting (2020). The main goal of this policy is to achieve
a net carbon neutral European Union by 2050 while decoupling economic growth, essential for a
prosperous society, from natural resources use. Within this framework, some key areas are iden-
tified, highlighting the need to supply clean, affordable and secure energy as specially relevant for
this work. The need for a transition to clean energy sources is recognized with smart technology
as a key enabler to smart grids, hydrogen and other renewable energies.

The decarbonization of energy is a key block towards reaching the climate objectives in 2050
considering that the production and utilization of energy accounts for more than 75% of green-
house gas emissions in EU. The vision is then for an electrical sector based on renewable sources
with the fast phase out of coal and gas, used for complement in the transition.

The Value of Forecast

One of the main barriers to the general deployment of RES, according to Anees (2012),
is their variable nature, determined by the weather, which makes power grid integration a very
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challenging task to keep a reliable and cost-effective supply; this is different behavior to traditional
fossil fuel based generators that have the ability to adjust their output based on market incentives.
Such behavior can originate power fluctuations on the network operation, instability leading to
fault conditions or unacceptable voltage fluctuations in weaker nodes of the grid.

Additionally, in a free-market context, the value of variable renewable energy (VRE) sources
is determined by three different aspects summarized by Hirth (2013): the supply is variable and
its value depends on the time of generation; the primary resource (wind, sun) is bound to some
locations so transmission and distribution constrains mean its value depend on the generation
location; finally, the output is uncertain until produced although plants commit to that production
the day before delivery. The latter remark is the main driver for this work because it means that
forecast errors from VRE power plants need to be balanced and compensated for by the grid
operator at short notice, typically by using backup generators which are costly thus reducing the
market value of renewable energy.

The aforementioned study highlights predictability and improved forecast models for pho-
tovoltaic production in solar power plants as an actual benefit which is recognized by the market
as smaller penalties, due to the fact that less balancing is needed. In a basic perspective, the pro-
ducer communicates the 24-hour ahead production to the market operator; in the final market
settlement, the producer will be rewarded for the energy sold and penalized for the difference be-
tween expected and real energy delivered. Producers that have newly commissioned solar farms
on their portfolio expect to have accurate power forecast from day one. Effectively, power fore-
casts are used to ensure the efficient management of the electric grid as well as in power trading
operations, making this problem particularly interesting and pressing, namely on the accuracy of
forecasting results. On one hand, forecast is crucial for energy market operations where produc-
ers are penalized by deviations related to the difference between what they expect to produce
and what they actually delivered. On the other hand, power forecast is also an important tool for
anomaly, drift or fault detection in the elements of photovoltaic installations as shown by Leva,
Mussetta, and Ogliari (2018). It is also useful to ensure appropriate (predictive) maintenance and
to guarantee the optimization of the deployment of operational teams to the field.

Solar photovoltaic forecast models have traditionally been based on mathematical model-
ing of the physical components but recent improvements in computational power has enabled
data-driven approaches leveraged by machine learning algorithms. While these approaches have
found success, building a PV forecast model for a power plant that is just starting its operation,
i.e., without representative historical production data records, remains an illusive problem often
referred to as a cold-start problem.

Goals of the Thesis

In the context of this thesis, the (sparse) known information about each plant is composed
of the farm location, the installed power of PV generators and the electrical characteristics of
the panels and inverters. Additionally, data originated in similar PV power plants is also available
for the purpose of the study, opening an interesting possibility to evaluate the applicability of
the transfer learning paradigm in order to improve the quality of the forecast thus resulting in
economical benefit to the producer. For this work, the goal is to develop 10-days ahead hourly

2



production forecasts.
A final note to mention that the work described in this thesis is developed in collaboration

with Smartwatt, a Portuguese company that develops artificial intelligence, engineering and mon-
itoring systems aiming for energy resource optimization. The construction and validation of the
forecast model was supported with data provided by Smartwatt from photovoltaic power plants
currently in operation.
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Chapter 2

Literary Review

2.1 Forecast Models
The forecast models typically used for prediction tasks are generally classified in two main

groups: physical models and data-driven models. Recently, new approaches have been proposed,
effectively combining these two types of models into hybrid models as shown by Xiao, Xu, He,
and Sha (2022).

2.1.1 Physical Models
The physical models are based on the comprehensive mathematical modeling and analysis

of the physical processes responsible for some phenomenon. These models are built in a very
detailed manner describing all physical inputs and relations of the system, typically yielding high
accuracy predictions. Due to this explicit coding of physical mechanisms through equations,
physical models are also known as white-box models which is connected to the transparency of
the underlying estimates. The biggest disadvantage of this type of model consists in the fact
that they rely on very accurate information about a big amount of system parameters which are
often inaccessible; this inherent complexity often makes the development slow and simulations
computationally expensive according to Wei et al. (2018).

A physical model for the electrical production of a PV power plant is proposed by Stanev
and Tanev (2018) where a mathematical model is built based on a structural approach including
the PV generator, DC link and inverter; the results are validated and accuracy is evaluated against
measured data from a real PV plant.

Ma, Yang, and Lu (2014) present different mathematical models to characterize the equiva-
lent circuit of photovoltaic devices, from the cell to module and array. The ideal model doesn’t
take into account the effect of internal series and parallel resistances thus not being suitable for
real-world modeling being seen instead as a step towards more complex models. One and two-
diode models are also presented. The one-diode model, with 5 parameters modeling the internal
resistances, was selected as a compromise between accuracy and required computational power.
The parameters of the model were estimated in MATLAB using the Levenberg-Marquardt algo-
rithm. The results were validated against field data considering three cases of sunny, semi-cloudy
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and cloudy day using the RMSE and Mean Bias Error (MBE) metrics.
Another mathematical model for the power generation through photovoltaic panels is pro-

posed by Hassan, Jaszczur, and Przenzak (2017). This work describes the calculation of solar
radiation components (based on the time of the day, longitude and accounting for the obliquity
and eccentricity of Earth’s orbit), extraterrestrial solar radiation on an horizontal surface (based
on latitude, declination and solar constant radiation), diffuse radiation (considering the division
of total radiation in direct and diffuse components through the clearness index) and the incident
solar radiation on PV array (accounting for the slope of the PV model, ground reflectance or
albedo, the anisotropy index and ratio of beam radiation on tilted to horizontal surface consider-
ing the surface azimuth angle). The total solar radiation incident on the surface of the PVmodule,
calculated through the steps described before, is then used to predict the electrical power gener-
ated considering the rated capacity of the module and a derate factor which takes into account
additional loss factors like snow, electrical losses or shading for instance.

Another example, motivated by the high cost of collecting wind data, is presented by Al-
Yahyai, Charabi, and Gastli (2010) showing the development of Numerical Weather Prediction
(NWP) models for wind resource assessment; these models typically solve the equations char-
acterizing the physical processes of the atmosphere determining their evolution through time, if
the initial condition is known.

This type of models is also used in the context of building energy consumption prediction, for
instance byWei et al. (2018): themodel includes all the details regarding the building construction,
the thermal characteristics, ventilation, air conditioning systems, occupancy and all other that are
deemed relevant to predict the overall consumption of electricity.

2.1.2 Data-Driven Models
With the growing deployment of real-time measuring systems and sensors, data-driven mod-

els have been proposed to tackle forecast problems by using historical data (of the target variable
and sometimes also other relevant features) to generalize a relationship between the inputs and
the outputs with no regard for the underlying physical process. This simplicity constitutes both
an advantage when it comes to the speed of development but it also produces models that are
less explainable thus called black-box models.

According to Bourdeau, Zhai, Nefzaoui, Guo, and Chatellier (2019), these models are devel-
oped in three generic stages where three different datasets, containing historical data, are used.
The first one consists in training the algorithm to adjust its parameters to optimize the fit with the
train set. Next, the validation dataset is used to provide an unbiased evaluation of the algorithm
while tuning the model hyperparameters and possibly enforcing some variable selection. Using a
different dataset will help to reduce the risk of overfitting the model, a phenomenon that occurs
when the model performs well on the train set but then fails to produce good predictions with
other sets. Finally, the test stage provides an unbiased evaluation of the modeling and forecast
power of the algorithm and no tuning of model occurs. The description of this process highlights
one of the downfalls of this type of models which occurs when there’s not enough historical data
which will be detrimental in the accuracy of the algorithm; this situation is common in the initial
stage of operation of a building or another equipment.
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Data-driven models can be developed with two main lines. The first is a statistical approach
based on regression techniques, linear or multivariate, like autoregressive integrated moving av-
erage (ARIMA). The second approach is based on machine learning (ML) methods which can
include algorithms such as artificial neural networks (ANN), support vector machines (SVM),
decision trees (DT), random forest, classification and regression trees (CART) and deep learning
like long-short termmemory networks (LSTM).Wang and Srinivasan (2017) propose a distinction
between single (use single algorithm for forecast process) and ensemble methods (combination
of different algorithms to handle their weaknesses and strengths).

Monteiro, Fernandez-Jimenez, Ramirez-Rosado, Muñoz-Jimenez, and Lara-Santillan (2013)
provide a comparison of two different short-term statistical forecasting models applied to the
hourly production of photovoltaic power plants with both using past production data and NWP
forecasts at the plant location as input. Then, the first model is based on multiplicative decompo-
sition, adjusting the clear sky irradiation (deterministic component) with a PV production atten-
uation index calculated from the weather variables forecast. The second model uses a multilayer
perceptron neural network (MLP) as base model which is optimized using a genetic algorithm
(GA) to determine the input variables (from all the possibilities provided by the NWP model)
and also to determine the number of neurons in the hidden layers and the backpropagation train-
ing algorithm parameters. Both models, although distinct in nature, achieve similar results for
day-ahead predictions thus stressing their applicability to define offer bids for the PV production
in the spot electricity market while contributing to the profitability of the PV park by reducing
the economic penalties originated by the deviations between bids and real production.

Sala et al. (2019) benchmark different algorithms in the problem of PV forecast: Linear
regression, Lasso regression (forces feature selection penalizing features with smaller impact on
forecast error), Random Forest, MLP, KNN regressor and LSTM. The results, evaluated with
MAE, RMSE, MBE and R2, show that Lasso and Linear regression outperform more flexible
algorithms in short-term horizons; on the other hand, LSTM algorithm seems more suited when
considering longer time into the past for the prediction. Some caution is advised on generalizing
the best algorithm since PV forecast depends on many variables such as horizon, granularity,
input data or geographical location for instance.

2.1.3 Hybrid Models
Hybrid models are often referred to as grey-box models since they combine physical white-

boxwith data-driven black-boxmodels in order to produce forecasts; in some particular scenarios,
where the physical simulation is too complex or the input data is not enough for the learning
process, it’s mentioned by Xiao et al. (2022) that these models can provide better results.

The merge between physical and data-driven models can follow three distinct strategies listed
by Foucquier, Robert, Suard, Stéphan, and Jay (2013). The first one has the largest focus on the
physical model using the data to estimate variables of the system that are either unknown or not
accessible. Secondly, the data approach can be used to simplify the typical complexity of physical
systems. Finally, the most flexible composition uses the physical and data-driven component in
different places of the model, depending on the suitability of each one; Xiao et al. (2022) cites
three ways to achieve this: sequence (using the models in order with the solution of the first
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one used as input to the second), parallel (the order to use models is not relevant, both will
compound the final solution) and feedback (one model has the main role to produce solutions
while the second model helps to modify it).

The biggest advantages of hybrid models is that they allow considering limited amount of
input data, may use only a rough physical description of the system and retain the physical ex-
plainability for the results; on the downside, computational time may be large to compute both
approaches and some difficulties emerge when mixing two distinct scientific domains.

This kind of models is applicable for instance in the problem of predicting short-term wind
speed where, according to Giebel et al. (2011), the physical models (trying to hold physical con-
siderations as long as possible to reach the best possible estimate) can be used in conjunction
to a statistical approach in order to produce successful forecasts. It’s concluded that the best
approaches are grey-box models where some knowledge of the wind power properties can be
used to tune the models to the specific domain or site.

The potential of these models is further demonstrated by Ferreira, Santos, and Lucio (2019)
where two different statistical models are used to produce the mean hourly wind speed in two dif-
ferent locations, one coastal and another with more complex topographic features. The first one
is based in Holt-Winters model which contains four smoothing elements (level, linear, trend and
seasonal) and a random error component; these are estimated through the exponential (weighted
arithmetic mean with weights decreasing into the past) smoothing (less variations in time series)
method. This model can come both in multiplicative and additive form; the two were used to
avoid negative values without physical meaning in the forecast speeds. The second is based on
an ANN trained with the backpropagation algorithm to adjust the weights of the network that
optimize the error between forecast and observed values. Finally, an hybrid approach was also
implemented, using R package forecastHybrid, that resulted in the combination of three models:
a univariate neural network, a model based on Seasonal and Trend decomposition using Loess
(STL) and a exponential smoothing model with Box-Cox transformation, Autoregressive Moving
Average (ARMA) and seasonal/rend components. The hybrid approach proved to have the best
fit with the time series capturing the variability in the diurnal cycle satisfactorily.

Methods Training Data Physical Interpretation
Physical No data required for develop-

ment; may be used for valida-
tion.

Results can be interpreted in
physical terms.

Statistical A large amount of training
data, collected over an exhaus-
tive and representative period
of time, is typically required.

There are several difficulties
to interpret results in physical
terms.

Hybrid A small amount of training
data, collected over a short pe-
riod of time, is usually suffi-
cient.

Results can be interpreted in
physical terms.

Table 2.1: Summary of the characteristics of each model type adapted from Giebel et al. (2011).
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2.2 Cold Start Problem
The rise of Artificial Intelligence (AI) techniques for the development of forecast models has

put in evidence the so-called cold start problem. In fact, these methods generally use big datasets
in order to build the forecast models meaning that there’s a difficult challenge in creating a model
when suitable data is not available. Formally, the cold start problem occurs in computer-based
information systems that require data as forecast model input, when such system cannot build
the required inferences due to the scarce information about users or items, according to Jihoon,
Junhong, Pilsung, and Eenjun (2020). In other words, the generic cold start problem is related
with the sparsity of information that is available to the learning algorithm.

In the context of photovoltaic power production, this problem is relevant to forecast electric-
ity production in new solar farms where enough historical and relevant data hasn’t been acquired
thus representing an obstacle to the deployment of regular data-driven forecast models.

2.2.1 Examples
Lika, Kolomvatsos, and Hadjiefthymiades (2014) show that the area of recommender sys-

tems is a very important application facing the cold start problem due to the difficulty in making
recommendations for new users or items without the relevant historical background to guide the
solution. In this context, the problem can include recommendations for new users, recommen-
dations for new items or recommendations of new items to new users. This paper proposes the
integration of a classification task in the commonly used collaborative filter approach, leveraging
demographic features to identify users with similar behaviors.

Aguilar, Munoz-Romero, and Rojo-Álvarez (2020) deal with a cold start forecast problem
in the supply chain area, related to promotional sales where there’s few evidence to support the
modeling with traditional ML models; additionally, interpretability is also a key aspect since it can
affect the usability of the prediction. The idea is that the proposed method can include feature
selection (to find the drivers of sales) and then select the closest products (neighbours) in order
to produce a contrastive explanation of the results.

Xie, Tank, Greaves-Tunnell, and Fox (2017) address the issue of cold start problem in a
time series context where long range forecasts are required. The proposed model combines a
regression component (leveraging the external features of data, also known as metadata) and a
matrix factorization term (exploring the structure contained in the patterns shared across periods
and series). Additionally, the problem of warm start is also considered, dealing with how the cold
start predictions can be affected as new observations are collected.

This problem is also relevant in the area of energy demand prediction. Florian (2020), for
instance, introduces the problem of load nowcasting: in the context of electrical grid operation,
the system operators publish real-time data just after power delivery in the form of preliminary
values, deduced from limited metered data, that deviate from the final metered values. Nowcast-
ing aims at providing more accurate preliminary values for the load, using only the limited data
from the very recent past.
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2.3 Transfer Learning

2.3.1 Definition
The success and accuracy of traditional machine learning algorithms is strongly tied to the

availability of large datasets representing some phenomenon that is to be modeled; the idea is that
a larger dataset will provide a better inductive process in extracting representative patterns that
can be useful for the prediction task. In the real world however, it’s often costly, time-consuming
or simply not feasible to gather such amounts of labeled data. To address this scarceness of data,
new fields of research were explored and summarized by Zhuang et al. (2020).

Transfer Learning (TL) is a psychology-inspiredmachine learning paradigm based on the gen-
eralization theory of transfer which explains how knowledge can be transferred across domains:
knowledge gained on a related or source domain can be deployed to improved the learning per-
formance in a target domain. A typical example is how someone who has learned riding a bike
will have a faster learning on how to ride a motorcycle.

Using the formal definitions, as explained by Fan et al. (2020), a domain D is composed of a
feature space X and their marginal probabilities P (X) being thus denoted as:

D = {X,P (X)}

A task T also includes the label Y and P (Y |X) the conditional probability of Y given X:

T = {Y, P (Y |X)}

The transfer learning process ends in the domainDt and target task Tt by determining the target
conditional probability distribution P (Yt|Xt), using the knowledge transferred from the source
domain Ds and task Ts.

Figure 2.1: Basic scheme of transfer learning according to Fan et al. (2020).
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An interesting aspect of TL, reviewed by Pan and Yang (2009) and Weiss, Khoshgoftaar, and
Wang (2016), is that the transference of knowledge doesn’t necessarily bring a positive impact
on the target domain thus being termed negative transfer. This can be caused by the matching
relevance between source and target domains harming the capacity of the algorithm to find the
generalizable knowledge across domains. It has been shown by Rosenstein, Marx, Kaelbling,
and Dietterich (2005) that if the source and target tasks are too different, the enforcement of
transfer learning will prejudice the performance of the target task. This highlights the necessity of
measuring the task-relatedness or having some transferability measure to guarantee the possibility
of generalization of each source domain to other learning scenarios.

2.3.2 Classification
Since transfer learning is a quite diverse range of methods and paradigms, there are several

distinct classification of TL approaches based on different criteria.

According to the Settings of Source and Target Domains and Tasks

Pan and Yang (2009) synthesizes three main groups according to the settings of source and
target domain tasks: inductive transfer learning (source and target domains are the same, tasks
are different), transductive transfer learning (source and target domains are not the same but they
have the same tasks) and unsupervised transfer learning (source and target share the domains but
tasks are different yet related).

According to the Task Feature Space

Weiss et al. (2016) focus on the distinction between homogeneous and heterogeneous transfer
learning, taking into account the difference between domains: while homogeneous TL include
domains sharing the same feature space (that may differ on marginal distributions), heteroge-
neous TL occurs when the domains don’t have the same feature space. In the latter type of TL,
it’s common to mention domain adaption as the range of techniques employed to increase the
similarity between source and target.

According to the Implementation Methods

Another common division, also mentioned by Pan and Yang (2009), is more concerned with
how transfer learning is implemented, referring to instance-based TL (re-weighting some parts
of source data to use in the learning task of the target domain), feature representation-based TL
(finding a good feature representation that minimizes the difference between source and target
domains), parameter-based TL (source and target tasks sharing some model hyperparameters)
and relational knowledge-based TL (some of the relations within data in source and task domain
is similar).

This work will focus and detail on this classification and the methods used in literature to
implement transfer learning approaches on machine learning tasks.
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Figure 2.2: Classification of transfer learning paradigms according to Zhuang et al. (2020).

2.3.3 Implementation Methods
Instance-based

Data-based interpretation of transfer learning emphasizes the possibility of transferring knowl-
edge between source and target domain by the transformation and conditioning of data thus
minimizing the disparity in the distribution between domains and instances.

The instance weighting strategy allow to transfer knowledge between a source domain with a
big number of labeled observations into a target domain with limited observations, assuming that
both with differ only in marginal distributions. This procedure would enable the exploitation of
labeled instance of the source domain in order to improve the performance in task domain. Jiang
and Zhai (2007) propose some adaption heuristics based on instance weighting such as removal
of misleading observations in the source domain, add more weight to target than source labeled
instances or increase train set with target instances containing predicted labels.

Feature-based

The feature transformation strategy rely on the changing some original feature into a new
feature representation thus minimizing marginal and conditional distributions difference (mea-
sured through maximum mean discrepancy (MMD) for instance) while keeping the structures
and properties of data. There are three main subdivisions of this strategy regarding features:
augmentation, reduction and alignment.

Feature augmentation can consist of simple replication of features (note the feature augmen-
tation method (FAM) proposed by Daumé III (2009)) or other approaches based on feature
stacking. Some methods of feature extraction are also mentioned by Zhuang et al. (2020): fea-
ture mapping aiming at minimizing MMD (instead of the focus on variance of techniques such as
Principal Component Analysis (PCA) in regular ML) and feature clustering that looks for a more
abstract representation for the original features. Feature selection is also proposed to select the
pivot features of a dataset, defined as the ones that behave similarly in both domains being thus
appropriate as a vehicle for knowledge transfer.

Feature encoding is also specially relevant in the deep learning and stacking architectures; the
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encoder creates a more abstract form of the input while the decode maps back that representation
minimizing the reconstruction error.

Finally, feature alignment focuses on the implicit statistic or spectral features of the dataset
instead of the explicit ones.

Parameter-based

Looking away from data, another major possibility for transfer learning is to use model-
level regularizers to the learner objective function so that the knowledge of pre-trained models
based on source domain will be transferred to target domain on the train step. Duan, Xu, and
Tsang (2012) proposes a generic paradigm called Domain Adaptation Machine where pre-trained
classifiers are obtained from labeled data of either domains; then, based on the smoothness
assumption, a domain dependent regularizer forces that the base and new target classifiers will
have similar predicted values on the unlabeled observations of target domain.

Another strategy uses the parameters of the learned models. The simplest idea consists in
parameter sharing which is popular in ANN based solutions since it’s possible to learn a complete
network from source task data and then retrain the last selected layers using the target task data
in a fine-tuning process. Parameter restriction is slightly different from sharing because it simply
enforces that parameters will be similar between source and target tasks, not that they actually
share the same values. The construction of an ensemble model, already existing in regular ML,
can also be applied to TL: a group of candidate classifiers is learned in source domain tasks and
then applied iteratively over the labeled target instances in order to select the classifiers that will
be ensemble to generate the final predictions.

Finally, it has been found, for instance by Ghifary, Kleijn, and Zhang (2014), that deep learn-
ing based algorithms outperform shallow ANN or Support Vector Machine (SVM) models when
it comes to dealing with the domain adaption problem. Consequentially, deep learning techniques
are popular in the transfer learning paradigm, either in a reconstruction-based (autoencoders) or
discrepancy-based approach (using measures such as MMD). There are also some approaches,
such as this application by J. Li et al. (2020), that use adversarial transfer learning for fault detec-
tion in a fault category previously not existing in either source or target domain.

Relational-based

A lesser explored type of TL, covered by Kumaraswamy, Odom, Kersting, Leake, and Natara-
jan (2015), uses relational models or some other representations like graphs in order to achieve
domain independent transfer. The basic idea is to represent the relational structure between
multiple objects to capture source domain knowledge and transfer it to the target domain, either
through implicit or explicit mapping of the relational structure across domains. The results of
a demonstration case study, contained in the same paper, support the idea that relational-based
TL can achieve performances similar or better than other state-of-the-art TL methods.
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2.3.4 Applications of Transfer Learning to Forecast
The transfer learning paradigm is used in a broad range of problems that goes frommedicine,

transports, recommender-systems and many others presented by Zhuang et al. (2020). This re-
port however will focus on applications that, due to their nature, can provide a better insight into
the photovoltaic forecast problem, either by sharing some of the features, patterns or ML models
better suited to the energy production prediction area.

Power Production

Zhou, Zhou, Mao, andXi (2020) propose a transfer learning paradigm for photovoltaic power
production as way to circumvent the problem faced by data-driven methods on PV plants with-
out a large historical background of observations. The idea is to transfer knowledge from the
solar radiation (affected by solar energy in upper atmosphere, the atmospheric attenuation and
local cloud disturbance) since it’s a closely related task sharing similar distributions. A LSTM
model is proposed to capture the periodicity with its memory capabilities in order to make day-
ahead predictions with a frequency of 10 minutes meaning 144 values. The Bayesian optimization
method was used for hyperparameter optimization. Transfer learning is implemented in typical
fashion by pre-training the model in the source domain and then the weights of the final layer
are tuned using target data. The evaluation metrics are absolute percentage error (APE), MAPE
and RMSE with the model being benchmarked against its standard version with the TL step.
The results show transfer learning to be specially valuable with insufficient data meaning that its
advantage declines as more data is gradually obtained.

Hu, Zhang, and Zhou (2016) apply a transfer learning paradigm to the problem of short-term
wind speed prediction, relevant for wind farm control, but often difficult to solve with methods
like NWP (unavailable or spatially insufficient) or data-driven models (without enough historical
background). TL transfers the knowledge from other wind farms using deep neural networks
to extract patterns which are then tuned with the from target farms. This paper uses a shared-
hidden-layer DNN architecture where the hidden layers are shared between source and target
domain with the output layers being different. The results are assessed from different points
of view using MAE, MSE, RMSE and MAPE; in general, the proposed strategy improves the
performance on scarce data scenarios but tends to lose importance as the size of target train set
increases.

Electrical Load

Seung-Min et al. (2020) use transfer learning for monthly electric load forecast, crucial in
power grid operation. This is a problem with typically insufficient data points since, by defini-
tion, only one is generated per month. This experiment uses Pearson correlation coefficient to
select relevant domains for the target task thus improving the efficiency of transfer learning. The
TL models using DNN fine-tuned with target domain data are benchmarked against Multiple
Linear Regression (ML), Random Forest, XGB (Extreme Gradient Boosting) and DNN using
the MAPE and normalized root mean squared error (NRMSE) metrics; the results show that the
TL models outperform both the regular ML methods and the basic form of DNN without TL.
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Figure 2.3: Schematics of Transfer Learning implementation based on Deep Neural Network
from Seung-Min et al. (2020).

Zhang and Luo (2015) also focus the problem of load prediction for cities, relevant in a smart
grid context. The paper proposes a source task selection algorithm to avoid negative knowledge
transfer and then a Gaussian Process (GP) model with TL for the predictions, benchmarked
against standard GP, Autoregressive and Support Vector Regression based models. The results,
evaluated with normalized mean square error (NMSE) highlight the better performance of TL
algorithm and the negative transfer avoided by considering nearby cities (source task selection).

Hooshmand and Sharma (2019) present a case study for load consumption where the day-
ahead hourly load is predicted using 4 weeks of historical data on the assumption that it is repre-
sentative of trends and seasonality patterns related with daily and weekly periods. The ML model
consists of a convolutional network where the knowledge is transferred using the scarce target
data to adjust the weights of the final layers thus being a case of model-based TL. The results,
evaluated with MAE, show that TL coupled with CNN will outperform the standard CNN but
also a benchmark SARIMA model.

Building Energy Consumption

Fan et al. (2020) address the problem of short-term building energy consumption based on
data-driven methods which is often not possible either due to having a new building or sim-
ply the fact that most buildings don’t have sufficient data coming from the monitoring systems.
Transfer learning is then used to leverage the knowledge obtained from buildings with effective
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measurement systems in order to forecast the energy consumption in the next 24 hours. The
paper explore a network-based approach to transfer learning based on deep learning with three
main blocks: 1D convolutional layers (to obtain temporal features from the time series), then re-
current layers based on LSTM units are used to acquire the interaction between temporal features
and thirdly the categorical variables are turned numeric using one-hot encoding. Regularization
techniques are used to avoid overfitting and the parameters of the model are optimized with grid-
search. Two different strategies for TL are tested: use pre-trained model to extract features (take
whole pre-trained fixed parameters except for the output layer) or use the pre-trained model for
weight initialization which are tuned with target data. The results are evaluated with common
metric such as RMSE (root mean squared error), CV-RMSE (coefficient of variation of the root
mean squared error) and PIR (performance improvement ratio). The results show that transfer
learning has a positive effect on RMSE which reduces by 67% in the weight initialization transfer
learning scenario.

A. Li, Xiao, Fan, and Hu (2021) also take into account a similar problem presenting an ANN-
based solution with transfer learning for one-hour ahead prediction based on previous 24 hours
consumption. The paper explain the use of a backpropagation neural network (BPNN) with
three layers: the first hidden layer with 24 nodes, the second with 12 codes. Rectified Linear Unit
was selected as activation function. Transfer learning is applied by using the source domain for
weight initialization, fine-tuned afterwards with target data. The evaluation metrics selected were
Mean Absolute Percentage Error (MAPE) and Mean Square Error (MSE). The conclusions are
not just that TL increases prediction accuracy but also that improvement is bigger if the available
dataset is smaller.

Jihoon et al. (2020) describe an approach using tree-based machine learning (ML) methods
such as Multivariate Random Forest (MRF) or Random Forest (RF) to solve the cold-start prob-
lem in the context of short-term load forecast of building energy consumption. The models are
combined to consider the different electricity consumption patterns typical from working days
and holidays. The results show an improvement in MAPE, RMSE and MAE error metrics.

Abdulrahman et al. (2021) frame the residential buildings energy consumption problem and
lists the most typically used base models including ANN, Deep Belief Network (DBN), Recur-
rent Neural Network (RNN), LSTM, Elman Neural Network (ENN), Nonlinear Autoregressive
Neural Network (NARX), MLP and Convolutional Neural Network (CNN). Then, the applica-
tion of transfer learning coupled with LSTM is discussed for medium to long term consumption
forecast.

Gao, Ruan, Fang, and Yin (2020) use a combination of deep and transfer learning methods
to boost the accuracy in the forecast of energy consumption for building with small amounts
of historical information. The paper compares the performance of three models: LSTM to
allow the information to be memorized for longer time and transmitted along the time sequence
(also used without transfer learning for baseline performance), seq2seq model with two layers of
LSTM as encoder and decoder and a 2D CNN which is effective for feature extraction, building
high-level features automatically. Sequential TL was employed with all data from source domain
used for pre-training and one month coming from target used for fine-tuning. Mean Absolute
Error (MAE), MAPE and CV-RMSE were used to evaluate the results; both models were able
to improve those metrics by 20-30%.
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Fang et al. (2021) depict a hybrid deep learning model for short-term prediction with limited
historical data. It uses a LSTM feature extractor (to acquire temporal features across source
and target domain) and a domain adversarial neural network (DANN) to find domain invariant
features through adversarial domain adaptation. The idea is that the model trained with source
data can be applied directly to target without worsening performance due to domain mismatch.
The LSTM is a RNN that adds internal memory and a gate mechanism to the base RNN allow to
capture longer term dependence better; it also includes a forget fate to manage how historical data
should be discarded or not. The results are evaluated against LSTM trained with data from target,
source or both without domain adaption using MSE, MAE, MAPE and CV-RMSE; the hybrid
LSTM-DANNmodel improve these metrics around 15% while also outperforming variations of
the model where LSTM was replaced by a CNN or fully connected layer.

Ribeiro, Grolinger, ElYamany, Higashino, and Capretz (2018) present Hephaestus, a parame-
ter and instance-based transfer learning method for building energy consumption forecast which,
unlike traditional TL methods, considers the effect of seasonality in the domains; it’s based on
time series multi-feature regression considering seasonal and trend adjustments. This is partic-
ularly relevant when using source datasets from different buildings with different distributions
and seasonal profiles. The method is meant to be deployed in the pre and post-processing stages
of the typical ML pipeline meaning that it’s algorithm independent. It’s divided in four stages:
time series adaptation (seasonality and trend effect effects removed and transferred to target),
non-temporal domain adaptation (invariant features), appropriate machine learning algorithm
and finally adjustment (prediction affected by the factors derived in the two first stages). A case
study is proposed to test the method using MAPE and MSE to conclude that improvements can
reach up to 11% against a scenario without it.

2.3.5 Related Concepts
Semi-Supervised Learning (SSL), according to Chapelle, Schölkopf, and Zien (2006), lies

somewhere in between supervised and unsupervised learning methods using a mixture of com-
pletely unlabeled with some labeled observations. Such an approach is known to be effective
specially because all data comes from the same distribution. Additionally, some assumptions
usually are implicit in SSL algorithms; the main ones are the smoothness (when two observa-
tions are close in a high density region of the input space, the outputs should also be close), the
cluster (if two examples are grouped in the same cluster, their class should be the same) and the
manifold assumptions (high dimensional data lies on a low dimensional manifold). While both
SSL and TL share these assumptions, they differ in the fact that while in SSL both labeled and
unlabeled observations come from the same distribution, in TL the distributions of source and
target domains are typically not the same.

Multi-View Learning (MVL) is based on the idea that different views of the same object can
be represented by different feature sets resulting in more information to be used by the ML
algorithm thus leading to an enhanced performance. These approaches are typically classified,
according to Xu, Tao, and Xu (2013), as co-training, subspace learning or multiple kernel learning.
MVL concepts can be used as a way of ensuring knowledge transfer across domains in some
applications.
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Multi-Task Learning (MTL) is based on the core idea that if there’s a joint learning process
including related (but not identical) tasks, it’s possible to use the knowledge contained in all tasks,
thus improving the learning performance; the problem of small data is worked around by explore
information from related tasks. As mentioned by Zhang and Yang (2018), this paradigm stresses
the importance of two factors: the task relatedness and the definition of task. MTL and TL share
similar modeling strategies and techniques but they differ in the sense that TL focus more on
target than source task while MTL is focused simultaneously in all related tasks.

Reference Task Model Transfer Learning Dataset Horizon

A. Li et al. (2021) Building energy Data-Driven
(BPNN)

Parameter-based
(Final layers tuning)

Consumption
Weather

1h
(1h)

Fan et al. (2020) Building energy Data-Driven
(LSTM)

Parameter-based
(Feature extraction and
final layers tuning)

Building metadata
Consumption
Weather

24h
(1h)

Ribeiro et al. (2018) Building energy Data-Driven
(Season. Adjust.)

Parameter-based
Instance-based

Consumption
Weather

1 month
(1 day)

Fang et al. (2021) Building energy Data-Driven
(LSTM-DANN)

Feature-based
(Feature extraction and
domain adaptation)

Consumption
Weather

1 week
(1 day)

Gao et al. (2020) Building energy Data-Driven
(LSTM/CNN)

Parameter-based
(Final layers tuning)

Consumption
by category

1 month
(1 day)

Florian (2020) Electricity load Data-Driven
(Multi-Linear) - Load 1 day

(15min)

Seung-Min et al. (2020) Electricity load Data-Driven
(DNN)

Parameter-based
(Final layers tuning)

Load
Weather
Demographic

2 years
(1 month)

Jihoon et al. (2020) Electricity load Data-Driven
(MRF)

Instance-based
(Similarity measures) Load 1 day

(1h)

Hooshmand and Sharma (2019) Electricity load Data-Driven
(CNN)

Parameter-based
(Final layers tuning) Load 1 day

(1h)

Zhou et al. (2020) PV Production Data-Driven
(LSTM)

Parameter-based
(Final layers tuning)

Irradiance
PV Production

1 week
(10min)

Ma et al. (2014) PV Production Physical - PV Production 1 day
(5min)

Sala et al. (2019) PV Production Data-Driven
(Various, LSTM) - PV Production 1 hour

(5min)

Stanev and Tanev (2018) PV Production Physical - PV Production -
(1h)

Hassan et al. (2017) PV Production Physical - PV Production -
(-)

Monteiro et al. (2013) PV Production Data-Driven
(MLP) -

Irradiance
Weather
PV Production

4 days
(1h)

Xie et al. (2017) Time Series Data-Driven
(Various) - Flu Trends

Wikipedia Traffic
1 year
(1 day/week)

Hu et al. (2016) Wind Speed Data-Driven
(DNN)

Parameter-based
(Final layers tuning) Wind 8h

(10min)

Ferreira et al. (2019) Wind Speed Hybrid
(ANN, HW) - Wind 1 day

(1h)

Table 2.2: Summary of time-series forecast models presented in the Literary Review.
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2.4 Tools

2.4.1 Data Extraction
The data concerning photovoltaic production will be provided on CSV or XLS format with

no foreseen automated method to access and download it for the purposes of this work. Regard-
ing meteorological data, as mentioned before, it will be downloaded from MeteoGalicia through
XML-based communication using R package meteoForecast to interact with THREDDS (The-
matic Realtime Environmental Distributed Data Service) and obtain operation modeling data for
weather research forecast.

An evaluation of the data pipeline was be conducted and, due to the complexity and sizable
amount data, it was decided to build an automated process based on R where data could be
downloaded from the sources and stored in appropriate database (DB) structures. The outline
and details of this system are described in 3.1. The combination of R and a database system
provided an automated, fast, robust and error-free process for data extraction and integration.

2.4.2 Modeling
Due to its flexibility, readability, simplicity and open-source nature, Python was selected as the

programming language to be used for the data pre and post-processing and also for the modeling
and development of a machine learning algorithm to solve the photovoltaic production forecast
problem.

Using Python, some different libraries and frameworks will be deployed and tested before
making a final decision for the model. A typical library used in Python for classification or
regression is scikit-learn as described by Pedregosa et al. (2011). Another option consists in using
TensorFlow, presented by Abadi et al. (2016), enabling the optimization and training of algorithms
for a wide range of applications including deep learning which is a commonly used paradigm as
shown in previous section. The Keras library, proposed by Chollet (2021), is built over primary
deep learning platforms like TensorFlow making it another solid option. Finally, H2O AutoML,
described by LeDell and Poirier (2020), was another open source machine learning platform
considered in order to take advantage of the possibility of producing a large number of models
in short time, select or stack according to some performance metric.

PVLib library was another toolbox, firstly developed inMATLABbut also available in Python,
that was considered for open source, reliable and benchmark implementation of the performance
modeling of PV systems. It contains clear sky modeling capabilities and the possibility to acquire
meteorological forecast data from models such as Global Forecast System (GFS). The physical
model used in this software is based in the single-diode equation mentioned previously in this
review. According to Gurupira and Rix (2016), PVLib has shown consistent performance against
industry benchmark and commercially available software like PVSyst.
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Chapter 3

Data Description and Analysis

3.1 Data Workflow

3.1.1 PV Production
The production data from the photovoltaic power plants used in this work was provided by

Smartwatt under a confidentiality agreement due to its commercially sensitive nature; six different
sites are considered in this work, five in the southern part of the country and another one in
the center. The dataset includes the location of solar farms in Portugal, characterized by an
unique ID, the nominal installed power of the PV generators in MW, current operation status
and geographical location (latitude and longitude). This information is summarized in table 3.1
and it was stored in a specific database (DB) table called sites.

ID Nominal Power [MW] Start End Total Granularity
1 0,6 01/01/2020 00:00 30/10/2021 22:45 1 years, 9 months, 29 days 15min
2 12,0 01/01/2020 00:00 31/10/2021 23:45 1 years, 9 months, 30 days 15min
3 49,5 01/01/2020 00:00 31/10/2021 23:45 1 years, 9 months, 30 days 15min
4 5,0 01/01/2020 00:00 31/10/2021 23:45 1 years, 9 months, 30 days 15min
5 36,0 05/10/2020 23:00 31/01/2022 23:45 1 years, 3 months, 26 days 15min

1023 43,6 01/01/2018 00:00 18/10/2021 23:00 3 years, 9 months, 17 days 1h

Table 3.1: Information about the data available for each solar power farm.

For each of the plants, a time series of the power production, inMW, is provided. This is either
hourly or quarter-hourly data thus corresponding to 24 (1 hour granularity) or 96 observations (15
minutes granularity) per day with notable exceptions on the two days of each year where Daylight
Saving Time starts or ends or eventual missing values that can occur due to sensor malfunction
or other technical reasons. The time series contains a first column with the timestamp (with the
date and hour of the observation in UTC - coordinated universal time) and the second with the
production value. All the data is stored in a DB table called production.

It’s also relevant to highlight the different length of the time series available for each park. This
occurs due to the operation start date being different for each location thus resulting in different
amounts of collected data. That is actually one of the focus of this work, the prediction of
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PV production when there’s insufficient historical records that regular machine learning models,
without transfer learning, typically use for the forecast.

3.1.2 Meteorology
Numerical Weather Prediction models are used as source of meteorological data, retrieved

using R software, developed by R Core Team (2020), through the meteoForecast package created
by Perpiñán and Almeida (2021). The aforementioned package allows to access the outputs of
different NWP services for some location; currently, it’s possible to get data from models such
as GFS (Global Forecast System), MeteoGalicia or NAM (North American Mesoscale Forecast
System). For this thesis, MeteoGalicia will be the primary source due to its geographical proximity
with the PV parks for which production data is available.

The data obtained from MeteoGalicia consists of hourly data describing atmospheric, phys-
ical and geographical features of relevance for the meteorological forecast. The typical format
consists in the following columns: a timestamp (with the date and hour of the observation in UTC
time), the forecast value for some variable three days before the timestamp (D-3), D-2 forecast,
D-1 forecast, D-0 forecast, the variable identifier and the geographical coordinates (latitude and
longitude). The spatial resolution is an input defined when using the Meteo Galicia data: for
this work a 4 kilometers raster resolution was used when collecting data. This also constitutes a
relative advantage when compared to another meteorological models such as GFS or NAM.

There are 45 features available for download including, for instance, cloud cover at different
levels, wind speed, gust and direction, visibility, snow level, temperature at different levels, air
pressure and many others; all this data is stored in a DB table called meteo, for each site.

Figure 3.1: MySQL Workbench view of meteo table built with Meteo Galicia data.
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3.1.3 Raw data integration
In order to handle the large amount of data in a uniform, fast and reliable way, a database

system was put in place. The implementation of the mySQL database roughly follows the data
sources structure doing a bare minimum of operations in data, storing it as raw as possible to keep
traceability. As described in the previous sections, tables were created for power production and
meteorological time-series data and then also site-specific data for each solar park and metadata
to characterize the variables obtained from the meteorological service.

Figure 3.2: Schema of the database used to store all work-related data.

Due to the use of meteoForecast package, R programming language was used to manage the
entire data pipeline and workflow thus avoiding the coordination with other techniques for ex-
traction and DB storage of data. A data collection script was developed in order to fulfill the
following tasks:

• Read solar production data from Excel format files and insert into DB table production.

• Retrieve site-specific information from database (latitude, longitude, production time span).

• Download data from MeteoGalicia web service, iterating for all sites and relevant spans.

• Insert meteorological data into DB table meteo with the appropriate formats.

After the raw data is stored into mySQL database, R was also used for a merging step, schema-
tized in figure 3.2, where meteorological and production data are brought together in the same

21



dataset table. This was facilitated by SQL features such as the possibility to create views on the ex-
isting tables; such mechanism was particularly important to aggregate/uniform production data
into hourly data matching the time steps of meteo data. Then, it was possible to merge both
meteo (for all time horizons) and production tables. The choice of 1h as base for all data was
done for three different reasons: readability of results since the forecast can either be interpreted
as average power during the hour (units MW) or the amount of energy produced in one hour
(units MWh); matching the source used to collect meteorological data; the electricity markets is
based on buying and selling energy for each hour.

Finally, R was used to read from this data view created in mySQL and insert it back in a table.
This step is particularly relevant for performance issues because SQL views can be quite slow to
read from because they require that all associated queries run in the background, any time the
view is accessed; on the other hand, it’s much faster to read from a table because there are no
queries running to create it, only a query to select a subset of static data.

This highlights the role of R as an extraction, transformation and integration tool bringing
together the flexibility of web services acting as a bridge to the robustness and storage capabilities
of a database system. In short, R and mySQL together, linked as depicted in figure 3.3, provided
a strong backbone of data management to build the forecast model from.

Figure 3.3: Summarized data integration workflow.

3.1.4 From Database to Python dataset structure
While R and SQL were used for the data integration part of this work, Python was the pre-

ferred language for the forecast algorithm implementation due to the free libraries available in
the area of machine learning. So, the first step to create the forecast model was to read data into
Python using the pandas and sqlalchemy libraries. It should be noted that no filtering was done on
the SQL query; instead, all Meteo Galicia forecast time horizons were read into Python and used
for different purposes which will be explained in later sections.

The storage of data in mySQL follows the typical best practices keeping the number of
columns in dataset table to a minimum. This means that for each timestamp, there are many
different rows characterized by a different variable (predictors and target), site or horizon (days
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ahead from Meteo Galicia forecast). This is in stark contrast with the typical dataset format with
each row characterizing a single and unique timestampwith each predictor representing a column.
To achieve this format, a Python function was created with the output being a dataframe with
the timestamp as first column, target as last column and all the predictor variables in between:
the transformation is illustrated in figure 3.4.

Figure 3.4: Data transformation from mySQL to standard dataset format in Python.

3.2 Exploratory Data Analysis

3.2.1 Variables Type
The dataset built using the processes described in the previous chapter contains 1 timestamp

variable, 43 predictor variables describing the meteorological features of the time series and 1
target variable corresponding to the hourly solar power production in the park. The full descrip-
tion, with the information of each variable and corresponding units, is detailed in appendix A.
The variables are mostly numerical, as presented in table 3.2, with some specific characteristics
discussed in the following sections.

Type Count
Timestamp 1
Numeric 41
Categorical 3
Total 45

Table 3.2: Types and count of available meteorological and solar production variables.

Regarding the missing values for each variable, there is a missing not at random phenomena
related with the way database handles the insertion of the Summer time start hour. Nevertheless,
no other data is missing and, overall, missing data represents less than 1% of the entire dataset.
Due to this very low amount of missing data, no further measures were explored to handle it.

3.2.2 Categorical Variables
One relevant aspect is that 2 of the 3 categorical variables are not really time dependent

characteristics related with meteorological events; in fact, they represent simple labels returned
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by the Meteo Galicia data service. Specifically, land_use relates with the land use or vegetation
type and lwm is a simple binary variable to represent whether the specified point is located of
land or water. The other categorical attribute, meteograms, contains 16 distinct values that are a
reference to graphical representations of meteo data.

Taking into account the nature of the categorical attributes described above, they are unsuited
to be used for time series forecast of the target variables thus not being addressed any further in
this work.

3.2.3 Numerical Variables
Due to the circumstances discussed in previous section, the dataset can be seen as fully nu-

merical. Then, two variables stand out due to being constant with one distinct value for each
site: weasd is the water equivalent of accumulated snow depth which is zero across all sites; topo is
the altitude for each site defined by latitude and longitude. Due to the particular nature of these
variables, both can be discarded from the subsequent analysis since they don’t contain any time
dependent feature that could be helpful for power production forecast.

Univariate Analysis

The complete study of the variables characteristics, for each site, is detailed in appendix B
where the target variable (power production) is represented as y. This analysis is divided into
four main areas: counters (with the count of missing and distinct values for each variable), lo-
cation (mean, minimum, maximum and quartiles), dispersion (standard deviation, variance and
coefficient of variation) and shape measures (skewness, kurtosis).

Predictor Variables

Location Measures
From the analysis of location measures, it’s possible to check that variables such as cfh, cfl, cfm

and cft, which represent the cloud cover of the sky at different levels, are expressed in percentage,
thus varying from 0 to 1. The same happens with relative humidity, rh variable.

The mean value of the cloud cover variables (cft, cfl or cfm) is generally higher in site 1023.
This may be interpreted with the empirical knowledge that typically sunnier weather is more likely
to be experienced further in the south of the country, a fact evidenced by lower average cloud
covers. This may also explain the differences in visibility observed across sites.

Some of the most relevant variables for solar power production relate with the flux of energy
between the atmosphere and the Earth, expressed in energy over time and area with correspond-
ing units W/m2. Sensible and latent heat flux (shflx and lhflx) relate mostly with heat transfer with
the atmosphere. Thus, both these variables contain negative values that can be interpreted as a
night time phenomenon where the Earth is cooling, thus releasing energy to the atmosphere in
infrared form. Then, it’s also worth to take a closer look to lwflx, the surface downwelling long-
wave flux, that takes only positive values because it represents the thermal irradiance reaching
the surface in the thermal infrared spectrum, thus being also present during the night. Finally,
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and likely a very good predictor for solar power production, the surface downwelling shortwave
flux, swflx, contains a direct and a diffuse component of the solar beam and so it makes sense to
have minimum value zero (at night) and a maximum value in the order of magnitude of the solar
constant - 1361W/m2 - which can be defined the energy received from the Sun on a perpen-
dicular surface to its rays without considering any atmospheric effects. It’s also very important
to stress that photovoltaic cells target the conversion of high energy photons (short-wave side
of solar spectrum) - this technical detail further underlines the potential of swflx for the forecast
model. The relation between the surface downwelling shortwave flux and power production is
highlighted in figure 3.5 where both variables exhibit very similar patterns.

Figure 3.5: Solar power production and swflx for a selected week in site 5.

There’s also variables related with wind speed such as v, vlev1, vlev2, vlev3, u, ulev1, ulev2 orrulev3
containing negative values; although not explicitly stated in the documentation of the R package
used to retrieve data, this is related with the definition of axis and directions for the wind speed
vector: v refers to the meridional velocity (component of horizontal wind towards north) and u
refers to the zonal velocity (component of horizontal wind towards east).

Another notable mention is the zero mean for snow_prec variables in all sites. In site 1023,
the value is slightly above but still approximately zero; this is probably related with the fact that
snow is quite rare overall in Portugal but, being further north, this site would be the most likely
to have some data different from zero on that specific attribute. The snowlevel variable can have
a similar explanation exhibiting mean values around 2000m meaning that at the sites location,
snow would only be expected at very large heights.
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Dispersion Measures
Given the underlying physical units for each variable, the interpretation of any metric should

take that into account. Thus it’s specially interesting to look into the coefficient of variation for
dispersion analysis as this metric is independent from the measure scale. Looking at this measure,
the five variables related to the geopotential height (height above sea level of some pressure level)
stand out having a variation below 5% for all sites. Also the temperature variables, temp, sst, T500
and T850, exhibit a similar characteristic; nevertheless, this should be taken carefully because
in Kelvin scale, 1 degree difference corresponds to 1 Celsius but the absolute temperature is
measured from absolute zero (-273 Celsius) meaning that a small coefficient of variation is to be
expected and the variables still can be quite meaningful for the forecast model.

Another highlight of the analysis were the variables related with wind speed, cloud cover and
precipitation that typically exhibit the largest values for the coefficient of variation across sites.

Shape Measures
These metrics aim at quantifying the geometric properties of the variable distribution. One

standout is the fact that precipitation variables (prec and conv_prec) have the largest positive skews,
meaning that the most frequent values are smaller than the mean; visibility, on the contrary, has
one of the largest negative skew meaning that most frequent values are larger than the mean.

The same precipitation variables are also highlighted looking at kurtosis excess; in fact, they
present the highest positive values, meaning that the tails of the distribution have less weight
relative to a normal distribution. On the opposite, variables such as the wind direction, dir, have
the largest negative kurtosis values with the tails of the distribution being heavier than normal
distribution.

Target Variable
The solar power production over time for each site, the target variable, has some particular

characteristics that can be discussed separately. First, it’s trivial to note that production will never
be less than zero (either during the night or day period) and also it cannot exceed the nominal
power production capacity of the equipment. It’s then expected that minimum value for the
variable will be zero and the maximum should roughly correspond to installed capacity. This is
exactly what happens across all sites with the notable exception of 1023 where the maximum
value registered is 5927 MW which compares to an installed power of 43 MW; such observation
should be flagged as an outlier since the underlying physical system doesn’t have the capacity to
produce such power.

The histograms of the target variable, depicted in figure 3.6 for different sites, don’t include
the zero production values, in order to get a better visual reading. Showing zero production
would highlight the positive skew which should be expected considering that for all the night
hours, there is no production, shifting the distribution towards that value. Additionally, both
during sunrise and sunset hours, lower production is to be expected since photovoltaic systems
are usually mounted in a way to maximize production during peak hours, around noon, thus being
less productive on early morning and late afternoon which explains the weight in the left tail of
the distribution. On the other hand, the weight of the right tail (corresponding to production
close to nominal capacity) is also higher; such pattern does make sense because the design of
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a solar power farm will aim to optimize the installed power production capacity or, in other
words, the economic feasibility of this kind of projects depends on running the plant closer
to nominal capacity when possible. Combined, these two effects are responsible for negative
kurtosis calculated across sites for the target variable. The only exception is site 1023, due to
outliers as described previously, thus being kept out of this analysis.

Figure 3.6: Histogram of the target variable - solar power production - in per unit (p.u.) values
relative to nominal installed power.

From the comparison between sites, one of the standout results is site 2 where kurtosis is
higher (although still negative, relatively closer to positive values), which seems to be caused by
the lower weight of the right tail closer to nominal production capacity. This could suggest a
site-specific condition, perhaps related to physical constraints on the installation of the panels
(angles or shadows for instance) which makes it operate more frequently in a sub-optimal mode,
from the perspective of using the maximum available production capacity.
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Figure 3.7: Monthly average capacity factor for each solar power plant.

Another interesting metric, particularly relevant in the context of solar power production, is
the capacity factor plotted in monthly averages in figure 3.7. It corresponds to the ratio of energy
produced by the system compared to an ideal production where the system would operate all the
time at nominal power. The main difference between parks is related with site 1023 that shows a
lower capacity factor for all the months when compared to other sites; this can be explained by
it’s location in the center while the other parks are in the south of the country. Additionally this
site also exhibits a lower value in June caused by a period of production close to zero during June
2019 which is likely related with some downtime of the equipment. Then, the actual year pattern
looks similar for all sites with a lower capacity factor during winter months and peak capacity
during the summer, related with the seasonal patterns in the availability of the solar resource. In
fact, during summer months, the capacity factor is typically 2-3 times higher for all the power
plants, when compared to the winter period.

Bivariate Analysis

The core of the bivariate analysis will be the correlation matrix, depicted in appendices C,
C.1 and figure 3.8, calculated only for the numerical variables using the appropriate Pearson
correlation coefficient to measure the relationship between two variables. Although correlation
is different of causality, this is still a useful tool to provide hindsight into how pairs of variables
relate.

Looking into the correlation matrix, it’s possible to find several pairs of variables exhibiting
very high positive correlation above 80%. For instance, pairs of variables measuring the same
physical variable at different atmosphere levels (HGTlev1 and HGTlev2), temperatures (temp and
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sst) or wind speeds at different heights (ulev1 and ulev2).
This type of information can be quite a valuable input to a correlation filter allowing to

deploy some feature selection and enabling the use of a model with smaller number of variables
without loosing critical data for the forecast. For instance, u, ulev1, ulev2 and ulev3 all contain
information of the wind speed in the latitude direction, at different levels, presenting correlation
values above 97%. This means that perhaps some of these are redundant variables, repeating the
same information without bringing additional forecast insight to the machine learning model.

Figure 3.8: Variables with correlations above 90% in selected correlation matrix, calculated with
data from site 5.

Target Variable
Besides the analysis between pairs of variables, it’s also worth taking a detailed look into the

correlation between the predictors and target variable, detailed in appendix C.2.
The analysis of these values, extracted from the correlation matrix, doesn’t show any strong

correlation, either positive or negative. Still, the highest correlation found (around 21%) happens
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with swflx variable which, as explained before, is likely to be a very good predictor due to it’s
nature; also validating what is suggested by its definition, long-wave flux lwflx is almost completely
uncorrelated which makes sense since solar cells are not built to absorb that kind of radiation.
Another interesting result is that the variables related with wind speed appear at the bottom of
the correlation table.

3.3 Data Pre-Processing
The goal of this section is to present the methodologies used to deal with the raw dataset,

built in Python as described in section 3.1, with the goal of enhancing the results of the forecast
model. All these methods are implemented as options when running the Python script for the
forecast. The complete list of options is presented, mostly for guidance, with a short description
in table 3.3; the detailed description of each option is described in the following sections.

3.3.1 Feature Engineering
Feature Augmentation

Although the dataset contains a good amount of features to be used for solar power pro-
duction forecast, this work also explores a technique commonly deployed in time-series related
datasets. The base idea is to create cyclical time-related features, using sinus and co-sinus func-
tions. A common example is that solar production in hour 23 should be more similar to solar
production in hour 0 than solar power production in hours 10 and 20. However, using the hour
as predictor, 0 and 23 are further away than 10 and 20. To deal with this problem, it’s common
to apply a transformation using these cyclical functions. The same rational can be used in the
month where 12 (December) should be closer to 1 (January) than 6 (June).

This logic is applied both to hour and month, extracted from the timestamp variable as inte-
gers ranging from [0, 23] and [1, 12] respectively. Then, using both sinus and co-sinus, a total of
6 new time-related variables can be added to the original dataset: hour, month, hour_cos, hour_sin,
month_cos and month_sin.

hour_cos = cos(
2π ∗ hour

24
) hour_sin = sin(

2π ∗ hour
24

)

month_cos = cos(
2π ∗month

12
) month_sin = sin(

2π ∗month

12
)

Finally, it should be noted that creating these artificial predictors can be quite useful if there’s
a need to make forecasts for future times where no meteorological predictors are available. Al-
though far from ideal, it could provide a workaround solution is some specific contexts. The
basic idea is that for any future timestamp, it’s always possible to determine these time-related
predictors and feed them into the machine learning model to produce forecasts even if there
is no weather predictors available for such time horizons - such approach would constitute an
alternative naive forecast model based on calendar variables.
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Feature Selection

Although several machine learning based approaches exist to select the best features from
a dataset, the basis approach of this work was to gather the knowledge obtained from the ex-
ploratory data analysis stage, presented in section 3.2, in order to make decisions on what vari-
ables to consider.

The first step was to drop the categorical variables which, as described before, are not relevant
for solar power prediction. Then, also the variables that are constant over time were dropped
since they have no discriminatory power, useful for the model.

The second step uses the knowledge from the correlation matrix to drop redundant variables
containing similar information. This includes the following:

• Temperature measures such as sst, T500 and T850. Only temp is kept as the temperature at
2m level, an height comparable with typical solar power installations.

• Wind speed measures in different heights and referential like u, ulev1, ulev2, ulev3, v, vlev1,
vlev2 and vlev3; wind direction dir is also dropped Only mod is kept, corresponding to the
wind speed module at 10m height.

• Snow related variable snow_level is dropped since it is almost negligible for the sites under
study.

• Geopotential height variablesHGT500,HGT850,HGTlev2 andHGTlev3 are also dropped,
keeping only HGTlev1.

Nevertheless, a more automatized feature selection method was also implemented based on
tree boosting as described by Chen and Guestrin (2016). The XGBoost (extreme gradient boost-
ing) algorithm can be used to determine the importance of each feature, with regards to the target
variable, allowing to rank the predictors and providing a rational metric to discard features and
simplify the dataset. This automated approached, fully based on machine learning algorithms,
is compared (in the model construction phase) with the mixed approach described previously,
where exploratory data analysis information is combined to support the decision on whether to
keep or discard features. An example for this kind of approach is described in Huiting, Yuan,
and Chen (2017) where the XGBoost algorithm is used to select features used for short-term
electrical load forecast with the LSTM algorithm.

Using these automated and empirical methods, different setups were created to test different
combinations of variables to feed into the model, in order to find the optimal set.

1. No Selection - keeping all the existing variables from Meteo Galicia except the ones with
constant values which lead to issues in train stage.

2. No Selection and Feature Augmentation - all the Meteo Galicia variables plus the time
predictors described in 3.3.1.

3. Custom Selection - variables selected following the rational explained in 3.3.1.
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4. Custom Selection and Feature Augmentation - variables selected in 3.3.1 plus the time
predictors.

5. Only Time Predictors - the base idea is to explore how the algorithm would perform if no
meteorological data was available for some reason and it had to rely simply on timestamp
information.

6. Only Radiation - using only swflx due to the characteristics evidenced and described in 3.5.

7. XGBoost Top10 - using the 10 variables with highest importance according to XGBoost
algorithm.

8. XGBoost Top20 - using the 20 variables with highest importance according to XGBoost
algorithm.

9. XGBoost Top10 + Time Predictors - using the 10 variables with highest importance ac-
cording to XGBoost algorithm, selected from set including time predictors..

10. XGBoost Top20 + Time Predictors - using the 20 variables with highest importance ac-
cording to XGBoost algorithm, selected from set including time predictors.

3.3.2 Outliers
For the target variable, the methods used to detect outlier observations were based on the

specific physical assumptions:

• Filter for negative values: the electrical output of the photovoltaic system should always
be positive meaning that power is output from the production system into the grid and
not the other way around. Then, it makes sense to check the target variable for nega-
tive observations. The handling method is quite basic and negative values are set to zero
instead.

• Filter for installed power: any electrical production system is characterized by its nominal
or installed power, i.e., the maximum amount of power it can output. It’s then appropriate
to check for values above, considering a default tolerance of 5% since it’s also typical the real
power to be slightly above the nominal mentioned in the equipment data sheet. The flagged
observations can be handled in two different ways: use linear interpolation between the
previous and next observation to obtain an estimated value or simply set the observation
to the nominal power of the equipment. The later option is mostly relevant for the post-
processing stage as the model doesn’t include constraints to the nominal power of the
equipment which means it may output predictions above that threshold.

• Filter for solar time: Empirically, there should be no solar power production when there’s
no sun. To implement this sanity check, a filter was used that takes the site location and
uses Python astral package in order to determine the hours of sunrise and sunset for all
days in the dataset. Then, two basic conditions apply: if sun hasn’t risen yet or if sun has
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set already, production cannot be more than zero; if otherwise, the observation value is set
to zero.

3.3.3 Missing Values
Although Keras model documentation refers that, in general, missing values can be replaced

with zeros for the purpose of being used by neural networks, that is not the case with this dataset
because zero actually has a meaningful value representing lack of power production. Several
methods like replacing with mean or other statistical measure or using some kind interpolation
can be applied. For this work, and since missing values correspond only to a small amount of
data, a more simplistic approach was used and any observation (row in the dataset) containing
missing values was dropped.

3.3.4 Scaling
References such as Chollet (2021) warn that it’s not a good practice to feed data that takes large

absolute values into a neural network or data that is quite heterogeneous with variables in narrow
ranges and others in very large ranges. The dataset, described in previous sections, clearly fulfills
both conditions specially due to the different physical units used in the underlying data. The way
to solve this problem and facilitate the learning task was basically to apply strict normalization to
the data with two possible options: normalize based on minimum and maximum value, for each
variable, with resulting data comprised in [0, 1]; normalize based onmean and standard deviation,
for each variable, with resulting data comprised in [−1, 1].

Problem Option Description

NA Handling none Keep observations containing missing values.
remove_obs Remove observations containing missing values.

Scaling
none Keep original scaling of variables.
minmax Normalize data into [0,1] range.
normal Normalize data into [-1,1] range.

Feature
Engineering

Augmentation none Don’t add new features.
time_predictors Add 6 variables related to hour, month and their sin/cos transformations.

Selection

none Don’t remove any features.
xgb_top10 Top 10 variables selected by XBoost according to feature importance.
xgb_top20 Top 20 variables selected by XBoost according to feature importance.
meteo_galicia All meteo variables except categorical and constants.
custom Selection of meteo variables based on 3.3.1.
only_swflx Keep only swflx radiation feature.
only_time_pred Use only the augmented time-related features.

Outliers Target

Negative Values none Keep negative values.
zero Replace negative values with zero.

Power
none Don’t check against installed power.
linear_interp Replace values with interpolation between value before and after.
set_to _max_power Replace values with maximum installed power.

Solar Time none Don’t check against solar hour.
sunrise_sunset Replace production out of sunrise-sunset with zero.

Table 3.3: Summary of all pre-processing options explored.
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Chapter 4

Forecast Model

4.1 Forecast Model without Transfer Learning

4.1.1 Test Setup
The data from Meteo Galicia weather service comes in at different time horizons from D-3

(data for three days ahead of present time) to D0 (data for the current day). Handling these
different time horizons is the key to create a robust and flexible forecast model which can be
deployed for real time application. Consequently, some decisions are done when creating the
different datasets to use in the traditional machine learning workflow of train, validation and test.

The machine learning models are trained with data from the past describing both predictors
and target variable. Thus, it makes sense to use past weather data from horizon D0: standing in
present time and looking back into the past, all horizons should be available so it makes sense to
use the weather values as close to the forecast day as possible instead of predictions made 2 or 3
days before.

Then, standing in the present time, there’s a forecast of weather variables for the next three
days, so it makes sense to use a forecast window of the same size which will be called real time
forecast, using as predictor the D-3, D-2 and D-1 horizons from Meteo Galicia. On the other
hand, trying to emulate the market daily nature, it also makes sense to use D-1 data for the
predictors in a situation comparable to use the day-ahead weather forecast to define the day-
ahead energy acquisition in the market. The two options can be summarized as below.

• Production setup: can be used in a real-world situation where Meteo Galicia data is
available only for the following three days. The forecast window will then have three days
with D-1, D-2 and D-3 predictors for each one; the test set will then be composed of the
hourly predictors for 3-days ahead of present time. From a production point of view, for
the same day, three different forecasts will be produced based first on D-3 predictors, then
D-2 and, finally, on the day before, with D-1 weather predictors. This corresponds to an
update of forecasts for the same day, as better weather information becomes available; the
logic is depicted in 4.1.

• Development setup: based only on D-1 Meteo Galicia data, this setup cannot be used
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for real world deployment because only one D-1 day is available. Nevertheless, it is a useful
tool for model development making predictions for the past. From a production point of
view, this could be adapted as the equivalent of making only next day forecast (based on
D-1) for each day thus never using D-2 and D-3 predictors. For the purpose of this work, a
10-day window was implemented as a good compromise between having enough forecast
days to evaluate the algorithm and still keep a manageable run time for the algorithm.

Figure 4.1: Available data for forecast in each time step, highlighting how predictions can be
replaced as more updated meteorological data is collected.

For both setups, the train set in automatically defined as all the data available at the time
of the forecast; from this train set, a certain amount (10% or 20% are considered in this work)
is kept for validation. A notable detail, characteristic of of time-series data, is that these data
splits to generate train, validation and test sets must take into account the arrow of time; unlike
other types of data where random splits and sampling can be used to generate these sets, on time
bounded data this cannot be done, otherwise there’s a risk of training the model with data from
the future when the idea must be to predict the future by looking into the past. So, from the past
into the future, the train set is the first partition, then the validation and only afterwards should
come the test set. The procedure is schematized and exemplified in figure 4.2.

Figure 4.2: Timeline of train, validation and test splits with an example using 10% validation
ratio in the development setup.
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4.1.2 Model Design
The basic deep learning network used in this work is based on LSTM cells that allow to keep

information across different time steps effectively saving information for different time steps
and avoiding that older information is forgotten. The final choice for LSTM as the main model
for this work is justified by the results presented in section 5.1.1; nevertheless, to reach this final
decision, different models were also implemented and tested:

• H-1: A naive baseline model where the forecast value for any chosen hour consists simply
in the previous hour observation for production. This is not a real world possibility because
the production data has a delay to become available and also themarket opening and closing
hours would not allow to have such an operation. Nevertheless, due to its simplicity, is an
interesting point of comparison for the deep learning model.

• Regression Tree: A regression tree model based on the sklearn library, described by Pe-
dregosa et al. (2011), was also used as another benchmark model. This kind of model is
a decision tree that outputs continuous values thus being suited for regression tasks. The
default model parameters are used for and no special hyperparameter optimization was
implemented in its use.

• RNN: A simpler recurrent neural network (RNN) was also implemented through the
Keras library; this kind of model are usually well suited to time-series or language models.
When compared to LSTM, a basic RNN is typically less capable to retain longer patterns
due to the vanishing gradient problem.

The complete process followed to design the machine learning model and output the power
production forecast is described in the following sections and illustrated in figure 4.5.

LSTMModel

The key aspect that differentiates the LSTM layer from a simple recurrent layer relates pre-
cisely with the vanishing gradient problem, an effect characterized by the fact that the network
becomes untrainable as layers are added to build the deep learning network. So, this feature
allows to stack several layers in sequence, using Keras sequential model, thus enhancing the rep-
resentational power of the network and getting a better forecast error. In this kind of design it’s
essential that all the intermediate layers return the full sequence of outputs, to be used by the
following layer, as explained by Chollet (2021).

Although using stacked LSTM layers can typically provide good results, it’s often a good idea
to deploy also some kind of regularization technique to avoid getting the network training to
fall into an overfitting situation. Dropout is one of the simplest methods for regularization in
a neural network; basically, some neurons are ignored during training in order to avoid that the
network will adapt too much into specific examples thus allowing to have a better generalization
to decrease the error in the test set. This can be easily done in the context of a Keras sequential
model using Dropout layers to connect LSTM layers. These layers are defined basically by the rate
argument where the percentage of input units to be dropped from training is defined. Another
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way to avoid this issue, after the basic layers for the model are chosen, is to reduce the size of the
model which is determined both by the number of layers and the number of input units by layer;
this will be discussed later in section 4.1.2.

The last (hidden) LSTM layer will then be linked to the output layer where the neural network
model presents the prediction; in this particular case, that will be a normalized prediction that
will need to be re-scaled, an issue that will be addressed in section 4.1.4. The network topology
presented is then a stack of layers which will map the inputs into a single output, represented
by a dense fully-connected layers with 1D dimension which is appropriate in the context of time
series forecast.

Figure 4.3: Basic structure of Keras sequential model with LSTM and dropout layers.

Tensor Structure

One of the basic building blocks of the deep neural network model used in this work is
a long short-term memory (LSTM) layer, a type of recurrent network. For the Keras model
implementation, it’s necessary to rearrange the dataset into 3D tensors to match the network
input that consists of three dimensions: samples (each consisting of one sequence), time steps
(point in time where observation is taken) and features (one observation at a specific time step).

Figure 4.4: Structure of tensor for time series data, depicted in Chollet (2021).

Hypermodel Tuning

It was mentioned before that overfitting is a characteristic problem prevalent in deep learning
models which are can typically grow into very large size models. Although default Keras param-
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eters and layer configuration can achieve good results, this work also explored the use of Keras
tuner to perform the hyperparameter optimization through some chosen search algorithm.

First, it was necessary to create a function that delivers instances of an hyper-model where
its parameters can vary within controlled ranges. The basic idea is to find the optimal number
and dimensionality of the layers but other parameters can also be added into the search space.
Starting with a LSTM layer and then alternate Dropout and LSTM layers; the maximum number
of allowed LSTM layers is an input set to 5. Additionally, two different hyperparameters can
be explored when creating an instance of the hyper-model: the number of inputs units of each
LSTM layer (allowed to be set from 32 to 512 in steps of 32) and the dropout rate of eachDropout
layer (a random value from 10% to 50%, not too low to have some effect and not too high to
avoid under learning). Then, a final 1D dense output layer is also connected for the reasons
explained in 4.1.2. Finally, the model is compiled with the learning rate (allowed to be chosen
from a set of pre-defined values), setting the optimizer (Adam algorithm, a stochastic gradient
descent method, suited to large models, is used by default) and the loss function. For the later,
lot of different options exist to calculate the value that the train process seeks to minimize; in
this case, a measure of the model fit towards validation data. In this work, MAE (mean average
error) was used.

The Keras tuner framework, described by O’Malley et al. (2019), allows to have an effective
search through different models to find the best topology. With the search space defined in the
hyper-model function, an objective is defined to chose between models. In this case, the tuner
has been set to use the model loss function for that purpose. Then, two parameters are set to
define how long and how hard to search for: the number of trials to run during the search and the
number of models that are built and fit in each trial. Within the same trial, the hyperparameters are
the same and the idea is simply to reduce the results variance; for each trial, new hyperparameter
values are generated.

With the hyperparameters search space and trials defined, the last step is to define the search
algorithm to be used. The base tuner class can be instantiated to correspond to different algo-
rithms that manage the build, train, evaluation and save of each Keras model version. For the
purpose of this work, a random search tuner was primarily deployed with some experiments also
conducted using the Bayesian optimization tuner with Gaussian process; other tuners such as
Sklearn (for Scikit-learn models) and HyperBand algorithm are also available but were not used
in the context of this work. Additionally, Keras also provides a get_best_hyperparameters built-in
method that can be deployed to get the best untrained model found during the search process
conducted with the tuner.

4.1.3 Train and Validation
After the deep learning network model topology is defined and the hyperparameters opti-

mized, the model should be ready to be trained on the data. This section will explain the standard
process where data for a single site, split in train, validation and test sets, will be used to train
the model and then make predictions for that same site; more complex setups, enabling transfer
learning, will be discussed in 4.2.

The model is trained using the train data based on the splits defined in 4.1.1 with 10% of the
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train data taken apart for validation, meaning that it’s not used for actual training. Then, the model
fitting is performed defining a maximum number of epochs (iterations over the entire set of data)
to avoid the process being trapped in very long train cycles. The validation set is also provided
as an argument: although the model is not actually trained on it, it will be used to evaluate the
loss function at the end of each epoch. For the train process, two different callback functions are
used to manage the model during training, effectively guiding the process and providing options
for posterior use.

First, the early stopping callback allows to stop the training before the maximum number
of epochs is reached, based on the monitoring of some metric which stops improving. This
process is also helpful to avoid overfitting to the train data which should theoretically improve
the generalization towards the test set. This callback function is defined by the metric to be
monitored, by the number of epochs without improvements after which the training should be
stopped and a minimum value of loss function improvement to be qualified as improvement.

Second, the model checkpoint callback is used in order to save the model or its weights. The
setup configured for this work only saves the model weights in the epoch where it is considered to
be the best according to monitored loss function, thus guiding the problem objective of achieving
the minimization of that measure.

Finally, when the train process stops, it’s possible to plot the evolution of the loss measure,
both in the train and validation sets, effectively providing a visual insight into the results of the
model fitting.

4.1.4 Forecast
After the model is trained using the process described in 4.1.3, it can be used to make pre-

dictions for the test set described in 4.1.1. As explained before, scaling is a fundamental step for
the Keras deep learning model and the raw predictions will correspond to scaled values. Thus,
these raw predictions must be scaled back using the appropriate method depending on how data
was normalized in the pre-processing stage.

Post-processing

After the predictions are scaled back toMWorMWh units, the forecast model has achieved its
goal. Nevertheless, it’s also important to keep in mind that the same considerations made in 3.3.2
should still apply to the predictions because they are bounded by the same physical constraints
of the photovoltaic production system. This is brought into play in a post-processing stage of
the forecast workflow.

In practical terms, this means that forecast production values, ŷ, will be further constrained
by the following conditions:

• Production bounded by solar hour
if time ϵ night then ŷ = 0

• Production cannot take negative values:
if ŷ < 0 then ŷ = 0
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• Producation cannot exceed system capacity - nominal power (PNOM ):

if ŷ > PNOM then ŷ = PNOM

Error Evaluation

To evaluate the performance of the forecast model, the predicted values can be compared to
the actual values corresponding to the test. To measure the distance between forecast and actual
values, three different metrics are considered:

• Mean Absolute Error (MAE) - also generally used as the loss function while training the
algorithm. Simpler to interpret as the average value of all the errors.

• RootMean Square Error (RMSE) - useful for comparison since it penalizes larger errors, al-
thoughmore sensitive to outlier values which shouldn’t be a problem after post-processing.

• Coefficient of Determination (R2) - convenient for comparison across models since it’s
scaled between 0 and 1.

Although these metrics can provide relevant insight into how the model performs across
sites (R2) or for different test setups varying with different amount of historical data, they still
mean little into why the LSTM-based model should be chosen. So, other forecast models where
considered for benchmark.

Figure 4.5: Overall view of pre-processing, optimization, training and forecast tasks in the fore-
cast model workflow.
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4.2 Forecast Model with Transfer Learning
The baseline for this work was to create a forecast model for solar power production based

on historical data which can be quite scarce on new photovoltaic projects, thus fitting the char-
acteristics of the cold-start problem. Then, in this section, the work explores the possibility of
applying the transfer learning paradigm to improve the forecast performance on such conditions.

From all the transfer learning approaches described in chapter 2, this work explores trans-
ductive transfer learning since the source and target tasks are the same (solar power production
forecast) and the source and target domains are different yet related. The approach in this work
can also be classified as parameter-based in the sense that the means of knowledge transfer will be
the weights of pre-trained models. The source models can be used either for feature extraction
(freezing all layers except the final ones) or weight initialization (all the layers are fine tuned with
target data). The second approach was finally dropped both due to the excessive sensibility that
it showed towards the selected target data used and also because feature extraction mode actually
provided better error values as can be verified in chapter 5.

4.2.1 Test Setup
Regarding the process and code implementation to enable transfer learning, different steps

are taken. One of the key requirements, fulfilled during the implementation of the algorithm,
was to have the possibility of choosing any possible combination of source sites in order to build
a forecast for any selected target, from the available sites. This flexibility enables the test of
different hypothesis to investigate the potential of transfer learning in different scenarios.

The first step is to define which source sites will be used to train the model; more specifically,
after selecting the target site, how to choose the source sites that can be of greater value for the
prediction, minimizing the forecast error. The selection of the most suitable source domains
(or production sites) is based on the idea of similarity leading to the transferability of knowledge
between sites sharing common features. Although more sophisticated approaches can be used,
in this work two simple methods were used to guess the best source sites for each target: the
straight line distance between sites and the coefficient of correlation of their power production
time series.

• the geographical distance between the target and source sites, defined by their latitude and
longitude, under the assumption that if they are closer, then power production should also
follow similar patterns. It should be highlighted that such an approach disregards unavail-
able site-specific information such as the shadow patterns or the solar panels azimuth and
orientation. The calculation was made using the geopy Python package.

• the Pearson correlation coefficient calculated for the solar power production time-series
between different pairs of sites. The calculation was made using the corr method available
for pandas DataFrame structures in Python.

Then, the number of source sites to consider could also be a subject for further studies. In
this work, where five sites are closer together in the south of the country and another one further
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up north, using two source sites has been found to be a balanced compromise between achieving
a good forecast result and keeping train time at a reasonable amount.

The final step is the decision on the range of data to consider. This work explores the possi-
bility of taking in different amounts of data from source and target sites; for an extreme case, it
can even be considered that no data exists for the target site, a situation where the forecast would
be effectively produced based only on a model trained with source sites. The most interesting
outputs expected from this test setup are the evaluation of transfer learning effectiveness and
insight into how much data needs to be collected for the target site in order to outperform the
transfer learning model.

Figure 4.6: Schematic of the strategy used to explored the impact of the size of target data in
the forecast.

4.2.2 Train and Validation
The implementation of transfer learning is based on the processes described in 4 but with a

few subtleties. The main sequence consists of reading the data from first source site, perform the
defined pre-processing options and create the splits in dataset. Here lays the first major distinction
in the TL from the normal process: while before, the split consisted on train, validation and test,
when dealing with source sites no test is necessary because no forecast will be produced. The
split can be then limited to train and validation. The model design, if based on hyperparameter
optimization, is done only when the first source site is processed. Afterwards, the model design
is considered to be locked and only the weights of the network can be tuned on the next stages.
The process continues with the second source site with the pre-processing and split into train
and validation; the weights of the model are then updated with the new data; this procedures is
repeated for all the specified source sites.

When all source sites are processed and the model trained with their data, the transfer learning
continues with the target site data. Here, after the pre-processing, the data split will now include
the typical train-validation-test split because the goal is now not only to train a model but also
to actually produce a forecast. Before training with target data, it necessary to set the trainable
status of each layer: by default, all layers can be trained; for the purpose of transfer learning,
particularly when used in the feature extraction variant, some layers are frozen which means that
training with target data will not affect them. Then, the training process goes on normally. It
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should be mentioned that both the feature extraction and weight initialization approaches of
transfer learning, schematized in figure 4.7, will be explored in section 5.2.2.

Figure 4.7: Deployment schemes of network-based transfer learning from Fan et al. (2020).

4.2.3 Forecast
Through all these stages of reading data for each site, either source or target, the model is

saved. Starting on the first source site, after the train and validation stage, the model will be
considered to be trained on that data and saved. Then, the data from the second source site will
be used to further train the model which was previously saved after the first source site. The
process is repeated until all the source sites are used to train the model. Afterwards, a similar
process occurs with target site data, used to run the final training of the model which is will be
then reflecting the train effects both by source and target sites. It can be then used to produce a
forecast for the test set. The process will finalize with the evaluation of the forecast error, not just
for the final model (trained with source and target data) but also for the intermediate models that
are saved throughout the procedure. Such setup allows to assess the potential and effectiveness
of transfer learning through all the algorithm stages.

The figure 4.8 presents an example where the goal is to forecast for site 5 using the data from
source sites 1 and 2. The setup allows to evaluate how accurate is the forecast when the model is
trained on three different stages: only data from 1, data from 1 and 2 (sources) and on data from
1, 2 and 5 (sources and target).
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Figure 4.8: Overall view of pre-processing, optimization, training and forecast tasks in the model
with transfer learning.
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Chapter 5

Results

5.1 LSTMModel

5.1.1 Benchmark
The first major result was simply to verify how the LSTM model could compare with other

models described in 4.1.2. For that, the development setup defined in section 4.1.1 with 10 days
of forecast, was used with a LSTMmodel without hyperparameter optimization, using 1 year data
from site 1 and D-1 predictors. Both pre and post-processing options were equal for all models
in order to have comparable results.

Figure 5.1: Final 5 days of 10 days forecast, using the development setup for site 1, with different
machine learning models for benchmark.
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Site Best Model Next Best Model ∆ RMSEType RMSE Type RMSE
1 LSTM 0,064 H-1 0,082 22%
2 LSTM 0,740 Regression Tree 1,092 32%
3 LSTM 3,220 H-1 5,586 42%
4 LSTM 0,396 H-1 0,599 34%
5 LSTM 2,721 Regression Tree 4,252 36%

1023 H-1 2,853 Simple RNN 3,911 27%

Table 5.1: RMSE error of the best and next-best models for each available site.

The results presented in table 5.1 clearly indicate that LSTMmodel outperforms all the other
models on the RMSE metric for all sites with the exception of 1023; this particular result prob-
ably originates from the fact that the production series for site 1023 contains periods with no
production related with some downtime of unknown cause. For the remaining sites, the best
forecast results are obtained with LSTM-based model which outperforms the second best model
(the previous hour model H-1 or regression trees) by 20% to 40% on the RMSE error, depending
on the site. Such outcome backs the decision to invest on tailoring and refining the LSTMmodel
because it seems to have the biggest potential for accurate power production forecast.

5.1.2 Impact of Hyperparameter Tuning
The next experiment was aimed at exploring different variation for the network. This was

done using the Keras built-in tuner by allowing the search through different configurations for
the best one as evaluated by the loss function MAE. The setup consisted of 5 different iterations
of the algorithm, for a specific site, where the only differences are the ones randomly introduced
by the Random Search algorithm used in the tuner.

Interestingly, the results presented in table 5.2, show that the smaller model with only two
layers actually performs better on all metrics when compared to larger models with extra layers.
This could be an hint that even with the early stop callback in place, the model may still be
suffering from overfitting towards the train and validation set and then failing to generalize as
well to get a better performance on the test set.

Impact of Search Algorithms

The Keras framework allows the use of different search algorithms to find the best model
configuration based on the defined hyperparameters. An experiment was devised where five
iterations were run for the same site using two different tuners based on Random Search (RS)
and Bayesian Optimization (BO) algorithms.

The results, ordered by RMSE in figure 5.2, show that the best performance was obtained
with a model configuration built with RS algorithm. Looking at all iterations, there’s no clear
pattern that allows to state conclusively that either algorithm is the best. Moving forward, the
decision was to take the RS algorithm as the simplest implementation of a Keras tuner.
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Iteration #1 Iteration #2 Iteration #3 Iteration #4 Iteration #5

Layer Units Layer Units Layer Units Layer Units Layer Units
LSTM 352 LSTM 96 LSTM 192 LSTM 224 LSTM 256
Dropout 352 Dropout 96 Dropout 192 Dropout 224 Dropout 256
LSTM 32 LSTM 320 LSTM 224 LSTM 32 LSTM 32
Dropout 32 Dropout 320 Dropout 224 Dropout 32 Dropout 32
LSTM 32 Dense 1 LSTM 32 LSTM 32 LSTM 32
Dropout 32 Dropout 32 Dropout 32 Dropout 32
LSTM 32 LSTM 32 Dense 1 LSTM 32
Dropout 32 Dropout 32 Dropout 32
Dense 1 Dense 1 Dense 1

Metric Value Metric Value Metric Value Metric Value Metric Value
MAE 0,0341 MAE 0,0258 MAE 0,0317 MAE 0,0465 MAE 0,0336
RMSE 0,0609 RMSE 0,0483 RMSE 0,0582 RMSE 0,0801 RMSE 0,0603
R2 0,9379 R2 0,9516 R2 0,9419 R2 0,9348 R2 0,9404

Table 5.2: Performance metrics and network configurations obtained in different iterations of
hyperparameter optimization, for site 1.

Figure 5.2: Performance metrics for multiple iterations of hyperparameter optimization, using
different Keras tuners, for site 1.

5.1.3 Impact of Feature Engineering
Another interesting study is the sensitivity of the model towards different combinations of

predictor features described in section 3.3.1. This was done simply by taking different sets of
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features running on the same model configuration, pre and post-processing setups. The model
configuration with best performance in 5.1.2 was selected for this test.

Setup MAE RMSE R2

(4) Custom + Time Predictors 0,0285 0,0510 0,954
(10) XGBoost Top20 + Time Predictors 0,0340 0,0594 0,949
(2) Meteo Galicia + Time Predictors 0,0364 0,0638 0,948
(5) Time Predictors 0,0434 0,0809 0,851
(9) XGBoost Top10 + Time Predictors 0,0442 0,0811 0,908
(8) XGBoost Top20 0,0501 0,0908 0,902
(1) Meteo Galicia 0,0523 0,0918 0,915
(3) Custom 0,0576 0,1001 0,920
(6) Radiation swflx 0,0617 0,1092 0,833
(10) XGBoost Top10 0,0620 0,1099 0,898

Table 5.3: Impact in performance of different feature engineering options, ordered by RMSE.

The results show that the custom feature selection method effectively translates into an im-
provement in the forecast error metrics; in fact, it makes the RMSE improve by roughly 20%
when compared with the case where all the Meteo Galicia variables (except constant values) are
feed into the model. Such results suggests that LSTM algorithm benefits by selecting the best
features from data and use them to make a better forecast.

Another notable result is that the feature augmentation method used in this work, although
quite simple, provides a notable boost in the forecast quality. In fact, when comparing the Custom
setup, with and without the augmented features, a improvement of almost 50% is found in RMSE
when the time features are added into the dataset.

Then, it’s also quite interesting to find that the dataset set using only time predictors and
no meteorological data have a performance not much worse than the dataset that takes only the
meteorological data. Again, this fact underlines the power of feature augmentation and also the
possibility that in real world applications, if any issue arise with the reception of meteo data,
within the appropriate time frame to send forecasts to market, a reasonable backup solution can
be found just by working with these timestamp related predictors.

It was also proved that while radiation and solar power production share a relation of causality,
with the first leading to the second, it’s not the best solution to take as predictor. One of the
reasons could be because the radiation is measured on a horizontal plane which is different from
the typical angle of solar panels.

Regarding the automatic feature selection method, based on XGBoost, the variable rank
contained in appendix D provides some interesting insights. The two most important variables
are related with geopotential height, the height above sea level of some atmospheric pressure; one
possible explanation could be that atmospheric pressure is actually a proxy to the weather: lower
pressures typically correspond to cloudier weather and higher pressures to cleaner sky. Then
come hour and month, two features originated from the augmentation process thus underlying
its relevance. The radiation related variables are also part of the top 10 together with temperature
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which again may be a proxy of the general weather state. The best setup including this automated
selection consists in taking the top 20 variables, selected from a set including the time predictors,
and it provides the second best results in RMSE, only around 14% worse than the best setup.
This results suggests that the method can be specially beneficial when deploying some machine
learning algorithm over a dataset from a different area of knowledge where it could be harder to
make decisions based on the variable physical meaning.

5.1.4 Impact of Outlier Detection
The deployment of the outlier detection strategies for the target variable, described in 3.3.2,

was also evaluated through an experiment where, keeping all things equal, the algorithm was run
with the target variable in the dataset being slightly modified by different combinations of all the
possibilities of filters (negative values, excessive power and solar hour). The results are compared
with a baseline scenario where no filters are applied to the target variable.

Figure 5.3: Impact of different outlier detection strategies for the target variable.

The first takeaway is that, perhaps contradicting the expectation, the baseline without any
filters is not the worse case scenario. The main difference seems to be related with the intro-
duction of the power-based filter which even alone can improve the performance against the
baseline. The main conclusion is that using the 3 filter in conjunction provides the best results
with a RMSE improvement around 16% when compared to the baseline scenario; additionally,
the correlation metric is also the best with this filtering option.
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5.1.5 Impact of Post-Processing
As previously discussed in 4.1.4, the conditions applied to filter out values from the target

variable, remain valid to be applied on the forecast output. This means that no negative values
should be allowed, no production outside solar hours and no power above the rated capacity of
the installed capacity. To evaluate the benefits of this approach, two different runs of the model
were performed for site 1, using the same network layout and pre-processing techniques; the only
difference was running or not the post-processing stage for the outputs of the model.

The results, with an improvement of around 5% in RMSE, clearly state the benefits of con-
duction a post-processing stage of the results. This underlines the powerful combination of
a machine learning approach with human insights that can further constraint and enhance the
forecast results.

Metric No Yes
MAE 0,0321 0,0300 -6,5%
RMSE 0,0564 0,0538 -4,6%
R2 0,9525 0,9499 -0,3%

Table 5.4: Impact of post-processing techniques in forecast error..

5.2 LSTMModel with Transfer Learning

5.2.1 Site Proximity
The basic concept of transfer learning consists on the idea of taking information from some

source domain in order to improve the forecast for the target domain, sharing in this particular
case, the same task of solar power production forecast. The results obtained using the methods
described in section 4.2.1 are presented in table 5.5.

km 1 2 3 4 5 1023 R2 1 2 3 4 5 1023
1 123 38 76 52 342 1 0,865 0,906 0,891 0,906 0,678
2 109 60 71 233 2 0,872 0,898 0,898 0,730
3 51 47 339 3 0,906 0,917 0,692
4 35 293 4 0,923 0,710
5 295 5 0,715
1023 1023

Table 5.5: Distances and correlation measure for power production between sites.

The main standout from the evaluation of site proximity, either based on distance or correla-
tion criteria, is that site 1023 exhibits smaller correlation with the other parks, particularly when
compared with how sites 1-5 relate with each other. The result is not surprising considering the
geographical location of site 1023 on the center of the country while the others are more closely
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located in the south. Judging by the defined criteria, park 1023 should not be used as a source
for transfer learning towards the other sites. Regarding the remaining five locations, site 2 , with
correlation values below 0.9, also looks slightly displaced when compared to the other four sites,
specially site 1 and 3 that are also more than 100km away.

5.2.2 Transfer Learning Approaches
The first experiment was aimed at exploring the different possibilities of transferring the

knowledge of pre-trained models to the target. In order to do that, two sites were selected to use
as source domains for site 1 forecast: 3 and 5 were selected since they are closer geographically
and also exhibit slightly higher correlation coefficient values for their production time-series. All
available data from each of the source sites was used; as for the target, it was considered that only
one week of data was available at the time of the forecast.

TL Approach MAE RMSE R2

Feature Extraction 0,0191 0,0386 0,9661
Weight Initialization 0,0197 0,0402 0,9635

Table 5.6: Performance of different transfer learning implementations.

The results show that using feature extraction, where all layers except the final LSTM are
frozen, outperforms using source data only for weight initialization. The benefit of using a feature
extraction approach seems to be around 4% in RMSE metric.

5.2.3 Performance across Transfer Learning Stages
Looking with further detail into the case of feature extraction, it’s also interesting to check

how through the transfer learning process, the forecast accuracy evolves. The case here consists
of taking one week of data from the target site (1) and evaluating how accurate the different
train steps, with different datasets, can forecast solar production based on source sites (3 and 5),
identified as closer using either distance or correlation criteria.

The first and most important result, illustrated in figure 5.4, is that the model with transfer
learning (denoted 3+5_1) shows the lowest RMSE and the highest correlation coefficient; in
fact, when compared with the model only trained with target data, the improvement on RMSE is
around 55%. Then, it’s also interesting to note that the model trained with only source data can
outperform the model trained only with target data by about 41%.

These results are a strong indication of the potential of transfer learning to overcome the data
scarcity issues of the cold-start problem.

5.2.4 Dependency on Amount of Target Data
The goal of this work is to explore the potential of transfer learning to improve the forecasts

when the target site has very small amounts of data. But, for real world applications, sites start
to collect more and more data when they start operation. Then arises the question: for how long
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Figure 5.4: Performance of transfer learning model (3+5_1) and another models built through
the process.

does it make sense to use a transfer learning model instead of a more standard version where the
learning comes all from the target site data? To answer this question, an experiment was devised
where, keeping all other settings equal, the only change is the amount of data used to fine-tune
the model based on target data.

Theoretically, the expectation would be that for smaller amounts of target data, the model
without transfer learning (based only in target data) would be outperformed by the model using
the transfer learning paradigm. The plot presented in 5.5 somehow seems to agree with this idea:
when the amount of target data is very small (less than 6 months), the model that doesn’t use
transfer learning shows an error which is roughly two times of what is achieved by the model
with transfer learning. This result can be related with the fact that looking at periods so small,
there’s not enough amount of data to infer all the patterns that may exist throughout the year
in solar power production. Looking at the same figure, it looks like there’s a cut-off around 6
months of target data: in fact, the RMSE metric looks to be similar with or without transfer
learning when the model takes in at least 6 months of data. This suggests such an amount of data
is the minimum necessary to capture the required patterns to produce comparable forecasts to a
transfer learning model.

It would be interesting to make a similar study for sites located in a region where the weather
exhibits less distinct yearly patterns such as the Winter and Summer climate patterns verified in
Portugal; the hypothesis is that perhaps for a location at lower latitudes, with smaller weather
variation during the year, a smaller amount of data would be necessary for the model without
transfer learning to learn all the required patterns to outperform the transfer learning model.
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Figure 5.5: Model comparison with different amounts of target data, with and without the
application of transfer learning paradigm.

5.3 Estimation of Economical Benefits
The analysis of the forecast error is the typical way to evaluate and guide the optimization

process of many machine learning applications. On this real-world example, it’s also relevant
to highlight how much this error minimization translates into economical benefits. The energy
market basic mechanism is described in chapter 1 where the deviations to real production are
penalized due to the need of the system operator to intervene in order to balance supply and
demand.

A simple exercise was conducted to understand how much benefit can be obtained: consid-
ering a 10-days window for site 3 (with one week of available target data and the possibility of
transfer learning using sites 4 and 5 as sources), the deviation to real production is calculated in
MWh. The assumption is that such deviations will be penalized at spot price market value for
each hour, considering daily market prices from Iberian market.

On figure 5.6, it’s possible to observe the daily fluctuations of spot prices during the 10-
days period. The deviation of the model without transfer learning is higher and, additionally, the
larger deviations seems to occur more frequently during the day period where the prices are also
typically higher, driven by the demand. This means that deviations during periods of higher prices
will have a larger penalty because the prices will be higher. It gives a direct economical incentive
to building a model which focus on minimizing RMSE for instance (as opposed to MAE) since
that can translate to larger benefits originated from the normal hourly fluctuation of prices.
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Figure 5.6: Deviation from real production of forecast model with and without transfer learning
for site 3; MIBEL spot prices on secondary axis.

Looking with further detail into the results on table 5.7, the model with transfer learning
outperforms the standard model only learn from target data by almost 40% in RMSE which is
in accordance to results obtained for other sites and presented in previous sections. Then, the
sum of all the deviations for the forecast period is almost the double in the case without transfer
learning to a value of 890MWh; to put into the site-specific context, the deviation corresponds
roughly to 18h of production at the nominal power of the photovoltaic system. For the case with
transfer learning, these deviations amount to 461MWh or 9h of production at nominal power. It’s
also interesting to note that the average spot price, weighted by the production in each period,
is approximately 13% lower in the case with transfer learning because this model has smaller
deviations during periods of higher prices. This means that the economical benefit will come
both from the smaller amount of deviations but also because these deviations will the penalized
at a lower average price. Finally, without transfer learning, the deviation to real production would
amount to roughly 172m€ which compares to around 77m€ when transfer learning is deployed.
The benefit of this approach is a reduction in deviations penalty cost of around 55%.

Model Model_3 Model_4+5_3 ∆Without Transfer Learning With Transfer Learning

Error
MAE 3,711 1,919 -48%
RMSE 6,339 3,844 -39%
R2 0,827 0,936 13%

Deviation
MWh 890 461 -48%
€/MWh 193 € 168 € -13%

€ 171 847 € 77 364 € -55%

Table 5.7: Economical benefit of transfer learning.
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Chapter 6

Conclusions

The role of renewable energy for the sustainability of global development and climate change
mitigation is the fundamental reason that justifies this work. Solar energy in particular, assumes a
special relevance as a feasible solution to satisfy demand proving that the economical challenges
of integrating a variable source into the power grid can be solved. The accuracy of forecast mod-
els of PV production in solar farms is at the core of its competitiveness since it allows not just
to maximize the market value of solar electricity but also to ensure fault detection and optimal
scheduling of maintenance activities. The aim of this work was to show that the transfer learning
paradigm can be decisive in the specific task of predicting the PV production for sites without
representative historical data that could be used to develop traditional data-driven models. The
literary review presented in this report was the first step of this master thesis and it reviewed the
commonly used models for PV forecast and theoretical background for transfer learning, inspir-
ing the strategy to be followed regarding benchmark models, algorithms, tuning and optimization
strategies.

The actual work started with a deeper look at the data structures and its accessibility. The
decision was to create a database to simplify the storage of data from different sources, different
time horizons and different sites to make sure that data was always available for the desired
forecasts. In practice, the database was used to store all the raw data (from Meteo Galicia and
production sites) and then also to store a merged version to aggregate both sources of data into
unified hourly data. This step was enabled by the use of R for manipulation of data and insertion
into database. Reading data into Python, the first step was then to transform the database format
into a more typical machine learning dataset with timestamp, predictors and target variable with
each row corresponding to one hour of observations.

Before modeling, it was also relevant to go through the exploratory data analysis collecting
useful insights to help with the forecast model. The dataset is mostly numerical and the few cat-
egorical variables could be discarded due to the unsuitability for time series forecast. Then some
other variables were shown to be pointless for instance the ones related with snow precipitation
which is thoroughly uncommon in Portugal. Special attention was then paid to the variables
related with the radiation flowing in a out of the Earth system. The analysis of the target vari-
able was done considering the known physical characteristics of the production system providing
a systematic way of outlier detection in solar power production. Regarding bivariate analysis it
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showed some severe high correlations for some variables which was expected considering their
nature and definition; nevertheless, this was an insight that could be used later in the modeling
stage to simplify the dataset and reduce the number of features. The correlation with the target
variable is the highest in short-wave radiation flux which makes sense considering that’s the kind
of radiation targeted by the solar cells.

Due to the potential of real-world application for this work, special attention was paid to
the time frame of data availability for some forecast horizon. The conclusion was that it made
sense to build the dataset at some specified time only with data that would have been available
at that time. Then, it was also important to define some baseline models for a sanity check to
verify the superior performance of a LSTM-based model. The LSTM-based model was also able
to outperform regression trees, simple RNN and the next-best (previous hour model) by about
20% to 40% when focusing on RMSE. The data pre-processing, before feeding it into the model,
was also explored both as a pre-condition for the algorithm to work (scaling and missing values
handling) and also to improve the actual results of the forecast (outliers and feature engineering).
The design of the forecast model was based on LSTM and dropout layers, linked together on a
deep learning network, built within the sequential Keras framework. The best parameters were
found through hyperparameter optimization with Keras tuner; it was found that a smaller model
with only two LSTM layers was capable of having a better performance when compared with
more complex models with extra layers.

The main takeaway from the assessment of feature engineering options was that the feature
augmentation technique of adding extra predictors based on timestamp information was key in
improving the error metrics. Additionally, it was also shown that these time predictors alone were
able to outperform the scenario where only meteorological predictors was used. Finally, using a
custom feature selection based on insights taken from exploratory data analysis also showed to be
a good decision for error minimization; in fact, the approach combining physical knowledge of
the photovoltaic and meteorological systems was able to outperform automated feature selection
techniques such as the XGBoost by roughly 14% in RMSE. Nevertheless, these automated ap-
proaches remain essential to deal with problems where deep knowledge of the problem variables
is not available.

The impact of using different outlier detection strategies, for the target variable, is also quan-
tified and the conclusion is that the best setup consists in the joint use of filters for solar hour,
negative values and maximum installed power. The RMSE improvement,when compared to the
baseline scenario without any filtering on the target variable, was estimated to be around 16%.
Additionally, applying the same techniques as post-processing stage to the forecast, was able to
improve the RMSE error by about 5%, further underlining the benefits of combining the power
of artificial intelligence and human insights into the data.

The application of transfer learning was tested in different scenarios. First, two different
approaches were tried with the network being used both for feature extraction and weight initial-
ization. The results obtained suggest that the feature extraction approach provides a benefit of
around 4% in the RMSE error metric for the forecast. Additionally, it was also found that the
weight initialization approach may be overly sensitive to target data. So, feature extraction was
favored and used going forward.

During the transfer learning process, different models are developed corresponding to each
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stage: first trained with source sites and then fine-tuned with target. It is then interesting to
compare the performance across these stages. It was found that the transfer learning model can
outperform the model trained only on target data by 55% when considering a cold-start scenario
where only 1 week of data is available for the target. Additionally the model trained only on
source sites can also outperform target-only model by roughly 41% in the same scenario which
suggests that on a pure cold-start (with no data from target), a good backup solution can be
found in a model trained with selected sources.

A major question about the applicability of transfer learning to the cold-start problem is the
time frame where these models can provide a relevant improvement to traditional models. The
results from this work suggest that for the first six months of operation, the benefit of transfer
learning will be quite high; after that period, the collected data should allow a traditional machine
learning model, trained only on target data, to produce similar results.

Finally, the economical benefit of the transfer learning approach was also quantified with a
simple approach where the deviations of the forecast towards the real production was penalized
with Iberian marker spot prices. The results show that the benefits of transfer learning are origi-
nated from two effects. First, since the deviation during peak hours (with typically higher prices)
is smaller, the average price for each MWh of deviation is roughly 13% smaller in transfer learn-
ing scenario. Second, the total amount of deviation is roughly 48% smaller with transfer learning.
Together, these two effects translate into a reduction of the penalties around 55% when transfer
learning is deployed.

Future works could focus on further exploration of the machine learning model trying for
instance different tuners to search different configurations and also the exploration of different
loss functions for instance; it would be interesting to find howmuch the model should be tailored
for specific sites or whether the configuration is more site independent. On the other hand, this
work suggests the first six months of operation to be the crucial period where transfer learning
models can bring more benefit; nevertheless, maybe this period can differ depending on site
location, for instance, so that could also be a direction for another study.
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A Description of Dataset Variables

Variable Source Description Type Unit
timestamp - Timestamp of observation in GMT +0h. timestamp -
cape Meteo Galicia Convective available potential energy. Numeric [J/kg]
cfh Meteo Galicia Cloud cover at high levels. Numeric [0-1]
cfl Meteo Galicia Cloud cover at low levels. Numeric [0-1]
cfm Meteo Galicia Cloud cover at mid levels. Numeric [0-1]
cft Meteo Galicia Cloud cover at low and mid levels. Numeric [0-1]
cin Meteo Galicia Convective inhibition. Numeric -
conv_prec Meteo Galicia Total accumulated convective rainfall between each model output. Numeric [kg/m2]
dir Meteo Galicia Wind direction at 10m. Numeric [º]
HGT500 Meteo Galicia Geopotential height at 500mb. Numeric [m]
HGT850 Meteo Galicia Geopotential height at 850mb. Numeric [m]
HGTlev1 Meteo Galicia Geopotential height at model level 1. Numeric [m]
HGTlev2 Meteo Galicia Geopotential height at model level 2. Numeric [m]
HGTlev3 Meteo Galicia Geopotential height at model level 3. Numeric [m]
land_use Meteo Galicia Land Use/Vegetation Type (constant value for each site). Categorical -
lhflx Meteo Galicia Surface downward latent heat flux. Numeric [W/m2]
lwflx Meteo Galicia Surface downwelling longwave flux. Numeric [W/m2]
lwm Meteo Galicia Land/water mask (constant value for all sites, 0=land). Categorical -
meteograms Meteo Galicia Meteograms (plot of meteorological variables over time). Categorical -
mod Meteo Galicia Wind module at 10m. Numeric [m/s]
mslp Meteo Galicia Mean sea level pressure. Numeric [Pa]
pbl_height Meteo Galicia PBL Height. Numeric [m]
prec Meteo Galicia Total accumulated rainfall between each model output. Numeric [kg/m2]
rh Meteo Galicia Relative humidity at 2m. Numeric [0-1]
shflx Meteo Galicia Surface downward sensible heat flux. Numeric [W/m2]
snow_prec Meteo Galicia Total accumulated large scale snowfall between each model output. Numeric [kg/m2]
snowlevel Meteo Galicia Snow level. Numeric [m]
sst Meteo Galicia Sea surface temperature. Numeric [K]
swflx Meteo Galicia Surface downwelling shortwave flux. Numeric [W/m2]
T500 Meteo Galicia Temperature at 500mb. Numeric [K]
T850 Meteo Galicia Temperature at 850mb. Numeric [K]
temp Meteo Galicia Temperature at 2m. Numeric [K]
topo Meteo Galicia Topography (Constant value for each site - altitude). Numeric [m]
u Meteo Galicia Lon-wind at 10m. Numeric [m/s]
ulev1 Meteo Galicia Lon-wind at model level 1. Numeric [m/s]
ulev2 Meteo Galicia Lon-wind at model level 2. Numeric [m/s]
ulev3 Meteo Galicia Lon-wind at model level 3. Numeric [m/s]
v Meteo Galicia Lat-wind at 10m. Numeric [m/s]
visibility Meteo Galicia Visibility. Numeric [m]
vlev1 Meteo Galicia Lat-wind at model level 1. Numeric [m/s]
vlev2 Meteo Galicia Lat-wind at model level 2. Numeric [m/s]
vlev3 Meteo Galicia Lat-wind at model level 3. Numeric [m/s]
weasd Meteo Galicia Water Equivalent of Accumulated Snow Depth (zero in all sites). Numeric [kg/m2]
wind_gust Meteo Galicia Wind gust. Numeric [m/s]
y_production_mw Smartwatt Production of power plant. Numeric [MW]

Table 6.1: Detailed description of the variables used for solar power production forecast.
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Table 6.2: Univariate analysis for site 1.
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Table 6.3: Univariate analysis for site 2.
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Table 6.4: Univariate analysis for site 3.
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Table 6.5: Univariate analysis for site 4.
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Table 6.6: Univariate analysis for site 5.
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Table 6.7: Univariate analysis for site 1023.
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C Bivariate Analysis

C.1 Correlation Matrix
Calculated with Pearson’s correlation coefficient for numerical variables only.

Figure 6.1: Correlation matrix for site 1023 dataset.
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C.2 Correlation between Pairs of Variables

Var1 Var2 Correlation Var1 Var2 Correlation
HGTlev1 HGTlev2 99,92% sst HGTlev1 95,33%
HGTlev2 HGTlev1 99,92% HGTlev2 sst 94,53%
HGTlev3 HGTlev2 99,90% sst HGTlev2 94,53%
HGTlev2 HGTlev3 99,90% sst HGTlev3 93,33%
sst temp 99,73% HGTlev3 sst 93,33%
temp sst 99,73% shflx swflx 91,83%
HGTlev3 HGTlev1 99,69% swflx shflx 91,83%
HGTlev1 HGTlev3 99,69% lhflx swflx 90,81%
ulev1 u 99,67% swflx lhflx 90,81%
u ulev1 99,67% mslp HGT850 89,52%
ulev2 ulev3 99,63% HGT850 mslp 89,52%
ulev3 ulev2 99,63% mod wind_gust 89,08%
v vlev1 99,58% wind_gust mod 89,08%
vlev1 v 99,58% cfl cft 88,66%
vlev3 vlev2 99,51% cft cfl 88,66%
vlev2 vlev3 99,51% lhflx rh -88,08%
ulev1 ulev2 99,21% rh lhflx -88,08%
ulev2 ulev1 99,21% T500 snowlevel 87,91%
vlev2 vlev1 98,73% snowlevel T500 87,91%
vlev1 vlev2 98,73% snowlevel HGT500 87,88%
ulev2 u 98,51% HGT500 snowlevel 87,88%
u ulev2 98,51% snowlevel HGTlev3 87,22%
v vlev2 98,38% HGTlev3 snowlevel 87,22%
vlev2 v 98,38% HGT500 T500 87,02%
ulev3 ulev1 98,06% T500 HGT500 87,02%
ulev1 ulev3 98,06% snowlevel HGTlev2 85,97%
ulev3 u 97,30% HGTlev2 snowlevel 85,97%
u ulev3 97,30% HGTlev3 T850 85,36%
vlev3 vlev1 97,24% T850 HGTlev3 85,36%
vlev1 vlev3 97,24% snowlevel HGTlev1 84,95%
HGTlev1 temp 97,09% HGTlev1 snowlevel 84,95%
temp HGTlev1 97,09% T850 HGT500 84,62%
vlev3 v 97,00% HGT500 T850 84,62%
v vlev3 97,00% T850 HGTlev2 83,87%
snowlevel T850 96,51% HGTlev2 T850 83,87%
T850 snowlevel 96,51% T850 HGTlev1 82,68%
temp HGTlev2 96,45% HGTlev1 T850 82,68%
HGTlev2 temp 96,45% rh swflx -82,32%
temp HGTlev3 95,45% swflx rh -82,32%
HGTlev3 temp 95,45% HGT500 HGT850 81,09%
HGTlev1 sst 95,33% HGT850 HGT500 81,09%

Table 6.8: Correlations above 80% between pairs of variables for site 1023.

x



C.3 Correlation with Target Variable

Variable Correlation Description
swflx 20,70% Surface downwelling shortwave flux.
lhflx 20,15% Surface downward latent heat flux.
rh -18,57% Relative humidity at 2m.
shflx 18,27% Surface downward sensible heat flux.
sst 14,49% Sea surface temperature.
pbl_height 13,93% PBL Height.
temp 13,57% Temperature at 2m.
HGTlev1 10,02% Geopotential height at model level 1.
HGTlev2 9,70% Geopotential height at model level 2.
HGTlev3 9,23% Geopotential height at model level 3.
cfl -6,20% Cloud cover at low levels.
cft -5,55% Cloud cover at low and mid levels.
visibility 5,05% Visibility.
cin -3,91% Convective inhibition.
wind_gust -3,72% Wind gust.
snowlevel 3,41% Snow level.
HGT500 3,22% Geopotential height at 500mb.
T850 2,98% Temperature at 850mb.
cape 2,87% Convective available potential energy.
HGT850 2,57% Geopotential height at 850mb.
dir 2,36% Wind direction at 10m.
cfm -2,36% Cloud cover at mid levels.
T500 2,35% Temperature at 500mb.
prec -2,29% Total accumulated rainfall between each model output.
mod 2,23% Wind module at 10m.
ulev1 1,80% Lon-wind at model level 1.
ulev2 1,53% Lon-wind at model level 2.
cfh -1,50% Cloud cover at high levels.
u 1,40% Lon-wind at 10m.
ulev3 1,28% Lon-wind at model level 3.
vlev1 0,79% Lat-wind at model level 1.
conv_prec -0,62% Total accumulated convective rainfall between each model output.
vlev2 0,35% Lat-wind at model level 2.
lwflx -0,28% Surface downwelling longwave flux.
mslp -0,28% Mean sea level pressure.
v 0,25% Lat-wind at 10m.
vlev3 0,11% Lat-wind at model level 3.
snow_prec 0,00% Total accumulated large scale snowfall between each model output.

Table 6.9: Correlations with target variable for site 1023.
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D Feature Importance according to XGBoost

Figure 6.2: Feature importance, for site 1, including time predictors.
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