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Abstract
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Boosting the Predictions of Extreme Values

by Ańıbal Silva

Imbalanced domain learning aims to produce accurate models in predicting instances

that, though underrepresented, are of utmost importance for the domain. Research in this

field has been mainly focused on classification tasks. Comparatively, the number of studies

carried out in the context of regression tasks is negligible. One of the main reasons for

this is the lack of loss functions capable of focusing on minimizing the errors of extreme

(rare) values. Recently, an evaluation metric was introduced: Squared Error Relevance

Area (SERA). This metric posits a bigger emphasis on the errors committed at extreme

values while also accounting for the performance in the overall target variable domain, thus

preventing severe bias. However, its effectiveness as a loss function is unknown. The main

goal of this thesis is to study the impacts of using SERA as an optimization criterion in

imbalanced regression tasks. Using gradient boosting algorithms as proof of concept, an

experimental study with 36 data sets of different domains and sizes is performed. Results

show that models that used SERA as an objective function are practically better than

the models produced by their respective standard boosting algorithms at the prediction

of extreme values. This confirms that SERA can be embedded as a loss function into

optimization-based learning algorithms for imbalanced regression scenarios. After this

proof of concept, a study on the impact of using SERA in the residuals of Gradient

Boosting Machines will be performed.
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Resumo
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Boosting Predictions of Extreme Values

por Ańıbal Silva

Domı́nios desbalanceados visam construir modelos precisos em prever instâncias que,

embora sub-representadas, são o maior foco no domı́nio. A investigação neste campo tem

sido, contudo, maioritariamente focada em tarefas de classificação. Comparativamente, o

número de estudos no contexto de problemas de regressão é praticamente insignificante.

Um dos motivos é a falta de funções de custo capazes de minimizar erros de valores extre-

mos (raros). Recentemente, uma métrica foi introduzida: Squared Error Relevance Area

(SERA). Esta métrica não só enfatisa erros cometidos em valores extremos, como também

tem em consideração todo o domı́nio da variável predictiva. Contudo, a sua eficácia como

função de custo é desconhecida. Nesta tese, o objectivo é estudar os impactos do uso

de SERA como uma função de custo em problemas de regressão desbalanceada. Usando

algoritmos de gradient boosting como prova de conceito, um estudo experimental com 36

conjuntos de dados de diferentes domı́nios e tamanhos será feito. Os resultados mostram

que os modelos que usam SERA como função de custo são praticamente melhores do que

modelos optimizados por uma função de custo padrão na previsão de valores extremos.

Isto confirma que SERA pode ser embutida como uma função de custo num modelo de

optimização para cenários de regressão desbalanceada. Depois de desta prova de conceito,

um estudo sobre o impacto do SERA nos reśıduos usados nos modelos de gradient boosting

será efectuado.

mailto:up201008538@fc.up.pt
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ŷ Predicted feature

X Independent feature space

Y Dependent feature space

X Independent random variables

Y Dependent random variable

f Optimal learner

β Slope coefficients

Θ Set of parameters

L Loss function

P Probability density function

E Expected value

N Gaussian probability density function

I Identity matrix

φ Relevance function

σ Instance contribution to SERA or weights

F Strong learner

h Weak learner

r Pseudo-residuals

xix



xx Boosting the Predictions of Extreme Values

a Weak learner learnable parameters

γ Estimated slope coefficients

η Learning rate

T Number of intervals taken to discretize SERA

W Workflow

M Model

R ROPE



Glossary

SERA Squared Error Relevance Area

SERt Squared Error-Relevance

MSE Mean Squared Error

SSE Sum of Squared Errors

SE Squared Error

EPE Expected Prediction Error

AE Absolute Error

MAE Mean Absolute Error

LINEX Linear Exponential

LIN − LIN Linear Linear

QUAD −QUAD Quadratic Quadratic

NN Neural Network

FDS Feature Distribution Smoothing

LDS Label Distribution Smoothing

k-NN k-Nearest Neighbors

pchip Piece Cubic Hermite Interpolating Polynomials

XGBoost Extreme Gradient Boost

LGBM Light Gradient Boosting Machines

Smote Synthetic Minority Over-sampling Technique

SmoteR Synthetic Minority Over-sampling Technique for Regression

SmoGN Synthetic Minority over Gaussian Noise

xxi



xxii Boosting the Predictions of Extreme Values

DIR Deep Imbalanced Regression

KDE Kernel Density Estimation

MC Medcouple

IQR Inter quartile range

O() Worst-case time complexity

ROPE Region Of Practical Equivalence



Chapter 1

Introduction

Supervised machine learning assumes the existence of an unknown function mapping a set

of independent to dependent variables. The goal of supervised learning algorithms is to

approximate such an unknown function through optimization processes. To achieve this,

a key decision rests on choosing which preference criterion, e.g. a loss function, should

be used. Such a decision entails critical definitions and assumptions on what should be

considered a successful approximation. By assuming that all values are equally important,

traditional optimization processes tend to focus on the most common observations, i.e.

those near the average or median. Such focus on error reduction in the most common values

of a domain traditionally come at the expense of neglecting a proper function approximation

for values that are considered extreme, known for entailing high-importance events in some

application domains.

Imbalanced regression appears in this context, where it is paramount to predict such

rare and extreme target values accurately.

Examples of this type of predictive task include multiple real-world applications in

different areas, such as predictive maintenance, where the user is interested in estimating

the lifetime of a given product [1], environmental sciences, where the goal is to predict

hazardous concentrations of a given molecule in the air [2], age estimation [3] where the

age of a person is inferred from its visual aspects and web content ranking [4], where the

goal is to predict the popularity of a given content in social media applications.

Several challenges impose the non-triviality of predicting extreme values.

From a supervised learning perspective, these include two main ones: 1) the definition

of suitable and non-uniform preferences over a continuous and possibly infinite domain of

the target variable; 2) map such preference regarding the extreme values into an evaluation

1



2 Boosting the Predictions of Extreme Values

metric that would adequately allow model selection and, possibly, optimization. Regarding

the first challenge, a proposal [5, 6] exists that suggests a mapping of the target variable

domain into a well-defined space (the relevance space), which gives information about the

relevance of a given instance based on its target value. As for the second challenge, while

there are some proposals for specially tailored evaluation metrics [7–9] in an imbalanced

regression scenario, very few works exist on including such metrics in the optimization

process.

1.1 Motivation

Typically, in standard regression tasks, the used loss functions are symmetric w.r.t. to a set

of observations and thus favor models that are accurate in the prediction of values around

the center of the distribution of the target variable. In an imbalanced regression scenario,

the most common approaches are based on the definition of an asymmetric loss function.

One example includes [10], where the authors focused on the prediction of extreme values

by defining a branched asymmetric loss function in the residual space, using the Gradient

Boosting algorithm as a training model. Here, the loss function branches into a quadratic

(for a loss close to zero) or exponential (for higher losses, i.e., higher residuals) function

depending on a threshold defined in the residual space.

In the same context of imbalanced regression, an evaluation metric was proposed in [6]

- Squared Error Relevance Area (SERA). By using the definition of relevance associated

with the target variable domain, this metric explicitly gives the notion of asymmetry

regarding the loss in different ranges of the target variable. SERA allows for errors of

equal magnitude to have different impacts depending on the relevance of the target values.

Moreover, while it focuses on errors in cases with extreme target values, it also accounts

for the errors committed across all the rest of the target values, preventing a severe bias

towards the extreme values. In addition, it does not depend on any hyper-parameter,

which is common in proposed asymmetric loss functions found in the literature.

1.2 Objectives

The main objectives of this thesis are:

1. Provide a brief review of recent research developed in the field of Imbalanced Regres-

sion;
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2. Review SERA from a numerical perspective;

3. Provide the main tools to embed SERA as an optimization loss function in machine

learning algorithms – with a focus on Gradient Boosting Machines;

4. Perform an extensive experimental study to show SERA ability to optimize extreme

and normal values;

5. Perform a study on the impact of SERA in the residuals of Gradient Boosting Ma-

chines.

1.3 Thesis organization

This thesis is organized as follows. In Chapter 2, a review of recent research in the field

of Imbalance Regression will be presented. In Chapter 3, the problem definition will

be initially introduced. Next, the relevance space, where SERA is built upon, will be

introduced. Here, this space will be revisited and the non-parametric function that maps

it onto a continuous domain will be introduced. Finally, SERA will be introduced and

an equivalence with the Sum of Squared Errors (SSE) will be demonstrated. In Chapter

4 the models that will be used as a baseline to assess the quality of SERA as a loss

function in a variety of data sets will be introduced, such as the necessary modifications

to conform SERA with them. Next, a grid-search procedure over the chosen models will

be performed under a variety of data sets. Given the best parameters, a hypothesis test

will used to evaluate the statistical significance between models optimized with SERA

and MSE. Finally, model quality will be assessed on an out-of-sample set. In Chapter

5, a discussion on how SERA influences the residuals computed in Gradient Boosting

Machines will be performed. In Chapter 6, conclusions will be drawn and future work will

be provided.

1.4 Bibliographic Notes

The main work presented in this thesis has been accepted and will be soon published:

• Silva A., Ribeiro R., Moniz N., Model Optimization in Imbalanced Regression. In

Proc. of the 25th International Conference on Discovery Science. Springer
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An R package was also developed where all the tools presented throughout this thesis

are used: https://github.com/anibalsilva1/ModelOptimizationIR

https://github.com/anibalsilva1/ModelOptimizationIR


Chapter 2

Related Work in

Imbalanced Learning

The study of imbalanced learning has been advocated over the years, as it poses well-

known challenges to standard predictive learning tasks [11]. One of the major differences

between standard and imbalanced predictive learning tasks is that, while the first does not

have a preference over the predictive focus of the target variable, which, by consequence,

lies around the mean, the latter aims at predicting values that are uncommonly seen, i.e.,

values that considerably deviate from normality. As such, new methods emerged in order

to circumvent this averaged predictive focus.

There are three main strategies to cope with imbalanced domain learning problems:

data-level, algorithmic-level, and hybrid. A short review of such strategies is provided in

this chapter (Section 2.1, Section 2.2 and Section 2.3, respectively).

2.1 Data-level Approaches

Data-level approaches are the most common and oldest ones. Their main advantage is that

they can be embedded in any learning task as a pre-processing step, without the need to

worry about further modifications to the learning algorithms. Generally speaking, we can

group them into under-sampling, over-sampling, generation of synthetic examples, or their

combination.

Under-Sampling methods aim at standardizing the target variable distribution which we

want to predict by randomly removing samples that, for example, have a high probability

5



6 Boosting the Predictions of Extreme Values

density. In a regression task, one way to accomplish this is by mapping our target vari-

able into the relevance space introduced in [5], and defining a threshold t that separates

extreme from non-extreme values, randomly removing the latter instances. Conversely,

over-sampling standardize a target variable distribution by adding samples that have a

low probability density. By the same token, one way to apply over-sampling can be done

by sampling with replacement instances that have a relevance above a given threshold in

the relevance space. How to define the amount of under/over-sampling in these methods

is another natural question imposed by the methods. Usually, a user-specified ratio is

provided.

Regarding synthetic methods, one that stood its ground in data-level approaches for

Imbalanced Domains is the Synthetic Minority Over-sampling Technique (Smote) [12].

Generally speaking, Smote over-samples the minority class by creating synthetic examples

in a two-classification problem setting. This synthesis is done by evaluating the k-nearest

neighbors (k-NN) for a given minority sample (one at a time). Given these neighbors,

the algorithm generates new random samples conditioned to a line segment that connects

a given neighbor with the minority sample, i.e., by linear interpolation. This algorithm

was later on adapted to learning algorithms and provided good results, however, when

determining the nearest neighbors it is not assured that an instance that represents a

minority class is picked, and thus it has the potential risk of introducing a class mixture

to the data distribution.

Although initially proposed in the context of classification, some extensions to regres-

sion problems were developed. The first one was SmoteR [13]. SmoteR shares the same

backbone as Smote, i.e., it uses k-NN to find the nearest neighbors and synthesizes a

new sample by linear interpolation. In addition, the following strategies are also adopted:

i) The definition of an extreme value lies in the relevance space, where a user-predefined

threshold must be provided to split normal and extreme instances; ii) Since in a regres-

sion task we may have a different range of values that may be of interest, the algorithm

also has the ability to create samples corresponding to low and high extreme values; iii)

Performs under-sampling on normal instances; iv) It deals with both numeric and nominal

data, where the latter is randomly picked between a given rare case or its neighbor; v)

Since the target variable of the generated sample may not be the same, it is given by a

weighted averaged mean between an extreme and its neighbor, where the weights are given

by the inverse distance function between the extreme and neighbor to the newly generated
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samples, respectively. Using the same reasoning as for Smote, nearest neighbors which

have a low relevance (i.e., are common values) might be picked for interpolation.

To circumvent this mixture problem, a more refined method was proposed. This method

was called Synthetic Minority Over Gaussian Noise (Smogn). With the spirit of SmoteR,

Smogn also uses the notion of the relevance space to separate normal and extreme instances

and performs under-sampling. The main differences between these two methods follow: i)

Instead of splitting instances that correspond to low and high extreme values, this algorithm

orders the data set by ascending the value of the target variable. Given this ordered

data set, consecutive partitions (bins) are created, given the relevance threshold defined,

for both normal and rare instances. Regarding normal bins, standard random under-

sampling is performed; ii) Regarding rare bins, like SmoteR, k-NN is used to determine

the nearest neighbors w.r.t. a given rare case. Next, the distance between this rare case

and the remaining elements in the bin is determined. The median of these distances acts

as a threshold that defines which method will be used to generate a new sample – if the

distance of the randomly chosen nearest neighbor is below it, then SmoteR is applied,

otherwise Gaussian Noise will be used to perturb the rare case and generate a new data

point. With the introduction of this threshold, the probability of generating samples with

a low relevance drops significantly as in this case Gaussian noise is applied to the extreme

value at hand. This section is closed by enunciating some of the drawbacks of data-level

approaches:

1. Under-sampling techniques may remove important information from the data set;

2. Over-sampling techniques may add information that does not reflect the reality of

the problem at hand;

3. Smote-like methods mainly use the notion of distance to create synthesized ob-

servations – This notion of distance drops for highly-dimensional data sets, which

nowadays are becoming more popular.

2.2 Algorithm-level Approaches

Another common strategy to face Imbalance Domains lies at the algorithmic level. Here,

two main branches have been exhaustively studied by the research community.

The first one is known as cost-sensitive learning. Historically, cost-sensitive learning is

a field that was developed to introduce costs/benefits in the spectrum of a target variable
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distribution. The main purpose of this field was to assign costs to a given class during the

optimization phase of a learning algorithm independently of its density/frequency. The

thought of connecting it to Imbalance Domains only came after the latter started to gain

popularity. As the name indicates, cost-sensitive learning aims at providing different costs

to instances during the learning phase of a machine learning algorithm such that the model

becomes more sensitive to instances to which higher costs are provided than others. In

this sense, model optimization is biased toward instances that have a higher cost.

The second one revolves around modifications to the loss function. As this thesis focus

on this approach, it will be individually discussed in Section 2.4.

Focusing on cost-sensitive learning, while there are several proposals for classification

tasks (e.g. [14–16]), rather few have been made for regression. For the latter, a recently

proposed method called DenseWeight is used to calculate costs associated with a con-

tinuous variable [17]. This method is built upon Kernel Density Estimation (KDE) to

approximate the density function of the target variable. A hyperparameter α responsible

for controlling the degree of weighting is also included. Having the 1-to-1 correspondence

between the target variable and the weights, the authors couples the latter with the loss

function (which they call DenseLoss) such that during the optimization phase the model’s

internal parameters take into account these costs. Although the model selected was a Neu-

ral Network (NN), any learning algorithm which relies on gradient descent and can handle

sample weighting should have no trouble incorporating this method.

2.3 Hybrid Approaches

Hybrid approaches are a combination of both data and algorithm methods and have been

gaining popularity in the past few years. These hybrid approaches usually resort to en-

semble algorithms such as boosting and bagging. Once again, most of the efforts have

been made in classification tasks [18–20]. Regarding regression tasks, two examples will be

provided below.

The first discussed one is SMOTEBoost [21]. Generally speaking, SMOTEBoost is a

combination of the pre-processing data-level approach described in Section 2.1 SmoteR

and several well known-variants of the AdaBoost algorithm [22–24]. The algorithm starts

by uniformizing sample weights of the training set. Then, for each iteration, a sample with

replacement of the training set is performed. With this sample, the embedding of SmoteR

is done such that, a given percentage of highly relevant cases are synthesized (note that
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normal cases are not down-sampled). With this new synthesized set, a Regression Tree is

trained, and predictions are made on the original training set. The rest of the algorithm is

standard AdaBoost (e.g. [23]). This method proved to provide better results than vanilla

implementations, however, the same drawbacks as SmoteR are still present.

The second one lies in the field of Deep Learning and was dubbed Deep Imbalanced

Regression (DIR) [3] and brings new contributions as it also has the ability to deal with

high-dimensional data. DIR is composed of two algorithms, one that handles the target

variable and possible missing values by smoothing its distribution, called Label Distribu-

tion Smoothing (LDS), and another that calibrates the feature map statistics (mean and

standard deviation) called Feature Distribution Smoothing (FDS).

The construction of the first algorithm, LDS, was motivated by noting that there was

a significant difference in the correlation between the error and target variable distribution

when comparing the same Deep Learning architecture on two different data sets – both

with the same distribution and target range, but one had a continuous target variable

(which provided a low correlation), and another a categorical one (which provided a high

correlation). While the correlation for the classification problem was expected, as high-

density classes are the common ones, and thus their error should be smaller, the correlation

for the regression problem was not (it was smooth). This low correlation was justified

by stating that the seen (empirical) target distribution did not reflect the real target

distribution due to the dependence between data samples at nearby targets (e.g. face

images of people ages 30 and 29 should have a stronger relationship than face images

of people with age 30 and 70). To circumvent this problem, it was proposed a symmetric

kernel that convolves with this empirical target distribution to compute the effective target

density distribution. This new distribution can thus be used as a cost-sensitive re-weighting

method.

The construction of the second algorithm, FDS, was motivated by the intuition that

continuity in the target space should create a corresponding continuity in the feature

space [3]. Here, they noted that there was an unrealistic similarity in the learned feature

map statistics between different ages (e.g. the mean similarity between age of 30 and 0,

where the latter age is a “few-shot” region, i.e., its density is low, was about the same

as the similarity between the age of 30 and 25, where both targets had a close density

distribution). Motivated by these observations, they created a feature-calibrated layer

after the final feature map which smooths the statistics of it using again the similarity
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kernel. Finally, these statistics are updated across each epoch using momentum update.

Although some interesting points have been considered and DIR proved to give better

results than Smogn, the LDS smoothness technique lies in modifying the distribution of

the target variable, to which some of its values may lose representativeness of the real

world.

2.4 Loss Functions

One of the most well-explored sub-fields at the algorithmic level lies in the proposals of

new loss functions that have the ability to take into account the imbalanced distribution

of the target variable. As this branch is the main motivation of this thesis, it is revisited

below.

2.4.1 Preliminaries

Let X ∈ Rn be a set of independent random variables and Y ∈ R the target and dependent

random variable. In a supervised setting, a learning algorithm characterized by a set of

parameters Θ aims at finding the optimal function f : (X,Θ) → Y that better describes

the data. A loss function L(f(X,Θ), Y ) is usually defined as an indicative measure that

tells if the algorithm is learning L : (f(X,Θ), Y ) → C ∈ R. Ideally, C should be close to

0.

From a statistical point of view, let P (X,Y ) be the joint probability density distribution

that describes these variables. Let’s also assume that f(X,Θ) = f(X) without loss of

generality. The Expected Prediction Error (EPE) is defined as [25]

EPE = EX,Y [L(Y, f(X))] . (2.1)

In the case where the joint distribution is continuous, EPE is given by

EPE =

∫
X

∫
Y
L(Y ′, f(X ′))P (X ′, Y ′)dX ′dY ′

=

∫
X

∫
Y
L(Y ′, f(X ′))P (Y ′|X ′)P (X ′)dX ′dY ′

=

∫
X
EY |X′ [L(Y, f(X ′))|X ′]P (X ′)dX ′

= EX [EY |X [L(Y, f(X))|X]] . (2.2)
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It is desirable that EPE is minimum. The unknown function f that minimizes EPE

can be determined as

f̂(X) = arg min
f(X)

EX [EY |X [L(Y, f(X))|X]] . (2.3)

Which is equivalent to minimizing EPE pointwise

f̂(x) = arg min
c

EY |X [L(Y, c)|X = x] . (2.4)

Two common loss functions used are the Squared Error (SE)

L(Y, f(X)) = (Y − f(X))2 , (2.5)

where minimization implies that

f̂(x) = E(Y |X = x) , (2.6)

i.e., the EPE is minimum when the learned function follows the expected value of the

target variable, and the Absolute Error (AE)

L(Y, f(X)) = |Y − f(X)| , (2.7)

where minimization implies

f̂(x) = Median(Y |X = x) , (2.8)

implying that the EPE is minimum when the learned function follows the median of the

target variable. If there is a linear relationship between Y and X, one of the foundations

of Machine Learning is recovered, i.e., the Linear Regression model

f(X) = XTβ , (2.9)

where T denotes the transpose of the vectorX and β are the unknown regression coefficients

to be determined∗. Using the Squared Error, EPE Equation (2.1) is given by

∗Here, the intercept with y axis β0 is also considered. The first component of X, X0 is a vector of 1’s.
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EPE = E[(Y −XTβ)2] = E[(Y −XTβ)(Y −XTβ)T ]

= E[(Y −XTβ)(Y T − βTX)]

= E[Y Y T − Y βTX −XTβY T +XTββTX]

= E[Y Y T − 2βXY T − βTXXTβ] , (2.10)

minimization of EPE w.r.t. β yields

β̂ = arg min
β

EPE = E(XXT )−1E(XTY ) .∗ (2.11)

Most of the time, however, a linear relationship between the independent and dependent

variables is insufficient to describe the data. For these cases, a more complex expression

for f(X) may be provided. Nowadays, the common approach is to use a machine learning

algorithm that learns f(X) by itself through some optimization technique.

2.4.2 Asymmetric Loss Functions

One type of loss functions families for imbalanced regression tasks is the so-called asym-

metric loss function. Asymmetric loss functions are usually defined as a branched function

that changes their dependence on the residuals for a given condition and have been exhaus-

tively studied in the field of Econometrics. This condition usually differentiates over from

under predictions – if the residue of a prediction is greater (lower) than a given threshold

then the loss function changes its behavior. One that is well explored is the well-known

LINEX [7]:

L(x) = b[eax − ax− 1], , a ∈ R \ {0}, b ∈ R+ , (2.12)

where x = y − ŷ, a is a constant that controls the asymmetry of the estimation. Setting

a > 0, for under-predictions (x < 0) the linear term wins and for over-predictions (x > 0)

the exponential term wins, and conversely when a < 0, hence the name. An interesting

property comes when a → 0. In this limit, second-order Taylor expansion yields eax ∼

1 +ax+ (ax)2/2. Replacing this approximation in Equation (2.12) the constant and linear

∗Note that in reality, P (X) and P (Y ) are always unknown. As such, the expected value E(.) is replaced
by the sample mean (i.e., the training data). In this approximation, the known matrix form solution takes
place β = (XXT )−1XTY, where X ∈ Rm×(n+1), Y ∈ Rm×1 and m is the number of instances in the
training set.
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terms will be canceled and SE is recovered. LINEX can thus be seen as a generalized

version of SE where symmetry is recovered as a→ 0.

Another well-known branched loss is the LINLIN [8] loss function:

L(x) =


co|x|, if x > 0 ,

0, if x = 0 ,

cu|x|, if x < 0 ,

, (2.13)

where, co and cu are costs assigned to over and under predictions, respectively. LINLIN

is linear for both under and over predictions. In the case where the costs are the same, the

Absolute Error (AE) is recovered. For a fixed x, high values of co or cu will imply an high

value of L(x).

Another early proposed loss, which is a combination of SE and AE is the Huber loss

[26]:

L(x) =


1
2x

2, |x| ≤ δ ,

δ(|x| − 1
2δ), otherwise .

(2.14)

Here δ is a control parameter that controls the robustness of predictions. If the residuals

are limited by δ, then the squared error is used, while if the residuals are above it, absolute

error is used instead, which is more robust (or less sensitive) to outliers. The behavior of

the three enunciated loss functions above is depicted in Figure 2.1.

In the context of condition-based maintenance (CBM) and in the field of Deep Learn-

ing, the authors in [1] used combinations of linear, quadratic, and logarithmic losses and

proposed four asymmetric loss functions for making early predictions on the Remaining

Useful Life (RUL) of aircraft gas turbine engines

LIN −MSE =


ax, if x ≤ 0

x2, otherwise

,MSLE −MSE =


(log ŷ − log y)2, if x ≤ 0

x2, otherwise

,

QUAD −QUAD =


2ax2, if x ≤ 0

2(a+ (1− 2a))x2, otherwise

, Eq.(2.13) . (2.15)
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Figure 2.1: Errors as a function of the residuals for Hubber (red line, with δ = 0.6),
LINEX (dashed blue line, with a = 0.1, b = 1), LINLIN (dashed green line, with
co = 1, cu = 0.1) and SE (black line). Residuals were generated as x ∼ N (0, 1), and their

density is represented as ticks on the residual axis (vertical lines).

Results showed that LIN −LIN and QUAD−QUAD outperformed MSE and MAE

for different types of architectures. However, these results are sensitive to the degree of

asymmetry imposed by the chosen parameters.

Recently, the authors of [27] revisited MSE from a statistical point of view and pro-

posed Balanced MSE. Here, they try to close the gap between Imbalanced Classification

and Regression tasks by adapting a technique known as logit adjustment [28] to regression

tasks. With this, plus the principle that using a balanced metric on an arbitrary test set is

equivalent to using an overall metric on a balanced test set that hypothetically exists [29],

they proposed Balanced MSE.

Let x ∈ X ∈ Rn and y ∈ Y ∈ Rd. Balanced MSE is built on the following assumptions:

i) The training and test set are drawn from different joint distributions, i.e., Ptrain(x,y) 6=

Pbal(x,y); ii) While Ptrain(y) is skewed, Pbal(y), the test set distribution, is uniform.; iii)

The label-conditional probability P (x|y) is the same for both training and test set.

Instead of estimating Ptrain(y|x; Θ), their goal is to estimate

Pbal(y|x; Θ) = N (y;ypred, σ
2
noiseI) .∗ (2.16)

∗For completeness, σnoise is the standard deviation of an i.i.d. error term ε ∼ N (0, σ2
noiseI).
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This goal is achieved by letting Pbal(y|x; Θ) be estimated by the regressor parameters

Θ determined by minimizing the negative log-likelihood of Ptrain(y|x; Θ), i.e., the loss

function is defined as

L = − logPtrain(y|x; Θ) , (2.17)

where

Ptrain(y|x; Θ) =
Pbal(y|x; Θ) · Ptrain(y)∫

Y Pbal(y
′|x; Θ) · Ptrain(y′)dy′ . (2.18)

The last expression is derived using the Bayes Theorem. Replacing Equation (2.18) in

(2.17) leads to

L ∼= − logN (y;ypred, σ
2
noiseI) + log

∫
Y
N (y′;ypred, σ

2
noiseI) · Ptrain(y′)dy′ , (2.19)

where they hide the term− logPtrain(y). Thus, BalancedMSE aims at modeling Pbal(y|x),

while minimizing L w.r.t. Ptrain(y|x). Notice that MSE can be recovered from Equation

(2.19) when Ptrain(y) is uniform. In this case, the integral termnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

of Equation (2.19) is independent of Ptrain(y′) and Gaussian’s integral is constant. The loss

function becomes L = constant− logN (y;ypred, σ
2
noiseI), and thus parameters estimation

are the same as in MSE. Thus, Balanced MSE can be seen as a generalized version of

MSE.

During the training phase, Pbal(y|x; Θ) is initially predicted, converted into Ptrain(y|x; Θ)

and L is computed to update Θ during back-propagation. During the test phase, the output

ypred is directly computed from Pbal(y|x; Θ). To compute the integral term of Equation

(2.19), they provided two methods – an exact and a numerical one. A detailed explanation

regarding them can be found in their work [27].

Finally, their experimental setup lied in the analyses of uni and multi-dimensional

targeted data sets (y ∈ Rd, d ≥ 1) and results showed the ability to provide better results

than DIR described in Section 2.3, showing that the embedment of alternative loss functions

posits a good direction to face imbalanced problems.





Chapter 3

Imbalanced Regression

In this chapter the building blocks needed to introduce Squared Error Relevance Area

(SERA), the loss function used to optimize models when the target variable faces an

asymmetric distribution, will be introduced. In Section 3.1, a general definition of the

problem faced will be provided. In Section 3.2 the relevance function will be introduced.

At the end of this chapter, Section 3.3, SERA will be introduced and its equivalence with

the weighted Sum of Squared Errors will be demonstrated.

3.1 Problem definition

Consider D a training set defined as D = {〈xi, yi〉}Ni=1, where xi is a feature vector of the

feature space X ∈ Rm and yi an instance of the feature space Y that depends on the feature

space X . As enunciated in Chapter 2, a supervised machine learning algorithm objective is

to find a function f that maps the feature space X onto Y, f : X → Y. Depending on the

nature of Y, two different types of problems may emerge – if Y is discrete, a classification

one, while if Y is continuous, a regression one.

To obtain the best approximation function of f , the standard approach in supervised

learning is to consider a loss function L, responsible for the optimization of a set of pa-

rameters Θ which tune a model to extract predictions that better describes new instances

from the feature space Y.

In this thesis, the focus will be on the problem of imbalanced regression, i.e., when the

target variable Y ∈ R presents a skewed distribution and the most important values for

the prediction task are extreme (rare) values.

17
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The most commonly used loss function in regression is the Mean Squared Error (MSE).

However, this metric is not adequate for our prediction task. The constant which minimizes

MSE is the mean of the target variable, as shown in Section 2.4, which is counterintu-

itive for the predictive focus of extreme values. In an imbalanced regression scenario, an

appropriate loss function should search the parameter space Θ such that it encompasses

a good predictive power for both common (around the mean) and uncommon (extremes)

instances of the target domain Y, i.e., it should be agnostic to the imbalance faced by the

target variable distribution. However, this is not a trivial task to accomplish.

3.2 Relevance Function

The notion of relevance function was initially proposed in the context of Utility-based

Regression in [2] to face the attribution cost problem to a target variable Y. Its formal

definition is presented below.

Definition 1. A relevance function φ : Y → [0, 1] is a continuous function that expresses

the application-specific bias concerning the target variable domain Y by mapping it into

a [0, 1] scale of relevance, where 0 and 1 represent the minimum and maximum relevance,

respectively.

Due to the generality of this definition, φ may take a wide spectrum of forms. Probably,

the most straightforward proposition is to consider the normalized inverse of the density

function of Y [2]. Here, instances that have a high-density are considered normal, while

instances that have low-density, extreme values. Considering the inversion of the density,

extreme values will have higher relevance than normal ones. Let q(Y) be defined as the

inverse of the density function of P (Y). For an instance yi ∈ Y

φ(yi) =
q(yi)∑
Y q(yi)

. (3.1)

The difficulty of this proposal lies in the determination of the probability density func-

tion P (Y), which most of the time is unknown. In addition, for real-world data, it is

very uncommon for the target variable to follow a well-behaved density function – like

a Gaussian one. As such, most of the time the density function is approximated using

kernel-density-based methods. Another possible proposal to determine φ lies in interpola-

tion methods.



3. Imbalanced Regression 19

The method that will be used to determine φ(y) throughout this thesis will now be

presented and it was initially proposed in [2]. It is based on a polynomial interpolation

method which uses a set of control points obtained from box plot statistics.

Let S = {〈yk, ϕ(yk), ϕ
′(yk)〉}sk=1 be a set of control points, where each triple (yk,

ϕ(yk), ϕ
′(yk)) denotes the values of an instance, the relevance of an instance yk and the

derivative of a relevance at yk, respectively. A proper interpolation algorithm must have the

ability to conform the relevance function to these control points while preserving the prop-

erties enunciated in Definition 1. To this end, a shape-preserving interpolation method,

called Piece Cubic Hermite Interpolating Polynomials (pchip) [30], is used. This method

takes as inputs the set of control points S, generating an interpolation function such that

it preserves positivity, continuity, and monotonicity, piecewise.

In a perfect world scenario, s = N , i.e., for each instance yi, there should be knowledge

about the relevance and its derivatives. However, this is most unlikely in the real world.

In this absence, there is a need to find a way to determine reasonable control points auto-

matically. The solution proposed in [6] lies in the use of statistics derived from a modified

version of the well-known Tukey’s box plot – the adjusted box plot [31]. As opposed to

Tukey’s box plot, where the outliers are determined assuming symmetry of the underlying

probability distribution of a variable, the adjusted box plot takes into account the asym-

metry that a variable might face. This accountability is taken by coupling an exponential

term to the interquartile range, that depends on the medcouple [32]. Mathematically, the

adjusted box plot considers a given instance as an outlier if it is outside the limits

[Q1 − 1.5e−4MCIQR,Q3 + 1.5e3MCIQR], if MC ≥ 0 ,

[Q1 − 1.5e−3MCIQR,Q3 + 1.5e4MCIQR], if MC ≤ 0 ,
(3.2)

where Q1,3 are the first and third quartiles, respectively, IQR = Q1−Q3 is the interquartile

range, and MC is the medcouple given by the kernel

h(y+i , y
−
j ) =

(y+i −Q2)− (Q2 − y−j )

y+i − y
−
j

, (3.3)

where the points y+i belong to the set of points Y + = {yi | yi ≥ Q2} and y−j belong to the

set of points Y − = {yj | yj ≤ Q2}. Thus, for each pair (y+i , y
−
j ), h(y+i , y

−
j ) is determined,

and the medcouple is the median of all the computed values H = {h(y+i , y
−
j )}

MC = median H . (3.4)
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Notice that this solution is non-parametric, i.e., there is no dependence on the target

variable probability density function and it only relies on the order statistics of the variable.

With this in mind, the automatic approach proposed determines a set of control points

S such that: 1) the median denotes a point of no relevance, i.e., ϕ(yk) = 0; 2) the upper

and lower limit of the Equation (3.2) denotes points of highest relevance, i.e., ϕ(yk) = 1; 3)

as these points correspond to values of the lowest and highest relevance of φ(y), ϕ′(yk) = 0.

Thus, these three sets of control points are fed into pchip, which returns an interpolation

function of φ(y). In the end, constant extrapolation is used to encompass all the domain

of the variable. In Figure 3.1, it is shown an example of this interpolation method when a

variable faces the two types of extreme values (low and high).
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Figure 3.1: Top: Adjusted boxplot; Bottom: Relevance function obtained by consid-
ering the interpolation method pchip with the set of control points obtained from the

adjust-boxplot statistics for ailerons data set.

Due to its high versatility, several studies under this method have been performed in

the past years. Such studies include the aforementioned SmoteR [13] and SmoteGN [33]

for data level approaches, utility-based learning [5] for algorithmic level approaches and

proposals of new evaluation metrics [2, 4].

3.3 Squared Error Relevance Area (SERA)

In the previous section, it was provided the main recipe to approximate the general defini-

tion of the relevance function into a non-parametric form. In this section, the evaluation

metric proposed in [6] is introduced, which is the center point of the study of this thesis.
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Let D = {〈xi, yi〉}Ni=1 be a data set and φ : Y → {0, 1} a relevance function defined

for the target variable Y . Considering the subset Dt ⊆ D of instances such that Dt =

{〈xi, yi〉 ∈ D |φ(yi) ≥ t}, the Squared Error-Relevance (SERt) is defined, for a given

cutoff t, as

SERt =
∑
yi∈Dt

(ŷi − yi)2 . (3.5)

This is the Sum of Squared Errors (SSE) for all the instances such that the relevance

of the target value is bounded by a given threshold t. Since this metric only depends on

instances such that φ(yi) ≥ t, the following property holds: for any given δ ∈ R+, s.t.

t + δ ≤ 1: SERt+δ ≤ SERt. Finally, its maximum and minimum value are ascertained

when t = 0 and t = 1, respectively.

In the same work, the authors took a step further and integrated this estimate w.r.t. all

possible cutoff values (i.e., between 0 and 1). There, they defined this area as the Squared

Error Relevance Area (SERA), and it is given by

SERA =

∫ 1

0
SERt dt =

∫ 1

0

∑
yi∈Dt

(ŷi − yi)2 dt . (3.6)

This area has some important properties that allow understanding the performance of

models in an imbalanced regression setting. First, it encompasses all the possible relevance

thresholds constrained in the definition of SERt, removing the need to explicitly define a

threshold. Secondly, it is a decreasing and monotonic function. Note that integration is

performed under all possible relevance values. Since by definition Dt+δ ⊆ Dt, the higher

the relevance threshold is, the lower will be the number of instances considered, but also

more relevant. Thus, on one hand, values of SERt which have a high relevance will have

a greater contribution to this area when compared with instances where the relevance

is small. The squared errors of these latter instances are accounted for fewer times for

SERA, when compared to the high relevance instances. On the other hand, the area will

be smaller at points where the relevance is high (as only high relevance instances are taken

into consideration). With this, explicit penalization for high relevance errors is performed,

which are usually harder to optimize while keeping the entire data domain. Finally, since

this metric is built by integrating SERt over all the relevance domain, which is convex,

convexity is also preserved. Also, this metric must be differentiable. By the same token,

given that SERt is differentiable, so is SERA. One intuitive and clear way to visualize
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the errors committed by a given model under SERA is by plotting SERt across all the

relevance domain. Such example is depicted in Figure 3.2. Since this plot will be used

throughout this thesis, it is dubbed as SERA curve [6].
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Figure 3.2: SERA curve for predictions obtained from a Regression Tree.

An aspect that needs to be taken into the account is the method used to evaluate

SERA numerically. In [6], the trapezoidal rule with a uniform grid discretized into T

equally spaced steps, s, is used ∗. In this thesis, the same principle is followed, with the

same settings. Under this approximation, SERA is given by

SERA =

∫ 1

0
SERt dt

≈ 1

2T

T∑
k=1

(
SERtk−1

+ SERtk

)
=

1

2T

(
SERt0 + 2SERt1 + ...+ 2SERtT−1 + SERtT

)
=

1

T

( T−1∑
k=1

SERtk +
SERt0 + SERtT

2

)
=

1

T

(
1

2

∑
yi∈Dt0

(ŷi − yi)2 +
∑

yi∈Dt1

(ŷi − yi)2 + ...

...+
∑

yi∈DtT−1

(ŷi − yi)2 +
1

2

∑
yi∈DtT

(ŷi − yi)2
)

.

(3.7)

∗By default, s = 0.001, which means that the number of intervals taken to approximate the integral
using the trapezoidal rule is T = 1000.
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Regarding its time complexity, the trapezoidal rule has a computational complexity

of O(T ). SERt has a computational complexity of O(|Dt|), where |Dt| is the number

of instances with relevance higher or equal to a given threshold t. SERA will consider

|Dt0 |+ |Dt1 |+ ...+ |DtT | instances for all the T steps of the trapezoidal rule. In the worst-

case scenario, all the target values have a constant and maximum relevance equal to 1. In

that case, |D| is the number of instances accounted for all steps. Thus, SERA will have a

computational complexity of O(T × |D|).

3.3.1 Equivalence with weighted Sum of Squared Errors

In this section, a proof of how SERA, under the approximation of the trapezoidal rule,

can be interpreted as a weighted version of SSE, is provided. Starting the last equality

from Equation (3.7)

SERA =
1

T

(
1

2

∑
yi∈Dt0

(ŷi − yi)2 +
∑

yi∈Dt1

(ŷi − yi)2 + ...

+
∑

yi∈DtT−1

(ŷi − yi)2 +
1

2

∑
yi∈DtT

(ŷi − yi)2
)

,

(3.8)

consider a particular instance, yj , and lets evaluate its contribution to SERA, denoted by

Cj . If this instance has the lowest relevance possible, φ(yj) = 0, it will only be considered

in the first summation of the Equation (3.8), i.e., Cj = (yj − ŷj)2/2. Conversely, if it has

the highest relevance value, φ(yj) = 1, its contribution will be over all possible intervals

k ∈ [0, T ] and Cj = T (yj − ŷj)2. For a relevance 0 ≤ φ(yj) < 1, the error will be taken into

the account for k = {0, 1, ...,K}, i.e.

Cj =

(
1

2
+ nj

)
(ŷj − yj)2 , (3.9)

where

nj =

K∑
k=1

1
(
yj ∈ Dtk

)
, (3.10)

here, 1(.) is an indicator that takes the value of 1 if the argument holds, and 0 otherwise.

Thus, under the trapezoidal rule, SERA can be also given by

SERA =

N∑
i=1

σi(ŷi − yi)2 , (3.11)
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where σi is the ratio between the number of times a given instance contributes to SERA

and the total number of intervals T . The algorithm to evaluate it is presented in Algorithm

1.

Algorithm 1 Evaluate σi. Determines the number of times a given instance contributes
to SERA.

Input: φ(yi) : The relevance of the instance yi; steps : A vector with equally spaced
steps of size T + 1.

Output: σi.

1: σi ← 1/2 . φi = 0 contribution.
2: if φ(yi) = 0 then
3: return σi = 1/2T
4: else if φ(yi) = 1 then
5: return σi = 1
6: else
7: for k ← 2 to T do
8: if φ(yi) ≥ steps[k] then
9: σi ← σi + 1

10: end if
11: end for
12: return σi/T
13: end if

Thus, under the trapezoidal rule, SERA can be seen as a cost-sensitive re-weighting

method when using SSE as a loss function, where weights arise naturally as a counting

measure of a given instance contribution to SERA.



Chapter 4

Model Optimization in

Imbalanced Regression

In the previous chapter, SERA, the evaluation metric used to assess the quality of a

model when trained under a data set that presents extreme values in the target variable,

was introduced. In this chapter, the main work of this thesis, an experimental study that

shows SERA ability as a loss function to improve the predictions of extreme and normal

values will be provided.

To accomplish this goal, two Gradient Boosting Machines models will be considered –

Extreme Gradient Boosting Machines (XGBoost) and Light Gradient Boosting Machines

(LGBM) under a variety of data sets that have a target variable that presents a skewed

distribution.

In Section 4.1 the necessary modifications to implement SERA in these algorithms

will be provided. In Section 4.2, an initial description of the data sets used will be pro-

vided. In addition, the set of tasks that will be performed across this chapter to justify

why SERA is an appropriate loss function to be used when the target variable faces an

unbalanced distribution will be enunciated. In Section 4.3, a grid-search procedure with

cross-validation will be performed for the considered models described in Section 4.1 to

search for the better parameters of each model for a given data set. Results will be assessed

using the Bayes-Sign Test and conclusions from it will be drawn. Finally, in Section 4.4

results in the out-of-sample estimations will be evaluated under SERA curves.

25
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4.1 Optimization Loss Function for Imbalanced Regression

As previously stated, the objective of this thesis is to study the impact of embedding

SERA as a loss function in supervised learning algorithms. To this end, efforts are driven

by using two well-known implementations of Gradient Tree Boosting Machines – XGBoost

[34] and LGBM [35]. Its use in already implemented learning algorithms only requires the

proposal of a custom loss function, where the only thing needed to provide are the first

and second-order derivatives. In this work, it was used the implementations that can be

found in the packages xgboost [36] and lightgbm [37] from R programming language [38].

The first-order derivative of SERA w.r.t. a given prediction ŷj is given as follows

∂SERA

∂ŷj
=

∂

∂ŷj

∫ 1

0

∑
yi∈Dt

(ŷi − yi)2 dt

= 2

∫ 1

0

∑
yi∈Dt

(ŷi − yi) δij dt
, (4.1)

where δij is the Kronecker’s delta, which takes value of 1 if i = j and 0 otherwise. Since

the derivative must be taken into account over all the possible relevance values a given

instance is encompassed in, the equation above is expressed as

∂SERA

∂ŷj
= 2

∫ 1

0
(ŷj − yj)

∣∣∣∣
yj∈Dt

dt . (4.2)

The second derivative w.r.t. a given prediction ŷj is obtained by

∂2SERA

∂ŷ2j
= 2

∫ 1

0
1(yj ∈ Dt) dt . (4.3)

To approximate the values of the two derivatives, recall from Section 3.3.1 that under

the trapezoidal rule SERA is given by Equation (3.11)

SERA =

N∑
i=1

σi(ŷi − yi)2 . (4.4)

The first derivative w.r.t. a prediction ŷj is given by

∂SERA

∂ŷj
≈ ∂

∂ŷj

N∑
i=1

σi(ŷi − yi)2

= 2

N∑
i=1

σi(ŷi − yi)δij

= 2σj(ŷj − yj)

, (4.5)
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while the second derivative w.r.t. a prediction ŷj yields

∂2SERA

∂ŷ2j
≈ 2σj . (4.6)

Due to the nature of σ, the first and second-order derivatives will be biased towards

points of high relevance (as σ → 0 for common values). Interestingly enough, in the

context of LGBM, which uses Gradient-based One-Side Sampling (GOSS) to sample higher

gradient instances in the tree optimization phase (thus focusing on instances that usually

have higher errors), instances with higher relevance will be preferred over lower relevance

ones in this algorithm.

This section is closed by performing a study on the degree of error committed by

using the approximations above (Equations (3.11), (4.5) and (4.6)) against the use of the

trapezoidal rule directly on Equations (3.6), (4.2) and (4.3). For that, the predictions

obtained for XGBoost optimized with SERA across the data sets described in Section

4.2 are used. The rationale is the following: 1) for each data set, SERA, the first and

second derivatives are computed, using both methods; 2) the absolute difference between

the results obtained from both methods is measured; 3) an average of these differences over

all instances is performed. The results obtained using this evaluation are depicted in the

left box plot of Figure 4.1.
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Figure 4.1: Left: Absolute error differences for SERA, the first and second derivatives
between the proposed approximations and the trapezoidal rule. Right: Execution time
(in seconds) of SERA, the first and second derivative for a given data set, under σ

approximation and the trapezoidal rule.

Results show that SERA, first and second derivative approximations have a minor

difference w.r.t. the trapezoidal implementation (order of 10−12). On the right box plot of

Figure 4.1, it is also shown the difference in execution time using both methods for each
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data set. Here, the execution time is measured as the time taken to evaluate SERA, the

first and second derivatives. The box plot shows that there is a non-negligible difference

between our approximation and the trapezoidal rule as the size of a data set increases.

From this point on, XGBoost and LGBM models optimized with SERA are designated

as XGBoostS and LGBMS , while models optimized with MSE, which will be the base-

line metric that will be used to compare SERA with, are designated as XGBoostM and

LGBMM , respectively.

4.2 Experimental Setup

To study the effects of using SERA as a loss function, a wide range of data sets from several

domains in the context of imbalanced regression are used. These data sets, with their

respective main properties, are presented in Table 4.1. From them, it was extracted the

number of instances |D|, the number of nominal (Nom) and numerical (Num) variables. In

addition, and to give a notion of the imbalance present in the target variable, the automatic

method proposed in [6] that is based on the adjusted box plot is used. An extreme value

is considered if it has a relevance of 1. The number of instances that satisfy this condition

is represented as |DR|. The Imbalance Ratio (IR) is calculated as the ratio between |DR|

and the number of “normal” instances (in this case, φ(y) < 1) as |DR|/|D|×100%. Finally,

the type of imbalance of each target variable is also included. It is given by the following

rule – if the adjusted box plot only presents outliers below or above the respective fence,

the type of extremes is low (L) or high (H), respectively, while if it presents outliers below

and above the fences, the type is both (B).

To assess the effectiveness of each model, a random partition for each data set is

performed. This partition is made such that 80% of the data will be used to tune the

models while the remaining 20% to make predictions under the best model configuration

found in a given data set. To tune the parameters for each model, a grid-search approach

with a 10-fold stratified cross-validation is used. A workflow of a given algorithm j is

defined as the tuple W (j) = (M j ,Θ
(j)) = {W(j)

q }eq=1, where e is the number of different

workflows considered for a given tuple, M j denote the algorithm used, Θ(j) the respective

set of parameters, which are described in Table 4.2.

Given the workflows obtained from the grid-search, the following methodology to answer

the question that motivated this thesis is provided. It consists of the following tasks:
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Table 4.1: Data sets description: |D| - nr of instances, Nom - nr. of nominal attributes,
Num - nr. of numeric attributes, |DR| - nr. of extreme (rare) instances, i.e. φ(y) = 1 IR

- imbalance ratio and Type - type of extremes.

id dataset |D| Nom Num |DR| IR Type

1 diabetes 35 0 3 4 12.90 H
2 triazines 151 0 61 4 2.72 B
3 a7 160 3 9 7 4.58 H
4 autoPrice 165 10 16 3 1.85 L
5 elecLen1 399 0 3 4 1.01 H
6 housingBoston 407 0 14 40 10.90 B
7 forestFires 416 0 13 7 1.71 H
8 wages 429 7 4 1 0.23 B
9 strikes 501 0 7 1 0.20 H
10 mortgage 841 0 16 60 7.68 L
11 treasury 841 0 16 79 10.37 L
12 musicorigin 848 0 118 15 1.80 B
13 airfoild 1203 0 6 11 0.92 H
14 acceleration 1387 3 12 30 2.21 B
15 fuelConsumption 1413 12 26 27 1.95 B
16 availablePower 1443 7 9 75 5.48 B
17 maxTorque 1442 13 20 43 3.07 B
18 debutenizer 1918 0 8 90 4.92 H

id data set |D| Nom Num |DR| IR Type

19 space ga 2487 0 7 21 0.85 B
20 pollen 3080 0 5 32 1.05 B
21 abalone 3343 1 8 374 12.60 B
22 wine 5199 0 12 1022 24.47 H
23 deltaAilerons 5705 0 6 528 10.20 B
24 heat 5922 3 9 39 0.66 B
25 cpuAct 6555 0 22 227 3.59 L
26 kinematics8fh 6556 0 9 50 0.77 B
27 kinematics32fh 6556 0 33 53 0.82 B
28 pumaRobot 6556 0 33 91 1.41 B
29 deltaElevation 7615 0 7 1802 31 H
30 sulfur 8065 0 6 606 8.12 B
31 ailerons 11003 0 41 186 1.72 B
32 elevators 13280 0 18 1598 13.68 B
33 calHousing 16513 0 9 23 0.14 L
34 house8H 18229 0 9 305 1.70 B
35 house16H 18229 0 17 303 1.69 B
36 onlineNewsPopRegr 31716 0 60 2879 9.98 B

Table 4.2: Models parameters considered for grid-search.

Model R Package Parameters

XGBoost
LGBM

xgboost [36]
lightgbm [35]

nrounds = {250, 500}
max depth = {3, 5, 7}
η = {10−3, 10−2, 10−1}

T1: For each data set, and for each model in M , the workflow that had the lowest score

according to SERA is selected. This score is calculated by averaging the results

obtained by cross-validation on the 80% partition.

T2: Given the best workflows, they are compared using the Bayes Sign Test [39]. This

task will be performed in Section 4.3. A workflow that is optimized using a standard

loss function (MSE) is designated as WM , while if optimized with SERA, WS .

T3: Finally, the best workflows for each data set obtained with the partitioned 80% are

trained, and with the remaining 20% it will be assessed the quality of SERA as an

optimization loss function. This quality will also be evaluated by plotting SERA

curves. This task will be performed in Section 4.4.

4.3 Results on Model Optimization

With the top workflows from each model obtained by T1, the performance of the models

can be assessed in task T2. For that, the Bayes Sign Test is used. Briefly, this test

compares two models on a multi-data set scenario by measuring their score difference (a

prior probability) for all data sets, returning a probability measure (the posterior) hinting



30 Boosting the Predictions of Extreme Values

if a model is practically better than another, or if they are equivalent. This equivalence is

measured in a given interval and is defined as the Region Of Practical Equivalence (ROPE),

R [40]. The prior zi, where i indicates a given data set, is determined by averaging the

normalized difference below for all k-folds

zi =
1

10

10∑
k=1

Lk(WS)− Lk(WM )

Lk(WM )
, (4.7)

and taking L as SERA or MSE. After determining this mean difference for all data sets,

the Bayes Sign Test receives as input the vector z and a ROPE between [−1%, 1%], re-

turning the posterior probability p(z) that a given model is practically better or equivalent

than the other. A more detailed explanation with an illustrative example is provided in

Appendix A.

The results from this evaluation are depicted in Figure 4.2 and provide two perspectives

according to the considered error metrics. Regarding MSE (left column), the standard

models are practically better (with a p(z) of 0.92 for XGBoostM and a p(z) of 0.97 for

LGBMM ). Concerning SERA (right column), results show that both algorithms when

optimized with SERA are practically better (with a p(z) of 0.67 for XGBoostS and a p(z)

of 0.70 for LGBMS).
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Figure 4.2: Comparison between the models optimized with SERA,
LGBMS and XGBoostS , against the standard models LGBMM and XGBoostM .
Each color denotes the probability of the proposed implementation (with SERA, green)
or standard (with MSE, red) being practically better or equivalent (blue) to one another
according to the Bayes Sign Test with the ROPE interval [−1%, 1%]. The left and right
columns denote the results of the Bayes Sign Test with MSE and SERA, respectively.
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Thus, from a statistical point of view and in a model optimization scenario, there is a

clear trade-off between the standard and the models which use SERA as a loss function

when assessing their scores with different metrics. This was somewhat expected as these

metrics have a different predictive focus as was already mentioned above. Nevertheless,

from this test, it is possible to infer the ability of SERA as a loss function to lower the

errors obtained in a problem of Imbalance Regression. With this, the second task T2 is

finished and partially answered the question that motivated this thesis. Next, the objective

is to show that SERA does improve the predictive power for both common and extreme

values in an out-of-sample scenario (i.e., using the test data).

4.4 Results in Out-of-Sample

Using the parameters found in the best workflows obtained for each model and each data

set in task T1, the models are trained and the predictions with the (20%) out-of-sample

data are assessed. Given these predictions, SERA and MSE are calculated for all the

models in the considered data sets (cf. Tables B.1 and B.2 in Appendix B).

From the obtained results, a rank evaluation of the proposed models is considered.

For that purpose, and for a given data set, the rank of 1 is assigned to the model which

provided the lowest score. Figure 4.3 depicts the rank distribution for each model over all

the considered data sets.

Focusing on the left-side of Figure 4.3, where the rank was evaluated under MSE,

LGBMM was the top performer, followed by XGBoostM (with a median rank of 2) and,

finally, XGBoostS and LGBMS with a respective median rank of 3 and 4. Focusing on the

right-side of the same figure, where the rank was evaluated under SERA, both LGBMS and

XGBoostS had a median rank of two (although LGBMS had a better performance overall),

followed by LGBMM and XGBoostM both with a median rank of 3. From these ranking

distributions, the somewhat expected conclusion can be taken: models that are optimized

with their respective evaluation metric will be the top performers.

Next, each algorithm is considered independently by counting the number of times the

models optimized with SERA had the lowest error w.r.t. the standard ones. While for

XGBoost, XGBoostS had the lowest score in 4 and 27 of the data sets when evaluated

by MSE and SERA, respectively, for LGBM, LGBMS had a better score in 1 and 26

of the data sets when evaluated by MSE and SERA. These results show that SERA is
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Figure 4.3: Rank distribution of models by MSE and SERA results in out-of-sample.

model selection dependent as different models optimized by it may lead to significant error

differences when compared with its respective baseline.

Finally, from all the considered models, the model with the lowest MSE and SERA

errors for a given data set is extracted. Results show that LGBM variants were the top per-

formers for the considered metrics, having the lowest score in 20 and 16 of the data sets for

MSE and SERA, respectively. Regarding MSE, LGBMM was followed by XGBoostM ,

having the lowest score in 15 of the considered data sets, and finally XGBoostS outperform-

ing in only one of the data sets. Regarding SERA, LGBMS was followed by XGBoostS ,

with the lowest score in 8 of the considered data sets, XGBoostM with the lowest score in

7 of the data sets, and finally, LGBMM outperforming in the remainder.

The results presented above answers the question that motivates this thesis, i.e., SERA

is an adequate loss function to be used when the predictive focus are extreme values.

The following study aims to show that, even in data sets where models optimized with

MSE provided a better SERA estimation, there it still exists a domain in the relevance

space where models optimized with SERA surpass the previous ones – such domain is

lower bounded by a point of relevance defined as a turning point. Such point is defined

as the minimum relevance value ϕ for which a model optimized with SERA has a SERA

estimate for all the values with a relevance greater or equal to ϕ, i.e. SERAφ(.)≥ϕ(MS),

lower than the SERA estimate obtained by the standard model in the same conditions,

i.e. for all the values with a relevance greater or equal to ϕ, i.e. SERAφ(.)≥ϕ(MM ). More

formally, and for a specific data set, the turning point is then a threshold φt obtained by
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φt = min{ϕ ∈ [0, 1] | SERAφ(.)≥ϕ(MS) < SERAφ(.)≥ϕ(MM )} . (4.8)

These turning points are included in the study of SERA curves, for six selected data

sets. Recall that these curves are built by calculating the error SERt as the relevance

threshold t for φ(y) increases and are shown in Figure 4.4.

In the curves of Figure 4.4, the turning points are represented by dashed lines, and the

shadowed regions represent the relevance domain for which the condition above holds.
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Figure 4.4: SERA curves for six selected data sets. The first row provides data sets
where our models had the lowest error, while the second row provides data sets where
XGBoostM had the lowest error. The highlighted region in each graph depicts the turning
point where models optimized with SERA started to have a lower error w.r.t. standard

models.

The plots from the first row of Figure 4.4 show us SERA curves where models that were

optimized with SERA had the lowest score. Regardless of data set, note that the model

which obtained a better estimate had a turning point at a relatively low relevance value,

showing the capability of SERA as an optimization loss function to lower the prediction

error not only on high relevance points, but on low relevance points as well.
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Regarding the second row of plots in Figure 4.4, where the chosen data sets had a

better estimate when optimized by MSE, the curves depicted show that even when models

optimized by SERA are surpassed, they still have the ability to provide a better estimate

on different ranges of the relevance domain (φt = 0.4, φt = 0.52, φt = 0.82 for wages,

maxTorque and housingBoston data sets, respectively).

From this analysis, the conclusion that SERA can be used as a loss function to re-

duce errors in both extreme and common values (first row of Figure 4.4) can be taken. In

addition, even when models optimized with SERA do not provide the best score across

the whole relevance domain, they can still perform better for different relevance domains

(second row from Figure 4.4). With this, task T3 is finished and the question that moti-

vated this thesis is answered, i.e., SERA can be used as an optimization loss function to

optimize the reduction of extreme values.



Chapter 5

Theoretical Discussion

In the previous chapter an experimental study was performed to demonstrate that SERA

can be used as a loss function to optimize common and extreme values – the main moti-

vation of this thesis. In this chapter, a theoretical discussion that studies the impact of

SERA during the optimization process of Gradient Boosting Machines will be provided.

In Section 5.1, an overview of Gradient Boosting Machines, the baseline used, will

be revisited. In Section 5.2, the necessary modifications to embed SERA in Gradient

Boosting Machines will be presented. In Section 5.3, a case study will be performed which

shows the impact of using different values of intervals T used to discretize SERA under

the trapezoidal rule (cf. Equation (3.8)) will be performed.

5.1 Review on Gradient Boosting Machines

This review follows closely the paper by Friedman where Gradient Boosting Machines was

initially proposed [41].

As discussed in Chapter 2, from a statistical point of view, a Machine Learning algo-

rithm aims at minimizing EPE

EPE = EX [EY |X [L(Y, F (X))|X]] , (5.1)

w.r.t. the unknown function F (X)

F̂ (X) = arg min
F (X)

EX [EY |X [L(Y, F (X))|X]] . (5.2)

35
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However, knowing the specific form of F (X) becomes intractable in most applications.

The standard approach to overcome this difficulty comes from defining a parametric func-

tion that depends on the inputs X and on a set of parameters a. With this in mind, and

motivated by Boosting Machines, F (X) is restricted to a family of functions of the form

F
(
X, {βm,am}Mm=1

)
=

M∑
m=1

βmh (X,am) . (5.3)

Here, the summation up toM denotes the number of iterations (boosters) that are taken

into consideration, and h(X,am) is yet another family of functions (weak-learners) that

depends on the inputs X and it is parametrized by the vector of parameters am. These

weak-learners may take many forms, such as a Neural Network, an SVM, or a CART.

Minimizing EPE in this setting implies finding the best set of parameters {β∗m,a∗m}Mm=1

such that

{β∗m,a∗m}Mm=1 = arg min
{βm,am}Mm=1

EX

EY |X
L
y, M∑

m=1

βmh (X,am)

 |X

 . (5.4)

Given the form in Equation (5.3), to compute the parameters {βm,am}M1 which mini-

mizes the Expected Prediction Error it is standard to use numerical optimization methods

such as steepest descent. This optimization technique, instead of being used in the param-

eter space, is used in the function space.

In this space, the objective is to construct the additive and final approximation function

F (X) = F0(X) +
M∑
m=1

Fm(X) , (5.5)

where F0(X) can be defined, for example, as the constant that minimizes the EPE

F0(X) = arg min
c

EX [EY |X [L(Y, c)|X = x]] , (5.6)

and {Fm(X)}M1 are incremental functions or boosters obtained by the optimization model,

defined as

Fm(X) = −γm
[
∂L(y, F (X))

∂F (X)

]
F (X)=Fm−1(X)

= −γmrm(X) , (5.7)
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rm(X) are the so-called pseudo-residuals and γm can be obtained by performing the line

search

γm = arg min
γ

Ey,X [L(y, Fm−1(X)− γrm(X))] . (5.8)

When dealing with finite data, this method breaks down because the sample data that

is given cannot be assumed to represent a population. With this in mind, Equation (5.4)

is approximated to the known sample

{β∗m,a∗m}Mm=1 = arg min
{βm,am}Mm=1

 N∑
i=1

L(yi,
M∑
m=1

βmh (xi,am))

 .∗ (5.9)

This forms a set of M first order (and possibly non-linear, depending on the form of

L) differential equations, which can become infeasible to solve. Motivated by Boosting

Machines, instead, Friedman proposed a greedy-stagewise approach which consists of the

following steps.

First, instead of solving the system of equations above, the problem is reduced to the

determination of {β∗m,a∗m}, stagewise, i.e., for m = 1, 2, ...,M

(β∗m,a
∗
m) = arg min

β,a

N∑
i=1

L(yi, Fm−1(xi) + βh(xi,a)) , (5.10)

and then Fm(x) is updated as

Fm(x) = Fm−1(x) + βmh(x,am) . (5.11)

In situations where Equation (5.10) is still hard to solve, instead of performing opti-

mization in the parameter space, the function space is used. This construction is done by

noting that the best greedy step in the steepest descent towards the optimal solution for a

given iteration m is done in the direction s.t. Fm(x) is optimal. This greedy step is done

in the direction of the pseudo-residuals γmrm(x), and it is achieved by seeking βmh(x,am)

that is most parallel to the pseudo-residuals as possible. With this, the optimization prob-

lem reduces to approximating the unknown function βmh(x,am) into the pseudo-residuals,

γmrm(x). Since these pseudo-residuals are known, any learning algorithm can be used to

learn h(x,am).

Finally, the line-search defined in Equation (5.8) is obtained by

∗Note that randomness of the variable X was dropped to x because this minimization is done under a
sample, i.e., the training set.
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γm = arg min
γ

N∑
i=1

L(yi, Fm−1(xi) + γhm(xi,am)) , (5.12)

and at each iteration m the final approximated function is updated as

Fm(x) = Fm−1(x) + γmh(x,am) . (5.13)

The pseudo-code for Gradient Boosting Machines is depicted in Algorithm 2.

Algorithm 2 Gradient Boosting Machines Pseudo-Code.

Input:{xi, yi}Ni=1 ≡ D: Training dataset; M : Number of Iterations; L: Evaluation Loss
function.
Output: FM = F0 +

∑M
m=1 γmhm.

1: Initialize F0 = arg min
γ

L(γ, yi)

2: m← 1
3: while m ≤M do

4: Calculate the pseudo-residuals: ri,m = −
[

∂L
∂F (xi)

]
F (xi)=Fm−1(xi)

5: Fit a weak learner providing
{
xi, ri,m

}
and get back the hypothesis: hm

6: Compute γm = arg min
γ

L(yi, Fm−1(xi) + γhm(xi))

7: Update the regressor Fm = Fm−1 + γmhm
8: end while
9: return FM = F0 +

∑M
m=1 γmhm

From the pseudo-code presented in Algorithm 2, the mechanism behind the construction

of the best-approximated function is better understood – Start with an initial solution (e.g.

if L = MSE, the mean of the target variable, ȳ) and to this, additively add the optimal

residuals found at each iteration m.

5.1.1 Gradient Tree Boosting

In the same paper, it was proposed the algorithm known nowadays as Gradient Boosting

Machines Regression Trees (GBRT). Here, the weak-learner is a regression tree (usually

a CART [42]). In GBRT, instead of considering a “global” coupling weight γm for each

iteration, consider that each j-terminal node in a regression tree is a weak-learner. Defining

{Rm,j}Jj=1 all the (disjoint) regions that collectively cover the space of all joint values of

the predictor variables x, for each iteration m, a given weak-learner is given by

hm =
J∑
j=1

γm,j1(x ∈ Rm,j) . (5.14)

Given this, the line search Eq. (5.12) becomes
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{γ∗m}Jj=1 = arg min
{γm}Jj=1

N∑
i=1

L(yi, Fm−1(xi) +

J∑
j=1

γm,j1(x ∈ Rm,j)) , (5.15)

which, by the disjoint nature of the leaves produced by the regression trees, it becomes

γm,j = arg min
γ

∑
xj∈Rm,j

L(yj , Fm−1(xj) + γ) , (5.16)

for a given leaf j.

5.1.2 Optimization Techniques

Here a brief review of techniques in Boosting Gradient Machines to avoid overfitting will

be provided.

5.1.2.1 Shrinking

In [43], it was also proposed the introduction of a hyper-parameter in line 7 of the Gradient

Boosting Algorithm 2. The introduction of this parameter changes the update rule such

that

Fm = Fm−1 + ηγmhm , (5.17)

this hyper-parameter, η, is the so-called learning rate and it is usually constrained to the

interval 0 < η < 1. Due to this constrain, the effect of the learning rate is to penalize every

weak-learner prediction. This penalization translates into a slower convergence. As this

convergence is slower, usually there is the need to take into consideration a higher number

of boosters M and hence there is a trade-off between these two parameters – the lower the

learning rate, the higher should be the number of boosters needed to produce convergence.

Although one of the caveats of the introduction of this hyper-parameter is the addition in

the algorithm’s time complexity cost, due to the need of increasing M , it has a high impact

on the predictive power of the model when assessing predictions.

5.1.2.2 Subsampling

Another method to avoid overfitting in Gradient Boosting Machines was proposed in [44]

and its implementation on Gradient Boosting gave rise to the Stochastic Gradient Boosting

algorithm. This method, called subsampling, consists of introducing randomness in the

fitting procedure. Instead of considering all the training data to fit a weak-learner, a
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sample is drawn (in the original paper without replacement, although replacement is also

possible) from the data. Denoting N as the size of our training set and Ñ the size of our

sample, the so-called bag-fraction b is defined as

b = Ñ/N . (5.18)

The use of this hyper-parameter needs to be used with care as it depends on the number

of instances of our data – choosing a low bag-fraction on a training set with only a few

instances can cause the model to underfit the data.

5.2 SERA implementation in Gradient Boosting Machines

Given the review on Gradient Boosting Machines, the necessary conditions to embed SERA

as a loss function in Gradient Boosting will now be established. Note that both exact (cf.

Equation (3.6)) and numerical (cf. Equation (3.11)) solutions will be presented below. The

full derivation will be performed for the exact solutions, while the numerical ones will only

be enunciated.

Due to the initialization of Gradient Boosting Machines, the first step is to determine

the constant that minimizes SERA. This constant will correspond to the first “booster”,

F0(x) = F0.

Recalling the definition of SERA from Equation (3.6)

SERA =

∫ 1

0
SERt dt =

∫ 1

0

∑
yi∈Dt

(ŷi − yi)2 dt , (5.19)

its derivative with respect to F0 gives

∂SERA

∂F0
=

∂

∂F0

∫ 1

0

∑
yi∈Dt

(F0 − yi)2 dt , (5.20)

setting the derivative to 0 and solving for F0

F0 =

∫ 1
0

∑
i∈Dt yi dt∫ 1

0 |Dt| dt
≈
∑N

i=1 σiyi∑N
i=1 σi

. (5.21)

Now the pseudo-residuals. Recalling from Equation (5.7)

rm(x) = −
[
∂L(y, F (x))

∂F (x)

]
F (x)=Fm−1(x)

, (5.22)
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for a given instance i

ri,m = −∂SERA
∂F (xi)

∣∣∣∣
F (xi)=Fm−1(xi)

= −2

∫ 1

0

∑
yi∈Dt

(Fm−1(xi)− yi) dt

≈ −2σi(Fm−1(xi)− yi) .

(5.23)

From now on, to ease the notation, Fm(xi) ≡ Fi,m and hm(xi) ≡ hi,m. The, minimiza-

tion of γm found in Equation (5.12) yields

∂SERA

∂γm
=

∂

∂γm

∫ 1

0

∑
yi∈Dt

(Fi,m−1 + γmhi,m − yi)2 dt

= 2

∫ 1

0

∑
yi∈Dt

hi,m(Fi,m−1 + γmhi,m − yi) dt .

(5.24)

Setting the derivative to 0

∂SERA

∂γm
= 0⇔ 2

∫ 1

0

∑
yi∈Dt

hi,m(Fi,m−1 + γmhi,m − yi) dt = 0

⇔
∫ 1

0

∑
yi∈Dt

hi,m(yi − Fi,m−1) dt = γm

∫ 1

0

∑
yi∈Dt

h2i,mdt ,

(5.25)

solving for γm

γm =

∫ 1
0

∑
yi∈Dt hi,m(yi − Fi,m−1) dt∫ 1

0

∑
yi∈Dt h2i,m dt

≈
∑N

i=1 σihi,m(yi − Fi,m−1)∑N
i=1 σih

2
i,m

. (5.26)

The determination of γm in Equation (5.26) can be used for any generic booster hm(x).

If, however, the booster is a Regression Tree, recalling Equation (5.16)

γm,j = arg min
γ

∑
xj∈Rm,j

L(yj , Fm−1(xj) + γ) , (5.27)

for a given terminal node k, and replacing the weak-learner from Equation (5.14), the

derivative of SERA w.r.t. to γm,k implies that
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∂SERA

∂γm,k
=

∂

∂γm,k

∫ 1

0

∑
yi∈Dt

Fi,m−1 +

J∑
j=1

γm,j1(x ∈ Rm,j)− yi

2

dt

= 2

∫ 1

0

∑
yi∈Dt

(Fi,m−1 +

J∑
j=1

γm,j1(x ∈ Rm,j)− yi)
∂

∂γm,k

 J∑
j=1

γm,j1(x ∈ Rm,j)

 dt

= 2

∫ 1

0

∑
yi∈Dt

(Fi,m−1 +

J∑
j=1

γm,j1(x ∈ Rm,j)− yi)

 J∑
j=1

1(x ∈ Rm,j)δj,k

 dt

= 2

∫ 1

0

∑
yi∈Dt

(Fi,m−1 +

J∑
j=1

γm,j1(x ∈ Rm,j)− yi)× 1(x ∈ Rm,k) dt

= 2

∫ 1

0

∑
xi∈Rm,k

yi∈Dt

(Fi,m−1 + γm,k − yi) dt .

(5.28)

Setting the derivative to 0

∂SERA

∂γm,k
= 0⇔

⇔ 2

∫ 1

0

∑
xi∈Rm,k

yi∈Dt

(Fi,m−1 + γm,k − yi) dt = 0

⇔
∫ 1

0

∑
xi∈Rm,k

yi∈Dt

(yi − Fi,m−1) dt = γm,k

∫ 1

0

∑
xi∈Rm,k

yi∈Dt

dt .

(5.29)

Solving for γm,k

γm,k =

∫ 1
0

∑
xi∈Rm,k

yi∈Dt

(yi − Fi,m−1) dt∫ 1
0 |D|xi∈Rm,k

yi∈Dt

dt

≈
∑

xi∈Rm,k
σi(yi − Fi,m−1)∑

xi∈Rm,k
σi

.

(5.30)

All these derivations are the weighted versions of the same derivations under SSE.

5.3 Case study

To give a more detailed description of the impact of using SERA as a loss function in

Gradient Boosting Machines, a case study is performed. Here, it will be shown that
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different values of T may lead to a trade-off between generalization and extreme values

optimization. The main reason lies on the dependence of residuals on σ (cf. Algorithm 1).

The considered data set was already considered on previous studies (e.g. [6]) and

measures the logarithmic concentration of NO2 in the air. Its estimated probability density

function is depicted in Figure 5.1.

This data set is interesting for the case study as there is domain knowledge of the

target variable, where a concentration above log(150µg/m3) ≈ 5 is considered hazard to a

human being (i.e., it is an extreme value). As such, the following set of control points are

considered: S = {(1.1, 0, 0), (3.7, 0, 0), (5, 1, 0)}, where the first and second set denote low

and annual mean concentrations, respectively.

φ(y) = 1

0.0

0.2

0.4

0.6

1 2 3 4 5 6
LNO2

pd
f

Figure 5.1: Logarithmic NO2 density function. Values above LNO2 = 5 are considered
hazardous.

The independent variables are related to meteorological conditions and road traffic. The

data set consists of 500 instances and an initial random partition of 80/20% is performed.

The study consists of comparing instances obtained during the training phase which

have a high and low relevance value for three Gradient Tree Boosting variants:

V1: L = MSE, with F0 = ȳ;

V2: L = SERA, with F0 = Equation (5.21);

V3: L = SERA, with F0 = ȳ.
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The hyper-parameters considered are fixed for the three variants, which are the learning

rate η = 10−2, and the number of boosters max iter = 1000. As training is performed, the

predictions and pseudo-residuals (cf. Equation (5.7)) are collected from each iteration.

The first case study compares the three variants for an extreme value, y = 5.37. Its

evolution during the training phase is depicted in Figure 5.2. As it is shown, variants that

use SERA as an optimization loss function (V2, V3), regardless of their initialization, give

a better approximation of the true value than the one optimized with MSE (V1). Also,

it is interesting to point out that, although the third variant initializes at the mean of the

target variable, stability is achieved at approximately the same number of iterations as the

second variant, which uses a weighted mean based on σ (cf. Equation (5.21)). Comparing

the stability from these variants (which is achieved at approximately 500 iterations) with

the one from the first variant (which is achieved at approximately 200 iterations), there

is a clear trade-off between the learning capability and the number of boosters needed to

achieve stability – a more accurate prediction of an extreme value comes at the cost of

considering more boosters until the learning phase is stabilized.
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Figure 5.2: Left: Predictions as a function of the iteration for an extreme value. The
black dashed line denotes the ground truth (y = 5.37). Right: Residuals as a function of

the iteration. The black line denotes the optimal residual (r = 0).

The second case study compares these three variants for a common value y = 3.35.

Their evolution across training phases is depicted in Figure 5.3.

As it is shown, the second and third variants could not properly provide a good pre-

diction for a low relevance value (although variant V2 was able to slowly converge until it

stopped around the same value as variant V3, however, the latter diverged from its initial

“guess”). The reason seems to come from the residuals dependence on σ (cf. Equation
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Figure 5.3: Left: Predictions as a function of the iteration for a common value. The
black dashed line denotes the ground truth (y = 3.35). Right: Residuals as a function of

the iteration. The black dashed line denotes the optimal residual (r = 0).

(5.23)). In this case, the residual of this instance is always close to 0 across all iterations

for variants V2, V3 and its effect can be seen in the right plot of Figure 5.3. As it was

pointed out in Section 3.3.1, there is an equivalence between SERA and the weighted

SSE. These weights arise naturally from the construction of SERA and depend on two

values: 1) the number of times a given instance contributes to SERA, which is counted

by comparing its relevance value with each step taken to discretize the relevance space; 2)

the total number of intervals T taken into consideration. Recalling that, for a point of no

relevance (cf. Algorithm 1)

σ =
1

2T
, (5.31)

for T = 1000, σ = 0.5×10−3. Comparing the scale of σ with the scale of the target variable

from the case study (which goes from [1, 6], approximately, Figure 5.1), σ will dominate

over the target variable when computing the residuals for low relevance values. As such,

residuals won’t be representative of the actual error committed at a given iteration, as it

will always be practically negligible. As an example, suppose that the third variant is being

considered, where F0 = ȳ ∼ 3.7, and the residual at the first iteration is being evaluated.

Considering two instances, one where y1 = 1.1 and another where y2 is close as to the

mean as possible. The “unweighted” residuals for both instances, will be, in absolute and

respectively, r1 = 2.6 and r2 ∼ 0. Coupling the weights, while r2 remains unchanged,

r1 ≈ 0 as well. This may imply under-fitting during tree construction since the partition

space may be over-simplified as points of no relevance are the most common ones. As such,
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a scaling problem is faced and care must be taken when there is a discrepancy between the

number of intervals T and the domain of the target variable. Although these conclusions

are being built upon Gradient Tree Boosting machines, other learning algorithms that rely

on optimization methods such as steepest/gradient descent, where residuals are evaluated,

should posit the same conclusions.

Given this, a second scenario is considered where instead of using the default value

T = 1000, T has now the same scale as the target variable, T = 10. Thus, for a common

value, the weight attributed to an instance will now be σ = 0.5× 10−1, relaxing the severe

penalization faced when T = 1000. Results are presented in Figure 5.4.
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Figure 5.4: Top: Predictions and residuals as a function of the iteration for the same
extreme value (y = 5.37, dashed-line). Predictions did not vary after setting T = 10.
Bottom: Predictions and residuals as a function of the iteration for the same point of no
relevance y = 3.35. Note that in this case predictions converged in the direction of the

true value.

As it is depicted, V2 and V3 are now able to provide a better approximation of the

instance y = 3.35, while maintaining the approximation of the extreme value y = 5.37

close to its true value (as expected, since regardless of T , σ = 1 for extreme values). To

conclude this study, predictions are assessed for the two different values of T . Results from

these evaluations are presented in Table 5.1.
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MSE SERA

Variants T = 1000 T = 10 T = 1000 T = 10

V1 0.22 0.22 8.28 8.28
V2 0.84 0.24 5.52 5.67
V3 0.75 0.25 5.69 6.84

Table 5.1: Errors obtained during inference phase. SERA was evaluated using the
default setting, T = 1000.

As it is shown, as T is reduced to conform with the domain of the target variable, a

better generalization is achieved (e.g. for V2, MSE drops from 0.84 to 0.24), however, at

the cost of a worst predictive power for extreme values (e.g. for V3, SERA raises from

5.69 to 6.84).

5.3.1 Discussion

In the previous section, it was shown that different T intervals lead to different results, both

in optimization and inferring phases. The reason behind this is that the weight assigned to

each instance may posit an unrepresentativeness of the actual error committed of a given

prediction. So what is the cost of considering different intervals when optimizing a given

model under SERA? Turning the attention to the example from the case study, initially,

it was considered T = 1000. Results showed that under this setting extreme values were

“prioritized” as residuals for common values were close to 0. When lowering the number of

intervals to T = 10, results showed that a better generalization was achieved at the cost of

lowering the predictive power of extreme values. In addition, when lowering the number of

intervals, SERA may deviate from its true value because the number of trapezoids taken

into consideration will be smaller, losing the notion of continuity.





Chapter 6

Conclusions

In this thesis, it was addressed the problem of embedding SERA as a loss function in su-

pervised learning algorithms to improve the predictive power for both extreme and normal

values. As such, it was used as baseline two variants of Gradient Boosting Machines, XG-

Boost, and LGBM. This evaluation was done by comparing models optimized with MSE.

Results showed that the embedment of SERA provides the ability to reduce errors for

both extreme and normal values. In addition, when underperformed by standard models,

models optimized with SERA were still able to provide a more accurate prediction in a

high relevance domain.

6.1 Contributions

Some contributions were made in this thesis. They include:

• a brief review on recent research in Imbalance Regression (Chapter 2);

• the proof of equivalence between SERA and the weighted SSE (Section 3.3.1);

• the tools needed to embed SERA as a loss function in Gradient Boosting Machines

models with an extensive experimental study that shows the ability of SERA to

improve the predictive focus of both common and extreme values (Chapter 4);

• a study where T , the number of intervals taken to discretize SERA under the trape-

zoidal rule, should be a parameter that may require some fine-tuning, or a method

to automatically propose an appropriate value (Section 5.3);

49
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6.2 Future Work

Future directions of this work should include:

• find an appropriate approach to find the optimal number of intervals T used to dis-

cretize SERA for a given data set – a straightforward solution comes from considering

T such that it has the same order of magnitude as the mean of the target variable;

• as mentioned in Chapter 2 and 3, recent research has been made at the algorithmic

level, namely in the realm of Deep Learning; future work should focus on the assess-

ment of the predictive focus of SERA in this field, where high-dimensional data is

used; another aspect that it was not studied regards the use of SERA on multi-target

regression problems, which should also be taken into consideration;

• finally, compare the predictive power of SERA with other recently proposed loss

functions in the context of Imbalanced Regression (e.g. Balanced MSE).



Appendix A

Bayes Sign Test

The Bayes Sign Test aims at solving the problem of comparing two models on multiple data

sets by determining the posterior probability distribution of a variable z that encompasses

information relative to the two models. This is done by assuming a Dirichlet Process over

the prior probability distribution of z composed by z = {z1, z2, ..., zd} independent and

identically distributed (i.i.d.) observations of z, where each observation represents a score

over a given dataset in D. In the methodology presented in this thesis, zi will be the mean

difference of each k-fold score between a workflow W1 and W2, normalised by W2, i.e., if

L is our evaluation metric

zi =
1

10

10∑
k=1

Lk(W1)− Lk(W2)

Lk(W2)
. (A.1)

The reason why it is considered this normalization is explained below. To determine

the posterior of z, p(z), the procedure from [39] is followed. In their work, the authors

considered the prior mean G0 as a delta Dirac’s centered at each zi. The posterior was

constructed as a linear combination of delta Dirac’s distributions. Given the posterior p(z),

it is divided in three intervals in the probability density space: (−∞,−R], [−R,R], [R,∞).

Here, R is the parameter that defines the Region of Practical Equivalence (ROPE) and

it is considered as a region in the probability density space where the two classifiers are

practically equivalent [40]. Thus, given two workflows (W1,W2), the following posterior

probabilities are defined:

• P (z < −R), the posterior probability that the mean difference between the scores of

workflows W1 and W2 is practically negative;

51



52 Boosting the Predictions of Extreme Values

• P (|z| ≤ R), the posterior probability that the mean difference between the scores of

workflows W1 and W2 is practically equivalent;

• P (z > R), the posterior probability that the mean difference between the scores of

workflows W1 and W2 is practically positive;

As an illustrative example, suppose that two workflowsW1 andW2 are being evaluated

and the following scores are obtained: P (z < −R) = 0.9, P (|z| ≤ R) = 0.1, P (z > R) =

0, then, the following conclusion can be drawn – the posterior probability of the mean

difference between them is practically negative, i.e.,W1 is practically better thanW2. From

now on, it is adopted this nomenclature, reminding that in the end, these conclusions are

always inferred. Finally, an adequate value to ROPE must be provided. For classification

problems, it is usually used 0.01, while for regression problems, 0.1. Here, it is maintained

R = 0.01, as it is more restricted, however, due to the high variance of errors for different

data sets in the context of regression, normalize each difference is normalized according to

Equation (A.1).
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Tables of Results

In this section, we report the MSE and SERA results obtained in out-of-sample of each

data set.

Table B.1: MSE results in out-of-sample, with the best models per data set in bold.
Model (#wins): LGBMM (20), XGBoostM (15), XGBoostS (1), LGBMS (0).

id XGBoostS XGBoostM LGBMS LGBMM

1 3.00e-01 8.54e-01 1.47e-01 9.53e-01
2 2.14e-01 2.50e-01 3.30e-01 2.31e-01
3 1.33e+03 1.74e+03 6.63e+02 1.83e+03
4 4.25e+06 7.87e+06 3.98e+06 2.97e+06
5 9.79e+06 1.19e+07 1.07e+07 1.37e+07
6 8.63e+02 6.47e+02 8.16e+02 9.51e+02
7 2.80e+03 3.96e+03 1.31e+04 2.63e+03
8 8.76e+02 9.11e+02 8.65e+02 8.10e+02
9 4.76e+07 5.43e+07 4.15e+07 5.45e+07
10 4.66e-01 1.22e-01 1.37e-01 1.46e-01
11 1.06e+00 6.76e-01 6.22e-01 5.94e-01
12 2.52e+01 3.24e+01 2.23e+01 2.99e+01
13 1.75e+02 1.90e+02 1.47e+02 1.94e+02
14 4.78e+01 4.35e+01 5.66e+01 5.09e+01
15 1.55e+01 1.46e+01 4.02e+01 2.06e+01
16 4.76e+03 6.72e+03 6.28e+03 6.54e+03
17 3.28e+03 3.09e+03 4.23e+03 1.27e+04
18 6.90e-01 9.20e-01 5.83e-01 9.17e-01

id XGBoostS XGBoostM LGBMS LGBMM

19 2.29e+00 2.30e+00 2.19e+00 2.16e+00
20 4.82e+02 6.05e+02 4.86e+02 5.96e+02
21 1.94e+03 2.26e+03 1.94e+03 2.20e+03
22 3.12e+01 1.52e+02 3.31e+01 1.62e+02
23 1.18e-05 1.65e-05 1.09e-05 1.42e-05
24 3.08e+02 3.48e+02 5.61e+02 4.70e+02
25 1.02e+03 1.02e+03 1.05e+03 1.08e+03
26 9.12e-01 1.12e+00 8.95e-01 1.08e+00
27 2.91e+01 3.82e+01 2.96e+01 3.69e+01
28 2.26e-02 2.82e-02 2.16e-02 2.50e-02
29 5.82e-04 1.13e-03 5.77e-04 1.13e-03
30 2.57e+00 2.93e+00 2.55e+00 2.68e+00
31 2.70e+05 2.23e+05 3.67e+05 3.48e+05
32 6.32e-03 6.20e-03 5.94e-03 6.51e-03
33 2.57e+11 8.38e+11 2.57e+11 1.01e+12
34 2.77e+12 3.25e+12 2.71e+12 3.11e+12
35 2.16e+12 2.33e+12 2.12e+12 2.26e+12
36 7.57e+11 7.81e+11 7.32e+11 7.40e+11
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Table B.2: SERA results in out-of-sample, with the best models per data set in bold.
Model (#wins): LGBMS (16), XGBoostS (8), XGBoostM (7), LGBMM (5).

id XGBoostS XGBoostM LGBMS LGBMM

1 3.00e-01 8.54e-01 1.47e-01 9.53e-01
2 2.14e-01 2.50e-01 3.30e-01 2.31e-01
3 1.33e+03 1.74e+03 6.63e+02 1.83e+03
4 4.25e+06 7.87e+06 3.98e+06 2.97e+06
5 9.79e+06 1.19e+07 1.07e+07 1.37e+07
6 8.63e+02 6.47e+02 8.16e+02 9.51e+02
7 2.80e+03 3.96e+03 1.31e+04 2.63e+03
8 8.76e+02 9.11e+02 8.65e+02 8.10e+02
9 4.76e+07 5.43e+07 4.15e+07 5.45e+07
10 4.66e-01 1.22e-01 1.37e-01 1.46e-01
11 1.06e+00 6.76e-01 6.22e-01 5.94e-01
12 2.52e+01 3.24e+01 2.23e+01 2.99e+01
13 1.75e+02 1.90e+02 1.47e+02 1.94e+02
14 4.78e+01 4.35e+01 5.66e+01 5.09e+01
15 1.55e+01 1.46e+01 4.02e+01 2.06e+01
16 4.76e+03 6.72e+03 6.28e+03 6.54e+03
17 3.28e+03 3.09e+03 4.23e+03 1.27e+04
18 6.90e-01 9.20e-01 5.83e-01 9.17e-01

id XGBoostS XGBoostM LGBMS LGBMM

19 2.29e+00 2.30e+00 2.19e+00 2.16e+00
20 4.82e+02 6.05e+02 4.86e+02 5.96e+02
21 1.94e+03 2.26e+03 1.94e+03 2.20e+03
22 3.12e+01 1.52e+02 3.31e+01 1.62e+02
23 1.18e-05 1.65e-05 1.09e-05 1.42e-05
24 3.08e+02 3.48e+02 5.61e+02 4.70e+02
25 1.02e+03 1.02e+03 1.05e+03 1.08e+03
26 9.12e-01 1.12e+00 8.95e-01 1.08e+00
27 2.91e+01 3.82e+01 2.96e+01 3.69e+01
28 2.26e-02 2.82e-02 2.16e-02 2.50e-02
29 5.82e-04 1.13e-03 5.77e-04 1.13e-03
30 2.57e+00 2.93e+00 2.55e+00 2.68e+00
31 2.70e+05 2.23e+05 3.67e+05 3.48e+05
32 6.32e-03 6.20e-03 5.94e-03 6.51e-03
33 2.57e+11 8.38e+11 2.57e+11 1.01e+12
34 2.77e+12 3.25e+12 2.71e+12 3.11e+12
35 2.16e+12 2.33e+12 2.12e+12 2.26e+12
36 7.57e+11 7.81e+11 7.32e+11 7.40e+11
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