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Abstract

Symplectic twist maps already appeared in the works of Poincaré. They
emerge naturally as discretizations of certain low-dimensional Hamiltonian
systems and offer a nice handle for studying their dynamics. The associated
theory had experienced a tremendous boost from the discoveries made by
Kolmogorow, Arnold and Moser in the 1960’s, and by Aubry and Mather
in the 1980’s. In this thesis, we will substantiate the usefulness of studying
twist maps also in non-periodic and low regularity settings, that is in
situations where the classical results are not applicable.

In particular, we will concentrate on perturbative methods for near-
integrable systems. One typical feature of such systems is the existence
of “approximate first integrals”, so called adiabatic invariants, and their
presence usually has strong consequences for the dynamics. Here, we derive
growth rates for a large class of non-periodic twist maps depending on the
regularity assumptions. As an application, the Fermi-Ulam ping-pong is
considered, where the possible growth in velocity is linked to the number
of bounded derivatives of the forcing function.

Moreover, in systems with adiabatic invariants and almost periodic
time-dependence the underlying compact structure enables one to use
a generalization of Poincaré’s recurrence theorem. By harnessing this
fact, we prove that in such systems the set of initial condition leading to
escaping orbits typically has measure zero. This is again demonstrated
using the ping-pong model. Other applications are found in the Littlewood
boundedness problem, where we consider a periodically forced piecewise
linear oscillator together with its discontinuous limit case, and also a super-
linear oscillator with an almost periodic forcing term. These systems are
given by differential equations and thus the mentioned results imply also
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the Poisson stability of almost every solution. Even in the periodic case,
these insights represent valuable contributions due to the low regularity
assumptions necessary to obtain them.
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Chapter 1

Introduction

Consider an interval I ⊂ R and a map f : R× I → R2, (θ, r) 7→ (θ1, r1),
which is a diffeomorphism with respect to its image and isotopic to the
identity. Moreover suppose that f satisfies:

(i) Twist condition: We have ∂θ1
∂r ̸= 0 in R× I.

(ii) Symplecticity : There is a C1 map η(θ, r) such that

dη = r1dθ1 − rdθ.

(iii) Periodicity condition: We have

θ1(θ + 2π, r) = θ1(θ, r) + 2π, r1(θ + 2π, r) = r1(θ, r),

and also the primitive function η(θ, r) is 2π-periodic in θ.

After identifying the circle S1 with the quotient space R/2πZ, the function
f can be seen as the lift of a map f̄ : (θ̄, r) 7→ (θ̄1, r1) defined on a cylinder.
Then, f̄ is called exact symplectic twist map (of the cylinder).

These maps arise naturally as Poincaré maps of certain low-dimensional
Hamiltonian systems. In fact, the converse is also true. Under suitable
assumptions, any exact symplectic twist map can be obtained as the
time-2π map of non-autonomous Hamiltonian equations

q̇ =
∂H

∂p
(q, p, t), ṗ = −∂H

∂q
(q, p, t),

1



2 Chapter 1. Introduction

where (q, p) ∈ R2 and H(q, p, t+ 2π) = H(q, p, t) = H(q + 2π, p, t) satis-
fying the Legendre condition ∂2pH > 0 [Mos86]. Instead of studying the
continuous equations, one can now consider its Poincaré map and the
orbits that arise from its iteration. Often this comes with some advantages,
for example in numerical calculations or when dealing with non-smooth
Hamiltonians. In the last sixty years, the field has received a lot of atten-
tion and numerous applications (see e.g. [AP90, Gol01, MHO09] for the
general theory), mainly due to the introduction of two powerful tools: the
theories of Kolmogorow-Arnold-Moser on the one hand and Aubry-Mather
on the other [Arn63, Mos62a, Mat82]. To illustrate these results, we briefly
discuss their consequences for the completely integrable twist map

θ1 = θ + φ(r), r1 = r, (1.1)

where φ ∈ C1(I) is such that φ′ ≠ 0. If h0 denotes a primitive of
rφ′(r), then dh0 = r1 dθ1 − r dθ, i.e. the map is exact symplectic. Any
embedded circle S1 × {r̃} is preserved by this function, and rotated by
an angle increasing/decreasing with r̃. If the so-called rotation number
ω = φ(r̃) is commensurable with 2π, that is ω

2π ∈ Q, then all orbits on
the corresponding circle are periodic. Otherwise, they are quasi-periodic
with frequencies 2π and ω. In [Gol01], Golé aptly describes completely
integrable maps as the paradise lost of mathematicians, physicists and
astronomers. The dynamics are completely understood and the invariance
of embedded circles prevents any point from escaping in the vertical
direction. In applications, such systems mostly appear only as strongly
idealized models. Fortunately, the mentioned theories imply that many of
these nice features persist under small perturbations in the space of exact
symplectic twist maps. On a non-rigorous level, the situation after such a
perturbation is as follows. Let I ⊂ R be a compact interval and a proper
subset of φ(I). For any ω ∈ I, there is a closed invariant setM =Mω, such
that any orbit in M has rotation number ω. If ω is commensurable with
2π, the corresponding set contains periodic orbits and possibly heteroclinic
orbits joining them. For ω not commensurable with 2π there are two
possibilities: If ω satisfies a Diophantine condition and the perturbation is
small enough, then M remains a closed invariant curve and orbits on this
curve are quasi-periodic. Note, that these invariant loops act as barriers,
since any orbit starting in a region between two such curves has to remain
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in this region. The other possibility is that the circle breaks down, in
which case M is an invariant Cantor set with possibly homoclinic orbits
in the gaps.

However, both Aubry-Mather-Theory and the different versions of
the KAM-Theorem rely critically on the (generalized) periodicity of the
involved functions with respect to the angle θ. Moreover, the latter also
requires a considerable degree of smoothness. In this thesis, we will
demonstrate that studying symplectic twist maps can still be very fruitful
if these two conditions are relaxed. We consider functions f of the type
depicted above, but without imposing the periodicity condition (iii). These
maps are called symplectic twist maps of the plane and their analysis is
non-standard in the literature. In a series of publications, Kunze and
Ortega investigated this class of functions [KO08, KO10, KO11, KO12,
KO13, KO20, KO21]. As applications, they considered the Fermi-Ulam
ping-pong model and the Littlewood boundedness problem. Here, we shall
continue their survey and examine the same two fields of application.

The thesis is in large parts based on the three papers [Sch19, Sch22,
OS22] published by the author, the last one being a joint work with Rafael
Ortega. It is structured as follows. First, we continue the introduction
by stating the main abstract findings and also briefly discussing some of
the key ideas employed to obtain these results. Then, we close it with
two small sections containing descriptions of the Fermi-Ulam ping-pong
and the Littlewood boundedness problem, including the most relevant
references and also a presentation of the main non-abstract results. In the
second chapter, some properties of measure-preserving transformations
and a generalization of Poincaré’s Recurrence Theorem for infinite measure
spaces are discussed. This theorem is applied to a class of exact symplectic
twist maps of the cylinder with low regularity in Chapter 3. In addition,
the consequences for some piecewise linear oscillators are stated. Chapter
4 deals with almost periodic twist maps. As applications, the Fermi-
Ulam ping-pong and a superlinear oscillator are considered. In Chapter 5,
the completely non-periodic case is treated and growth rates depending
on the regularity are established for a class of symplectic twist maps,
which is again demonstrated using the ping-pong model. Finally, Chapter
6 contains some conclusions. Following the appendices, there is also a
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notation index listing some of the frequently used symbols with no claim
to completeness.

1.1 Non-periodic twist maps and adiabatic invari-
ants

As already indicated above, symplectic maps can be seen as the discrete
analog to Hamiltonian motions. Twist maps are associated to those Hamil-
tonians for which the velocity is monotone in the canonical momentum. In
general, these maps do not have to satisfy the periodicity assumption (iii),
e.g. when studying a non-autonomous Hamiltonian H(q, p, t) with general
time dependence. Let f : (θ, r) 7→ (θ1, r1) be any symplectic twist map.
Due to the twist condition (i), the map (θ, r) 7→ (θ, θ1) is a diffeomorphism
with respect to its image. We write R : (θ, θ1) 7→ (θ, r) for its inverse. If η
denotes the primitive function from (ii), then S(θ, θ1) = −(η ◦ R)(θ, θ1) is
a generating function since we have

∂S

∂θ
(θ, θ1) = r,

∂S

∂θ1
(θ, θ1) = −r1.

So the canonical transformation f can be described by a single scalar
function S. If f induces a map f̄ on the cylinder, it can be easily shown
that we have η(θ + 2π, r) = η(θ, r) on R× I if and only if

S(θ + 2π, θ1 + 2π) = S(θ, θ1)

holds for all suitable (θ, θ1). Another important property of this particular
generating function, depending on the old and new position variable, is
that it yields a variational principle. There is a one-to-one correspondence
between complete orbits (θn, rn)n∈Z, where (θn, rn) = f(θn−1, rn−1), and
sequences (θn)n∈Z satisfying

∂2S(θn−1, θn) + ∂1S(θn, θn+1) = 0, n ∈ Z.

The latter equation is sometimes called the discrete Euler-Lagrange equa-
tion and sequences (θn)n∈Z corresponding to orbits of f are critical points
of a suitable action functional. In the case when f̄ is an exact symplec-
tic twist map of the cylinder, this observation is the starting point for
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Aubry-Mather theory (see e.g. [Gol01]). However, even if condition (iii)
is not satisfied, this approach yields many interesting insights. For ex-
ample, under suitable assumptions on S, there are infinitely many orbits
(θn, rn)n∈Z so that supn∈Z |rn| <∞. Such orbits are simply called bounded.
The variational character of twist maps is however no subject of this thesis.
For a discussion of its implications in the non-periodic case we refer the
reader to [KO08, KO10, KO11, KO12]. Instead, we will concentrate on
pertubative methods for near-integrable systems.

In non-periodic settings, invariant curve theorems are not applicable,
and thus, proving boundedness of all orbits seems generally out of reach.
In fact, there are many examples of non-periodic twist maps leading
to unbounded motions. One can even find such maps in the class C∞

with bounded derivatives up to any preassigned order leading to escaping
orbits, i.e. orbits with limn→∞ |rn| = ∞ (see e.g. [KO11] or Section 5.5,
where the same construction is depicted). Nevertheless, the regularity
assumptions have an impact also for non-periodic maps. In some cases,
where unbounded motions exist, one can at least determine upper bounds
for their growth.

To this end, consider an autonomous Hamiltonian H(q, p, λ) with one
degree of freedom and depending on a fixed parameter λ. Moreover,
assume that its level sets Lh = {(q, p) : H(q, p, λ) = h} define compact
closed curves encircling the origin. In this case, there is a canonical change
of variables (q, p) 7→ (ϕ, I), transforming the system into so called action-
angle coordinates. Geometrically, the action I corresponding to a point
(q, p) ∈ Lh is defined to be the area bounded by the associated phase curve
divided by 2π and ϕ is some conjugate angular variable. From an analytic
perspective, these coordinates are chosen because then the equations of
motion have the form

ϕ̇ = ω(I, λ), İ = 0, (1.2)

i.e. its Hamiltonian H0 = H0(I, λ) does not depend on the angle and I
is a first integral. Now, suppose that the parameter is not fixed but a
function λ = λ(εt). In this case, the transformation depicted above is time
dependent and yields a Hamiltonian of the form H0(I, λ(εt))+εH1(ϕ, I, εt),
where H1 is 2π-periodic in ϕ. If the frequency ω(I, λ) does not vanish,
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an averaging procedure can be applied to show that the action I remains
an “approximate first integral”, that is |I(t) − I(0)| = O(ε) for times
0 ≤ t ≤ ε−1. Such a quantity is called adiabatic invariant. The time span
over which I is nearly preserved can be improved by imposing stronger
regularity assumptions on λ and H (up to exponential time spans in the
analytic case [Nei84]). Note, that there are many subtleties involved,
including the very definition of adiabatic invariants. For a more thorough
discussion, we refer the reader to [Arn89] and also [Hen93]. If λ is fixed
and ∂2IH0 = ∂Iω ̸= 0, then clearly any time-T map of system (1.2) is a
completely integrable twist map of the form (1.1). Therefore, the reasoning
described above also suggests the existence of “adiabatic invariants” for
suitable perturbations of this map. This observation is one of the key ideas
used throughout the thesis. However, we will obtain the perturbations
differently. Moreover, we shall omit giving a precise definition of adiabatic
invariants in the context of maps and instead always specify the exact
properties of these quantities when needed. In Chapter 5 for example, we
consider non-periodic symplectic twist maps f : (θ, r) 7→ (θ1, r1) of the
form

θ1 = θ +
1

rα
(γ + F1(θ, r)), r1 = r + r1−αF2(θ, r), (1.3)

where α ∈ (0, 1), γ ∈ R \ {0} and Fi = O(r−α) uniformly in θ for
i = 1, 2. These maps can indeed be seen as perturbations of the completely
integrable twist map (1.1) with φ(r) = γr−α and h0(r) = − αγ

1−αr
1−α, since

applying a rescaling ρ = δr yields

θ1 = θ + δαγρ−α +O(δ2α), ρ1 = ρ+O(δ2α),

uniformly in θ as δ → 0. Thus, if one assumes periodicity of the relevant
functions, the argument above leads to the existence of invariant curves,
showing that all orbits are bounded. Without any periodicity assumptions
one can still find adiabatic invariants. Note that f is exact symplectic since
all closed 1-forms are exact in the plane. However, the exactness does not
have the same strong implications as in the case of the cylinder. Therefore,
Kunze and Ortega introduced the notion of E-symplectic families of maps
in [KO21], where they studied holomorphic functions of the type (1.3). In
Section 5.3, we adapt this notion to the non-analytic case. By using the
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rescaling ξ = ε1/αr, the map f can be brought into the form

Pε : x1 = x+ εl(x, ε), x1 = (θ1, ξ1), x = (θ, ξ).

Such a family {Pε} is called E-symplectic of class Ck+1 if the primitive
function ζ(θ, ξ, ε) satisfying

dζ(·, ε) = ξ1 dθ1 − ξ dθ

is close to some function εm(x) with m ∈ Ck+1
b in a suitable sense and

both l(x, ε) and ζ(x, ε) have sufficiently many bounded derivatives. Here,
Ckb denotes the space of bounded functions with bounded derivatives up
to order k. For small ε > 0, any function in this class of near-identity
symplectomorphisms can be realized as the Poincaré map of a 1-periodic
Hamiltonian system. After k steps of an averaging procedure, one obtains
the system in normal form

ẏ = εJ∇N (y, ε) + εJ∇R(y, t, ε),

where J denotes the standard symplectic matrix and the remainder satisfies
R(y, t, ε) = O(εk) in C2. The function E(x) = N (x, 0) is an k-th order
adiabatic invariant for Pε in the sense that

|E(xn)− E(x0)| = O(ε), 0 ≤ n ≤ min{N, ε−k},

for a piece of orbit (xn)0≤n≤N = (Pnε (x0))0≤n≤N not leaving some domain
G. This can be translated into growth rates for the original map. In the
case of twist maps given by (1.3), we need to assume that F1, F2 and the
symplectic primitive function lie in a suitable class. To this end, consider
the space Fk(s) of functions F (τ, v) such that F ∈ Ck(R × [v∗,∞)) for
some v∗ > 0 and

sup
(τ,v)∈R×[v∗,∞)

vs+ν2 |∂νF (τ, v)| <∞

for every multi-index ν = (ν1, ν2) with |ν| ≤ k. This class was first
introduced in [Ort99] and it is very useful for describing expansions of
twist maps. The depicted argument then leads to the following result.
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Theorem 1.1 (Theorem 5.25). Given k ∈ N, r∗ > 0, α ∈ (0, 1) and
γ ∈ R \ {0}, consider a map f : R× [r∗,∞)→ R× [0,∞), (θ, r) 7→ (θ1, r1)
of the form (1.3) with F1, F2 ∈ Fk+2(α). Moreover, suppose there is
a function h ∈ Ck+2(R × [r∗,∞)) that satisfies dh = r1 dθ1 − r dθ with

(h− h0) ∈ Fk+2(2α− 1), where h0(θ, r) = −
(
αγ
1−α

)
r1−α. Then, there is a

constant C > 0 such that if (θn, rn)n∈N0 denotes a complete forward orbit
of f , there is n0 ∈ N so that

rn ≤ Cn1/(k+1)α, n ≥ n0.

Remark 1.2. (a) N denotes the positive integers, whereas N0 = N ∪ {0}.

(b) If the functions F1, F2 and h are analytic, we have rn = O((log n)1/α)
for any real complete forward orbit (θn, rn)n∈N0 [KO21].

Instead of abandoning condition (iii) altogether, one can also consider
twist maps with an angle that is periodic in a generalized sense. A function
u ∈ C(R) is called (Bohr) almost periodic, if for all ε > 0 there exists
L = L(ε) so that any interval of length L contains a number T such that

|u(t+ T )− u(t)| < ε, ∀t ∈ R.

There are several equivalent ways to describe almost periodicity. The
following will be particularly useful in our analysis. Let Ω be a commutative
topological group, which is metrizable, compact and connected. Moreover,
assume there is a continuous homomorphism ψ : R→ Ω with dense image,
inducing a flow ψω(t) = ω + ψ(t) on Ω. A function u(t) is almost periodic
if and only if there is such a pair (Ω, ψ) and a function U ∈ C(Ω) so that

u(t) = U(ψ(t)).

If u ∈ C1(R), the latter formula also implies u′(t) = ∂ψU(ψ(t)), where
∂ψU(ω) = limh→0

1
h(U(ω+ψ(h))−U(ω)) denotes the derivative along the

flow. For example, taking Ω ∼= S1 leads to periodic functions. Another
important subclass is given by the quasi-periodic functions. There Ω is the
N -Torus TN , where T = R/Z. We denote its classes by Θ̄ = Θ+ZN . The
image of the homomorphism ψ(t) = νt winds densely around TN , whenever
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the frequency vector ν = (ν1, . . . , νN ) ∈ RN is rationally independent.
Finally, note that also limit periodic functions are included, which are
obtained as the uniform limit of continuous periodic functions.

Now, we consider a family {gω}ω∈Ω of symplectomorphisms of the form

gω(t, r) = (t+ F (ψω(t), r), r +G(ψω(t), r)), (1.4)

where F,G ∈ C(Ω× (0,∞)). If these maps have twist and Ω ∼= S1, there
are invariant curve theorems available. This is also true when gΘ̄(t, r)
is quasi-periodic in t, provided that the frequencies satisfy a suitable
Diophantine condition (see [HLL18] and the references therein). The
situation is however fundamentally different if these Diophantine conditions
are neglected (due to the problem of small denominators [Arn63]) or if e.g.
there is an infinite number of frequencies. Moreover, even in the periodic
case, there are minimal regularity assumptions for the applicability of these
theorems. The necessary conditions have been decreased successively from
the original C333 by Moser to C5 by Rüssmann and finally to C3,β with
β > 0 [Mos62a, Rü70, Her86]. On the other hand, there are again examples
of periodic twist maps with unbounded orbits. The first one was given by
Takens in [Tak71], where he constructed such a map as a perturbation of
the completely integrable map (1.1) in the class of C1 exact symplectic
twist maps of the cylinder. Later, this was improved to C2,1−ε by Herman
[Her83]. We will consider maps of the form (1.4) that are in general only
assumed to be of class C1. Despite the absence of invariant curve theorems,
the special structure of these maps reveals valuable information about
their dynamics. Note that F and G are uniquely determined by (1.4). So
we may consider the function

g(ω, r) = (ω + ψ(F (ω, r)), r +G(ω, r)). (1.5)

It is related to {gω} via the identity

g ◦ (ψω × id) = (ψω × id) ◦ gω.

One of our main abstract results deals with these kind of functions.

Theorem 1.3 (Theorem 4.9). Let g : D ⊂ Ω× (0,∞)→ Ω× (0,∞) be a
map of the form (1.5) that is continuous, injective and measure-preserving.
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Moreover, suppose there is a function W ∈ C1
ψ(Ω× (0,∞)) satisfying

0 < β ≤ ∂rW (ω, r) ≤ δ for ω ∈ Ω, r ∈ (0,∞),

with some constants β, δ > 0, and furthermore

W (g(ω, r)) ≤W (ω, r) + k(r) for (ω, r) ∈ D,

where k : (0,∞)→ R is decreasing, bounded and limr→∞ k(r) = 0.
Then, for almost all ω ∈ Ω, the set

Eω = {(t0, r0) : lim
n→∞

rn =∞}

of initial condition leading to escaping orbits of the map gω has Lebesgue
measure zero.

Remark 1.4. (a) Here, C1
ψ(Ω× (0,∞)) denotes the space of continuous

functions U(ω, r) with derivatives ∂ψU and ∂rU in C(Ω × (0,∞)).
The spaces Ckψ(Ω) used down below are defined accordingly (see
Section 4.1).

(b) This result should be compared to Theorem 3.1 in [KO20], where it
is proven in the quasi-periodic case.

The reasoning behind this theorem is as follows. Since every map gω
is symplectic and injective, also g is continuous, injective and moreover
preserves a measure µΩ ⊗ λ, where λ denotes the Lebesgue measure
on the real line and µΩ is a Borel probability measure called the Haar
measure of Ω. At first glance, g has a form suitable for the application
of the Poincaré Recurrence Theorem. However, the underlying space
may have infinite measure. This difficulty can be overcome by using
the following generalization due to Maharam [Mah64]. Given a map
T : X → X preserving a measure µ, assume there is a measurable setM
with µ(M) <∞, such that almost every orbit of T has to enterM in the
future. Then T is recurrent. In the case under consideration, such a set
can be constructed by using the function W . This function can be seen as
a generalized adiabatic invariant, since any growth will be slow for large
energies, i.e. where the system is close to integrable. Here, the trick is
to consider the restriction of g to the set U of initial condition leading to
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unbounded orbits. In that case, a viable choice for the space engendering
set is given by

M =
⋃
j∈N
Mj , Mj = {(ω, r) ∈ Ω× (0,∞) : |W (ω, r)−Wj | ≤ 2−j},

where (Wj)j∈N is a sequence of positive numbers growing to infinity suffi-
ciently fast. Note, that this method is not specific to twist maps. However,
the twist condition is very useful for finding a suitable adiabatic invariant
W .

Next, we introduce two fields of application for these abstract results.

1.2 Fermi-Ulam ping-pong

The Fermi-Ulam ping-pong is a model describing how charged particles
bounce off magnetic mirrors, and thus, gain energy. They undergo the
so called Fermi acceleration and one central question is whether the
particles velocities can get close to the speed of light that way. The
model was introduced by Fermi [Fer49] in order to explain the origin of
high energy cosmic radiation. A common one-dimensional mathematical
formulation of this problem is as follows. The point particle bounces
completely elastically between two vertical plates of infinite mass, one
fixed at x = 0 and one moving in time as x = p(t) for some forcing function
p = p(t) > 0. The particle alternately hits the walls and experiences no
external force in between the collisions. The motion can be described
by the function f : (t0, v0) 7→ (t1, v1), mapping the time t0 ∈ R of an
impact at the left plate x = 0 and the corresponding velocity v0 > 0
right after the collision to (t1, v1), representing the subsequent impact at
x = 0. Since one is interested in the long term behavior, we study the
forward iterates (tn, vn) = fn(t0, v0) for n ∈ N. One can show, that the
map P : (t0, E0) 7→ (t1, E1), obtained from f by a change of variables
E = 1

2v
2, is a symplectic twist map. The most studied case is that of

a periodic forcing p(t). Ulam conjectured an increase in energy with
time on the average [Ula61]. Based on some numerical simulations, he
however realized that rather large fluctuations and no clear gain in energy
seemed to be the typical behavior. Two decades later, the development
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of KAM theory allowed to prove that the conjecture is indeed false. If
the forcing p is sufficiently smooth, all orbits stay bounded in the phase
space, since the existence of invariant curves prevents the orbits from
escaping [Pus83, LL91]. The proofs are based on Moser’s twist thoerem
[Mos62b], which relies on a higher regularity. And indeed, Zharnitsky
showed the existence of escaping orbits if only continuity is imposed on
p [Zha98]. In the non-periodic case, one can even find C∞-forcings with
this behavior [KO11]. More recently, Dolgopyat and De Simoi developed a
new approach. They considered the periodic case and studied some maps
which are basically approximations of the successor map f . This way they
could prove several results regarding the Lebesgue measure of the escaping
set

E = {(t0, v0) : lim
n→∞

vn =∞},

consisting of initial data, which lead to infinitely fast particles [Dol08b,
Dol08a, DS12, Sim13]. Finally, Zharnitsky investigated the case of a
quasi-periodic forcing function with frequencies satisfying a Diophantine
condition. Again, using an invariant curve theorem, he was able to show
that the velocity of every particle is uniformly bounded in time [Zha00].
Since no such theorem is available if the Diophantine condition is dropped,
a different approach is necessary in this case. In [KO20], Kunze and Ortega
proved an analog of Theorem 1.3 for quasi-periodic maps. Its application
to the ping-pong map shows that typically the escaping set E has measure
zero. They also raised the question whether this result can be generalized
to the almost periodic case. By applying Theorem 1.3 with the adiabatic
invariant W (ω,E) = P (ω)2E, one obtains the following result, giving an
affirmative answer.

Theorem 1.5 (Theorem 4.11). Assume 0 < a < b and P ∈ C2
ψ(Ω) are

such that
a ≤ P (ω) ≤ b, ∀ω ∈ Ω.

Denote by Eω the escaping set for the ping-pong map with the almost
periodic forcing function pω(t) = P (ω+ψ(t)). Then, for almost all ω ∈ Ω,
the set Eω ⊂ R2 has Lebesgue measure zero.

Even in the completely non-periodic case one can obtain some interest-
ing insights. Recently, Kunze and Ortega studied holomorphic twist maps
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of the form (1.3). After a suitable change of variables (t, E) 7→ (τ,W ), the
ping-pong map can be written in that form. This way, they showed that
the velocity vn after the n-th impact satisfies vn = O(log n) if the forcing
function is holomorphic [KO21]. This rigorously verifies an older result by
Neishtadt [Nei84]. In the same way, an application of Theorem 1.1 yields
the following.

Theorem 1.6 (Theorem 5.26). Given k ≥ 3, let p ∈ Ck+1
b (R) be so that

0 < a ≤ p(t) ≤ b for t ∈ R. There are constants C̃, Ẽ > 0 such that
if (tn, En)n∈N0 denotes any complete forward orbit of the ping-pong map
P ∈ Ck(R× [Ẽ,∞)), then

En ≤ C̃n2/(k−1), n ≥ n0,

for some n0 ∈ N.

Moreover, we show how to construct a smooth forcing function p(t)
leading to escaping orbits. This example was first introduced in [KO11],
where it is shown that bounded and unbounded motions coexist. We
prove that if ∥p∥Ck+1(R) ≤M for a prefixed parameter M , then there are
a constant C > 0 and a complete forward orbit (tn, vn)n∈N0 such that

vn ≥ Cn1/(k+1), n ∈ N.

Note that this example fails to show the optimality of the rates stated in
Theorem 1.6. However, the influence of the regularity on possible growth
is clearly demonstrated.

1.3 Littlewood boundedness problem

The dynamics of the Duffing-type equation

ẍ+G′(x) = p(t) (1.6)

have been studied extensively due to its relevance as a model for the motion
of a classical particle in a one-dimensional potential field G(x) affected by
an external time-dependent force p(t). In the 1960’s, Littlewood [Lit66b]
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asked whether solutions of (1.6) stay bounded in the (x, ẋ)-phase space if
either

(i) G′(x)/x→ +∞ as x→ ±∞
or (ii) sign(x) ·G′(x)→ +∞ and G′(x)/x→ 0 as x→ ±∞.

Despite it’s harmless appearance, this question turned out to be a quite
delicate matter. Whether resonance phenomena occur, does not only
depend on the growth of G, but also on the properties of p. The most
investigated case is that of a time-periodic forcing p. The first affirmative
contribution in that regard is due to Morris [Mor76], who showed the
boundedness of all solutions to

ẍ+ 2x3 = p(t),

where p is continuous and periodic. Later, Dieckerhoff and Zehnder [DZ87]
were able to show the same for

ẍ+ x2n+1 +
2n∑
j=0

pj(t)x
j = 0,

where n ∈ N and pj ∈ C∞ are 1-periodic. In the following years, this result
was improved by several authors (see [Bin89], [LL91], [Lev91],[Nor92],[LZ95]
and the references therein). If however the periodicity condition is dropped,
Littlewood [Lit66b] himself showed that for any odd potential G satisfying
the super-/sublinearity condition, there is a bounded forcing p leading to
at least one unbounded trajectory. Later, Ortega [Ort05] was able to prove
in a more general context that for any given C2-potential one can find an
arbitrarily small p ∈ C∞ such that most initial conditions (in the sense of
a residual set) correspond to unbounded solutions of (1.6). Even in the
time-periodic case, Littlewood [Lit66a] constructed G ∈ C∞ and a peri-
odic p such that there is at least one unbounded solution. (Actually both
[Lit66b] and [Lit66a] contain a computational mistake; see [Lev92, Lon91]
for corrections.) Let us also mention [Zha97], where Zharnitsky improved
the latter result for the superlinear case such that the periodic p can be
chosen continuously. These counterexamples show that besides periodicity
and regularity assumptions on p an additional hypothesis on G is needed
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if one hopes for boundedness of all solutions. Indeed, all positive results
mentioned above suppose the monotone growth of G′(x)/x. This condition
guarantees the monotonicity of the corresponding Poincaré map, and thus,
enables the authors to use KAM theory.

We also want to point out that the Fermi-Ulam ping pong can be
obtained as a limiting case, where the time-dependent potential becomes
infinitely steep at the boundaries [LL91].

In the last twenty years a wealth of works on the Littlewood bound-
edness problem has been published, including the sublinear, semilinear
and other cases. Since those are far too many to be presented here, we
focus on the two particular cases studied in this thesis. First, consider the
superlinear oscillator equation

ẍ+ |x|α−1x = p(t),

where α ≥ 3. In [LZ95], Levi and Zehnder were able to show that for a
quasi-periodic forcing p all solutions are bounded, if the frequencies of p
satisfy a Diophantine condition. Here, we shall investigate the case where
p is only assumed to be almost periodic. Denote by x(t) = x(t; x̃, ṽ, t̃)
the solution to this equation satisfying the initial condition x(t̃) = x̃ and
ẋ(t̃) = ṽ. We consider solutions x(t; 0, v0, t0) with v0 < 0 and the map

ψ : (v0, t0) 7→ (v1, t1),

where t1 is the first zero to the right of t0 such that corresponding velocity
v1 = ẋ(t1; 0, v0, t0) is negative. This Poincaré map will be well-defined
for |v0| sufficiently large, since then the corresponding solution oscillates
quickly.

ẋ

x

v0
v1

Figure 1.1: For large energies the trajectory spins clockwise around the
origin
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After applying several coordinate transformations ψ has a form suitable
for the application of Theorem 1.3. Thus, the escaping set

E = {(v0, t0) : lim
n→∞

vn = −∞}

has Lebesgue measure zero. It follows that also the set of initial condition
(x̃, ṽ, t̃) ∈ R3 leading to solutions such that limt→∞(|x(t)| + |ẋ(t)|) = ∞
has measure zero. In fact, we will even show that almost all solutions
are Poisson stable. There are various ways to define this notion. We will
use the following (cf. [CL20] and the references therein). A solution x(t)
is called Poisson stable, if there is a sequence (tn)n∈Z with tn → ±∞ as
n→ ±∞ such that

|x(t+ tn)− x(t)|+ |ẋ(t+ tn)− ẋ(t)| → 0, as n→ ±∞,

uniformly on every bounded interval in R.

Theorem 1.7 (Theorem 4.15). Given P ∈ C4
ψ(Ω), consider the family

{pω}ω∈Ω of almost periodic forcing functions defined by

pω(t) = P (ω + ψ(t)), t ∈ R.

Let xω(t; x̃, ṽ, t̃) denote the solution of (4.22) with forcing function p(t) =
pω(t) satisfying the initial condition xω(t̃) = x̃ and ẋω(t̃) = ṽ. Then, for
almost all (x̃, ṽ, t̃, ω) ∈ R3 × Ω, the solution xω(t; x̃, ṽ, t̃) is Poisson stable.

Remark 1.8. For α > 3 the same holds, if only P ∈ C2
ψ(Ω) is imposed.

Just Lemma 4.18 requires higher regularity and the latter is needed only
for α = 3.

The other case we will consider deals with a quadratic potential G(x).
More precisely, we study oscillators of the form

ẍ+ n2x+ h(x) = p(t), (1.7)

where n ∈ N and h, p ∈ C(R) are bounded, with p also 2π-periodic. The
n-th Fourier coefficient of p is given by

p̂n =
1

2π

∫ 2π

0
p(t)e−int dt.
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In the linear case h = 0, it is a well established fact that solutions
of (1.7) are 2π-periodic (and hence bounded) if p̂n = 0, and otherwise
unbounded and non-recurrent due to resonance phenomena. In [LL69],
Lazer and Leach studied the case when h has two distinct finite limits
h(±∞) = limx→±∞ h(x) at infinity and all values of h lie between those
limits. They were able to show that (1.7) has a 2π-periodic solution if and
only if

π|p̂n| < |h(+∞)− h(−∞)|. (1.8)

Later, it was proven in [AO96] that the negation of this inequality implies
that all solutions x(t) satisfy

lim
t→±∞

[
x(t)2 + ẋ(t)2

]
=∞. (1.9)

See also [Sei90] for a previous related work. Results with respect to
boundedness were obtained in [Ort99]. There, it was shown that the same
condition (1.8) leads to the boundedness of all solutions in the special case
where h = hL with L > 0 is the piecewise linear function given by

hL(x) =


L if x ≥ 1,

Lx if |x| < 1,

−L if x ≤ −1,

provided that p ∈ C5(R) is 2π-periodic (see also [KKY97] for a related
result with a discontinuous h). Moreover, this led to the insight that almost
every solution x(t) is Poisson stable. In the same year, Liu obtained a
similar result for general h ∈ C6(R) such that lim|x|→∞ xkh(k)(x) = 0 for
1 ≤ k ≤ 6, if p ∈ C7(R) is 2π-periodic [Liu99]. Recent findings for more
general non-linearities can be found in [PWW16, WWX19]. All latter
results were obtained by using variants of Moser’s small twist theorem.
However, the application of any such invariant curve theorem requires a
considerable degree of smoothness of either h(x) or p(t). It is an interesting
question if any of the nice features of solutions survive if only mild regularity
assumptions are made. Here, we investigate this question for the piecewise
linear equation

ẍ+ n2x+ h1(x) = p(t). (1.10)
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By rescaling ẍ+ n2x+ hL(x) = p(t), one obtains the same equation with
p̃ = p

L and a function h̃L given by h̃L(x) = sign(x) for |x| ≥ 1
L and

h̃L(x) = Lx for |x| < 1
L . Since the slope L has basically no effect on the

dynamics we have normalized the equation by setting L = 1. Besides
giving a good starting point for more general non-linearities, such piecewise
linear oscillators are also known in the engineering literature. E.g. (1.10)
can be considered as a model for an oscillator with stops (see [Har85] and
also [Ort99] for the derivation of (1.10)). Our main result is the following.

Theorem 1.9 (Theorem 3.4). Suppose p ∈ C(R) is 2π-periodic and
satisfies the Lazer-Leach condition π|p̂n| < 2. If x(t) = x(t; x̃, ṽ, t̃) denotes
the solution of (1.10) with initial condition x(t̃) = x̃ and ẋ(t̃) = ṽ, then
x(t; x̃, ṽ, t̃) is Poisson stable for almost every (x̃, ṽ, t̃) ∈ R3.

This theorem is an improvement of Corollary 2.1 in [Ort99].

Remark 1.10. (a) The result is also true for the discontinuous equation

ẍ+ n2x+ sign(x) = p(t), (1.11)

if ∂N is countable, where N = {t ∈ R : |p(t)| = 1}. This is basically the
case considered in [KKY97] and it can be seen as a limit case of (1.10).
Note that one first has to define a proper notion of solutions to (1.11)
(see Definition 3.5 down below). We also refer the reader to [LZ20] for a
discussion of chaos in second-order equations with signum non-linearities.
(b) The Lazer-Leach condition is not only sufficient but also necessary for
recurrence, since all solutions satisfy (1.9) if π|p̂n| ≥ 2 [AO96].
(c) Theorems 1.5, 1.7 and 1.9 state that the set of initial conditions
leading to escaping orbits has measure zero. It should be noted, that the
author knows of no example exhibiting unbounded orbits, provided the
assumptions of the respective theorem are satisfied.

The proof is similar to the one of Theorem 1.7. A Poincaré map
P : (τ, v) 7→ (τ1, v1) is constructed, which sends the initial condition
(τ, v) of x(t; 0, v, τ) to (τ1, v1), representing a subsequent zero and its
corresponding velocity. This map has an expansion of the form{

τ1 = τ + 2π − L(τ)
v +R(τ, v),

v1 = v + L′(τ) + S(τ, v),
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where L ∈ C2 and R,S ∈ C1 are 2π-periodic in τ . Moreover, the Lazer-
Leach condition guarantees that L is positive. Therefore, P can be viewed
as the lift of a twist map P̄ defined on the cylinder S1 × [0,∞). Theorem
3.1 below states that any such map is recurrent if R and S satisfy certain
bounds. This result should be compared to Theorem 1.3, only that the
construction of the associated adiabatic invariant is already included in
the proof. This again yields the Poisson stability of almost every solution.





Chapter 2

Recurrence

Let (X,A, µ) be a measure space and introduce the following useful nota-
tion. For A,B ∈ A we write

A ⊂ B mod µ,

if A ⊂ B ∪ N , where N is a set of measure zero. Now, consider a map
T : X → X which is bi-measurable, that is

T−1(A), T (A) ∈ A for all A ∈ A.

Such a map T is said to be measure-preserving, if

µ(T (A)) = µ(A) for all A ∈ A.

As a consequence, such a measure-preserving transformation satisfies

µ(T−1(A)) ≤ µ(A) for all A ∈ A,

with equality if A ⊂ T (X) mod µ.

Remark 2.1. In the literature, there is no unique way of defining the two
properties above. In particular, T is often called measure-preserving, if
µ(T−1(A)) = µ(A) for all A ∈ A. However, the definition in this work
was chosen since it seems to be the most natural in the application to
mechanical problems and suchlike.

21
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Since T maps X into itself, the iterates Tn = Tn−1 ◦ T , where T 0 = id,
are well-defined for all n ∈ N. We call the map T recurrent, if for every
A ∈ A for almost all x ∈ A there is n ∈ N such that Tn(x) ∈ A, that is

A ⊂
∞⋃
n=1

T−n(A) mod µ,

where T−n(A) denotes the pre-image under Tn. In other words, the set
of points in A not returning to A has measure zero. Since T is measure-
preserving, also any (iterated) pre-image of this set has measure zero.
Hence T is even infinitely recurrent, i.e. for almost all x ∈ A there is an
increasing sequence (nk)k∈N ⊂ N such that Tnk(x) ∈ A for all k ∈ N.
In the case of a finite measure-space, the famous Poincaré recurrence theo-
rem characterizes the relation between measure-preserving and recurrent
maps. We will use it in the following form.

Lemma 2.2. Let (X,A, µ) be a measure space such that µ(X) <∞ and
suppose T : X → X is measure-preserving. Then T is recurrent.

Unfortunately, the situation is less clear if the space has infinite measure.
However, the statement of the recurrence theorem stays valid if there exists
a setM of finite measure which acts as some kind of bottleneck. This is
described in the following generalization of Lemma 2.2 due to Maharam
[Mah64], which also recently got some attention in the context of twist
maps by Dolgopyat [Dol].

Lemma 2.3 (Maharam’s Recurrence Theorem). Consider a measure space
(X,A, µ) and suppose T : X → X is measure-preserving. If there exists a
setM∈ A with µ(M) <∞, such that

X ⊂
∞⋃
n=1

T−n(M) mod µ,

then T is recurrent.

Proof. The “time of first return” r(x) = min{k ∈ N : T k(x) ∈ M} is
well-defined for almost all x ∈ X by assumption. In particular, it can be
shown that there is a set Γ of measure zero such that the induced map
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S : M \ Γ → M given by S(x) = T r(x)(x) is well-defined and satisfies
S(M\ Γ) ⊂ M \ Γ. Moreover, S is measure-preserving and hence, one
can apply the Poincaré recurrence theorem to see that S is also recurrent.
Now, let A ∈ A be a measurable set in X and for k ∈ N consider the sets

Ak = {x ∈ A : r(x) = k}.

Moreover, define Bk = T k(Ak) ⊂M. Since S is recurrent, we have

Bk ⊂
∞⋃
n=1

S−n(Bk) ⊂
∞⋃
n=1

T−n(Bk) mod µ.

From this it follows

T−k(Bk) ⊂
∞⋃
n=1

T−(n+k)(Bk) mod µ.

Since Ak ⊂ T−k(Bk) and µ(Ak) = µ(Bk) we know that T−k(Bk) = Ak up
to a set of measure zero. This in turn implies

Ak ⊂
∞⋃
n=1

T−n(Ak) mod µ.

Finally, taking the union over all k ∈ N shows that almost every point in
A returns to A.

There are two drawbacks to Lemma 2.3. On the one hand, such a set
M does not exist for every recurrent measure-preserving transformation,
as already a trivial example like the identity shows. On the other hand,
even when it does exist, it can be hard to find. A key idea of Chapters 3
and 4 will be that certain symplectic twist maps offer a class of measure-
preserving transformations for which the construction ofM can be done
explicitly.

Remark 2.4. If X is σ-finite, the following observation can be made. A
measure-preserving map T : X → X is recurrent if and only if there is a
covering {Xj}j∈N of X and a collection of sets {Mj}j∈N with µ(Mj) <∞
such that for all j ∈ N we have T (Xj) ⊂ Xj and Xj ⊂ ∪∞n=1T

−n(Mj)
mod µ.
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Note, that there are several more generalizations to the Poincaré
recurrence theorem and depending on the situation one might choose the
appropriate version. For example, if {Xj}j∈N is a covering of X with
µ(Xj) < ∞ and for every fixed j ∈ N the measure-preserving map T
satisfies

lim
n→∞

1

n
µ

(
n⋃
k=1

T k(Xj)

)
= 0,

then T is also recurrent (see [KS19]). For a more thorough discussion of
maps preserving an infinite measure we refer the reader to [Aar97] and
[Dol].

In Chapters 3 and 4 we will consider functions

f : D ⊂ Ω× (0,∞)→ Ω× (0,∞),

where D is an open set and Ω is a compact commutative topological group.
The space Ω× (0,∞) is equipped with the product measure µΩ⊗ λ̃, where
λ̃ denotes an absolutely continuous measure on the real line and µΩ is a
Borel probability measure called the Haar measure of Ω (see Section 4.1.3
for details). The map f is assumed to be a homeomorphism with respect
to its image and measure-preserving, that is

(µΩ ⊗ λ̃)(f(B)) = (µΩ ⊗ λ̃)(B)

for all Borel sets B ⊂ D. In general, we can not assume that f(D) ⊂ D.
Therefore, we have to carefully construct a suitable domain on which the
forward iterations are well-defined. We initialize D1 = D and set

Dn+1 = f−1(Dn), for n ∈ N.

This way fn is well-defined on Dn. Inductively it can be shown that
Dn+1 = {(ω, r) ∈ D : f(ω, r), . . . , fn(ω, r) ∈ D} and thus Dn+1 ⊂ Dn ⊂ D
for all n ∈ N. Initial conditions in the set

D∞ =
∞⋂
n=1

Dn ⊂ Ω× (0,∞)
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correspond to complete forward orbits, i.e. if (ω0, r0) ∈ D∞, then

(ωn, rn) = fn(ω0, r0)

is defined for all n ∈ N. It could however happen that D∞ = ∅ or even
Dn = ∅ for some n ≥ 2. The set of initial data leading to unbounded
orbits is denoted by

U = {(ω0, r0) ∈ D∞ : lim sup
n→∞

rn =∞}.

Complete orbits such that limn→∞ rn =∞ will be called escaping orbits.
The corresponding set of initial data is

E = {(ω0, r0) ∈ D∞ : lim
n→∞

rn =∞}.

Note, that both U and E are Borel measurable. The escaping set E can
be viewed as the transient part of the domain. Indeed, f is obviously
non-recurrent on E and its complement D∞ \ E on the other hand can be
covered by the measurable sets

Bm = {(ω0, r0) ∈ D∞ : lim inf
n→∞

rn ≤ m}, m ∈ N.

Since every orbit starting in Bm eventually has to enter the set Ω×[0,m+1],
Lemma 2.3 can be applied to the restricted map f : Bm → Bm. It follows
easily, that f is recurrent on D∞ \ E . Therefore, proving the recurrence
of f : D∞ → D∞ is equivalent to showing (µΩ ⊗ λ̃)(E) = 0. In particular,
it is sufficient to find a setM of finite measure such that every escaping
orbit entersM in the future, that is

E ⊂
∞⋃
n=1

f−n(M) mod (µΩ ⊗ λ̃).





Chapter 3

The periodic case

In this chapter, we consider periodic twist maps of low regularity. First,
the setup of Chapter 2 is employed to prove the recurrence for a class of
these maps. Then, this is applied to deduce the Poisson stability of almost
every solution to a piecewise linear oscillator and its discontinuous limit
case in Sections 3.2 and 3.3, respectively. The content of this chapter stems
mostly from the paper [OS22], which is a joint work of Rafael Ortega and
the author.

3.1 Twist maps of the cylinder

We identify the circle S1 with the quotient space R/2πZ. With a small
abuse of notation, Cn(S1) denotes the space of n-times continuously dif-
ferentiable functions F : R→ R that are 2π-periodic. Sometimes, we will
not differentiate between a map F̄ : S1 → S1 and its lift satisfying

F (θ + 2π) = F (θ) mod 2π.

Given v∗ > 0, consider the cylinder Mv∗ = S1 × [v∗,∞) equipped with the
absolutely continuous measure µ = v dθ̄⊗ dv. We write Mv∗ = R× [v∗,∞)
for its universal cover. In this section we will study twist maps of Mv∗ .
These are functions

f̄ : Mv∗ → S1 × [0,∞), (θ̄, v) 7→ (θ̄1, v1),

27
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such that there is a corresponding lift f :Mv∗ → R× [0,∞) satisfying

θ1(θ + 2π, r) = θ1(θ, r) + 2π, r1(θ + 2π, r) = r1(θ, r),

which is a diffeomorphism with respect to its image and has twist, i.e.

∂θ1
∂r
̸= 0, in Mv∗ .

Furthermore, suppose there is a function η ∈ C1(Mv∗) such that

dη = v21dθ̄1 − v2dθ̄. (3.1)

Then, we will say that f̄ is exact symplectic on Mv∗ . Note, that this is not
consistent with the (classical) definition given in the introduction. The
map does not preserve the two form dθ̄ ∧ dv, but it is symplectic in the
sense that

v1dθ̄1 ∧ dv1 = vdθ̄ ∧ dv. (3.2)

However, within the scope of Chapter 3 we use the definition above, simply
because it is more practical in the applications considered. After all, there
are only minor qualitative differences, since changing the second coordinate
to E = v2

2 yields a map symplectic in the classical sense. Condition (3.1)
also implies that for any embedded circle Cv = S1 × {v} ⊂Mv∗ we have

0 =

∫
Cv

dη =

∫
S1

(
v21
∂θ̄1
∂θ̄
− v2

)
dθ̄.

In the introduction we already mentioned the spaces Fk(m) of functions
F (τ, v) such that

sup
(τ,v)∈Mv∗

vm+ν2 |∂νF (τ, v)| <∞

for |ν| ≤ k and some v∗ > 0. Let us also introduce the class Fu(m)
of continuous functions F : Mv∗ → R, such that vmF (·, v) converges
uniformly as v →∞. We write Fku (m) for the intersection Fk(m)∩Fu(m).
Some properties of these spaces can be found in Appendix A.

As depicted in the last chapter, we write D∞ for the set of initial con-
dition (θ̄0, v0), such that the complete forward orbit (θ̄n, vn) := f̄n(θ̄0, v0),
n ∈ N, is well-defined. The escaping set is given by

E = {(θ̄0, v0) ∈ D∞ : lim
n→∞

vn =∞}.
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Theorem 3.1. Consider a map f̄ : Mv∗ → S1 × [0,∞) with a lift f given
by {

θ1 = θ + 2π − L(θ)
v +R(θ, v),

v1 = v + L′(θ) + S(θ, v),

where L ∈ C2(S1), L > 0, R,S ∈ C1(Mv∗), R ∈ Fu(2), S ∈ Fu(1) and

sup
(θ,v)∈Mv∗

vν2 |∂νR(θ, v)| <∞, lim
v→∞

vν2∂νR(θ, v) = 0,

for every θ ∈ R and ν = (ν1, ν2) with |ν| = 1. Moreover, assume that f̄
is one-to-one and exact symplectic in the sense that there is a function
η ∈ C1(Mv∗) with dη = v21dθ̄1 − v2dθ̄. Then µ(E) = 0, i.e. f̄ is recurrent.

Remark 3.2. (a) Under the stronger assumptions L ∈ C6(S1) as well
as R,S ∈ C5(Mv∗), R ∈ F5(2) and S ∈ F5(1), KAM-theory is
applicable and shows the boundedness of all orbits. See [Ort99] for
a suitable invariant curve theorem and it’s application to a map of
the type under consideration.

(b) For forcing functions p ∈ C2(S1), the Fermi-Ulam ping-pong map
(t0, v0) 7→ (t1, v1) from the introduction is a symplectic twist map in
the sense above and has an expansion of the form{

t1 = t0 +
2p(t0)
v0

+ R̃(t0, v0),

v1 = v0 − 2ṗ(t0) + S̃(t0, v0),

with R̃ ∈ F1
u(2) and S̃ ∈ C1 ∩ Fu(1). Thus it would be feasible for

an application. However, Theorem 4.11 down below (dealing with
almost periodic forcing terms) already includes this case.

In the proof, we will need the following auxiliary lemma, which is
basically a variant of Lemma 4.1 in [KO20].

Lemma 3.3. Consider a map f̄ : D → S1 × [0,∞), (θ̄, v) 7→ (θ̄1, v1),
where D ⊂ S1 × [0,∞). Let ρ(θ̄, v) = v + β(θ̄) with β ∈ C(S1). Moreover,
suppose there is v∗ > 0 such that for all (θ̄, v) ∈ D ∩Mv∗ we have

|ρ(f̄(θ̄, v))− ρ(θ̄, v)| ≤ δ(v)

v
, (3.3)
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where δ : [v∗,∞)→ [0,∞) is a decreasing function with limv→∞ δ(v) = 0.
Then, there is a set M ⊂ S1 × [0,∞) with µ(M) < ∞ such that every
unbounded orbit of f̄ entersM.

Proof. Let (ρj)j∈N ⊂ [2v∗,∞) be an increasing sequence with lim
j→∞

ρj =∞
such that

ρ1 >
1

2ρ1
+ ∥β∥∞ and δ

(ρj
2

)
< 2−(j+1)

for all j ∈ N. Now, define

M =
⋃
j∈N
Mj , Mj = ρ−1

((
ρj −

1

2jρj
, ρj +

1

2jρj

))
.

Then,Mj ⊂ S1 × [0,∞) and moreover we have

µ(Mj) =

∫ 2π

0

∫ ρj+
1

2jρj
−β(θ̄)

ρj− 1

2jρj
−β(θ̄)

v dv dθ̄

=

∫ 2π

0
2−j

(
1− β(θ̄)

ρj

)
dθ̄

≤ 2−j+1π

(
1 +
∥β∥∞
2v∗

)
.

In particular, this implies µ(M) <∞.

Fix some (θ̄0, v0) ∈ D such that the corresponding complete forward
orbit (θ̄n, vn) is unbounded. Moreover, select j0 ∈ N such that

ρj0 > 2∥δ∥∞v−1
∗ + 2∥β∥∞. (3.4)

Since lim supn→∞ ρ(θ̄n, vn) =∞, there is N ∈ N so that ρ(θ̄N , vN ) > ρj0 .
Thus, ρ(θ̄N , vN ) lies in the interval ]ρj0 , ρj1 ] for some j1 > j0. Since
the orbit is unbounded, there must be a first index K > N such that
ρ(θ̄K , vK) /∈]ρj0 , ρj1 ]. However, this can not happen without the orbit
entering either Mj0 or Mj1 . First, consider the case where we have
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ρ(θ̄K , vK) > ρj1 ≥ ρ(θ̄K−1, vK−1). Then, using (3.3) and (3.4) yields

vK−1 = ρ(θ̄K−1, vK−1)− β(θ̄K−1)

≥ ρ(θ̄K , vK)− δ(vK−1)

vK−1
− β(θ̄K−1)

> ρj1 − ∥δ∥∞v−1
∗ − ∥β∥∞

>
ρj1
2 .

From this, it follows

|ρ(θ̄K , vK)−ρj1 | ≤ |ρ(θ̄K , vK)−ρ(θ̄K−1, vK−1)| ≤
δ(vK−1)

vK−1
<

2δ
(ρj1

2

)
ρj1

<
1

2j1ρj1
.

Thus (θ̄K , vK) ∈Mj1 . In the other case, ρ(θ̄K−1, vK−1) > ρj0 ≥ ρ(θ̄K , vK),
we have

vK−1 > ρj0 − β(θ̄K−1) >
ρj0
2 .

Then, (θ̄K , vK) ∈Mj0 follows analogously.

Now, we are in position to prove the main result of this section.

Proof of Theorem 3.1. As the first step we perform the change of variables
Φ : (θ, v) 7→ (τ, r) defined by

τ(θ) = γ

∫ θ

0

1

L(s)2
ds, r(θ, v) = γ−

1
2L(θ)v,

where

γ = 2π

(∫ 2π

0

1

L(s)2
ds

)−1

> 0.

The constant γ is chosen such that

τ(θ + 2π) = τ(θ) + 2π.

Since τ ′(θ) = γ
L(θ)2

> 0, the map τ ∈ C3(S1,S1) is a diffeomorphism.

Hence, also Φ is a diffeomorphism with regard to its image. The Taylor
expansion of τ implies

τ(θ1) = τ(θ1 − 2π) = τ(θ)− γ

L(θ)v
+R1(θ, v),
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where

R1(θ, v) =
γR(θ,v)
L(θ)2 +

∫ θ1−2π

θ

(θ1 − 2π − s)τ ′′(s) ds

= γR(θ,v)
L(θ)2 + (θ1 − 2π − θ)2

∫ 1

0

(1− λ)τ ′′((1− λ)θ + λ(θ1 − 2π)) dλ

= γR(θ,v)
L(θ)2 +

(
R(θ, v)− L(θ)

v

)2 ∫ 1

0

(1− λ)τ ′′
(
θ + λ

(
R(θ, v)− L(θ)

v

))
dλ.

Then R1 ∈ Fu(2), since R ∈ Fu(2) and

lim
v→∞

v2(θ1 − 2π − θ)2
∫ 1

0

(1− λ)τ ′′((1− λ)θ + λ(θ1 − 2π)) dλ = L(θ)2
τ ′′(θ)

2

holds uniformly in θ. Moreover, a direct calculation shows that also the
derivatives have the same asymptotics, i.e. for ν = (ν1, ν2) with |ν| = 1
we have

sup
(θ,v)∈Mv∗

vν2 |∂νR1(θ, v)| <∞, lim
v→∞

vν2 |∂νR1(θ, v)| = 0.

Similarly, the Taylor expansion of L yields

L(θ1) = L(θ1 − 2π) = L(θ) + L′(θ)
(
R(θ, v)− L(θ)

v

)
+ I(θ, v)

with I ∈ Fu(2). Altogether, this yields

L(θ1)v1 =
(
L(θ)− L(θ)L′(θ)

v + L′(θ)R(θ, v) + I(θ, v)
)(

v + L′(θ) + S(θ, v)
)

= L(θ)v + S1(θ, v),

where S1 ∈ Fu(1). On Φ(Mv∗) we define

R2(τ, r) = R1

(
Φ−1(τ, r)

)
and S2(τ, r) = γ−

1
2S1

(
Φ−1(τ, r)

)
.

Then, the lift g = Φ ◦ f ◦ Φ−1 of the transformed twist map ḡ is given by{
τ1 = τ + 2π −

√
γ
r +R2(τ, r),

r1 = r + S2(τ, r),
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with R2 ∈ Fu(2) and S2 ∈ Fu(1). Writing (θ(τ), v(τ, r)) = Φ−1(τ, r), we
get

∂R2

∂τ
=
∂R1

∂θ
(θ, v)θ′ +

∂R1

∂v
(θ, v)

∂v

∂τ

=
∂R1

∂θ
(θ, v)

L2(θ)

γ
− ∂R1

∂v
(θ, v)

vL(θ)L′(θ)

γ
.

In particular, it follows

sup
(τ,r)∈Φ(Mv∗ )

∣∣∣∣∂R2

∂τ
(τ, r)

∣∣∣∣ <∞, and lim
r→∞

∂R2

∂τ
(τ, r) = 0,

for any τ ∈ R. Also, note that ḡ is again one-to-one and

r21dτ̄1 − r2dτ̄ = dη̂

holds for η̂ = η ◦Φ−1. Therefore, the new map is an exact symplectic twist
map as well. Hence, Lemma 3.3 can be applied to ḡ if a suitable adiabatic
invariant ρ(τ̄ , r) can be found. In order to construct ρ, let

α(τ) = lim
r→∞

rS2(τ, r)

be the uniformly continuous and 2π-periodic limit. Due to the fact that ḡ
is exact symplectic, we know by (3.1) that∫ 2π

0

(
r21
∂τ1
∂τ
− r2

)
dτ = 0

holds for any fixed r > r∗ = γ−
1
2 max
θ∈R

L(θ)v∗. Furthermore, we have

r1(τ, r)
2∂τ1
∂τ

(τ, r)− r2 = r2
∂R2

∂τ
(τ, r) + 2rS2(τ, r) + U(τ, r),

where U = S2
2 + ∂R2

∂τ (2rS2 + S2
2). In particular, U is bounded on Mr∗ and

U(τ, r)→ 0, as r →∞. Since R2 is 2π-periodic in τ , we get∫ 2π

0
(2rS2(τ, r) + U(τ, r)) dτ = 0.
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Sending r → ∞ yields
∫ 2π
0 α(τ) dτ = 0 by the dominated convergence

theorem. Now, the sought adiabatic invariant ρ(τ, r) can be defined as
ρ(τ, r) = r + β(τ), where

β(τ) = γ−
1
2

∫ τ

0
α(s) ds.

Note that β ∈ C1(S1), because α is purely periodic. With a similar
argument as before, it follows

β(τ1) = β(τ) + γ−
1
2

∫ τ1−2π

τ
α(s) ds

= β(τ) + γ−
1
2 (τ1 − 2π − τ)

∫ 1

0
α((1− λ)τ + λ(τ1 − 2π)) dλ

= β(τ) +

(
R2(τ, r)√

γ
− 1

r

)∫ 1

0
α((1− λ)τ + λ(τ1 − 2π)) dλ

= β(τ)− 1

r

∫ 1

0
α((1− λ)τ + λ(τ1 − 2π)) dλ+ S3(τ, r),

with S3 ∈ Fu(2). From this, we obtain

ρ(τ1,r1) = r + S2(τ, r) + β(τ)− 1

r

∫ 1

0

α((1− λ)τ + λ(τ1 − 2π)) dλ+ S3(τ, r)

= ρ(τ, r) +
1

r

(
rS2(τ, r)−

∫ 1

0

α((1− λ)τ + λ(τ1 − 2π)) dλ+ rS3(τ, r)

)
= ρ(τ, r) +

S4(τ, r)

r
,

where S4(τ, r)→ 0 uniformly as r →∞. Thus, one can find a decreasing
function δ : [r∗,∞)→ R with |S4(τ, r)| ≤ δ(r) on Mr∗ , such that δ(r)→ 0,
as r →∞. Therefore, we have shown that all conditions of Lemma 3.3 are
satisfied. The application yields a setM with µ(M) <∞ such that every
unbounded orbit of ḡ enters M. But since lim supn→∞ rn = ∞ holds if
and only if lim supn→∞ vn =∞, this means that every unbounded orbit
of f̄ entersM′ = Φ−1(M). In particular, this implies

E ⊂
∞⋃
n=1

f̄−n(M′) mod µ.
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Finally, due to the fact that µ
(
Φ−1(M)

)
= µ(M) < ∞, we can apply

Lemma 2.3 to deduce that the restricted map f̄ : E → E is recurrent and
thus µ(E) = 0.

3.2 A piecewise linear oscillator

As an application, we study the equation

ẍ+ n2x+ h1(x) = p(t), (3.5)

where p ∈ C(S1) and h1 is the piecewise linear function given by

h1(x) =


1 if x ≥ 1,

x if |x| < 1,

−1 if x ≤ −1.

In this section we prove the following result.

Theorem 3.4. Let p ∈ C(S1) satisfy the Lazer-Leach condition π|p̂n| < 2.
If x(t) = x(t; x̃, ṽ, t̃) denotes the solution of (3.5) with initial condition
x(t̃) = x̃ and ẋ(t̃) = ṽ, then x(t; x̃, ṽ, t̃) is Poisson stable for almost every
(x̃, ṽ, t̃) ∈ R3.

Proof. As indicated in the introduction, we start by constructing a twist
map suitable for the application of Theorem 3.1, such that its orbits
correspond to large amplitude solutions. In a second step, we then show
that the recurrence of this twist map implies Poisson stability of almost
every solution. In the context of 2π-periodic system, a more suitable
definition of this property is as follows. There is a sequence of integers
{σn}n∈Z with σn → ±∞ as n→ ±∞ such that

|x(t+ 2πσn)− x(t)|+ |ẋ(t+ 2πσn)− ẋ(t)| → 0 as |n| → ∞,

uniformly with respect to t ∈ [0, 2π].
To this end, suppose x(t) is a solution of (3.5) such that there are

τ ∈ R and v > 0 with x(τ) = 0 and ẋ(τ) = v. Then, x is also a solution of
the integral equation

x(t) = v
sinn(t− τ)

n
+

∫ t

τ
[p(s)− h1(x(s))]

sinn(t− s)
n

ds, (3.6)
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and the derivative is given by

ẋ(t) = v cosn(t− τ) +
∫ t

τ
[p(s)− h1(x(s))] cosn(t− s) ds. (3.7)

Given any time span T > 0, it follows from these formulas that x(t)/v is
arbitrarily close to (sinn(t− τ))/n in C2([τ, τ + T ]) for large values of v.
In particular, one can find v∗ > 0 with the following property. If v > v∗,
then x(t) has 2n consecutive non-degenerate zeros

τ = τ0 < τ1 < . . . < τ2n = τ ′

and crosses the line x = (−1)i twice in each interval (τi, τi+1). We denote
these crossings by τ∗i <

∗τi+1 and write

vi = ẋ(τi), v∗i = ẋ(τ∗i ),
∗vi = ẋ(∗τi),

for the corresponding velocities. For i = 0, . . . , 2n− 1, each of the three
maps

(τi, vi)→ (τ∗i , v
∗
i )→ (∗τi+1,

∗vi+1)→ (τi+1, vi+1)

can be described in terms of a forced linear oscillator. The arguments in
Proposition 2.2 and Proposition 2.3 of [Ort96] show that these maps are
of class C1 and exact symplectic in the sense of (3.1). Since the induced
function

P̄ : Mv∗ → S1 × [0,∞), P̄ (τ̄ , v) = (τ̄ ′, v′) = (τ̄2n, v2n),

is decomposable into 6n such maps, also P̄ ∈ C1(Mv∗) is exact symplectic.
The map P̄ is one-to-one due to the unique solvability of the corresponding
initial value problem. Following the computations in Section 7 of [Ort99],
it can be seen that for p ∈ C(S1) the associated lift P :Mv∗ → R× [0,∞)
has the form {

τ ′ = τ + 2π − (1/nv)L1(τ) +R1(τ, v),

v′ = v + L2(τ) +R2(τ, v),
(3.8)

where
L1(τ) = 2πℑ(einτ p̂n) + 4, L2(τ) = 2πℜ(einτ p̂n),
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and R,S ∈ C1(Mv∗), R1 ∈ F1(2), R2 ∈ F0(1). Throughout the computa-
tions in [Ort99], one can in fact replace the space Fk(r) by Fku (r) with
some obvious adjustments. This leads to the conclusion that R1 ∈ F1

u(2)
and R2 ∈ Fu(1). The Poincaré map of the discontinuous oscillator dis-
cussed in the next section has an expansion of the same form. This is
shown in full detail in Appendix B. Finally, note that for L1 ∈ C2(S1)
we have L′

1 = nL2 and also L1 > 0 is guaranteed by the Lazer-Leach
condition π|p̂n| < 2. In total, P̄ satisfies all assumptions of Theorem 3.1
and therefore the escaping set

EP = {(τ̄ , v) ∈Mv∗ : (τ̄ ′j , v
′
j) = P̄ j(τ̄ , v) ∈Mv∗∀j ∈ N and lim

j→∞
v′j =∞}

has measure zero.
Going back to the question of Poisson stability, it is sufficient to consider

initial time t̃ = 0. We denote by x(t) = x(t; x̃, ṽ) the solution of (3.5)
satisfying the initial condition x(0) = x̃ and ẋ(0) = ṽ. Thus, the time-2π
map of (3.5) is given by

Π : R2 → R2, (x̃, ṽ) 7→ (x(2π; x̃, ṽ), ẋ(2π; x̃, ṽ)).

It can be shown that Π preserves the two-dimensional Lebesgue measure
λ2. We now prove that it is also recurrent. To this end, consider the
solution x(t) = x(t; x̃, ṽ) for some (x̃, ṽ) ∈ R2. The corresponding solution
of the unperturbed linear system z̈ + n2z = 0 satisfying the same initial
condition z(0) = x̃, ż(0) = ṽ is given by z(t) = r̂ sinn(t−τ̂)n for some τ̂ ∈ R
and r̂ =

√
n2x̃2 + ṽ2. Furthermore, x(t) also solves the integral equation

x(t) = r̂
sinn(t− τ̂)

n
+

∫ t

0
[p(s)− h1(x(s))]

sinn(t− s)
n

ds. (3.9)

Again, x(t)/r̂ is close to (sinn(t− τ̂))/n in C2([0, 4π]) for large values of
r̂. Let r(t) =

√
n2x(t)2 + ẋ(t)2. Then, one can infer from (3.9) that there

is a constant Cp > 0 (depending on ∥p∥∞) such that

|r(t)− r(0)| ≤ Cp, for t ∈ [0, 4π].

Thus, if r̂ = r(0) > v∗ + Cp, then r(t) > v∗ holds for all t ∈ [0, 4π].
In particular, there is a unique first τ ≥ 0 such that x(τ) = 0 and
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v = ẋ(τ) > v∗. Let S be the induced map

S : R2 \ E →Mv∗ , (x̃, ṽ) 7→ (τ, v),

where
E = {(a, b) ∈ R2 :

√
n2a2 + b2 ≤ v∗ + Cp}.

S is a diffeomorphism with respect to its image and the inverse map can
be obtained by plugging t = 0 into (3.6) and (3.7). For a given solution
x(t) = x(t; x̃, ṽ) define rn = r(2πj) for j ∈ N. Then, the escaping set EΠ

of the map Π is given by

EΠ = {(x̃, ṽ) ∈ R2 : lim
j→∞

rj =∞}.

It can be shown by the same argument as in Section 3.1 that the restricted
map Π : R2 \ EΠ → R2 \ EΠ is recurrent. Thus it remains to show that
λ2(EΠ) = 0. Suppose (x̃, ṽ) ∈ EΠ. Then, there is m ∈ N such that
Πj(x̃, ṽ) ∈ R2 \ E for j ≥ m. Thus, clearly we have ι (S (Πm(x̃, ṽ))) ∈ EP ,
where ι :Mv∗ →Mv∗ denotes the covering map ι(τ, v) = (τ̄ , v). This leads
to the inclusion

EΠ ⊂
∞⋃
m=0

Π−m (S−1(ι−1(EP ))
)
,

which in turn implies λ2(EΠ) = 0. In summary, we have shown that
Π is recurrent. Due to the symmetry of the problem, the same is true
for the inverse map Π−1. Now, the Poisson stability of almost every
solution x(t; x̃, ṽ) follows from the fact that the corresponding flow is
Lipschitz-continuous on R2.

3.3 An oscillator with jump discontinuity

Consider the piecewise linear oscillator

ẍ+ n2x+ sign(x) = p(t), (3.10)

where p ∈ C(S1). Let N = {t ∈ R : |p(t)| = 1} and suppose the set ∂N of
its boundary points is countable. The goal of this section is to verify part
(a) of Remark 1.10, that is to show that almost every solution of (3.10) is
Poisson stable. But first we have to give the following
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Definition 3.5. We say a function x ∈ C1(I) with I = (α, β) ⊂ R is a
solution of (3.10) if it satisfies the following conditions:

(i) ẋ(t) ̸= 0 if t ∈ Z, where Z = {t ∈ R : x(t) = 0},

(ii) x ∈ C2(I \ Z) and x satisfies (3.10) on I \ Z.

Moreover, we say a solution is global if I = R.

Between two consecutive zeros, any such solution must coincide with
the solution of the corresponding linear problem. Thus given (τ, v) ∈ R2,
let y±(t) = y±(t; 0, v, τ) be the unique solution of

ÿ + n2y ± 1 = p(t), y(τ) = 0, ẏ(τ) = v.

The functions (t, τ, v) 7→ y±(t; 0, v, τ), ẏ±(t; 0, v, τ) are both in C1(R3).
Moreover, note that y±(t) also solves the integral equation

y(t) =
v

n
sin(n(t− τ)) +

∫ t

τ
(p(s)∓ 1)

sin(n(t− s))
n

ds. (3.11)

In the following, we discuss properties of the solution y+(t). Its counterpart
y−(t) can be dealt with completely analogously. It can be shown that
all solutions of the linear equations are either oscillatory or of constant
sign [Ort96]. In particular, if v ̸= 0 there is a unique time τ̂ > τ and a
corresponding velocity v̂ such that

y+(τ̂) = 0, y+(t) ̸= 0 ∀t ∈ (τ, τ̂), ẏ+(τ̂) = v̂. (3.12)

Therefore, we can define the map

S+ : R× R+ → R× (R− ∪ {0}), S+(τ, v) = (τ̂ , v̂),

where R+ = (0,∞) and R− = (−∞, 0). This mapping is well-defined,
one-to-one and satisfies

S+(τ + 2π, v) = S+(τ, v) + (2π, 0) ∀τ ∈ R.

Let Σ+ = {(τ, v) ∈ R×R+ : v̂ = 0}. The map S+ can have discontinuities
on Σ+. On the open set (R × R+) \ Σ+ however, the implicit function
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theorem can be applied to the equation y+(τ̂ ; 0, v, τ) = 0. This way one
obtains a function τ̂ = τ̂(τ, v) in C1 ((R× R+) \ Σ+). Also v̂ given by
v̂(τ, v) = ẏ+(τ̂ ; 0, v, τ) is in that class. Since the same argument can be
applied to the inverse, this shows that S+ restricted to (R×R+) \Σ+ is a
diffeomorphism with respect to its image. Moreover, S+ is symplectic in
the sense of (3.1) on this domain (see Proposition 2.2 in [Ort96]). Next
we will show that Σ+ has measure zero. To this end, define

N+ = {τ̂ ∈ R : (τ̂ , 0) ∈ S+(Σ+)}.

Given τ̂∗ ∈ N+, let (τ∗, v∗) = S−1
+ (τ̂∗, 0). The equation y+(τ ; 0, 0, τ̂) = 0

can be solved implicitly for τ at τ̂ = τ̂∗. This yields an open interval Iτ̂∗
containing τ̂∗ and a function τ = ττ̂∗ of class C1(Iτ̂∗) such that τ(τ̂∗) = τ∗
and

y+(τ(τ̂); 0, 0, τ̂) = 0, for τ̂ ∈ Iτ̂∗ .

Hence, the map T = Tτ̂∗ defined by

T : Iτ̂∗ → R2, τ̂ 7→ (τ(τ̂), ẏ+(τ(τ̂); 0, 0, τ̂)),

is also C1 and λ2(T (Iτ̂∗)) = 0. We also have Tτ̂∗(τ̂∗) = S−1
+ (τ̂∗, 0) and

therefore Σ+ = S−1
+ (N+ × {0}) ⊂

⋃
τ̂∗∈N+

Tτ̂∗(Iτ̂∗). If one can extract a

countable sub-covering, then clearly λ2(Σ+) = 0 follows.

First suppose τ̂∗ ∈ N+ ∩ N+, where N+ = {t ∈ R : p(t) = 1}. If
τ̂∗ would be in the interior of N+, then y+(t) = 0 needs to hold in a
neighborhood of τ̂∗. But this contradicts the minimality condition in
(3.12). Thus τ̂∗ ∈ N+ ∩ ∂N+. By assumption, this set is countable and
hence λ2(S−1

+ ((N+ ∩N+)× {0})) = 0.

Now, assume τ̂∗ ∈ N+ \N+, that is p(τ̂∗) ̸= 1. Then y+(t; 0, 0, τ̂∗) has
a strict local extremum in τ̂∗. Due to the continuous dependence on initial
condition, one can in fact find ε > δ > 0 such that τ̂ ∈ (τ̂∗−δ, τ̂∗+δ) implies
y+(t; 0, 0, τ̂) ̸= 0 for t ∈ [τ̂∗−ε, τ̂∗+ε]\{τ̂}. Moreover, since v∗ > 0, one can
find a neighborhood U of (τ∗, v∗) such that y+(t; 0, v, τ) ̸= 0 if t ∈ (τ, τ̂∗−ε)
for all (τ, v) ∈ U . By decreasing δ > 0 if necessary, one can assume that
(τ̂∗ − δ, τ̂∗ + δ) ⊂ Iτ̂∗ and T ((τ̂∗ − δ, τ̂∗ + δ)) ⊂ U . Then Tτ̂∗(·) = S−1

+ (·, 0)
on (τ̂∗ − δ, τ̂∗ + δ). In particular, it follows that N+ \N+ is open and that
S−1
+ (·, 0) ∈ C1(N+ \N+,R× R+). Thus λ

2(S−1
+ ((N+ \N+)× {0})) = 0.
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In summary, we have shown that Σ+ has measure zero. Using y−(t)
instead of y+(t) in (3.12) one can define the successor map

S− : R× R− → R× (R+ ∪ {0}), S−(τ, v) = (τ̂ , v̂),

and the set Σ− = S−1
− (R×{0}). Again, S− restricted to (R×R−)\Σ− is a

symplectic diffeomorphism with respect to its image and Σ− has measure
zero. Now, define Σ1

± = Σ± and Σr± = S−1
± (Σr−1

∓ ) for r ≥ 2. Then Σr±
consists of those points (τ0, v0) ∈ R × R± such that the corresponding
orbit (τj , vj) satisfies vj ̸= 0 for j = 0, . . . , r− 1 and vr = 0. Finally, define

Σ =
⋃
r∈N

(Σr+ ∪ Σr−) ∪ (R× {0}),

then Σ has measure zero and every (τ0, v0) ∈ R2 \ Σ leads to a complete
forward orbit (τj , vj)j∈N0 that never touches the line v = 0. In particular,
the map P = (S− ◦ S+)n given by

P : (R× R+) \ Σ→ R× [0,∞), P (τ0, v0) = (τ2n, v2n), (3.13)

is well-defined. In Lemma B.2 of the appendix, we show that P has an
expansion of the form (3.8) and moreover satisfies all conditions necessary
for the application of Theorem 3.1. Hence, the corresponding twist map P̄
is recurrent. Since P̄ is recurrent for almost all (τ̄ , v) ∈ S1 × R+, we have
limj→∞ τj =∞ for almost all orbits (τj , vj) starting in R2 \ Σ. This leads
to the following observation.

Lemma 3.6. For almost every (x̃, ṽ) ∈ R2 there exists a global solution
x(t) = x(t; x̃, ṽ) of (3.10) with initial condition x(0) = x̃, ẋ(0) = ṽ.

Proof. Let Ωr ⊂ (R \ {0}) × R be the set of initial condition leading to
solutions x(t) = x(t; x̃, ṽ) such that x(t) ̸= 0 for t > 0. For (x̃, ṽ) ∈ Ωr we
have x ∈ C2([0,∞)), since then x(t) solves the linear problem. Similar to
S± we define

S̃± : (R± × R) \ Ωr → R× (R∓ ∪ {0}), S̃±(x̃, ṽ) = (τ̂ , v̂),

where again τ̂ > 0 denotes the first zero of x(t; x̃, ṽ) to the right and v̂ is the
corresponding velocity. Let Σ̃± = {(x̃, ṽ) ∈ R± × R : v̂ = 0}. These sets
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have measure zero since we have Σ̃± ⊂ γ±(R) for the C1-maps γ±(τ̂) =
(y±(0; 0, 0, τ̂), ẏ±(0; 0, 0, τ̂)). Moreover, S̃± ∈ C1

(
(R±×R)\ (Ωr∪ Σ̃±)

)
are

diffeomorphisms with respect to their images and thus also the sets S̃−1
± (Σ)

have measure zero. Therefore, x ∈ C1([0,∞)) is a solution in the sense of
Definition (3.5) for almost all (x̃, ṽ), since almost every (τ̂0, v̂0) ∈ R2 \ Σ
leads to a complete forward orbit (τ̂j , v̂j)j∈N0 such that τ̂j →∞, x(τ̂j) = 0
and ẋ(τ̂j) = v̂j ̸= 0. Now, the assertion follows by repeating the whole
argument for the set Ωl of initial condition producing solutions such that
x(t) ̸= 0 for t < 0.

We have shown that there is a set Γ of measure zero such that all initial
condition in R2 \ Γ lead to global solutions of (3.10). In particular, the
time-2π map Π : R2 \Γ→ R2 \Γ is well-defined. We will demonstrate that
this map is also measure-preserving. To this end, we keep the notation
introduced in the proof of Lemma 3.6. Given (x̃, ṽ) ∈ (R± × R) \ (Ωr ∪ Γ)
let S̃±(x̃, ṽ) = (τ̂0, v̂0), then there is an infinite series of non-degenerate
consecutive zeros (τ̂j)j∈N0 of x(t; x̃, ṽ). Moreover, let τ̂0 =∞ if (x̃, ṽ) ∈ Ωr.
We define the sets

A±
j =

{
(x̃, ṽ) ∈ (R± × R) \ Γ : j = min{i ∈ N0 : τ̂i ≥ 2π}

}
,

where the index j counts the number of zeros in the interval [0, 2π]. Clearly,
R2 \ Γ =

⋃
j∈N0

(A+
j ∪A

−
j ). Moreover, the sets Ωr and A±

j are measurable.

For Ωr this follows from the fact that (R± × R) \ (Ωr ∪ Σ̃±) is open, so
that Ωr differs from a Borel set only by a set of measure zero. In the
case of A±

j with j ∈ N consider the maps gj(x̃, ṽ) = (τ̂j , v̂j). These maps

are well-defined and continuous almost everywhere on R2 \ Ωr and hence
measurable. Thus also

A±
j = (R± × R) ∩ g−1

j ([2π,∞)× R) \ g−1
j−1([2π,∞)× R)

is measurable. The argument for j = 0 is similar. On A±
0 the map Π

is just the time-2π map of a linear oscillator and thus it preserves the
2-dimensional Lebesgue measure λ2. For A±

j with j ∈ N we again consider

the maps gj . Without loss of generality let (x̃, ṽ) ∈ A+
j , where j = 2k with

k ∈ N. Then
(τ̂j , v̂j) = (S+ ◦ S−)k(S̃+(x̃, ṽ)).
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S̃+ restricted to (R+×R)\(Ωr∪Σ̃+) is a diffeomorphism with respect to its
image and the inverse is given by S̃−1

+ (τ̂ , v̂) = (y+(0; 0, v̂, τ̂), ẏ+(0; 0, v̂, τ̂)).

Considering formula (3.11), one easily derives detDS̃−1
+ (τ̂ , v̂) = −v̂ for

the Jacobian determinant. This implies that we have λ2(B) = µ(S̃+(B))
for any measurable set B ⊂ (R+ × R) \ (Ωr ∪ Σ̃+), where µ = v dτ ⊗ dv.
Furthermore, the maps S± are exact symplectic in the sense of (3.1) on
the relevant domain and therefore preserve the measure µ. It follows that
the sets

B+
j = {(x̃, ṽ) ∈ A+

j : τ̂j = 2π}

have measure zero. Finally, note that for (x̃, ṽ) ∈ A+
j \B

+
j we have

Π(x̃, ṽ) = S̃−1
+ (τ̂j − 2π, v̂j).

In view of the argument above, the latter identity shows that Π preserves
the 2-dimensional Lebesgue measure also on A±

j with j ≥ 1 and hence on

all of R2 \ Γ. Analogously to the continuous case, it now follows that Π is
recurrent and that almost every solution x(t; x̃, ṽ) is Poisson stable.
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The almost periodic case

Now, we will consider twist maps of the form

(t1, r1) = (t+ f(t, r), r + g(t, r)), (4.1)

where f and g are almost periodic in t. A definition of the latter notion
and some associated properties are presented in the first section. Then, in
the following section consequences for symplectic maps of the form (4.1)
are discussed and a general framework is developed. This is applied to
the Fermi-Ulam ping-pong in Section 4.3 and to a superlinear oscillator
in Section 4.4. This chapter is based on the two publications [Sch22] and
[Sch19] by the author, including improvements to the latter one.

4.1 Almost periodic functions and their represen-
tation

4.1.1 Compact topological groups and minimal flows

Let Ω be a commutative topological group, which is metrizable, compact
and connected. We will consider the group operation to be additive.
Moreover, suppose there is a continuous homomorphism ψ : R→ Ω, such
that the image ψ(R) is dense in Ω. This function ψ induces a canonical
flow on Ω, namely

Ω× R→ Ω, ω · t = ω + ψ(t).

45



46 Chapter 4. The almost periodic case

This flow is minimal, since

ω · R = ω + ψ(R) = ω + ψ(R) = Ω

holds for every ω ∈ Ω. Let us also note that in general ψ can be nontrivial
and periodic, but this happens if and only if Ω ∼= S1 [OT06].

Now consider the unit circle S1 = {z ∈ C : |z| = 1} and a continuous
homomorphism φ : Ω→ S1. Such functions φ are called characters and
together with the point wise product they form a group, the so called dual
group Ω∗. Its trivial element is the constant map with value 1. It is a
well-known fact that nontrivial characters exist, whenever Ω is nontrivial
[Pon66]. Also non-compact groups admit a dual group. Crucial to us will
be the fact that

R∗ = {t 7→ eiαt : α ∈ R}.

Now, for a nontrivial character φ ∈ Ω∗ we define

Σ = kerφ = {ω ∈ Ω : φ(ω) = 1}.

Then Σ is a compact subgroup of Ω. If in addition Ω ≇ S1, it can be
shown that Σ is perfect [OT06]. This subgroup will act as a global cross
section to the flow on Ω. Concerning this, note that since φ ◦ ψ describes
a nontrivial character of R, there is a unique α ̸= 0 such that

φ(ψ(t)) = eiαt

for all t ∈ R. Therefore, the minimal period of this function,

S =
2π

|α|
,

can be seen as a returning time on Σ in the following sense. If we denote
by τ(ω) the unique number in [0, S) such that φ(ω) = eiατ(ω), then one
has

φ(ω · t) = φ(ω + ψ(t)) = φ(ω)φ(ψ(t)) = eiατ(ω)eiαt

and thus

ω · t ∈ Σ⇔ t ∈ −τ(ω) + SZ.
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Also τ as defined above is a function τ : Ω → [0, S) that is continuous
where τ(ω) ̸= 0, i.e. on Ω \ Σ. From this we can derive that the restricted
flow

Φ : Σ× [0, S)→ Ω, Φ(σ, t) = σ · t,

is a continuous bijection. Like τ(ω), its inverse

Φ−1(ω) = (ω · (−τ(ω)), τ(ω))

is continuous only on Ω \ Σ. Therefore, Φ describes a homeomorphism
from Σ× (0, S) to Ω \ Σ.

Before giving some examples, we introduce the notion of morphism
(Ω1, ψ1)→ (Ω2, ψ2) between two such tuples. Those are continuous group
homomorphisms Ψ : Ω1 → Ω2 such that Ψ ◦ ψ1 = ψ2.

Lemma 4.1. There exists a morphism (Ω1, ψ1)→ (Ω2, ψ2) if and only if
ψ2(tn)→ 0 holds for every sequence (tn)n∈N such that ψ1(tn)→ 0.

Proof. The condition is obviously necessary, since any such morphism
is continuous. To show its sufficiency, define Ψ on ψ1(R) by setting
Ψ(ψ1(t)) = ψ2(t). By this relation, Ψ is well-defined even if ψ1 is periodic,
since for any two sequences (tn), (sn) in R we have

ψ1(tn)− ψ1(sn)→ 0 implies ψ2(tn)− ψ2(sn)→ 0.

Due to this relation, Ψ can be extended to a continuous map on Ω1, which
is also a group homomorphism.

Example 4.2. One important example for such a group Ω is the N -Torus
TN , where T = R/Z. We will denote classes in TN by θ̄ = θ + ZN . Then,
the image of the homomorphism

ψ(t) = (ν1t, . . . , νN t)

winds densely around the N -torus TN , whenever the frequency vector
ν = (ν1, . . . , νN ) ∈ RN is nonresonant, i.e. rationally independent. It is
easy to verify that the dual group of TN is given by

(TN )∗ = {(θ̄1, . . . , θ̄N ) 7→ e2πi(k1θ1+...+kNθN ) : k ∈ ZN}.
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Therefore, one possible choice for the cross section would be

Σ = {(θ̄1, . . . , θ̄N ) ∈ TN : e2πiθ1 = 1} = {0} × TN−1,

so φ(θ̄1, . . . , θ̄N ) = e2πiθ1 . In this case, consecutive intersections of the
flow and Σ would be separated by an interval of the length 1/ν1.

Σ

0 1
0

1

Figure 4.1: On the 2-torus T2, intersections of Σ = {0} × T and the orbit
of ψ(t) are separated by time intervals of length S = 1/ν1.

Example 4.3. Lets consider another important topological group. Let
Ω = Sp be the p-adic solenoid, where p = (pi)i∈N is a sequence of prime
numbers. Sp is defined as the projective limit of the inverse limit system

Sp : S1 zp1←−−− S1 zp2←−−− S1 zp3←−−− · · · ,

where S1 zpi←−−− S1 denotes the mapping z 7→ zpi of the circle S1 into itself.
A point z ∈ Sp has the form z = (z0, z1, z2, . . .), where zk−1 = zpkk for
k ∈ N. Moreover, if we take the coordinatewise multiplication as the action,
Sp becomes a compact abelian group with neutral element (1, 1, . . .) [HR79,
Theorem 10.13]. It can be endowed with the metric

d(z, w) =

∞∑
k=0

dS1(zk, wk)

qk
,

where dS1 denotes the canonical metric on S1 and q0 = 1, qk = p1 · · · pk
for k ∈ N. For λ > 0, the map

ψ(t) = (e2πiλt/q0 , e2πiλt/q1 , e2πiλt/q2 , . . .)
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provides a minimal flow on Sp. A cross section with return time S = 1/λ
is then given by

Σ = {z ∈ Sp : z0 = 1}.

Geometrically, Sp can be described as the intersections of a sequence of solid
tori T1 ⊃ T2 ⊃ . . . in R3, where Tk+1 is wrapped pk times longitudinally
inside Tk without self intersecting. See [BM95] for a nice description of
the construction in the case of the dyadic solenoid S2.

4.1.2 Almost periodic functions

The notion of almost periodic functions was introduced by H. Bohr as a
generalization of strictly periodic functions [Boh25]. A function u ∈ C(R)
is called (Bohr) almost periodic, if for any ε > 0 there is a relatively dense
set of ε-almost-periods of this function. By this we mean, that for any
ε > 0 there exists L = L(ε) such that any interval of length L contains at
least one number T such that

|u(t+ T )− u(t)| < ε ∀t ∈ R.

Later, Bochner [Boc27] gave an alternative but equivalent definition of
this property: For a continuous function u, denote by uτ (t) the translated
function u(t+ τ). Then u is (Bohr) almost periodic if and only if every
sequence (uτn)n∈N of translations of u has a subsequence that converges
uniformly.

There are several other characterizations of almost periodicity, as well
as generalizations due to Stepanov [Ste26], Weyl [Wey27] and Besicovitch
[Bes26]. In this work we will only consider the notion depicted above and
therefore call the corresponding functions just almost periodic (a.p.). We
will however introduce one more way to describe a.p. functions using the
framework of the previous section:

Consider (Ω, ψ) as above and a function U ∈ C(Ω). Then, the function
defined by

u(t) = U(ψ(t)) (4.2)

is almost periodic. This can be verified easily with the alternative definition
due to Bochner. Since U ∈ C(Ω), any sequence (uτn)n∈N will be uniformly
bounded and equicontinuous. Hence the Arzelà–Ascoli theorem guarantees



50 Chapter 4. The almost periodic case

the existence of a uniformly convergent subsequence. We will call any
function obtainable in this manner representable over (Ω, ψ). Since the
image of ψ is assumed to be dense, it is clear that the function U ∈ C(Ω)
is uniquely determined by this relation. As an example take Ω ∼= S1, then
ψ is periodic. Thus (4.2) gives rise to periodic functions. Conversely it is
true, that any almost periodic function can be constructed this way. For
this purpose we introduce the notion of hull. The hull Hu of a function u
is defined by

Hu = {uτ : τ ∈ R},

where the closure is taken with respect to uniform convergence on the
whole real line. Therefore if u is a.p. then Hu is a compact and connected
metric space. If one uses the continuous extension of the rule

uτ ∗ us = uτ+s ∀τ, s ∈ R

onto all of Hu as the group operation, then the hull becomes a commutative
topological group with neutral element u. This and some other properties
of the hull are verified in Appendix C. If we further define the flow

ψu(τ) = uτ , (4.3)

then the pair (Hu, ψu) matches perfectly the setup of the previous section.
Now, the representation formula (4.2) holds for U ∈ C(Hu) defined by

U(w) = w(0) ∀w ∈ Hu. (4.4)

This function is sometimes called the ‘extension by continuity’ of the
almost periodic function u(t) to its hull Hu. This construction is standard
in the theory of a.p. functions and we refer the reader to [NS60] for a more
detailed discussion.
Using Lemma 4.1, one easily shows the following (cf. [OT06], Lemma 12).

Lemma 4.4. An a.p. function u(t) is representable over (Ω, ψ) if and
only if there exists a morphism (Ω, ψ)→ (Hu, ψu).

For a function U : Ω→ R we introduce the derivative along the flow
by

∂ψU(ω) = lim
t→0

U(ω + ψ(t))− U(ω)

t
.
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Let C1
ψ(Ω) be the space of continuous functions U : Ω→ R such that ∂ψU

exists for all ω ∈ Ω and ∂ψU ∈ C(Ω). The spaces Ckψ(Ω) for k ≥ 2 are
defined accordingly. Let us also introduce the norm

∥U∥Ckψ(Ω) = sup
1≤m≤k

∥∂mψ U∥∞.

For later reference, we also introduce the following. Let C1
ψ(Ω × Rd)

denote the space of functions V : Ω × Rd → R, V (ω, x1, . . . , xd) such
that the derivatives ∂ψV and ∂xiV , 1 ≤ i ≤ d, exist on Ω × Rd and
∂ψV, ∂xiV ∈ C(Ω × Rd). The spaces Ckψ(Ω × Rd) for k ≥ 2 can now be
defined recursively.

Consider U ∈ C(Ω) and assume the a.p. function u(t) = U(ψ(t)) is
continuously differentiable. Then ∂ψU exists on ψ(R) and we have

u′(t) = ∂ψU (ψ(t)) for all t ∈ R.

Lemma 4.5. Let U ∈ C(Ω) and u ∈ C(R) be such that u(t) = U(ψ(t)).
Then we have u ∈ C1(R) and u′(t) is a.p. if and only if U ∈ C1

ψ(Ω).

One part of the equivalence is trivial. The proof of the other part
can be found in [OT06, Lemma 13]. Furthermore, given U ∈ Ckψ(Ω) and
u(t) = U(ψ(t)) we have

∥u∥Ck(R) = ∥U∥Ckψ(Ω),

since ω · R lies dense in Ω. Finally, we note that the derivative u′(t) of
an almost periodic function is itself a.p. if and only if it is uniformly
continuous. This, and many other interesting properties of a.p. functions
are demonstrated in [Bes26].

Example 4.6. Let us continue Example 4.2, where Ω = TN . For U ∈ C(TN )
consider the function

u(t) = U(ψ(t)) = U(ν1t, . . . , νN t).

Such functions are called quasi-periodic. In this case, ∂ψ is just the
derivative in the direction of ν ∈ RN . So if U is in the space C1(TN ) of
functions in C1(RN ), which are 1-periodic in each argument, then

∂ψU =

N∑
i=1

νi ∂θiU.
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Note however, that in general C1(TN ) is a proper subspace of C1
ψ(TN ).

Example 4.7. The so called limit periodic functions are another important
subclass of the a.p. functions. Here, a map f : R → R is called limit
periodic if it is the uniform limit of continuous periodic functions. Now, in
continuation of Example 4.3, let Ω = Sp and consider U ∈ C(Sp). Then,
the function u(t) defined by

u(t) = U(ψ(t)) = U(e2πiλt/q0 , e2πiλt/q1 , e2πiλt/q2 , . . .)

is limit periodic, since it is the uniform limit of a sequence of qk-periodic
functions uk given by

uk(t) = U(e2πiλt/q0 , . . . , e2πiλt/qk , 1, 1, . . .).

Vice versa it is true, that for suitable p and λ > 0 any limit periodic
function v(t) can be obtained in this manner. To see this, first note that v
can be expanded in a uniformly convergent series of continuous 1-periodic
functions,

v(t) =
∞∑
k=0

vk(t/Tk),

with T0 > 0 and Tk such that Tk/Tk−1 ∈ N for all k ∈ N (cf. [Chu89]).
W.l.o.g. we can assume that pk := Tk

Tk−1
is a prime number for all k.

Moreover, one can show that the hull Hv of v(t) consists of those functions
wϕ(t) which can be written in the form

wϕ(t) =
∞∑
k=0

vk((t+ ϕk)/Tk),

where ϕk is an angle defined modulo Tk such that ϕk−1 ≡ ϕk mod Tk−1

for all k ∈ N (see [MS89] for a more detailed discussion in the case of a
specific example). We can then define zk = e2πiϕk/Tk to obtain a series
(zk)k∈N0 in S1 so that

zpkk = e2πiϕk/Tk−1 = e2πiϕk−1/Tk−1 = zk−1.

So we have z ∈ Sp, where p = (pk)k∈N. We write η : Sp → Hv for the
resulting continuous map (zk) = (e2πiϕk/Tk) 7→ wϕ(t). The translation
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flow restricted to Hv as described in (4.3) then corresponds to ψ as above
with λ = 1/T0, that is ψ(τ) = (e2πiτ/T0 , e2πiτ/T1 , . . .). Indeed, defining
V = U ◦ η, where U is the extension by continuity as in (4.4), yields

V (ψ(τ)) = U(wτ ) = wτ (0) =
∞∑
k=0

vk(τ/Tk) = v(τ).

4.1.3 Haar measure and decomposition along the flow

It is a well-known fact, that for every compact commutative topological
group Ω there is a unique Borel probability measure µΩ, which is invariant
under the group operation, i.e. µΩ(D + ω) = µΩ(D) holds for every Borel
set D ⊂ Ω and every ω ∈ Ω. This measure is called the Haar measure of
Ω. (This follows from the existence of the invariant Haar integral of Ω
and the Riesz representation theorem. Proofs can be found in [Pon66] and
[HR79], respectively.) For Example if Ω = S1 we have

µS1(B) =
1

2π
λ{t ∈ [0, 2π) : eit ∈ B},

where λ is the Lebesgue measure on R. Let ψ, Σ and Φ be as in Section
4.1.1. Then Φ defines a decomposition Ω ∼= Σ× [0, S) along the flow. Since
Σ is a subgroup, it has a Haar measure µΣ itself. Also the interval [0, S)
naturally inherits the probability measure

µ[0,S)(I) =
1

S
λ(I).

As shown in [CT13], the restricted flow Φ : Σ× [0, S)→ Ω,Φ(σ, t) = σ · t
also allows for a decomposition of the Haar measure µΩ along the flow.

Lemma 4.8. The map Φ is an isomorphism of measure spaces, i.e.

µΩ(B) =
1

S
(µΣ ⊗ λ)(Φ−1(B))

holds for every Borel set B ⊂ Ω.

Before we prove this lemma, let us begin with some preliminaries.
Consider the function χ : Σ× [0,∞)→ Σ× [0, S) defined by

χ(σ, t) = Φ−1(σ · t) = Φ−1(σ + ψ(t)). (4.5)
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Since Φ is just the restricted flow, we have χ = id on Σ × [0, S). This
yields

χ(σ, t) = Φ−1(σ + ψ(t)) = Φ−1

(
σ + ψ

(⌊
t

S

⌋
S

)
+ ψ

(
t−

⌊ s
S

⌋
S
))

=

(
σ + ψ

(⌊
t

S

⌋
S

)
, t−

⌊
t

S

⌋
S

)
for every (σ, t) ∈ Σ × R, where ⌊·⌋ indicates the floor function. This
representation shows that χ is measure-preserving on any strip Σ× [t, t+S)
of width S, since µΣ and λ are invariant under translations in Σ and R,
respectively. Moreover, the equality

χ(Φ−1(ω) + Φ−1(ω̃)) = Φ−1(ω + ω̃) ∀ω, ω̃ ∈ Ω (4.6)

follows directly from the definition of χ.

ω

σ

σ̃

0 S

Σ

Figure 4.2: Let χ(σ, t) = (σ̃, s). The map χ ‘divides out’ every complete
period of φ ◦ ψ, that is s = t mod S, while preserving the relation
σ̃ · s = ω = σ · t.

Proof of Lemma 4.8. First we show that Φ−1 is Borel measurable. To
prove this, it suffices to show that the image Φ(A × I) of every open
rectangle A × I ⊂ Σ × [0, S) is a Borel set. If 0 /∈ I this image is open
in Ω \ Σ, since Φ−1 is continuous. But if 0 ∈ I, again Φ(A× (I \ {0})) is
open and Φ(A× {0}) = A is it as well.
Now, consider the measure µΦ on Ω defined by

µΦ(B) =
1

S
(µΣ ⊗ λ)(Φ−1(B)).
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Since µΦ(Ω) = 1, this is a Borel probability measure. We will show that
µΦ is also invariant under addition in the group. For this purpose, let
B ⊂ Ω be a Borel set and let ω0 ∈ Ω. Then, by (4.6) we have

µΦ(B + ω0) =
1

S
(µΣ ⊗ λ)(Φ−1(B + ω0))

=
1

S
(µΣ ⊗ λ)

(
χ(Φ−1(B) + Φ−1(ω0))

)
.

Denoting Φ−1(ω0) = (σ0, s0), we get Φ−1(B) + Φ−1(ω0) ⊂ Σ× [s0, s0 + S).
So it is contained in a strip of width S and therefore

1

S
(µΣ ⊗ λ)

(
χ(Φ−1(B) + (σ0, s0))

)
=

1

S
(µΣ ⊗ λ)

(
Φ−1(B) + (σ0, s0)

)
But the product measure µΣ ⊗ λ is invariant under translations in Σ× R.
Thus, in total we have

µΦ(B + ω0) =
1

S
(µΣ ⊗ λ)

(
Φ−1(B)

)
= µΦ(B).

Therefore, µΦ is a Borel probability measure on Ω which is invariant under
group action. Since the Haar measure is unique, it follows µΩ = µΦ.

4.2 A theorem about escaping sets

4.2.1 Almost periodic successor maps

From now on we will consider functions

f : D ⊂ Ω× (0,∞)→ Ω× (0,∞),

where D is an open set. We will call such a function measure-preserving
embedding, if f is continuous, injective and furthermore

(µΩ ⊗ λ)(f(B)) = (µΩ ⊗ λ)(B)

holds for all Borel sets B ⊂ D, where λ denotes the Lebesgue measure of
R. This matches the setup depicted at the end of Section 2. Thus, let D∞
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be the set of initial data (ω0, r0) ∈ Ω× (0,∞) leading complete forward
orbits (ωn, rn) = fn(ω0, r0), n ∈ N0. We again write

U = {(ω0, r0) ∈ D∞ : lim sup
n→∞

rn =∞}

and
E = {(ω0, r0) ∈ D∞ : lim

n→∞
rn =∞}

for the set of initial condition leading to unbounded and escaping or-
bits, respectively. In particular, we are interested in measure-preserving
embeddings of the form

f(ω, r) = (ω + ψ(F (ω, r)), r +G(ω, r)), (4.7)

where F,G : D → R are continuous. For ω ∈ Ω we introduce the notation
ψω(t) = ω + ψ(t) = ω · t and define

Dω = (ψω × id)−1(D) ⊂ R× (0,∞).

On this open set, consider the map fω : Dω ⊂ R × (0,∞) → R × (0,∞)
given by

fω(t, r) = (t+ F (ψω(t), r), r +G(ψω(t), r)). (4.8)

Then fω is continuous and meets the identity

f ◦ (ψω × id) = (ψω × id) ◦ fω on Dω,

i.e. the following diagram is commutative:

D f(D) ⊂ Ω× (0,∞)

Dω fω(Dω) ⊂ R× (0,∞)

f

fω

ψω×id ψω×id

Therefore fω is injective as well. Again we define the sets Dω,1 = Dω and
Dω,n+1 = f−1

ω (Dω,n) to construct the domain

Dω,∞ =

∞⋂
n=1

Dω,n ⊂ R× (0,∞),
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where the forward iterates (tn, rn) = fnω (t0, r0) are defined for all n ∈ N.
Analogously, unbounded orbits are generated by initial conditions in the
set

Uω = {(t0, r0) ∈ Dω,∞ : lim sup
n→∞

rn =∞}

and escaping orbits originate in

Eω = {(t0, r0) ∈ Dω,∞ : lim
n→∞

rn =∞}.

These sets can also be obtained through the relations

Dω,∞ = (ψω × id)−1(D∞), Uω = (ψω × id)−1(U), Eω = (ψω × id)−1(E).

If there is a suitable adiabatic invariant W (ω, r) which is approximately
constant for r sufficiently big, then one can show that f is recurrent. As a
consequence, most escaping sets Eω have measure zero.

Theorem 4.9. Let f : D ⊂ Ω × (0,∞) → Ω × (0,∞) be a measure-
preserving embedding of the form (4.7) and suppose that there is a function
W =W (ω, r) satisfying W ∈ C1

ψ(Ω× (0,∞)),

0 < β ≤ ∂rW (ω, r) ≤ δ for ω ∈ Ω, r ∈ (0,∞), (4.9)

with some constants β, δ > 0, and furthermore

W (f(ω, r)) ≤W (ω, r) + k(r) for (ω, r) ∈ D, (4.10)

where k : (0,∞) → R is a decreasing and bounded function such that
limr→∞ k(r) = 0. Then, for almost all ω ∈ Ω, the set Eω ⊂ R × (0,∞)
has Lebesgue measure zero.

4.2.2 Proof of Theorem 4.9

Similar to the proof of Theorem 3.1, the main idea in the proof of Theorem
4.9 is to apply Maharam’s Recurrence Theorem to the restricted map
f
∣∣
U . The necessary space engendering set M of finite measure can be

constructed by means of the present adiabatic invariant W (ω, r). This is
expressed in the following lemma.
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Lemma 4.10. Let f : D ⊂ Ω × (0,∞) → Ω × (0,∞) be a measure-
preserving embedding and suppose that there is a function W =W (ω, r)
satisfying W ∈ C1

ψ(Ω × (0,∞)), (4.9) and (4.10). Then, there is a set
M ⊂ Ω× (0,∞) of finite measure such that every unbounded orbit of f
entersM, i.e. we have

U ⊂
∞⋃
n=1

f−n(M)

up to a set of measure zero.

Proof. Let (εj)j∈N be a sequence of positive reals with
∑∞

j=1 εj < ∞.
By assumption, we can find a corresponding sequence (Wj)j∈N with the
properties Wj > 0, limj→∞Wj = ∞ and limj→∞ ε−1

j k( 1
4γWj) = 0. The

sought set can then be defined by

M =
⋃
j∈N
Mj , Mj = {(ω, r) ∈ Ω× (0,∞) : |W (ω, r)−Wj | ≤ εj}.

We start by showing thatM has finite measure. By Fubini’s theorem,

(µΩ ⊗ λ)(Mj) =

∫
Ω
λ(Mj,ω) dµΩ(ω)

holds for the sectionsMj,ω = {r ∈ (0,∞) : (ω, r) ∈Mj}. Now, consider
the diffeomorphism wω : r 7→ W (ω, r). Its inverse w−1

ω is Lipschitz
continuous with constant β−1, due to (4.9). But then, the fact that
Mj,ω = w−1

ω ((Wj − εj ,Wj + εj)) implies λ(Mj,ω) ≤ 2β−1εj . Thus in total
we have

(µΩ ⊗ λ)(M) ≤
∞∑
j=1

(µΩ ⊗ λ)(Mj) ≤
∞∑
j=1

2εj
β

<∞.

Next we prove that every unbounded orbit has to go throughM. To this
end, let (ω0, r0) ∈ U be fixed and denote by (ωn, rn) the forward orbit
under f . We will start with some preliminaries. Using (4.9) and the mean
value theorem, we can find r̂ such that

β

2
≤ W (ω, r)

r
≤ 2δ ∀(ω, r) ∈ Ω× (r̂,∞). (4.11)
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Furthermore, by definition of the sequence Wj we can find an index j0 ≥ 2
such that

Wj0 > max{W (ω1, r1), ∥k∥∞ +max
ω∈Ω

W (ω, r̂), 2∥k∥∞} and k

(
1

4δ
Wj0

)
≤ εj0 .

Moreover, we have lim supn→∞W (ωn, rn) = ∞. Indeed, the fact that
(ω0, r0) lies in U and (4.9) imply

W (ωn, rn) ≥ β(rn − r1) +W (ωn, r1)

for some n sufficiently large. But then lim supn→∞W (ωn, rn) =∞ follows
from the compactness of Ω. Now, since W (ω1, r1) < Wj0 we can select the
first index K ≥ 2 such thatW (ωK , rK) > Wj0 . So in particular this means
W (ωK−1, rK−1) ≤ Wj0 . Since the estimate (4.10) yields W (ωK , rK) ≤
W (ωK−1, rK−1) + k(rK−1), we can derive the following inequality:

W (ωK−1, rK−1) ≥W (ωK , rK)− ∥k∥∞ > Wj0 − ∥k∥∞
≥ max

ω∈Ω
W (ω, r̂) ≥W (ωK−1, r̂)

Then, the monotonicity of wωK−1 implies rK−1 > r̂. Hence we can combine
(4.11) with the previous estimate to obtain

rK−1 ≥
1

2δ
W (ωK−1, rK−1) ≥

1

2δ
(Wj0 − ∥k∥∞) ≥ 1

4δ
Wj0 .

Finally, since k(r) is decreasing, W (ωK , rK) > Wj0 ≥ W (ωK−1, rK−1)
yields

|W (ωK , rK)−Wj0 | ≤W (ωK , rK)−W (ωK−1, rK−1)

≤ k(rK−1) ≤ k
(

1

4δ
Wj0

)
≤ εj0 ,

which implies (ωK , rK) ∈Mj0 .

Now, we are ready to prove the theorem.

Proof of Theorem 4.9. Consider the set

U = {(ω0, r0) ∈ D∞ : lim sup
n→∞

rn =∞}.
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We can assume that U ̸= ∅, since otherwise the assertion follows immedi-
ately.
Step 1: Almost all unbounded orbits are recurrent. We will prove the
existence of a set Z ⊂ U of measure zero such that if (ω0, r0) ∈ U \Z, then

lim inf
n→∞

rn <∞.

In particular, we would have E ⊂ Z. To show this, we consider the
restriction T = f

∣∣
U : U → U . This map is well-defined, injective and, like

f , measure-preserving. We will distinguish three cases:

(i) (µΩ ⊗ λ)(U) = 0,

(ii) 0 < (µΩ ⊗ λ)(U) <∞, and

(iii) (µΩ ⊗ λ)(U) =∞.

In the first case Z = U is a valid choice. In case (ii) we can apply
the Poincaré recurrence theorem (Lemma 2.2), whereas in case (iii) the
analogue by Maharam (Lemma 2.3) is applicable due to Lemma 4.10. Now,
let us cover Ω×R by the sets Bj = Ω× (j − 1, j + 1) for j ∈ N. Then, for
Bj = Bj ∩ U one can use the recurrence property to find sets Zj ⊂ Bj of
measure zero such that every orbit (ωn, rn)n∈N starting in Bj \ Zj returns
to Bj infinitely often. But this implies lim infn→∞ rn ≤ r0 + 2 < ∞.
Therefore, the set Z =

⋃
j∈NZj ⊂ U has all the desired properties.

Step 2: We will show the existence of a subgroup Σ ⊂ Ω such that Eσ has
Lebesgue measure zero for almost all σ ∈ Σ. Since E ⊂ Z by construction,
the inclusion

Eω = (ψω ⊗ id)−1(E) ⊂ (ψω ⊗ id)−1(Z)

holds for all ω ∈ Ω. To j ∈ Z we can consider the restricted flow

Φj : Σ× [jS, (j + 1)S)→ Ω, Φj(σ, t) = σ · t = ψσ(t).

It is easy to verify that just like Φ = Φ0 of Lemma 4.8 those functions are
isomorphisms of measure spaces. In other words, Φj is bijective up to a
set of measure zero, both Φj and Φ−1

j are measurable, and for every Borel
set B ⊂ Ω we have

µΩ(B) =
1

S
(µΣ ⊗ λ)(Φ−1

j (B)). (4.12)
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This clearly implies

(µΩ ⊗ λ)(B) =
1

S
(µΣ ⊗ λ2)(Φ−1

j × id)(B) (4.13)

for every Borel set B ⊂ Ω× (0,∞). Let

Cj = {(σ, t, r) ∈ Σ× [jS, (j +1)S)× (0,∞) : (Φj(σ, t), r) ∈ Z} = (Φ−1
j × id)(Z).

Since Z has measure zero, (4.13) yields (µΣ ⊗ λ2)(Cj) = 0. Next we
consider the cross sections

Cj,σ = {(t, r) ∈ [jS, (j + 1)S)× (0,∞) : (σ, t, r) ∈ Cj}.

Then, λ2(Cj,σ) = 0 for µΣ-almost all σ ∈ Σ follows from Fubini’s theorem.
So for every j ∈ Z there is a set Mj ⊂ Σ with µΣ(Mj) = 0 such that
λ2(Cj,σ) = 0 for all σ ∈ Σ \Mj . Thus M =

⋃
j∈ZMj has measure zero as

well and

λ2
( ⋃
j∈Z

Cj,σ

)
= 0

for all σ ∈ Σ \M . But we have⋃
j∈Z

Cj,σ = {(t, r) ∈ R× (0,∞) : (ψσ(t), r) ∈ Z} = (ψσ × id)−1(Z),

and recalling that Eσ ⊂ (ψσ × id)−1(Z), we therefore conclude λ2(Eσ) = 0
for all σ ∈ Σ \M .
Step 3: Concluding from Σ to Ω. If we denote by Ts(t, r) = (t+ s, r) the
translation in time, then clearly

fω·s = T−s ◦ fω ◦ Ts on Dω·s

holds for all ω ∈ Ω and s ∈ R. But this implies Ts(Eω·s) = Eω, since the
identity above stays valid under iterations. In particular we have

λ2(Eω·s) = λ2(Eω), ∀ω ∈ Ω, s ∈ R.

Again, we consider the restricted flow Φ : Σ× [0, S)→ Ω, Φ(ω, t) = ω · t.
Using M ⊂ Σ of Step 2 we define Z∗ = Φ(M × [0, S)) ⊂ Ω. Then, (4.12)
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and µΣ(M) = 0 imply that also Z∗ has measure zero. Now let ω ∈ Ω \ Z∗
be fixed and let (σ, τ) = Φ−1(ω). Then σ ∈ Σ\M and σ ·τ = ω. Therefore,
Step 2 implies

λ2(Eω) = λ2(Eσ·τ ) = λ2(Eσ) = 0,

which proves the assertion.

4.3 Application to the ping-pong

We start with a rigorous description of the ping-pong map. To this end,
let p ∈ C2

b (R) be a forcing function such that

0 < a ≤ p(t) ≤ b ∀t ∈ R, ∥p∥C2 = max{∥p∥∞, ∥ṗ∥∞, ∥p̈∥∞} <∞. (4.14)

Now, consider the map
(t0, v0) 7→ (t1, v1),

which sends a time t0 of impact to the left plate x = 0 and the corresponding
velocity v0 > 0 immediately after the impact to their successors t1 and
v1 describing the subsequent impact to x = 0. If we further denote by
t̃ ∈ (t0, t1) the time of the particle’s impact to the moving plate, then we
can determine t̃ = t̃(t0, v0) implicitly through the equation

(t̃− t0)v0 = p(t̃), (4.15)

since this relation describes the distance that the particle has to travel
before hitting the moving plate. With that we derive a formula for the
successor map:

t1 = t̃+
p(t̃)

v1
, v1 = v0 − 2ṗ(t̃) (4.16)

To ensure that this map is well-defined, we will assume that

v0 > v∗ := 2max{sup
t∈R

ṗ(t), 0}. (4.17)

This condition guarantees that v1 is positive and also implies that there is
a unique solution t̃ = t̃(t0, v0) ∈ C1(R× (v∗,∞)) to (4.15). Thus we can
take R× (v∗,∞) as the domain of the ping-pong map (5.5). Now, we are
finally ready to state the main theorem.
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Theorem 4.11. Assume 0 < a < b and P ∈ C2
ψ(Ω) are such that

a ≤ P (ω) ≤ b ∀ω ∈ Ω. (4.18)

Consider the family {pω}ω∈Ω of almost periodic forcing functions defined
by

pω(t) = P (ω + ψ(t)), t ∈ R. (4.19)

Let v∗ = 2max{maxϖ∈Ω ∂ψP (ϖ), 0} and denote by

Eω = {(t0, v0) ∈ R× (v∗,∞) : (tn, vn)n∈N exists and lim
n→∞

vn =∞}

the escaping set for the ping-pong map with forcing function p(t) = pω(t).
Then, for almost all ω ∈ Ω, the set Eω ⊂ R2 has Lebesgue measure zero.

Remark 4.12. The notation v∗ = 2max{maxϖ∈Ω ∂ψP (ϖ), 0} is consistent
with (5.5), since for every ω ∈ Ω the set ω · R lies dense in Ω and thus

sup
t∈R

ṗω(t) = sup
t∈R

∂ψP (ω + ψ(t)) = max
ϖ∈Ω

∂ψP (ϖ).

We will give some further preliminaries before starting the actual
proof. First we note, that the ping-pong map (t0, v0) 7→ (t1, v1) is not
symplectic. To remedy this defect, we reformulate the model in terms of
time t and energy E = 1

2v
2. In these new coordinates the map becomes

P : (t0, E0) 7→ (t1, E1) with

t1 = t̃+
p(t̃)√
2E1

, E1 = E0 − 2
√
2E0ṗ(t̃) + 2ṗ(t̃)2 = (

√
E0 −

√
2ṗ(t̃))2,

where t̃ = t̃(t0, E0) is determined implicitly by the relation t̃ = t0 +
p(t̃)√
2E0

.

This map is defined for (t0, E0) ∈ R× (12v
2
∗,∞). Since it has a generating

function [KO10, Lemma 3.7], the map P is indeed symplectic.
Now, we demonstrate that W (t0, E0) = p(t0)

2E0 acts as an adiabatic
invariant for the ping-pong map. For this purpose we cite the following
lemma [KO20, Lemma 5.1]:

Lemma 4.13. There is a constant C > 0, depending only upon ∥p∥C2

and a, b > 0 from (4.14), such that

|p(t1)2E1 − p(t0)2E0| ≤ C∆(t0, E0) ∀(t0, E0) ∈ R× (v2∗/2,∞),



64 Chapter 4. The almost periodic case

where (t1, E1) = P(t0, E0) denotes the ping-pong map for p(t), and ∆(t0, E0) =

E
−1/2
0 + sup{|p̈(t)− p̈(s)| : t, s ∈ [t0 − C, t0 + C], |t− s| ≤ CE−1/2

0 }.

Proof. This is a consequence of the fact that t1 − t0 ≤ C̃E
−1/2
0 for a

suitable constant C̃ > 0 together with formula (5.55) down below.

So far we have depicted the case of a general forcing function p. Now,
we will replace p(t) by pω(t) from (4.19) and study the resulting ping-pong
map. First, we note that due to P ∈ C2

ψ(Ω) we have pω ∈ C2
b (R). Also

0 < a ≤ pω(t) ≤ b holds for all ω ∈ Ω by assumption. Furthermore, we
have ∥pω∥C2(R) = ∥P∥C2

ψ(Ω) for all ω ∈ Ω. Therefore all considerations

above apply with uniform constants. As depicted in Remark 4.12, also the
threshold v∗ = 2max{maxϖ∈Ω ∂ψP (ϖ), 0} is uniform in ω. Finally, since
p̈ω(t) = ∂2ψP (ω + ψ(t)), the function ∆(t0, E0) can be uniformly bounded
by

∆(E0) = E
−1/2
0 + sup{|∂2ψP (ϖ)− ∂2ψP (ϖ′)| : ϖ,ϖ′ ∈ Ω, ∥ϖ −ϖ′∥ ≤ CE−1/2

0 }.

Hence, from Lemma 4.13 we obtain

Lemma 4.14. There is a constant C > 0, uniform in ω ∈ Ω, such that

|p(t1)2E1 − p(t0)2E0| ≤ C∆(E0) ∀(t0, E0) ∈ R× (v2∗/2,∞),

where (t0, E0) 7→ (t1, E1) denotes P for the forcing function pω(t).

Consider the equation

τ =
1√
2E0

P (ω0 + ψ(τ)). (4.20)

Since P ∈ C1
ψ(Ω) and 1− (2E0)

−1/2∂ψP (ω0+ψ(τ)) ≥ 1
2 > 0 for E0 >

1
2v

2
∗,

(4.20) can be solved implicitly for τ = τ(ω0, E0) ∈ C(Ω× (v2∗/2,∞)) (cf.
[BGdS08] for a suitable implicit function theorem). For ω ∈ Ω and t0 ∈ R
one can consider (4.20) with ω0 = ω + ψ(t0). Then, P ∈ C1

ψ(Ω) and the

classical implicit function theorem yield τ ∈ C1
ψ(Ω× (v2∗/2,∞)). Moreover,

comparing this to the definition of t̃, we observe the following relation:

t̃(t0, E0) = t0 + τ(ω + ψ(t0), E0). (4.21)

Now, we will give the proof of the main theorem, in which we will link the
ping-pong map corresponding to pω(t) to the setup of Section 4.2.
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Proof of Theorem 4.11. Let D = Ω×(E∗,∞), where E∗ = max{12v
2
∗, E∗∗}

and E∗∗ will be determined below. Consider the function

f : D ⊂ Ω× (0,∞)→ Ω× (0,∞), f(ω0, E0) = (ω1, E1)

given by

ω1 = ω0 + ψ(F (ω0, E0)), E1 = E0 +G(ω0, E0),

where

F (ω0, E0) =

(
1√
2E0

+
1√
2E1

)
P (ω0 + ψ(τ)),

G(ω0, E0) = −2
√

2E0∂ψP (ω0 + ψ(τ)) + 2∂ψP (ω0 + ψ(τ))2,

for τ = τ(ω0, E0). Then f has special form (4.7) and therefore we can
study the family {fω}ω∈Ω of planar maps defined by (4.8). But plugging
(4.21) into the definition of P shows, that fω is just the ping-pong map
P in the case of the forcing pω(t). Independently of ω, these maps are
defined on Dω = (ψω × id)−1(D) = R× (E∗,∞).

We show that f is injective on Ω × (E∗∗,∞), if E∗∗ is sufficiently
large. Therefore suppose f(ω0, E0) = (ω1, E1) = f(ω̃0, Ẽ0). Since then
ω0+ψ(F (ω0, E0)) = ω̃0+ψ(F (ω̃0, Ẽ0)), there is ω ∈ Ω and t0, t̃0 ∈ R such
that ω0 = ω + ψ(t0) and ω̃0 = ω + ψ(t̃0). Implicit differentiation yields

∂t0τ(ω + ψ(t0), E0) = O(E−1/2
0 ) and ∂E0τ(ω + ψ(t0), E0) = O(E−3/2

0 ).
Moreover, E1 = O(E0) implies

Dfω(t0, E0) =

(
1 +O(E−1/2

0 ) O(E−3/2
0 )

O(E1/2
0 ) 1 +O(E−1/2

0 )

)
for the Jacobian matrix of fω. Throughout this paragraph C will denote
positive constants depending on E∗∗ and ∥P∥C2

ψ(Ω), which will not be

further specified. Without loss of generality we may assume E0 ≤ Ẽ0.
Then, applying the mean value theorem yields

|t0 − t̃0| ≤ CE−1/2
0 |t0 − t̃0|+ CE

−3/2
0 |E0 − Ẽ0|

and |E0 − Ẽ0| ≤ CẼ
1/2
0 |t0 − t̃0| + CE

−1/2
0 |E0 − Ẽ0|, provided E∗∗ is

sufficiently big. Thus, for large E∗∗ we get |t0 − t̃0| ≤ CE
−3/2
0 |E0 − Ẽ0|
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and |E0 − Ẽ0| ≤ CẼ1/2
0 |t0 − t̃0|. Now, combining these inequalities gives

us |t0 − t̃0| ≤ CE
−3/2
0 Ẽ

1/2
0 |t0 − t̃0|. But since E1 = O(E0) and also

Ẽ0 = O(E1), we can conclude |t0 − t̃0| ≤ CE−1
0 |t0 − t̃0|. In turn, this

implies t0 = t̃0 and E0 = Ẽ0 for E∗∗ sufficiently large, which proves the
injectivity of fω and f .

Next we want to show that f is also measure-preserving. To this end,
consider the maps g : Σ× [0, S)× (E∗,∞)→ Σ× [0,∞)× (0,∞) defined
by

g(σ, s, E) = (σ, fσ(s, E))

and χ : Σ × [0,∞) → Σ × [0, S), χ(σ, t) = Φ−1(σ · t) from (4.5). Then,
the identity

f = (Φ× id) ◦ (χ× id) ◦ g ◦ (Φ−1 × id)

holds on D. This can be illustrated as follows:

(ω0, E0) (ω1, E1)

(σ0, s0, E0) (σ0, s1, E1) (σ1, s
′
1, E1)

f

Φ−1×id

g χ×id

Φ×id

Recalling Lemma 4.8 and the fact that fω has a generating function,
it suffices to show that χ × id preserves the measure of any Borel set
B ⊂ g

(
(Φ−1 × id)(D)

)
. Therefore, consider the sets

Bk = B ∩ (Σ× [(k − 1)S, kS)× (0,∞)) , k ∈ N.

Then we have

(µΣ ⊗ λ2) ((χ× id)(Bk)) = (µΣ ⊗ λ2) (Bk) ,

as depicted in Section 4.1.3. Moreover, the injectivity of f implies the
injectivity of χ×id on B and thus the sets (χ×id)(Bk) are mutually disjoint.
Since B = ∪k∈NBk, this yields (µΣ ⊗ λ2) ((χ× id)(B)) = (µΣ ⊗ λ2) (B).

Finally, we need to find a function W ∈ C1
ψ(Ω× (0,∞)) such that (4.9)

and (4.10) are verified. For this define

W (ω0, E0) = P (ω0)
2E0.
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Conditions (4.9) clearly holds if we take β = a2 and δ = b2 with a, b from
(4.18). Moreover, the definition of f yields

W (f(ω0, E0))−W (ω0, E0) = P (ω1)
2E1 − P (ω0)

2E0

= P (ω0 + ψ(F (ω0, E0)))
2E1 − P (ω0)

2E0

= pω0(F (ω0, E0))
2E1 − pω0(0)

2E0.

Now let t0 = 0 and (t1, E1) = fω0(t0, E0). Then t1 = F (ω0, E0) and thus
Lemma 4.14 yields

W (f(ω0, E0))−W (ω0, E0) = pω0(t1)
2E1 − pω0(t0)

2E0 ≤ C∆(E0),

where C > 0 is uniform in ω0. But then taking k(E0) = C∆(E0) proves
(4.10), since limr→∞∆(r) = 0 follows from ∂2ψP ∈ C(Ω).

Now we have validated all conditions of Theorem 4.9 for the map f .
Applying it yields λ2(Êω) = 0 for almost all ω ∈ Ω, where

Êω = {(t0, E0) ∈ D̂ω,∞ : lim
n→∞

En =∞}

and D̂ω,∞ is defined as in Section 4.2.1. This can be translated back to

the original coordinates (t, v) = (t,
√
2E). We write gω for the ping-pong

map (t0, v0) 7→ (t1, v1) from (5.5) for the forcing p(t) = pω(t) and let

D̃ω = R× (
√
2E∗,∞), D̃ω,1 = D̃ω, D̃ω,n+1 = g−1

ω (D̃ω,n), D̃ω,∞ =

∞⋂
n=1

D̃ω,n.

Then λ2(Ẽω) = 0 for almost all ω ∈ Ω, where

Ẽω = {(t0, v0) ∈ D̃ω,∞ : lim
n→∞

vn =∞}.

Now, consider the escaping set Eω from the theorem and take (t0, v0) ∈ Eω.
Since limn→∞ vn =∞, there is n0 ∈ N such that vn >

√
2E∗ for all n ≥ n0.

But this just means (tn, vn) ∈ Ẽω for n ≥ n0. In particular, this implies
Eω ⊂

⋃
n∈N g

−n
ω (Ẽω). Considering that gω is area-preserving, this proves

the assertion: λ2(Eω) = 0 for almost all ω ∈ Ω.
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4.4 A superlinear oscillator

For α ≥ 3, consider the second order differential equation

ẍ+ |x|α−1x = p(t), (4.22)

where p ∈ C4
b (R). Here, Ckb (R) denotes the space of bounded functions

with continuous and bounded derivatives up to order k.
Recall that a solution to (4.22) is called Poisson stable, if there is a

sequence (tn)n∈Z with tn → ±∞ as n→ ±∞ such that

|x(t+ tn)− x(t)|+ |ẋ(t+ tn)− ẋ(t)| → 0, as n→ ±∞,

uniformly on every bounded interval in R. With this definition in mind
we can state the main result of this section.

Theorem 4.15. Given P ∈ C4
ψ(Ω), consider the family {pω}ω∈Ω of almost

periodic forcing functions defined by

pω(t) = P (ω + ψ(t)), t ∈ R.

Let xω(t; x̃, ṽ) denote the solution of (4.22) with p(t) = pω(t) satisfying
the initial condition xω(0) = x̃ and ẋω(0) = ṽ. Then, for almost all
(x̃, ṽ, ω) ∈ R2 × Ω, the solutions xω(t; x̃, ṽ) is Poisson stable.

The remainder of this chapter is dedicated to proving this theorem.

4.4.1 Transformation to suitable coordinates

We start by considering the case of a general (not necessarily almost
periodic) forcing function p ∈ C4

b (R). Note that solutions x(t) to (4.22)
are unique and exist for all times. To see this, we define

E(t) =
1

2
ẋ(t)2 +

1

α+ 1
|x(t)|α+1.

Then |Ė| = |p(t)ẋ| ≤ |p(t)|
√
2E, and therefore√

E(t) ≤
√
E(t0) +

1√
2

∣∣∣∣∫ t

t0

|p(s)|ds
∣∣∣∣ .

So E is bounded on finite intervals and thus x can be continued on R.



4.4. A superlinear oscillator 69

Action-angle coordinates

First we want to reformulate (4.22) in terms of the action-angle coordinates
of the unperturbed system, that is

ẍ+ |x|α−1x = 0. (4.23)

The orbits of (4.23) are closed curves, defined by 1
2y

2 + 1
α+1 |x|

α+1 = const.
and correspond to periodic solutions. For λ > 0 let xλ denote the solution
of (4.23) having the initial values

xλ(0) = λ, ẋλ(0) = 0.

Using the homogeneity of the problem, we get xλ(t) = λx1(λ
α−1
2 t). In

particular xλ has a decreasing minimal period T (λ) = λ
1−α
2 T (1). Thus we

can find the unique number Λ > 0, such that T (Λ) = 2π. We will use the
notation

c(t) = xΛ(t), s(t) = ċ(t),

since in a lot of ways these functions behave like the trigonometric functions
cos and sin: c is even, s is odd, and both are anti-periodic with period π.
Hence they have zero mean value, i.e.∫ 2π

0
c(t) dt =

∫ 2π

0
s(t) dt = 0.

In this case however, (c(t), s(t)) spins clockwise around the origin of the
(x, ẋ)-plane. Furthermore c and s meet the identity

1

2
s(t)2 +

1

α+ 1
|c(t)|α+1 =

1

α+ 1
Λα+1 ∀t ∈ R. (4.24)

We define a change of variables η : S1 × (0,∞)→ R2 \ {0}, (ϑ̄, r) 7→ (x, v)
by

x = γr
2

α+3 c(ϑ̄), v = γ
α+1
2 r

α+1
α+3 s(ϑ̄),

where γ > 0 is determined by

γ
α+3
2

2

α+ 3
Λα+1 = 1.
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This choice of γ makes η a symplectic diffeomorphism, as can be shown
by an easy calculation. Moreover, (4.24) implies the identity

1

2
v2 +

1

α+ 1
|x|α+1 = κ1r

2(α+1)
α+3 ,

where κ1 = 1
α+1(γΛ)

α+1. Adding a new component for the time, we define
the transformation map

R : R2 \ {0} × R→ S1 × (0,∞)× R, R(x, v; t) = (η−1(x, v); t).

Going back to the perturbed system, the old Hamiltonian

K(x, ẋ; t) = 1

2
ẋ2 +

1

α+ 1
|x|α+1 − p(t)x

expressed in the new coordinates is

H(ϑ̄, r; t) = κ1r
2(α+1)
α+3 − γr

2
α+3 p(t)c(ϑ̄).

For simplicity’s sake let us denote the lift of H onto R× (0,∞)×R by the
same letter H. The associated differential equations then become{

ϑ̇ = ∂rH = 2(α+1)
α+3 κ1r

α−1
α+3 − 2

α+3γr
−α+1
α+3 p(t)c(ϑ)

ṙ = −∂ϑH = γr
2

α+3 p(t)s(ϑ)
. (4.25)

It should be noted that solutions to (4.25) only exist on intervals J ⊂ R,
where r(t) > 0. Therefore, we can only make assertions about solutions of
the original problem (4.22) defined on intervals, where (x, ẋ) ̸= 0, when
working with these action-angle coordinates.

Time-energy coordinates

In order to construct a measure preserving embedding one could take the
Poincaré map of Hamiltonian system (4.25). However, to fit the setting of
subsection 4.2.1, this map would need to have the time (and thus the almost
periodic dependence of the system) as the first variable. Therefore, we will
follow [Lev91] and take the time t as the new “position”-coordinate, the
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energy H as the new “momentum” and the angle ϑ as the new independent
variable.

Since the first term in (4.25) is dominant for r →∞, one can find r∗
such that

∂rH(ϑ, r; t) ≥ 1 for all r ≥ r∗. (4.26)

Remark 4.16. The value of r∗ depends upon α, γ, κ1, ∥c∥Cb and ∥p∥C4
b
,

where again γ, κ1, ∥c∥Cb are uniquely determined by the choice of α. We
will call quantities depending only upon α and ∥p∥C4

b
constants. Let us also

point out, that r∗ can be chosen “increasingly in ∥p∥C4
b
”. By this we mean,

that if r∗ = r∗(α, ∥p∥C4
b
) is the threshold corresponding to some p ∈ C4

b (R),
then (4.26) also holds for any forcing p̃ ∈ C4

b with ∥p̃∥C4
b
≤ ∥p∥C4

b
. Indeed,

all thresholds we will construct have this property.

Now consider a solution (ϑ, r) of (4.25) defined on an interval J , where
r(t) > r∗ for all t ∈ J . Then, the function t 7→ ϑ(t) is invertible, since

ϑ̇(t) = ∂rH(ϑ(t), r(t); t) ≥ 1.

Adopting the notation of [KO13], we will write τ = ϑ(t) and denote the
inverse by ϕ, i.e. ϕ(τ) = t. Since ϑ(t) is at least of class C2, the same
holds for the inverse function ϕ defined on ϑ(J). Let us now define

I(τ) = H(τ, r(ϕ(τ));ϕ(τ)) for τ ∈ ϑ(J).

This function will be the new momentum. It is a well-known fact that
the resulting system is again Hamiltonian. To find the corresponding
Hamiltonian, we can solve the equation

H(ϑ, h; t) = I

implicitly for h(t, I;ϑ). Because of (4.26), this equation admits a solution,
which is well-defined on the open set

G = {(t, I;ϑ) ∈ R3 : I > H(ϑ, r∗; t)}.

Indeed, by implicit differentiation it can be verified that

ϕ′ = ∂Ih, I ′ = −∂ϕh,
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where the prime ′ indicates differentiation with respect to τ . Using the
new coordinates, we have to solve

κ1h
2(α+1)
α+3 − γh

2
α+3 p(ϕ)c(τ) = I (4.27)

or equivalently

h = I
α+3

2(α+1)κ
− α+3

2(α+1)

1 (1− κ−1
1 γh

−2α
α+3 p(ϕ)c(τ))

− α+3
2(α+1) . (4.28)

Since p ∈ C4 and c ∈ C3, also h will be of class C3. Moreover, we can find
I∗ > 0 (depending upon α, γ, κ1, ∥c∥Cb , ∥p∥Cb and r∗) such that

{(ϕ, I; τ) ∈ R3 : I ≥ I∗} ⊂ G.

Furthermore, we can choose I∗ so large that the solution h of (4.27) satisfies

α0I
α+3

2(α+1) ≤ h ≤ β0I
α+3

2(α+1) for I ≥ I∗

for some constants α0, β0 > 0. Let

κ0 = κ
− α+3

2(α+1)

1 =

(
2(α+ 1)

α+ 3
γ

1−α
2

) α+3
2(α+1)

.

To approximate the solution h(ϕ, I; τ) of (4.28), one can use the Taylor

polynomial of degree one for (1− z)−
α+3

2(α+1) and then plug in the highest

order approximation κ0I
α+3

2(α+1) for the remaining h on the right-hand side.
Therefore we define the remainder function R ∈ C3(G) through the relation

h(ϕ, I; τ) = κ0I
α+3

2(α+1) +
(α+ 3)

2(α+ 1)
γκ

α+5
α+3

0 p(ϕ)c(τ)I
3−α

2(α+1) +R(ϕ, I; τ). (4.29)

The corresponding system is described byϕ′ = ∂Ih = κ0
α+3

2(α+1)I
1−α

2(α+1) + 9−α2

4(α+1)2
γκ

α+5
α+3

0 p(ϕ)c(τ)I
1−3α
2(α+1) + ∂IR,

I ′ = −∂ϕh = − α+3
2(α+1)γκ

α+5
α+3

0 ṗ(ϕ)c(τ)I
3−α

2(α+1) − ∂ϕR.
(4.30)
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The change of variables (ϑ, r; t) 7→ (ϕ, I; τ) can be realized via the trans-
formation map S : R× [r∗,∞)× R→ R× (0,∞)× R defined by

S(ϑ, r; t) = (t,H(ϑ, r; t);ϑ).

So S maps a solution (ϑ(t), r(t)) of (4.25) with the initial condition
(ϑ(t0), r(t0)) = (ϑ0, r0) onto a solution (ϕ(τ), I(τ)) of (4.30) with initial
condition (ϕ(ϑ0), I(ϑ0)) = (t0,H(ϑ0, r0; t0)).

The following lemma by Kunze and Ortega [KO13, Lemma 7.1] shows
that R is small in a suitable sense:

Lemma 4.17. There are constants C0 > 0 and IC0 ≥ I∗ > 0 (depending
upon ∥p∥C2

b (R)
) such that

|R|+ |∂ϕR|+ I|∂IR|+ |∂2ϕϕR|+ I|∂2ϕIR|+ I2|∂2IIR| ≤ C0I
3(1−α)
2(α+1) (4.31)

holds for all ϕ, τ ∈ R and I ≥ IC0.

In terms of the function space Fk(r) from Appendix A, this could

be expressed as R(·, ·; τ) ∈ F2
(
3(α−1)
2(α+1)

)
for all τ ∈ R. Now we could use

these coordinates and a corresponding Poincaré map for Theorem 4.9.
Unfortunately, the energy I(τ) fails to be an adiabatic invariant in the
sense of (4.10), since for α = 3 we do not have I ′ → 0 as I →∞. Therefore
we have to do one further transformation. For α > 3 this last step would
not be necessary.

A last transformation

In [KO13, Theorem 6.7] Ortega and Kunze constructed a change of coor-
dinates, which reduces the power of the momentum variable in the second
term of (4.29) while preserving the special structure of the Hamiltonian.
Since in their paper they had to use this transformation several times
consecutively, the associated theorem is somewhat general and too compli-
cated for our purpose here. Thus we will cite it only in the needed form.
For µ > 0 we set

Σµ = R× [µ,∞)× R. (4.32)
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Lemma 4.18. Consider the Hamiltonian h from (4.29), i.e.

h(ϕ, I; τ) = κ0I
α+3

2(α+1) + f(ϕ)c(τ)I
3−α

2(α+1) +R(ϕ, I; τ),

where f(ϕ) = (α+3)
2(α+1)γκ

α+5
α+3

0 p(ϕ), and IC0 from Lemma 4.17. Then there

exists I∗∗ > IC0, I∗ > 0 and a C1-diffeomorphism

T : ΣI∗∗ → T (ΣI∗∗) ⊂ ΣI∗ , (ϕ, I; τ) 7→ (φ, I; τ),

which transforms the system (4.30) into φ′ = ∂Ih1, I ′ = −∂φh1, where

h1(φ, I; τ) = κ0I
α+3

2(α+1) + f1(φ)c1(τ)Ibα +R1(φ, I; τ).

The new functions appearing in h1 satisfy

(a) f1(φ) = − α+3
2(α+1)κ0ḟ(φ) = −

(
α+3

2(α+1)

)2
γκ

2α+8
α+3

0 ṗ(φ),

(b) c1 ∈ C4(R), c′1(τ) = c(τ),
∫ 2π
0 c1(τ) dτ = 0,

(c) bα = − 3α2−2α−9
2(α+3)(α+1) <

3−α
2(α+1) ≤ 0, and

(d) R1 ∈ C3(ΣI∗) satisfies (4.31) for all I ≥ I∗ and with some constant
C̃0 > 0.

The quantities I∗∗, I∗ and C̃0 can be estimated in terms of α, κ0, ∥f∥C4
b (R)

,

∥c∥Cb(R), and C0 from Lemma 4.17. Furthermore, the change of variables
T has the following properties:

(i) T (·, ·; τ) is symplectic for all τ ∈ R, i.e. dφ ∧ dI = dϕ ∧ dI,

(ii) T (ϕ, I; τ + 2π) = T (ϕ, I; τ) + (0, 0; 2π), and

(iii) I/2 ≤ I(ϕ, I; τ) ≤ 2I for all (ϕ, I; τ).

Even if we omit the proof here, let us note that the change of variables
can be realized via the generating function

Ψ(ϕ, I; τ) = −I
3−α

2(α+1) f(ϕ)c1(τ),
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where c1 is uniquely determined by the conditions in (b). Therefore T is
implicitly defined by the equations

I = I + ∂ϕΨ, φ = ϕ+ ∂IΨ

and one can determine h1 through the relation

h1(φ, I; τ) = h(ϕ, I; τ) + ∂τΨ(ϕ, I; τ).

4.4.2 The successor map

Consider the new Hamiltonian from Theorem 4.18, that is

h1(φ, I; τ) = κ0I
α+3

2(α+1) + f1(φ)c1(τ)Ibα +R1(φ, I; τ),

which is well-defined on the set T (ΣI∗∗) and 2π-periodic in the time variable
τ . The corresponding equations of motion are{

φ′ = ∂Ih1 = κ0
α+3

2(α+1)I
1−α

2(α+1) + bαf1(φ)c1(τ)Ibα−1 + ∂IR1,

I ′ = −∂φh1 = −ḟ1(φ)c1(τ)Ibα − ∂φR1,
(4.33)

where ḟ1(φ) = −
(

α+3
2(α+1)

)2
κ

2α+8
α+3

0 γp̈(φ).

Now, suppose (φ0, I0; τ0) ∈ T (ΣI∗∗) and denote the solution of (4.33)
with initial data φ(τ0) = φ0, I(τ0) = I0 by

(φ(τ ;φ0, I0, τ0), I(τ ;φ0, I0, τ0)).

We want to construct a subset ΣI∗∗ = R×[I∗∗,∞)×R ⊂ T (ΣI∗∗) such that
(φ, I) is defined on the whole interval [τ0, τ0 + 2π] whenever (φ0, I0, τ0) ∈
ΣI∗∗ . Similar to [KO13, Lemma 4.1], we state:

Lemma 4.19. There exists a constant I∗∗ > I∗ (depending only upon
α, ∥f∥C4

b (R)
, ∥c∥Cb(R) and C̃0 from Theorem 4.18) such that ΣI∗∗ ⊂ T (ΣI∗∗)

and for any (φ0, I0, τ0) ∈ ΣI∗∗ the solution (φ, I) of (4.33) with initial
data

φ(τ0) = φ0, I(τ0) = I0
exists on [τ0, τ0 + 2π], where it satisfies

I0
4
≤ I(τ) ≤ 4I0 for τ ∈ [τ0, τ0 + 2π].
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Proof. Suppose I0 ≥ I∗∗ ≥ 4I∗, then (iii) from Theorem 4.18 yields
ΣI∗∗ ⊂ T (ΣI∗∗). Now, let T > 0 be maximal such that I0/4 ≤ I(τ) ≤ 4I0
holds for all τ ∈ [τ0, τ0 + T ). On this interval we have

(I1−bα)′ = (1− bα)I−bαI ′ = (1− bα)I−bα(−ḟ1(φ)c1(τ)Ibα − ∂φR1)

and thus

|(I1−bα)′| ≤ |(1− bα)|
(
∥ḟ1∥Cb ∥c1∥Cb + |∂φR1|I−bα

)
≤ |(1− bα)|

(
∥ḟ1∥Cb ∥c1∥Cb + C̃0

)
= Ĉ,

with C̃0 > 0 from (d) of Theorem 4.18, since bα = − 3α2−2α−9
2(α+3)(α+1) >

3(1−α)
2(α+1) .

Now assume T ≤ 2π, then for I∗∗ sufficiently large we conclude(
I0
2

)1−bα
≤ I1−bα0 − 2πĈ ≤ I(τ)1−bα ≤ I1−bα0 + 2πĈ ≤ (2I0)1−bα

on the whole interval [τ0, τ0 + T ). This contradicts the definition of T and
thus completes the proof.

We can therefore consider the Poincaré map Φ : R × [I∗∗,∞) → R2

corresponding to the periodic system (4.33), defined by

Φ(φ0, I0) = (φ(5π/2;φ0, I0, π/2), I(5π/2;φ0, I0, π/2)). (4.34)

The choice τ0 = π
2 is basically due to computational advantages, since

c(ϑ) = 0 if and only if ϑ = π/2 +mπ with m ∈ Z. Moreover, values of
τ = ϑ in π/2 + 2πZ correspond exactly to those zeros of the solution x(t),
where ẋ < 0. We write

Φ(φ0, I0) = (φ1, I1).

Now that we have defined a suitable successor map, we can prove that I
is an adiabatic invariant in the sense of equation (4.10):

Lemma 4.20. There is a constant C > 0 (depending only upon α,
∥f∥C4

b (R)
, ∥c∥Cb(R) and C̃0) such that

|I1 − I0| ≤ CIbα0
holds for all (φ0, I0) ∈ R× [I∗∗,∞).
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Proof. With a similar reasoning like in the proof of Lemma 4.19 we get

|I ′(τ)| = |−ḟ1(φ)c1(τ)Ibα(τ)− ∂φR1| ≤ ∥ḟ1∥Cb
∥c1∥Cb

I(τ)bα + C̃0I(τ)
3(1−α)
2(α+1)

≤
(
∥ḟ1∥Cb

∥c1∥Cb
+ C̃0

)
I(τ)bα ≤

(
∥ḟ1∥Cb

∥c1∥Cb
+ C̃0

)
4−bαIbα0 .

Now integrating over [π/2, 5π/2] gives us

|I1 − I0| ≤ 2π
(
∥ḟ1∥Cb ∥c1∥Cb + C̃0

)
4−bαIbα0 .

4.4.3 Almost periodicity

So far all our considerations have dealt with the case of a general forcing
function p ∈ C4

b (R). Now, let (Ω, ψ) be as in Section 4.1.1 and consider a
map P ∈ C4

ψ(Ω). We will replace p(t) by

pω(t) = P (ω + ψ(t)), ω ∈ Ω,

and show that the almost periodicity is inherited by the Hamiltonian
system (4.33). We have pω ∈ C4

b (R) and ∥pω∥C4
b (R)

= ∥P∥C4
ψ(Ω). Therefore

all results of the previous sections are applicable. Considering Remark 4.16,
this also implies that we can find new constants r∗, I∗ etc. depending only
upon α and ∥P∥C4

ψ(Ω) such that corresponding estimates hold uniformly

in ω ∈ Ω.
Since R and S basically leave the time variable t unchanged, it is

straightforward to prove that the transformation to action-angle coordi-
nates as well as the change to the time-energy coordinates (ϕ, I) preserve
the almost periodic structure. Using the notation ψω(t) = ω + ψ(t), we
find functions

H,R : Ω× [I∗,∞)× R→ R× [I∗,∞)× R

in the class C3
ψ(Ω× [I∗,∞)× R) depending on P such that

h(ϕ, I; τ) = H(ψω(ϕ), I; τ), R(ϕ, I; τ) = R(ψω(ϕ), I; τ).

holds for every ω ∈ Ω.



78 Chapter 4. The almost periodic case

Remark 4.21. Let us note, that the functions h,R etc. now depend on the
choice of ω. Thus it would be more precise to write hω, Rω and so on, but
for reasons of clarity we will omit the index throughout this section. The
functions H,R etc. on the other hand are uniquely determined by P .

However it requires a bit more work, to see that also the transformation
T defined in Theorem 4.18 retains the almost periodic properties. We
recall that this change of variables is defined by

I = I + ∂ϕΨ, φ = ϕ+ ∂IΨ,

where Ψ(ϕ, I; τ) = −I
3−α

2(α+1) f(ϕ)c1(τ). In particular, we have φ(ϕ, I; τ) =
ϕ+ η(I, τ)f(ϕ) with

η(I, τ) = − 3− α
2(α+ 1)

I
1−3α
2(α+1) c1(τ) and f(ϕ) =

(α+ 3)

2(α+ 1)
γκ

α+5
α+3

0 P (ψω(ϕ)).

Lemma 4.22. Let F ∈ C4
ψ(Ω) and f(ϕ) = F (ψω(ϕ)) be given. Moreover,

suppose η ∈ C4((0,∞) × R) satisfies limI→∞ η(I, τ) = 0 uniformly and
Ĩ > 0 is such that |η(I, τ)|∥F∥C4

ψ(Ω) < 1/4 for I ≥ Ĩ. Finally, let

φ(ϕ, I; τ) = ϕ+ η(I, τ)f(ϕ).

Then, the map ϕ 7→ φ(ϕ, I; τ) is invertible for I ≥ Ĩ and its inverse can
be written in the form

ϕ(φ, I; τ) = φ+ q(φ, I; τ),

where q(φ, I; τ) = Q(ψω(φ), I; τ) with Q ∈ C4
ψ(Ω× [Ĩ,∞)× R).

Proof. First, consider the function Z(ϕ, φ, I, τ) = ϕ + η(I, τ)f(ϕ) − φ.
For I ≥ Ĩ, we have ∂ϕZ ≥ 1

2 and since Z ∈ C4(R2 × [Ĩ,∞) × R) the
equation Z = 0 defines a unique solution ϕ(φ, I; τ) of class C4. Thus also
the function

q(φ, I; τ) = ϕ(φ, I; τ)− φ

is of that class. At this point we fix (I, τ) ∈ [Ĩ,∞)× R and for clarity we
do not write the dependence explicitly. Thus, the reasoning above yields

q(φ) = ϕ(φ)− φ = −ηf(ϕ(φ)) = −ηf(φ+ q(φ)) (4.35)
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and vice versa

q(ϕ+ ηf(ϕ)) = −ηf(ϕ). (4.36)

Now, let (ϕn) be any sequence of reals. In order to show that q is almost
periodic, we need to find a subsequence (ϕnk) so that q(φ+ϕnk) converges
uniformly. Since f is a.p., there is a subsequence (say the whole sequence)
and a function f∞ ∈ C4(R) such that limn→∞ f(ϕ+ϕn) = f∞(ϕ) uniformly.
By Lemma C.2, there is ω̃ ∈ Ω such that f∞(ϕ) = F (ω̃ + ψ(ϕ)). Now, let
q∞(φ, I; τ) be the implicit solution of the equation q + ηf∞(φ+ q) = 0,
which exists due to the assumption |η|∥F∥C4

ψ(Ω) < 1/4. That is

q∞(φ) = −ηf∞(φ+ q∞(φ)), φ ∈ R.

In fact, we also have

q∞(z + ηf∞(z)) = −ηf∞(z), z ∈ R. (4.37)

This can be seen as follows. The function q∞ is of class C4 and

q̇∞(φ) = − ηḟ∞(φ+ q∞(φ))

1 + ηḟ∞(φ+ q∞(φ))
.

So ∥q∞∥C1 < 1/3 and thus the function z(φ) = φ + q∞(φ) is invertible.
Its inverse φ(z) satisfies

φ(z) = z − q∞(φ(z)) = z + ηf∞(φ(z) + q∞(φ(z))) = z + ηf∞(z).

Plugging this into the definition of q∞ yields (4.37). Now, we show that
limn→∞ q(φ+ ϕn) = q∞(φ) holds uniformly for the same (sub-)sequence
(ϕn). First, note that again w 7→ w + ηf∞(w) is homeomorphism with
respect to R. Thus

sup
φ∈R
|q(φ+ ϕn)− q∞(φ)| = sup

w∈R
|q(w + ηf∞(w) + ϕn)− q∞(w + ηf∞(w))|.

The right hand side can be split into two parts converging to 0. Since q is
uniformly continuous we have

|q(w + ηf∞(w) + ϕn)− q(w + ηf(w + ϕn) + ϕn)| → 0
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and moreover, using (4.36) and (4.37) we get

|q(w+ϕn+ηf(w+ϕn))−q∞(w+ηf∞(w))| = |ηf(w+ϕn)−ηf∞(w)| → 0,

uniformly. Thus in total, we have proven that q is almost periodic. More-
over, differentiating (4.35) yields

q̇(φ) = − ηḟ(φ+ q(φ))

1 + ηḟ(φ+ q∞(φ))
.

So q̇(φ) is a continuous combination of a.p. functions and hence almost
periodic. The fact that the higher derivatives q(j) are a.p. follows analo-
gously. Finally, it remains to show that q is representable over (Ω, ψ). We
need to find a morphism (Ω, ψ)→ (Hq, ψq), which is equivalent to showing
that ψ(tn)→ 0 implies ψq(tn)→ 0. But ψ(tn)→ 0 yields

lim
n→∞

f(ϕ+ tn) = lim
n→∞

F (ψ(ϕ) + ψ(tn)) = F (ψ(ϕ)) = f(ϕ)

and thus limn→∞ q(ϕ+ tn) = q(ϕ) just follows from the argument above,
in the special case f∞ = f and thus q∞ = q.

Without loss of generality we can assume that Ĩ = I∗∗ satisfies the
assumption of Lemma 4.22, since ∥f∥C4(Ω) ≤ γκ20∥P∥C4

ψ(Ω). The new

Hamiltonian is given by

h1(φ, I; τ) = h(ϕ, I; τ) + ∂τΨ(ϕ, I; τ),

where ∂τΨ(ϕ, I; τ) = −I
3−α

2(α+1) f(ϕ)c(τ), and because of Lemma 4.22 we
have

h1(φ, I; τ) = h(φ+ q(φ, I; τ), I; τ)− I
3−α

2(α+1) f(φ+ q(φ, I; τ))c(τ).

Moreover, I can be expressed as

I = I − I
3−α

2(α+1) ḟ(ϕ)c1(τ) = I − I
3−α

2(α+1) ḟ(φ+ q(φ, I; τ))c1(τ).

Hereby motivated, we define the C3-maps I, H1 : Ω× [I∗∗,∞)× R→ R
by

I(ω, I; τ) = I − I
3−α

2(α+1)∂ψF (ψω(Q(ω, I; τ)))c1(τ)
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and further

H1(ω, I; τ) = H(ψω(Q(ω, I; τ)), I(ω, I; τ); τ)− I
3−α

2(α+1)F (ψω(Q(ω, I; τ)))c(τ).

This way, the relation h1(φ, I; τ) = H1(ψω(φ), I; τ) holds for all (φ, I; τ)
in R× [I∗∗,∞)× R.

4.4.4 Proof of the main result

Given P ∈ C4
ψ(Ω), let pω(t) = P (ω + ψ(t)) be the induced almost periodic

forcing function. We write xω(t; x̃, ṽ, t̃) for the solution of

ẍ+ |x|α−1x = pω(t), (4.38)

satisfying the initial condition xω(t̃) = x̃ and ẋω(t̃) = ṽ. Generally, it is
sufficient to consider only t̃ = 0. We show that xω(t; x̃, ṽ, 0) is Poisson
stable for almost all (x̃, ṽ, ω) ∈ R2 × Ω.

The proof follows a similar approach as in Section 3.2. First we are
going to construct a measure-preserving embedding suitable for Theorem
4.9, which corresponds to the Poincaré map Φ of system (4.33). It follows
that for almost all ω ∈ Ω the corresponding escaping set Eω has Lebesgue
measure zero. In the second part we transform this map back to the
original coordinates and deduce that also for this Poincaré map there are
almost no escaping orbits. Finally, the last part contains the conclusion
that almost every solution is Poisson stable.

Escaping orbits of the transformed system

For ω ∈ Ω, denote by (φω(τ ;φ0, I0, τ0), Iω(τ ;φ0, I0, τ0)) the solution to
system (4.33) with initial data φ(τ0) = φ0, I(τ0) = I0 and forcing function
p(t) = pω(t). Furthermore, we will write (φ(τ ;ω0, I0, π/2), I(τ ;ω0, I0, π/2))
for the solution of

φ′ = ∂IH1(ω0 + ψ(φ), I; τ), I ′ = −∂ψH1(ω0 + ψ(φ), I; τ), (4.39)

with H1 defined as in the last section and satisfying the initial condition
φ(π/2) = 0, I(π/2) = I0. If we have ω0 = ψω(φ0) these solutions meet
the identity(

φω(τ ;φ0, I0, π/2)
Iω(τ ;φ0, I0, π/2)

)
=

(
φ0 + φ(τ ;ω0, I0, π/2)
I(τ ;ω0, I0, π/2)

)
. (4.40)
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Set I∗ = max{4I∗∗, (2κ1)
α+3
2 } and D = Ω × (I∗,∞). Moreover, let the

functions F,G : D → R be defined by

F (ω0, I0) =
∫ 5π

2

π
2

φ′(τ ;ω0, I0, π/2) dτ

and

G(ω0, I0) =
∫ 5π

2

π
2

I ′(τ ;ω0, I0, π/2) dτ,

respectively, and consider g : D → Ω× (0,∞) given by

g(ω0, I0) = (ω0 + ψ(F (ω0, I0)), I0 +G(ω0, I0)).

Then F and G are continuous, since the solution of (4.39) depends con-
tinuously upon its initial condition and the parameter ω0. Therefore g
has special form (4.7). The corresponding family of maps of the plane
{gω}ω∈Ω as in (4.8) is

gω : Dω ⊂ R× (0,∞)→ R× (0,∞),

gω(φ0, I0) = (φ0 + F (ψω(φ0), I0), I0 +G(ψω(φ0), I0)),

where Dω = (ψω × id)−1(D) = R × (I∗,∞). Because of (4.40) this map
coincides with the successor map Φ from (4.34) for the forcing function pω.

The injectivity of g is a consequence of the unique resolvability of the
initial value problem

φ′ = ∂IH1(ω1 + ψ(φ), I; τ), I ′ = −∂ωH1(ω1 + ψ(φ), I; τ),

with φ(5π/2) = 0 and I(5π/2) = I1, where (ω1, I1) = g(ω0, I0).
The proof that g is measure-preserving is analogue to the corresponding

proof for the ping-pong map, since gω corresponds to a Hamiltonian flow
and thus Liouville’s theorem yields det Jgω(φ0, I0) = 1.

Hence we have shown that g is a measure-preserving embedding. Now,
we have to find suitable functions W,k as described in Theorem 4.9. Since
C from Lemma 4.20 depends only upon ∥f∥C4

b (R)
, this constant is uniform

in ω ∈ Ω. Therefore, if we take W (ω0, I0) = I0, Lemma 4.20 implies

W (g(ω0, I0))−W (ω0, I0) = I1 − I0 ≤ k(I0),
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where k(I0) = CIbα0 with C as mentioned above and bα < 0 from Theorem
4.18. That way W and k meet all demanded criteria and thus the measure-
preserving embedding g satisfies all conditions of Theorem 4.9. This gives
us λ2(Eω) = 0 for almost all ω ∈ Ω for the escaping set

Eω = {(φ0, I0) ∈ Dω,∞ : lim
n→∞

In =∞},

where Dω,∞ is the set of initial conditions leading to complete forward
orbits of gω as described in Section 4.2.1.

Undoing the transformations

Recall the transformations of Section 4.4.1:

(x, v; t)
R→ (ϑ̄, r; t) ↪→ (ϑ, r; t)

S→ (ϕ, I; τ)
T→ (φ, I; τ)

Let r∗ > 0 be such that

κ1r
2(α+1)
α+3 − γr

2
α+3 ∥P∥C4

ψ(Ω)∥c∥∞ ≥ 2I∗, ∀r ≥ r∗.

Using the notation introduced in (4.32), it follows

S(Σr∗) ⊂ Σ2I∗ and T (Σ2I∗) ⊂ ΣI∗ .

Moreover, define Gr∗ = R−1(S1× [r∗,∞)×R). Given (x0, v0, t0) ∈ Gr∗ , let
(ϑ̄0, r0, t0) = R(x0, v0, t0) and (φ0, I0, τ0) = T (S(ϑ0, r0, t0)). Furthermore,
fix some ω ∈ Ω. Note however, that all considerations below hold uniformly
in ω. Due to Lemma 4.19, we know that the corresponding solution
(φω(τ ;φ0, I0, τ0), Iω(τ ;φ0, I0, τ0)) of (4.33) satisfies Iω(τ) ≥ I∗∗ for all
τ ∈ [τ0, τ0 + 2π]. Also, we have

T −1(ΣI∗∗) ⊂ ΣI∗ and S−1(ΣI∗) ⊂ Σr∗ .

Hence, the solution (φω, Iω)(τ) can be transformed back to the original
coordinates for all τ ∈ [τ0, τ0 + 2π]. Illustrative, this means that cor-
responding solution (xω, ẋω)(t) does a full turn around the origin. In
particular, it enables us to consider the following Poincaré map. Let
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v∗ ≤ −
√
2κ1r

∗ α+1
α+3 and define the function ζω that maps the initial values

(v0, t0) ∈ (−∞, v∗)× R to (v1, t1), where v1 = ẋω(t1; 0, v0, t0) and

t1 = inf{s ∈ (t0,∞) : xω(s; 0, v0, t0) = 0, ẋω(s; 0, v0, t0) < 0}.

This map is well-defined by the argument above. In fact, it coincides
with the Poincaré map gω of the last step if it is transformed back to the
original coordinates. Since x = 0 and v < 0 corresponds to ϑ̄ = π/2 and
therefore τ ∈ {π/2 + 2πZ}, we consider restrictions of the transformation
maps onto some 2-dimensional subspaces, namely

R0 : (−∞, 0)× R→ (0,∞)× R, R0(v, t) = ((π2, π3) ◦ R)(0, v; t),
S0 : [r∗,∞)× R→ R× (0,∞), S0(r, t) = ((π1, π2) ◦ S)(π/2, r; t),
T0 : R× [I∗∗,∞)→ R× (0,∞), T0(ϕ, I) = ((π1, π2) ◦ T )(ϕ, I;π/2),

where πj : R3 → R denotes the projection on to the j-th component. Then,
ζω can be written in the following way:

ζω = (R−1
0 ◦ S

−1
0 ◦ T

−1
0 ) ◦ gω ◦ (T0 ◦ S0 ◦ R0)

If (vn, tn)n∈N = (ζnω(v0, t0))n∈N denotes a generic complete forward orbit,
the escaping set Eω consists of those initial values (v0, t0) ∈ (−∞, v∗)× R
such that limn→∞ vn = −∞. Clearly, we have

Eω ⊂ (R−1
0 ◦ S

−1
0 ◦ T

−1
0 )(Eω).

Since T0, S0 and R0 are diffeomorphisms with respect to their images, the
latter inclusion implies λ2(Eω) = 0.

Finally, note that by the same argument as above and by (4.26) we
can also implicitly define a function Tω : Gr∗ → [0, 2π) such that

Tω(x̃, ṽ) = inf{s ∈ [0,∞) : xω(s; x̃, ṽ, 0) = 0, ẋω(s; x̃, ṽ, 0) < 0}.

By restricting initial values to a set

Gr∗∗ = R−1((S1 \ {π/2})× (r∗∗,∞)× R)
where r∗∗ < r∗ < 0 is a suitable constant, we can assure that the map

Vω : Gr∗∗ → (−∞, v∗)× (0, 2π), Vω(x̃, ṽ) = (ẋω(Tω(x̃, ṽ); x̃, ṽ, 0), Tω(x̃, ṽ))

is well defined and in fact a diffeomorphism with respect to its image.
Hence, also the set Ẽω = V −1

ω (Eω) of initial values (x̃, ṽ) ∈ Gr∗∗ leading to
escaping orbits has measure zero.
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Poisson stability

Denote by Πω : R2 → R2 the time-2π map of (4.38), that is

Πω(x, v) = (xω(2π;x, v, 0), ẋω(2π;x, v, 0)).

Moreover, define Π̃ : R2 × Ω→ R2 × Ω by

Π̃(x, v, ω) = (Πω(x, v), ω + ψ(2π)).

Then Π̃ preserves the measure λ2⊗µΩ. Let (xn, vn, ωn)n∈N = Π̃n(x0, v0, ω0)
denote a generic orbit. By construction we have

(xn, vn) = (xω0(2πn;x0, v0, 0), ẋω0(2πn;x0, v0, 0)).

Consider the set

N =
{
(x0, v0, ω0) : lim

n→∞
(|xn|+ |vn|) =∞

}
.

The reasoning depicted at the end of Chapter 2 leads to the conclusion
that Π̃ is recurrent on (R2 × Ω) \ N . Moreover, for every (x0, v0, ω0) ∈ N
there is m ∈ N such that (xm, vm) ∈ Eωm . So N ⊂

⋃
m∈N Π̃−m(Z), where

Z =

{
(x, v, ω) ∈ R2 × Ω : (x, v) ∈ Ẽω

}
.

Thus N has measure zero, since

(λ2 ⊗ µΩ)(Z) =
∫
Ω
λ2(Ẽω) dµΩ(ω) = 0.

Let (x0, v0, ω0) = (x, v, ω) be a point in R2 × Ω and consider the corre-
sponding orbit (xn, vn, ωn)n∈N. Then, for almost every such (x, v, ω) there
is a sequence (σn)n∈N of natural numbers with σn →∞ as n→∞ such
that

lim
n→∞

(xσn , vσn , ωσn) = (x, v, ω).

In particular, we have pωσn (t) = P (ωσn + ψ(t))→ pω(t) uniformly. Thus,
the right hand side of

ẍ+ |x|α−1x = pωσn (t),
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converges uniformly as n → ∞. Write xωσn (t) = xωσn (t;xσn , vσn , 0) for
the corresponding solution. Considering the fact that also for the initial
condition we have limn→∞(xσn , vσn) = (x, v), it follows that(

xωσn (t)
ẋωσn (t)

)
→
(
xω(t)
ẋω(t)

)
, as n→∞,

uniformly on compact intervals in R (cf. [Har82], Chapter II Theorem
3.2). But because we have xωσn (t) = xω(t+ 2πσn), this yields

|xω(t+ 2πσn)− xω(t)|+ |ẋω(t+ 2πσn)− ẋω(t)| → 0, as n→∞,

uniformly on bounded intervals in R. Since the inverse map Π̃−1 is recurrent
as well, the whole argument can be repeated to conclude that almost every
solution xω(t) is Poisson stable.



Chapter 5

The non-periodic case

In this chapter, we will study certain twist maps of the plane without any
periodicity assumption. More precisely, we consider symplectic maps of
the form

θ1 = θ +
1

rα
(γ + F1(θ, r)), r1 = r + r1−αF2(θ, r),

with α ∈ (0, 1), γ ∈ R \ {0} and F1, F2 ∈ Fk+2(α). We denote by h the
primitive function satisfying dh = r1 dθ1 − r dθ. The main result of this
chapter, Theorem 5.25 down below, states that under suitable assumptions
on h all complete forward orbits are subjected to the growth condition
rn = O(n1/(k+1)α). The chapter is essentially based on [KO21]. In this
paper, Kunze and Ortega studied maps of the form above with F1, F2 and
h holomorphic. They were able to prove growth rates rn = O((log n)1/α)
for all forward complete real orbits.

The proof to Theorem 5.25 can be found in Section 5.4. To motivate
the preliminary sections, we briefly sketch its strategy. On one hand,
the fact that the involved functions are non-holomorphic simplifies some
computations in contrast to [KO21]. On the other hand, this also implies
that the Cauchy integral formula is not available. In particular, the norm
∥g∥∞ of a function g ∈ Ck yields no control over the norm ∥g∥Ck . As
a consequence, we will be dealing with higher derivatives of implicitly
defined functions. For this reason, a version of Faà di Bruno’s formula is

87
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introduced in Section 5.1.
The first step of the proof will be to rescale the vertical coordinate.

With ξ = ε1/αr the map becomes

ψε(θ, ξ) = (θ, ξ) + εl(θ, ξ, ε),

where l = (l1, l2) is given by

l1(θ, ξ, ε) =
1

ξα

(
γ + F1

(
θ,

ξ

ε1/α

))
, l2(θ, ξ, ε) = ξ1−αF2

(
θ,

ξ

ε1/α

)
.

For ε > 0 sufficiently small, ψε is well-defined on the ρ-neighborhood Gρ
of G = R × (1, 2), where ρ > 0 is a small constant. The form of ψε is
reminiscent of the near identity symplectic maps

Pε : x1 = x+ εl(x, ε), x1 = (q1, p1), x = (q, p),

studied by Neishtadt in [Nei84]. In this context, Kunze and Ortega
introduce the notion of E-symplectic families of maps. In Section 5.3,
we adapt this notion to the non-analytic case and say that {Pε} is an
E-symplectic family of class Ck+1 if the following conditions hold. There
is a function ζ(q, p, ε) such that

p1 dq1 − p dq = dζ(·, ε).

Both l(x, ε) and ζ(x, ε) lie in a suitable classMk+1
ρ,σ of functions (k + 1)-

times continuously differentiable in x, differentiable in ε, but with possible
discontinuities in ε = 0. Moreover, there is m ∈ Ck+1

b (Gρ) such that

ζ(x, ε) = εm(x) +O(ε2), ∂εζ(x, ε) = m(x) +O(ε),

uniformly in x ∈ Gρ as ε→ 0. Under these assumptions, it is possible to
construct an adiabatic invariant for Pε. Indeed, any map in this family
can be viewed as the Poincaré map of a 1-periodic Hamiltonian system

ẋ = εJ∇H(x, t, ε),

where H(·, t, ε) is of class Ck+2. Using a method of Hamiltonian averaging
discussed in Section 5.2, the system can be brought into normal form

ẏ = εJ∇N (y, ε) + εJ∇R(y, t, ε),
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where the remainder satisfies R(y, t, ε) = O(εk). In Theorem 5.21, we
conclude that E(x) = N (x, 0) is an adiabatic invariant for Pε. More
precisely, there are σ̂, Ĉ > 0 such that if ε ∈ [0, σ̂] and

(xn)0≤n≤N = (Pnε (x0))0≤n≤N

denotes a forward orbit piece of Pε with xn ∈ G for 0 ≤ n ≤ N , then

|E(xn)− E(x0)| ≤ Ĉε, 0 ≤ n ≤ min{N, ⌊ε−k⌋},

where ⌊w⌋ denotes the integer part of w. The content of Section 5.2 and 5.3
should be compared to [KO]. In our case, the family {ψε} is E-symplectic
of class Ck+1 and E(θ, ξ) = γ

1−αξ
1−α can be chosen as the corresponding

adiabatic invariant. After one additional change of variables sn ∼ r1−αn ,
this leads to an estimate of the form

|sn − sm| ≤ Csβm for m ≤ n ≤ m+ ⌊sk(1−β)m ⌋,

where β = 1−2α
1−α . In Section 5.4 we present a Lemma by Kunze and Ortega

applicable in such situations. It is related to the notion of lower and
upper solutions of the difference equation xn+1 = xn + Cxβn and allows to
conclude the growth rates asserted in Theorem 5.25 in a rigorous way.

Finally, Section 5.5 contains the application of this theorem to the
Fermi-Ulam ping-pong. Given a forcing function p ∈ Ck+1

b (R) with k ≥ 3,
we show that the ping-pong map can be transformed into a suitable form
and deduce that there is a constant C̃ > 0 so that any complete forward
orbit (tn, vn)n∈N0 must satisfy

vn ≤ C̃n1/(k−1), n ≥ n0,

for some n0 ∈ N. At this point, we also want to mention the paper [GN06],
in which the same adiabatic invariant of the ping-pong map is derived by
a Hamiltonian averaging procedure as well. At the end of this section,
we show how to construct a smooth forcing function p(t) leading to at
least one escaping orbit. This example stems from [KO11]. We prove that
for ∥p∥Ck+1(R) ≤ M , with a prefixed parameter M , there are a constant
C > 0 and a complete forward orbit (tn, vn)n∈N0 such that

vn ≥ Cn1/(k+1), n ∈ N.
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5.1 Derivatives of composite functions

We start by clarifying some notation. As the norm in Rd and Rd1 × Rd2
we take |x| = max1≤i≤d |xi| and |A| = max1≤i≤d1,1≤j≤d2 |aij |, respectively.
Let G ⊂ Rd be an open set and k ∈ N0. We use the following definition of
the Ck-norm. For u ∈ Ck(G) we set

∥u∥Ck(G) = max
|ν|≤k

sup
x∈G
|∂νu(x)|.

Note, that for multi-indices ν = (ν1, . . . , νd) ∈ Nd0 the term |ν| sill denotes
its length |ν1|+ . . .+ |νd|. For vector and matrix valued functions u the
maximum in the definition is also taken over all components.

Lemma 5.1. Let f, g ∈ Ck(G) and consider h(x) = f(x)g(x). Then

∥h∥Ck(G) ≤ 2k∥f∥Ck(G)∥g∥Ck(G).

Proof. Let ν ∈ Nd0 be a multi-index of length |ν| ≤ k. For x ∈ G the
Leibniz product formula yields

∂νh(x) =
∑
µ≤ν

(
ν

µ

)
∂µf(x)∂ν−µg(x).

Moreover if we denote by 1 and 2 the vectors in Rd with every component
equal 1 and 2 respectively, then the multi-binomial theorem implies∑

µ≤ν

(
ν

µ

)
=
∑
µ≤ν

(
ν

µ

)
1µ1ν−µ = 2ν = 2|ν|.

Thus the assertion follows.

Since we will be dealing with many composite functions, we introduce
a multivariate version of the Faà di Bruno formula [CS96]. Write µ ≺ ν,
if one of the following conditions hold:

1. |µ| < |ν|,

2. |µ| = |ν| and µ1 < ν1, or
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3. |µ| = |ν|, µ1 = ν1, . . . , µr = νr and µr+1 < νr+1 for some 1 ≤ r < d.

Lemma 5.2. Let ν ∈ Nd0 be a multi-index with length |ν| = k and consider
h = f ◦ g, where g ∈ Ck(G,Rm) and f ∈ Ck(g(G)). Then, for x ∈ G we
have

∂νh(x) =
∑

1≤|µ|≤k

∂µf(g(x))
∑
p(ν,µ)

ν!

k∏
j=1

(∂ℓjg(x))rj

(rj !)(ℓj !)|rj |
, (5.1)

where µ ∈ Nm0 and

p(ν,µ) ={
(r1, . . . , rk, ℓ1, . . . , ℓk) : ri ∈ Nm0 , ℓi ∈ Nd0 for 1 ≤ i ≤ k, there is 0 ≤ s < k

so that ri = 0 and ℓi = 0 for 1 ≤ i ≤ s; |ri| > 0 for s+ 1 ≤ i ≤ k;

and moreover 0 ≺ ℓs+1 ≺ · · · ≺ ℓn are such that

k∑
i=1

ri = µ,

k∑
i=1

|ri|ℓi = ν
}
.

For a better comprehension of this formula, one may consider the
special case m = 1. Then µ = r is just a natural number and every
element of p(ν, r) corresponds to a partition of the multi-index ν into
smaller multi-indices ℓi. There are k − s distinct parts ℓi, each with
multiplicity ri and the whole partition contains r non-zero multi-indices
(counted with multiplicity).

In order to describe the occurring terms more thoroughly, we also
mention the Stirling numbers of second kind defined by

Sk,l =
1

l!

l∑
j=1

(−1)l−j
(
l

j

)
jk,

and the Bell numbersBk =
∑k

l=0 Sk,l. Then, the number of terms occurring
in Lemma 5.2 is given by the following equality (cf. [CS96], Lemma 2.7).

Lemma 5.3. Let ν be a multi-index of length |ν| = k. Then, for 1 ≤ l ≤ k
we have the identity

∑
|µ|=l
µ∈Nm0

∑
p(ν,µ)

ν!
k∏
j=1

1

(rj !)(ℓj !)|rj |
= mlSk,l.
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In particular, this yields the following estimate for composite functions.

Corollary 5.4. Under the same assumptions of Lemma 5.2 we have

∥h∥Ck(G) ≤ mkBk∥f∥Ck(g(G))max{∥Dg∥Ck−1(G), ∥Dg∥kCk−1(G)},

where Dg denotes the Jacobi matrix of g.

5.2 Hamiltonian normal forms

In this section, we establish a theorem about normal forms of periodic
Hamiltonian systems and also give the fully detailed proof. The reader
familiar with Hamiltonian averaging may only read Definition 5.5 and 5.7,
as well as Theorem 5.13 below. The interested reader on the other hand is
referred to [AKN85] for a comprehensive discussion of such topics and to
[KO] for the full proof in the analytic case. For the sake of simplicity we
will stick to the case relevant for our application. Thus, let I ⊂ R be an
open bounded interval and consider the strip G = R× I. Given ρ > 0, we
write Gρ = R× (inf I − ρ, sup I + ρ) for the ρ-neighborhood of G.

Definition 5.5. For k ∈ N and ρ, σ > 0, let Hkρ,σ be the class of all
functions H : Gρ × R× [0, σ]→ R, H = H(x, t, ε) so that

(i) H is 1-periodic in t,

(ii) for every t ∈ R, ε ∈ [0, σ] we have H(·, t, ε) ∈ Ck(Gρ) and

∂νxH ∈ C(Gr × R× [0, σ]) for 0 ≤ |ν| ≤ k,

(iii) ∥H∥k,ρ,σ <∞, where ∥H∥k,ρ,σ = sup
ε∈[0,σ]

sup
t∈R
∥H(·, t, ε)∥Ck(Gρ).

Moreover, let H̃kρ,σ be the subclass of functions H ∈ Hkρ,σ such that∫ 1

0
H(x, t, ε) dt = 0 (5.2)

for all x ∈ Gρ and ε ∈ [0, σ].



5.2. Hamiltonian normal forms 93

For functions f = (f1, . . . , fd) with values in Rd we set

∥f∥k,ρ,σ = max
1≤i≤d

∥fi∥k,ρ,σ.

Remark 5.6. Clearly the estimates both in Lemma 5.1 and Corollary 5.4
are also true for the norm ∥·∥k,ρ,σ.

5.2.1 A near-identity transformation

On this class of Hamiltonian systems, we will consider a suitable type of
transformations.

Definition 5.7. Let 0 < r < ρ and σ > 0. A map Ψ : Gr×R×[0, σ]→ Gρ,
Ψ(X, t, ε) will be called an admissible change of variables of class Ck, if it
satisfies

(i) Ψ is 1-periodic in t and Ψ(·, 0, ε) = idX for ε ∈ [0, σ],

(ii) for every t ∈ R, ε ∈ [0, σ] we have Ψ(·, t, ε) ∈ Ck(Gr) and

∂νxΨ ∈ C(Gr × R× [0, σ]) for 0 ≤ |ν| ≤ k,

(iii) for every t ∈ R, ε ∈ [0, σ] the map Ψ(·, t, ε) is an exact symplectic
diffeomorphism with respect to its image.

The following canonical transformation is of this type.

Lemma 5.8. Fix k ∈ N, 0 < r < ρ, σ > 0 and set σ1 = min{12 , ρ− r, σ}.
Then, for every h ∈ H̃k+1

ρ,σ with ∥h∥k+1,ρ,σ ≤ 1, the equations

q = Q+ ε

∫ t

0

∂h

∂P
(q, P, s, ε) ds, p = P − ε

∫ t

0

∂h

∂q
(q, P, s, ε) ds, (5.3)

implicitly define an admissible change of variables of class Ck denoted by

Ψ : Gr × R× [0, σ1]→ Gρ, (Q,P, t, ε) 7→ (q, p).

Moreover, there is an increasing sequence of positive constants (Cm)m∈N
depending only on m ∈ N such that

∥Ψ(·, t, ε)− id ∥Cm(Gr) ≤ Cmε∥h∥k+1,ρ,σ for 0 ≤ m ≤ k, (5.4)

holds for all t ∈ R and ε ∈ [0, σ1].
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Proof. First, we show that Ψ is well-defined. To this end, consider the
function

Z(q,Q, P, t, ε) = q −Q− ε
∫ t

0

∂h

∂P
(q, P, s, ε) ds,

where q ∈ R, (Q,P ) ∈ Gr, t ∈ [0, 1] and ε ∈ [0, σ1]. We have

∂Z

∂q
≥ 1− ε

∣∣∣∣∣
∫ t

0

∂2h

∂q∂P
(q, P, s, ε) ds

∣∣∣∣∣ ≥ 1− ε∥h∥k+1,ρ,σ ≥ 1− σ1 > 0.

Therefore, the equation Z = 0 has a unique solution q = q(Q,P, t, ε) if
(Q,P, t, ε) is fixed. A suitable implicit function theorem shows that locally
q is continuous and due to the uniqueness we get q ∈ C(Gr× [0, 1]× [0, σ1])
[BGdS08]. And since Z is of class Ck in (q,Q, P ), also the implicit solution
q(·, t, ε) is in that class. Then, p is given by

p(Q,P, t, ε) = P − ε
∫ t

0

∂h

∂q
(q(Q,P, t, ε), P, s, ε) ds.

Note that Z is 1-periodic in t due to (5.2). Thus, the definition of Ψ is
completed by extending it periodically to t ∈ R. In the following we also
write X = (Q,P ) and x = (q, p).
Next, we verify (5.4). For m = 0, it is clearly true with C0 = 1. This also
proves that Ψ(Gr × [0, 1]× [0, σ1]) ⊂ Gρ. Differentiating the first equation
in (5.3) with respect to Q yields

∂q

∂Q

(
1− ε

∫ t

0

∂2h

∂q∂P
(q, P, s, ε) ds

)
= 1. (5.5)

and consequently∣∣∣∣ ∂q∂Q − 1

∣∣∣∣ ≤ ε∥h∥k+1,ρ,σ

1− ε∥h∥k+1,ρ,σ
≤ 2ε∥h∥k+1,ρ,σ.

In the same way, differentiation with respect to P yields

∂q

∂P

(
1− ε

∫ t

0

∂2h

∂q∂P
(q, P, s, ε) ds

)
= ε

∫ t

0

∂2h

∂P 2
(q, P, s, ε) ds. (5.6)
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And therefore ∣∣∣∣ ∂q∂P
∣∣∣∣ ≤ ε∥h∥k+1,ρ,σ

1− ε∥h∥k+1,ρ,σ
≤ 2ε∥h∥k+1,ρ,σ.

The bounds on
∣∣∣ ∂p∂Q ∣∣∣ and ∣∣∣ ∂p∂P − 1

∣∣∣ can be obtained in an analogous way.

Thus, we have verified (5.4) for m = 1 and C1 = 2. Now, assume that (5.4)
holds for j = 0, 1, . . . ,m with m < k. Let q̃(Q,P, t, ε) = (q(Q,P, t, ε), P ).
Then for ν ∈ N2

0 with |ν| = m+ 1 Lemma 5.2 yields

∂νXq = ε

∫ t

0

∑
1≤|µ|≤m+1

∂µ
′
h(q̃, s, ε)

∑
p(ν,µ)

ν!
m+1∏
j=1

(∂
ℓj
X q̃)

rj

(rj !)(ℓj !)|rj |
ds, (5.7)

where µ′ = µ+ (0, 1). Note, that on the right hand side there is exactly

one term ε
∫ t
0

∂2h
∂q∂P (q̃, s, ε)∂

ν
Xq dt, all other terms contain only derivatives

of q up to order m. Thus the inductive hypothesis and Lemma 5.3 lead to
the estimate

|∂νXq| ≤
ε∥h∥k+1,ρ,σ

1− σ1
(1 + Cmε∥h∥k+1,ρ,σ)

m+12m+1Bm+1 ≤ Cm+1ε∥h∥k+1,ρ,σ,

for a suitable constant Cm+1 > 0. Again, the estimates for p can be
obtained in a similar way. Thus (5.4) is verified. Moreover, (5.5), (5.6),
(5.7) and their counterparts for p show that the derivatives ∂νXΨ are
also continuous in t and ε. It remains to show that also condition (iii)
of Definition 5.7 is satisfied. Let X,X ′ ∈ Gr and write x = Ψ(X, t, ε),
x′ = Ψ(X ′, t, ε) respectively. Then, by the convexity of Gρ and the mean
value theorem we have

|X − X̃| ≤ |x− x′|+ ε∥h∥k+1,ρ,σ(|q − q′|+ |P − P ′|)
≤ |x− x′|+ 1

2(|x− x
′|+ |X −X ′|)

Hence Ψ is one-to-one. Finally, note that equations (5.3) can be derived
from the generating function

S(q, P, t, ε) = qP − ε
∫ t

0
h(q, P, s, ε) ds. (5.8)

Therefore, detDΨ = 1 and Ψ is an exact symplectic diffeomorphism with
respect to its image.



96 Chapter 5. The non-periodic case

Note, that in fact the slightly stronger estimate

∥Ψ(·, t, ε)− id ∥Cm(Gr) ≤ Cmε sup
t∈R
∥h(·, t, ε)∥Ck+1(Gρ), (5.9)

with ε ∈ [0, σ], follows by the same argument.

Corollary 5.9. Under the assumptions of Lemma 5.8, let 0 < r̂ < r < ρ
and denote by Ψ : Gr × R × [0, σ1] → Gρ the map induced by (5.3). Let
σ2 = min{ r−r̂2 , σ1}. If ε ∈ [0, σ2], then Ψ(Gr, t, ε) ⊃ Gr̂ for all t ∈ R.

In the proof we use the following Lemma (cf. [Shu87], Proposition I.3).

Lemma 5.10. Let X,Y be Banach spaces and suppose that U ⊂ Y is open.
If Ψ : U → Ψ(U) ⊂ X is a homeomorphism, Ψ−1 is Lipschitz continuous
with constant Lip(Ψ−1) ≤ λ, and Br(y) ⊂ U , then

Ψ(Br(y)) ⊃ Br/λ(Ψ(y)).

Proof of Corollary 5.9. First fix some t ∈ R and ε ∈ [0, σ2]. For simplicity
we write Ψ(y) = Ψ(y, t, ε). Using the von Neumann series and (5.4) yields

∥DΨ−1∥C0(Gr) =

∥∥∥∥∥
∞∑
j=0

(I −DΨ(·, t, ε))j
∥∥∥∥∥
C0(Gr)

≤
∞∑
j=0

(C0ε)
j ,

Since we know from the proof of Lemma 5.8 that C0 = 1 is a viable choice,
σ1 ≤ 1

2 shows that Ψ−1 is Lipschitz continuous with constant λ = 2. Now

let y ∈ Gr̂, then ∥y −Ψ(y)∥ ≤ ε implies y ∈ Bε(Ψ(y)). Thus Lemma 5.10
yields

y ∈ Bε(Ψ(y)) ⊂ B(r−r̂)/2(Ψ(y)) ⊂ Ψ(Br−r̂(y)) ⊂ Ψ(Gr).

5.2.2 Hamiltonian averaging

Given H ∈ Hkρ,σ we denote the averaged part of H by

H̄(x, ε) :=

∫ 1

0
H(x, t, ε) dt,
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and the purely periodic part by

H̃(x, t, ε) = H(x, t, ε)− H̄(x, ε).

Then, H̄ ∈ Hkρ,σ, H̃ ∈ H̃kρ,σ and

∥H̄∥k,ρ,σ ≤ ∥H∥k,ρ,σ, ∥H̃∥k,ρ,σ ≤ 2∥H∥k,ρ,σ.

Moreover, J =

(
0 1
−1 0

)
denotes the symplectic matrix.

Lemma 5.11 (Basic transformation). For σ > 0, k ∈ N and 0 < r < ρ,
let H ∈ Hk+1

ρ,σ be such that ∥H∥k+1,ρ,σ ≤ 1
2 . Set σ1 = min{12 , ρ− r, σ} and

denote by Ψ the admissible change of variables of class Ck given by (5.3)
with h = H̃, that is

(Q,P, t, ε) = (X, t, ε) 7→ x = (q, p) = Ψ(X, t, ε),

where (X, t, ε) ∈ Gr ×R× [0, σ1]. Then, for every ε ∈ [0, σ1] the 1-periodic
Hamiltonian system

ẋ = εJ∇xH(x, t, ε)

is transformed into

Ẋ = εJ∇XK(X, t, ε),

where
K(X, t, ε) = H(Ψ(X, t, ε), t, ε)− H̃(q(X, t, ε), P, t, ε)

Moreover, K ∈ Hkr,σ1 and for t ∈ R, ε ∈ [0, σ1] we have

∥K(·, t, ε)− H̄(·, ε)∥Ck(Gr) ≤ κk∥H̃∥k+1,ρ,σ∥H∥k+1,ρ,σε, (5.10)

where κk = 3 · 22kBk(2 + Ck)
k+1 with Bk from Corollary 5.4 and Ck from

Lemma 5.8.

Proof. Since Ψ is induced by a generating function of the form S(q, P, t),
the new Hamiltonian K is given by

K(Q,P, t) = H(q, p, t) +
∂S

∂t
(q(Q,P, t), Q, t).



98 Chapter 5. The non-periodic case

Considering (5.8) and the additional ε this leads to

K(Q,P, t, ε) = H(Ψ(Q,P, t, ε), t, ε)− H̃(q(Q,P, t, ε), P, t, ε)

K is well-defined on Gr × [0, 1]× [0, σ1] and clearly 1-periodic in t. Also
K(·, t, ε) ∈ Ck(Gr) is satisfied for all t ∈ R, ε ∈ [0, σ1] and furthermore
∂νXK ∈ C(Gr × [0, 1]× [0, σ1]) for |ν| ≤ k follows from the continuity of Ψ
and its derivatives. It remains to show the boundedness of ∥K∥k,r,σ1 and
to prove (5.10). To this end, fix t ∈ R and ε ∈ [0, σ1]. For clarity’s sake
we omit the dependence of x with respect to (X, t, ε) and simply write
x = (q, p). Then, spitting up H yields

K(X, t, ε)− H̄(X, ε) = H̄(x, ε) + H̃(x, t, ε)− H̃(q, P, t, ε)− H̄(X, ε).

We have H̄(x, ε)−H̄(X, ε) =
∫ 1
0 ∇H̄(λx+(1−λ)X, ε)(x−X) dλ. Therefore,

Lemma 5.1, Corollary 5.4 and (5.4) imply

∥H̄(Ψ(·, t, ε), ε)− H̄(·, ε)∥Ck(Gr)

≤ sup
λ∈[0,1]

2k∥∇H̄(·, ε) ◦ ((1− λ)id + λΨ(·, t, ε))∥Ck(Gr)∥Ψ(·, t, ε)− id∥Ck(Gr)

≤ 22kBk∥H̄(·, t, ε)∥Ck+1(Gr)(2 + Ck)
k∥H̃∥k+1,ρ,σCkε

≤ κk
3
∥H̄∥k+1,ρ,σ∥H̃∥k+1,ρ,σε.

The second term is dealt with in the same fashion so that

∥H̃(Ψ(·, t, ε), t, ε)− H̃(q, P, t, ε)∥Ck(Gr) =
2κk
3
∥H̄∥k+1,ρ,σ∥H̃∥k+1,ρ,σε.

Thus in total

∥K(·, t, ε)− H̄(·, ε)∥Ck(Gr) ≤ κk∥H̃∥k+1,ρ,σ∥H∥k+1,ρ,σε.

Together with ∥H̄∥k,r,σ1 ≤ ∥H∥k,r,σ1 this also yields ∥K∥k,r,σ1 <∞.

Corollary 5.12. Under the assumptions of Lemma 5.11, estimate (5.10)
also implies the following inequalities

∥K(·, t, ε)∥Ck(Gr) ≤ (κkε+ 1)∥H∥k+1,ρ,σ, (5.11)

∥K̄(·, ε)− H̄(·, ε)∥Ck(Gr) ≤ κk∥H∥k+1,ρ,σε, (5.12)

∥K̃(·, t, ε)∥Ck(Gr) ≤ κk sup
t∈R
∥H̃(·, t, ε)∥Ck+1(Gρ)ε, (5.13)

for t ∈ R and ε ∈ [0, σ1].
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Proof. The first inequality follows immediately with ∥H̃∥k+1,ρ,σ ≤ 1. In
view of (5.9), also (5.10) can be improved to

∥K(·, t, ε)− H̄(·, ε)∥Ck(Gr) ≤ κk sup
t∈R
∥H̃(·, t, ε)∥Ck+1(Gρ)∥H∥k+1,ρ,σε,

for all t ∈ R and ε ∈ [0, σ1]. Thus, we have

∥K̄(·, ε)− H̄(·, ε)∥Ck(Gr) = max
|ν|≤k

sup
X∈Gr

∣∣∣∣∫ 1

0
[∂νXK(X, t, ε)− ∂νXH̄(X, ε)] dt

∣∣∣∣
≤ max

|ν|≤k
sup
X∈Gr
t∈R

∣∣[∂νXK(X, t, ε)− ∂νXH̄(X, ε)]
∣∣

≤ κk sup
t∈R
∥H̃(·, t, ε)∥Ck+1(Gρ)∥H∥k+1,ρ,σε,

implying (5.12). Finally, (5.13) follows from ∥H∥k+1,ρ,σ ≤ 1
2 together with

the identity K̃ = (K − H̄) + (H̄ − K̄).

By iterating Lemma 5.11, we obtain the following.

Theorem 5.13 (Hamiltonian normal forms). Let k ∈ N, σ > 0 and fix
0 < r̂ < r < ρ. For H ∈ Hk+2

ρ,σ consider the 1-periodic Hamiltonian system

ẋ = εJ∇xH(x, t, ε). (5.14)

There are σ∗ ∈ (0, σ] and a constant C∗ > 0 (depending only upon k and
∥H∥k+2,ρ,σ) with the following properties. There is an admissible change
of variables Ψ : Gr × R × [0, σ∗] → Gρ, x = Ψ(X, t, ε), of class C2 such
that

Ψ(Gr, t, ε) ⊃ Gr̂ (5.15)

for all t ∈ R, ε ∈ [0, σ∗], and (5.14) is transformed into

Ẋ = ε(J∇XN (X, ε) + J∇XR(X, t, ε)),

where N ∈ H2
r,σ∗, R ∈ H̃

2
r,σ∗. Moreover, for every t ∈ R, ε ∈ [0, σ∗] we

have

∥N∥2,r,σ∗ ≤ 2∥H∥k+2,ρ,σ,

∥R(·, t, ε)∥C2(Gr) ≤ C∗ε
k (5.16)

∥N (·, ε)− H̄(·, ε)∥C2(Gr) ≤ C∗ε. (5.17)
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Proof. Step 1: First, define H0 = H and assume that ∥H0∥k+2,ρ,σ ≤ 1
4 .

For 0 ≤ i ≤ k let ri = ρ− i
k (ρ− r), i.e. 0 < r = rk < rk−1 < . . . < r0 = ρ.

We are going to apply Lemma 5.11 k-times consecutively and concatenate
the according transformations. For 1 ≤ i ≤ k (and starting at i = 1), the
i-th step will be to apply Lemma 5.11 to Hi−1 with

σi = σ∗ = min

{
σ,

1

2
,
ρ− r
k

,
21/k − 1

4κk+1
,

1

22kkCk+1

}
, (5.18)

which yields an admissible change of variables of class Ck+2−i, that is

Ψi : Gri × R× [0, σ∗]→ Gri−1 , xi 7→ xi−1 = Ψi(xi, t, ε),

so that the Hamiltonian equations ẋi−1 = εJ∇Hi−1(xi−1, t, ε) are trans-
formed into

ẋi = εJ∇Hi(xi, t, ε).

Since Hi ∈ Hk+2−i
ri,σ∗ , the subsequent change of coordinates is well-defined if

∥Hi∥k+2−i,ri,σ∗ ≤ 1
2 . This is guaranteed by the estimate

∥Hi∥k+2−i,ri,σ∗ ≤ 2i/k∥H0∥k+2,ρ,σ, (5.19)

which we will now prove inductively for 1 ≤ i ≤ k. Using (5.11) and (5.18)
yields

∥H1(·, t, ε)∥Ck+1(Gr1 )
≤ (κk+1ε+ 1)∥H0∥k+2,ρ,σ ≤ 21/k∥H0∥k+2,ρ,σ

for t ∈ R and ε ∈ [0, σ∗]. Now, assume i ∈ {1, . . . , k − 1} changes of
coordinates have been done and Hi ∈ Hk+2−i

ri,σ∗ satisfies (5.19). In particular,

the assumption ∥H0∥k+2,ρ,σ ≤ 1
4 and (5.19) show that ∥Hi∥k+2−i,ri,σ∗ ≤ 1

2 .
Therefore Lemma 5.11 can be applied. Again, using (5.11), the inductive
property and (5.18), we get

∥Hi+1(·, t, ε)∥Ck+1−i(Gri+1 )
≤ (κk+1−iε+ 1)∥Hi∥k+2−i,ri,σ∗

≤ (κk+1ε+ 1)2i/k∥H0∥k+2,ρ,σ

≤ 2(i+1)/k∥H0∥k+2,ρ,σ.



5.2. Hamiltonian normal forms 101

Thus we have shown that Lemma 5.11 can be applied k-times consecutively
so that the bound (5.19) holds for 1 ≤ i ≤ k. Hence, the transformation

Ψ : Gr × R× [0, σ∗]→ Gρ,

Ψ(·, t, ε) = Ψ1(·, t, ε) ◦Ψ2(·, t, ε) ◦ · · · ◦Ψk(·, t, ε),

is well-defined and an admissible change of variables of class C2. Also the
new Hamiltonian Hk is in H2

r,σ∗ and we define N = H̄k, R = H̃k. Due to
(5.4) and (5.19) we have

∥Ψi(·, t, ε)− id∥Ck+2−i(Gri
) ≤ ∥H̃i−1∥k+3−i,ri−1,σ∗Ck+2−iε ≤ Ck+1ε (5.20)

for 1 ≤ i ≤ k, t ∈ R and ε ∈ [0, σ∗]. In particular, (5.18) thus implies
∥Ψi(·, t, ε)∥Ck+2−i(Gri )

≤ 2. In order to prove (5.15) we introduce the

following notation: For a fixed t ∈ R and ε ∈ [0, σ∗] set χk = Ψk(·, t, ε)
and

χi = Ψi(·, t, ε) ◦ χi+1, 1 ≤ i ≤ k − 1.

In particular, it follows χ1 = Ψ(·, t, ε) = Ψ1(·, t, ε) ◦ . . . ◦Ψk(·, t, ε). More-
over, ∥χk∥C1(Gr) ≤ 2 and for 1 ≤ i ≤ k − 1 applying Corollary 5.4 yields

∥χi∥C1(Gr) ≤ 2∥Ψi(·, t, ε)∥C1(Gr)∥χi+1∥C1(Gr) ≤ 4∥χi+1∥C1(Gr).

Hence ∥χi∥C1(Gr) ≤ 22(k−i)+1. By using Corolary 5.4 and (5.20), we obtain

∥χi − χi+1∥C1(Gr) = ∥(Ψi(·, t, ε)− id) ◦ χi+1∥C1(Gr) ≤ 22(k−i)Ck+1ε.

In total, we have

∥Ψ(·, t, ε)− id∥C1(Gr) ≤
k−1∑
i=1

∥χi − χi+1∥C1(Gr) + ∥χk − id∥C1(Gr)

≤
k∑
i=1

22(k−i)Ck+1ε.

In particular, ∥DΨ(·, t, ε)− I∥C0(Gr) ≤
1
2 by (5.18) and thus (5.15) follows

from the same argument as Corollary 5.9. Finally, define

C∗ = 2κkk+1∥H0∥k+2,ρ,σ.
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In order to check the estimates, we fix t ∈ R and ε ∈ [0, σ∗]. We start by
verifying the bound (5.16). By (5.13) we have

∥H̃i(·, t, ε)∥Ck+2−i(Gri )
≤ κk+2−i sup

t∈R
∥H̃i−1(·, t, ε)∥Ck+3−i(Gri−1 )

ε

for 1 ≤ i ≤ k. Thus inductively it follows

∥H̃k(·, t, ε)∥C2(Gr) ≤ κ
k
k+1 sup

t∈R
∥H̃0(·, t, ε)∥Ck+2(Gr0 )

εk ≤ C∗ε
k.

The bound ∥H̄k∥2,r,σ∗ ≤ ∥Hk∥2,r,σ∗ ≤ 2∥H0∥k+2,ρ,σ follows directly from
(5.19). Therefore it remains only to prove (5.17). Due to (5.12) and (5.19)
we have

∥H̄i(·, ε)− H̄i−1(·, ε)∥Ck+2−i(Gri )
≤ 2κk+1∥H0∥k+2,ρ,σε

for 1 ≤ i ≤ k. Since k ≤ κk−1
k+1, adding up yields

∥H̄k(·, t, ε)− H̄0(·, ε)∥C2(Gr) ≤ C∗ε.

Step 2: Now, consider the case A := 4∥H0∥k+2,ρ,σ > 1. Rewrite (5.14)

as ẋ = ε̂J∇Ĥ0(x, t, ε̂), where ε̂ = Aε and Ĥ0(x, t, ε̂) = A−1H0(x, t, A
−1ε̂).

Then ∥Ĥ0∥k+2,ρ,σ̂ = A−1∥H0∥k+2,ρ,σ, where σ̂ = Aσ. In particular, the

rescaled Hamiltonian satisfies ∥Ĥ0∥k+2,ρ,σ̂ ≤ 1
4 . Therefore, the first step

can be applied to obtain an admissible change of variables

Ψ̂ : Gr × R× [0, σ̂∗]→ Gρ, x = Ψ̂(X, t, ε̂),

with its image contained in Gr̂ and a new Hamiltonian Ĥk ∈ H2
r,σ̂∗

satisfy-

ing the required bounds with a constant Ĉ∗. Then, defining

Ψ(X, t, ε) = Ψ̂(X, t,Aε) and Hk(x, t, ε) = AĤk(x, t, Aε)

for ε ∈ [0, σ∗] with σ∗ = A−1σ̂∗ proves the assertion.

5.3 An adiabatic invariant for E-symplectic maps

Again, let G = R × I and write Gρ for its ρ-neighborhood. We study
symplectic maps of the form

Pε : G→ R2, x1 = x+ εl(x, ε).
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One can find a function E(x) satisfying J∇E(x) = l(x, 0), which acts as
an adiabatic invariant. In fact, for small ε the iteration xn+1 = Pε(xn) can
be viewed as a numerical integration step for the autonomous Hamiltonian
system ẋ = J∇E(x). This was already observed in [Nei84], where it is
shown that for holomorphic maps one has

|E(Pnε (x))− E(x)| ≤ Cε, 0 ≤ n ≤ Nε,

where Nε is of the order eD/ε and C,D > 0 are suitable constants. How-
ever, since the domain G is unbounded, some additional assumptions are
required. This is discussed in detail by Kunze and Ortega in [KO]. They
introduce the notion of E-symplectic families of maps. Here, we shall
follow their arguments with the according adaptation to the non-analytic
case.

Definition 5.14. Let k ∈ N, ρ > 0 and σ > 0. The classMk
ρ,σ consists of

those functions l : Gρ × [0, σ]→ Rd, l = l(x, ε), such that

(i) l is in C2(Gρ × (0, σ],Rd),

(ii) for every ε ∈ [0, σ] we have l(·, ε) ∈ Ck(Gρ,Rd) and

∂νx l ∈ C(Gρ × [0, σ],Rd) for 0 ≤ |ν| ≤ k,

(iii) for every ε ∈ (0, σ] we have ∂εl(·, ε) ∈ Ck(Gρ,Rd) and

∂νx ∂εl ∈ C(Gρ × (0, σ],Rd) for 0 ≤ |ν| ≤ k,

(iv) one has ∥l∥∗k,ρ,σ <∞, where

∥l∥∗k,ρ,σ = ∥l∥k,ρ,σ + sup
ε∈(0,σ]

∥∂εl(·, ε)∥Ck(Gρ) .

Remark 5.15. (a) Here ∥·∥k,ρ,σ denotes the same norm as in Definition
5.5, that is

∥l∥k,ρ,σ = sup
ε∈[0,σ]

∥l(·, ε)∥Ck(Gρ) <∞,

since the components of l ∈ Mk
ρ,σ can be regarded as functions in

Hkρ,σ constant in t ∈ R.
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(b) Functions inMk
ρ,σ have values in Rd for some d ∈ N. Here, we will

only encounter d ∈ {1, 2} and the respective dimension will be clear
from the context.

Definition 5.16. Suppose l ∈Mk
ρ,σ and for ε ∈ [0, σ] consider the family

of maps Pε : Gρ → R2 given by

Pε(x) = X = x+ εl(x, ε), X = (Q,P ), x = (q, p).

We say {Pε} is an E-symplectic family of class Ck, if there is a function
ζ ∈Mk

ρ,σ such that
P dQ− p dq = dζ(·, ε) (5.21)

for all ε ∈ [0, σ] and if moreover there is a function m ∈ Ckb (Gρ) and a
constant Cm > 0 such that

∥ζ(·, ε)− εm∥C1(Gρ) ≤ Cmε
2 (5.22)

and
∥∂εζ(·, ε)−m∥C0(Gρ) ≤ Cmε (5.23)

for all ε ∈ [0, σ].

Remark 5.17. (a) Equation (5.22) implies ζ(q, p, 0) = 0 and thus divid-
ing by ε shows that ε−1ζ(·, ε)→ m in C1(Gρ) as ε→ 0. Moreover,
for ε > 0, equation (5.21) can be reformulated as

∂ζ

∂q
= εl2 + εp

∂l1
∂q

+ ε2l2
∂l1
∂q

,
∂ζ

∂p
= εp

∂l1
∂p

+ ε2l2
∂l1
∂p

,

where l1, l2 denote the components of l. Since ε−1ζ(·, ε) → m in
C1(Gρ), this yields

∂m

∂q
(q, p) = l2(q, p, 0) + p

∂l1
∂q

(q, p, 0),
∂m

∂p
(q, p) = p

∂l1
∂p

(q, p, 0),

or expressed differently

∇m(x) = p∇l1(x, 0) +
(
l2(x, 0)

0

)
. (5.24)

This relation will be used later. In fact, it shows that J∇E = l(·, 0)
for the autonomous Hamiltonian

E(q, p) = l1(q, p, 0)p−m(q, p).
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(b) Condition (5.22) does not imply (5.23), as can be seen in the example

ζ(x, ε) = εm(x) + ε2 sin
(1
ε

)
.

First, we observe that certain symplectic isotopies can be realized as
the solution map to a suitable periodic Hamiltonian system.

Lemma 5.18. Consider a continuous map Φ : G× [0, 1]→ R2 such that
Φ(·, t) is a diffeomorphism onto its image for every t ∈ [0, 1]. We will
write Ψ(·, t) for the inverse and further denote

Φ(x, t) = (Q,P ) = X and Ψ(X, t) = (q, p) = x.

With a small abuse of notation we also write Q(x, t), P (x, t) and q(X, t),
p(X, t) for the components of Φ and Ψ, respectively. Moreover, assume
that there is a continuously differentiable function η(x, t) such that

P (·, t) dQ(·, t)− p dq = dη(·, t). (5.25)

Finally, suppose Φ, η ∈ C1(G× [0, 1]) and that the cross-derivatives

∂2Q

∂t∂x
=

∂2Q

∂x∂t
,

∂2P

∂t∂x
=

∂2P

∂x∂t
,

∂2η

∂t∂x
=

∂2η

∂x∂t
(5.26)

exist, coincide and are continuous functions of (x, t). Then

∂Φ

∂t
(Ψ(X, t), t) = J∇haux(X, t). (5.27)

where

haux(X, t) =
∂Q

∂t
(Ψ(X, t, ε), t)P − ∂η

∂t
(Ψ(X, t), t), (5.28)

is defined on {(X, t) : t ∈ [0, 1], X ∈ Φ(G, t)}.

Proof. First note, that (5.25) can be stated as

∂η

∂q
= P

∂Q

∂q
− p, ∂η

∂p
= P

∂Q

∂p
.

Differentiation with respect to t yields

∂2η

∂t∂q
=

(
∂P

∂t

)
∂Q

∂q
+ P

∂2Q

∂t∂q
,

∂2η

∂t∂p
=

(
∂P

∂t

)
∂Q

∂p
+ P

∂2Q

∂t∂p
.
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On the other hand, differentiating (5.28) with respect to P results in

∂haux

∂P =
[(

∂2Q
∂t∂q

)(
∂q
∂P

)
+
(
∂2Q
∂t∂p

) (
∂p
∂P

)]
P + ∂Q

∂t −
(
∂2η
∂t∂q

) (
∂q
∂P

)
−
(
∂2η
∂t∂p

) (
∂p
∂P

)
.

Together this leads to

∂haux
∂P

=
∂Q

∂t
−
(
∂P

∂t

)[(
∂Q

∂q

)(
∂q

∂P

)
+

(
∂Q

∂p

)(
∂p

∂P

)]
.

The second term vanishes, as can be seen by differentiating the identity
Q(q(Q,P, t), p(Q,P, t), t) = Q with respect to P . Similarly, we get

∂haux
∂Q

= −
(
∂P

∂t

)[(
∂Q

∂q

)(
∂q

∂Q

)
+

(
∂Q

∂p

)(
∂p

∂Q

)]
.

Thus, d
dQ Q(q(Q,P, t), p(Q,P, t), t) = 1 proves (5.27).

Remark 5.19. In the notation of Lemma 5.18, let X(t) = Φ(x, t) for x ∈ G.
Then X(t) is a solution of the Hamiltonian system

Ẋ(t) = J∇haux(X(t), t).

In the context of E-symplectic families this leads to the following result.

Lemma 5.20. Let G = R× I, where I ⊂ R is an open bounded interval.
For l ∈Mk

ρ,σ and ε ∈ [0, σ] assume that the family Pε : Gρ → R2 given by

Pε(x) = x+ εl(x, ε)

is E-symplectic of class Ck. Given 0 < r < r̂ < ρ, there is σ̂ ∈ (0, σ] and
a Hamiltonian Haux ∈ Hk+1

r̂,σ̂ such that for ε ∈ [0, σ̂] the map Pε restricted
to Gr coincides with the time-1 map for the 1-periodic system

Ẋ = εJ∇Haux(X, t, ε),

and for X ∈ Gr we have

J∇H̄aux(X, 0) = l(X, 0). (5.29)

Moreover, there is a constant Caux > 0 depending only upon k, ρ, r̂, r, σ,
∥l∥∗k,ρ,σ, ∥ζ∥∗k,ρ,σ, CI = max{ρ+ |p| : p ∈ I} and Cm (where ζ ∈Mk

ρ,σ and
Cm are from Definition 5.16) such that ∥Haux∥k+1,r̂,σ̂ ≤ Caux and

|Haux(X, t, ε)−Haux(X, t, 0)| ≤ Cauxε (5.30)

uniformly in X ∈ Gr̂, t ∈ [0, 1] and ε ∈ [0, σ̂].
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Proof. Let χ : [0, 1]→ [0, 1] be a strictly increasing C∞-function such that
χ(0) = 0, χ(1) = 1 and χ̇(0) = χ̇(1) = 0. Consider the map

Φ : Gρ × [0, 1]× [0, σ̂]→ R2, Φ(x, t, ε) = x+ εχ(t)l(x, εχ(t)),

where

σ̂ = min

{
σ, 1,

1

4∥l∥k,ρ,σ
,
ρ− r̂

2∥l∥k,ρ,σ
,
r̂ − r
∥l∥k,ρ,σ

,
1

23k+1Bk∥l∥k,ρ,σ

}
. (5.31)

We will show that Φ is suitable for the application of Lemma 5.18 if ε
is fixed. First, note that Φ(x, t, ε) = Pεχ(t)(x) and therefore it is exact
symplectic in the sense of (5.25) with potential

η(x, t, ε) = ζ(x, εχ(t)).

Obviously, Φ is continuous. Now fix t ∈ [0, 1] and ε ∈ [0, σ̂], then

(DxΦ)(x, t, ε) = I + εχ(t)(Dxl)(x, εχ(t)). (5.32)

Thus |(DxΦ)(x, t, ε) − I| ≤ 1
4 by (5.31), which shows that Φ(·, t, ε) is a

local Ck-diffeomorphism with respect to its image. Since G is convex, for
x1, x2 ∈ Gρ we have

|Φ(x1, t, ε)− Φ(x2, t, ε)|

=
∣∣∣x1 − x2 + εχ(t)

(∫ 1

0
(Dxl)(λx1 + (1− λ)x2, εχ(t)) dλ

)
(x1 − x2)

∣∣∣
≥ |x1 − x2| − 1

2 |x1 − x2| =
1
2 |x1 − x2|.

Hence Φ(·, t, ε) is also one-to-one and therefore it is a Ck-diffeomorphism
with respect to its image. It also follows that the inverse Ψ(·, t, ε) is
Lipschitz continuous with constant 2. Hence, (5.31) and the same argument
as in Corollary 5.9 show that Φ(Gρ, t, ε) ⊃ Gr̂. Moreover, since we have
Φ ∈ C(Gρ × [0, 1]× [0, σ̂],R2), the inverse Ψ is continuous with respect to
all three variables as well.
We now prove that Φ(·, ·, ε) is C1 in Gρ × [0, 1] for all ε ∈ [0, σ̂] and
that (5.26) is satisfied. For ε = 0 we have Φ = idx, so one only has to
consider the case ε > 0. Clearly, Φ(·, ·, ε) is C2 in Gρ × (0, 1] as l ∈Mk

ρ,σ.
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Since Φ(·, 0, ε) = idx, formula (5.32) together with ∥l∥k,ρ,σ < ∞ imply
DxΦ(·, ·, ε) ∈ C(Gρ × [0, 1],R4). The derivative with respect to t on the
other hand is given by

∂tΦ(x, t, ε) = εχ̇(t)[l(x, εχ(t)) + εχ(t)∂εl(x, εχ(t))].

if t > 0 and in the case t = 0 it is

∂tΦ(x, 0, ε) = lim
t↓0

1
t (Φ(x, t, ε)− Φ(x, 0, ε)) = lim

t↓0
εχ(t)
t l(x, εχ(t)) = 0, (5.33)

due to χ(0) = χ̇(0) = 0 and ∥l∥∗k,ρ,σ < ∞. The latter also implies
the continuity of ∂tΦ in t = 0. Regarding the cross derivatives, we
have ∂tΦ(x, 0, ε) = 0 so that Dx∂tΦ(x, 0, ε) = 0. The fact that also
∂tDxΦ(x, 0, ε) = 0 follows from an equation similar to (5.33). For t > 0
on the other hand, we have

(∂tDxΦ)(x, t, ε) = εχ̇(t)(Dxl)(x, εχ(t)) + ε2χ(t)χ̇(t)(Dx∂εl)(x, εχ(t)).

Thus, the continuity of the cross derivatives follows from ∥l∥∗k,ρ,σ < ∞.

Since also ζ ∈ Mk
ρ,σ, the same argument can be done for η verifying

η(·, ·, ε) ∈ C1(Gρ × [0, 1]) and (5.26). In summary, we have shown that
Lemma 5.18 is applicable. Considering the additional ε, let haux(X, t, ε)
be the function given by (5.28), which is defined on

D = {(X, t, ε) : t ∈ [0, 1], ε ∈ [0, σ̂], X ∈ Φ(Gρ, t, ε)}.

In particular, it is well-defined for all X ∈ Gr̂. We have haux(X, t, ε) = 0
if either ε = 0 or t ∈ {0, 1}. Otherwise,

haux(X, t, ε) =εχ̇(t)
[
l1(Ψ(X, t, ε), εχ(t)) + εχ(t)∂εl1(Ψ(X, t, ε), εχ(t))

]
P

− χ̇(t)∂εζ(Ψ(X, t, ε), εχ(t))

For X ∈ Gr̂ and t ∈ [0, 1] we define

Haux(X, t, ε) =

{
ε−1haux(X, t, ε), ε ∈ (0, σ̂]

χ̇(t)[l1(X, 0)P −m(X)], ε = 0,
(5.34)

where m = ζ(·, 0) is the function from Definition 5.16. Note also, that
H̄aux(X, 0) = E(X) with E defined in Remark 5.17. This verifies (5.29).
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We will now show that Haux has all the other required properties as
well. First, we prove that Haux ∈ Hk+1

r̂,σ̂ . To this end, observe that

Haux is continuous, since l ∈Mk
ρ,σ and due to (5.23). Moreover, we have

Haux(X, 0, ε) = Haux(X, 1, ε) = 0 so that one can extendHaux continuously
and 1-periodically to t ∈ R. For all ε ∈ [0, σ̂] and t ∈ R we have

∥Haux(·, t, ε)∥∞ ≤ ∥ χ̇∥∞
(
∥l∥∗k,ρ,σCI + ∥ζ∥

∗
k,ρ,σ + Cm

)
,

since ∥m∥∞≤ ∥∂εζ(·, ε)∥∞+∥m− ∂εζ(·, ε)∥∞ and |P | ≤ CI . Next, we will
check the conditions regarding the derivatives. For the gradient one obtains

J∇Haux(X, t, ε) =

{
ε−1J∇haux(X, t, ε), ε ∈ (0, σ̂]

χ̇(t)J [P∇l1(X, 0) + (0, l1(X, 0))−∇m(X)], ε = 0.

But by definition, we have J∇haux(X, t, ε) = ∂Φ
∂t (Ψ(X, t, ε), t, ε) and this

yields

ε−1J∇haux(X, t, ε)
= χ̇(t)[l(Ψ(X, t, ε), εχ(t)) + εχ(t)∂εl(Ψ(X, t, ε), εχ(t))],

(5.35)

whereas for ε = 0 equation (5.24) leads to

J∇Haux(X, t, 0) = χ̇(t)J

(
−l2(X, 0)
l1(X, 0)

)
= χ̇(t)l(X, 0).

Hence, ∇Haux is continuous. In order to show the continuity of the higher
derivatives in ε = 0 we differentiate (5.35). To this end, fix some t ∈ [0, 1],
ε ∈ [0, σ̂] and a multi-index ν ∈ N2

0 with 1 ≤ |ν| = n ≤ k. The Faá di
Bruno formula (5.1) yields

∂νX [li(Ψ(X, t, ε), εχ(t))]

=
∑

1≤|µ|≤n

∂µx li(Ψ(X, t, ε), εχ(t))
∑
p(ν,µ)

ν!

n∏
j=1

(∂
ℓj
XΨ(X, t, ε))kj

(kj !)(ℓj !)|kj |
,

for i = 1, 2. We will show inductively, that

∥(DXΨ)(·, t, ε)∥Cj(Gr̂) ≤ 2, for 0 ≤ j ≤ k − 1. (5.36)
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By the Neumann series, the Jacobian of Φ satisfies

(DxΦ)
−1(x, t, ε) =

∞∑
m=0

(I − (DxΦ)(x, t, ε))
m,

for all x ∈ Gρ and thus

(DXΨ)(X, t, ε)− I =
∞∑
m=1

(I − (DxΦ)(Ψ(X, t, ε), t, ε))m

for X ∈ Gr̂. Consequently, the estimate ∥I − (DxΦ)(·, t, ε)∥C0(Gρ) ≤
1
2

verifies (5.36) for j = 0. Now, for 1 ≤ j ≤ k − 1 we have

∥I − (DxΦ)(Ψ(·, t, ε), t, ε)∥Cj(Gr̂)

≤ 2jBj∥I − (DxΦ)(·, t, ε)∥Cj max{∥(DXΨ)(·, t, ε)∥Cj−1 , ∥(DXΨ)(·, t, ε)∥jCj−1}
≤ 22jBjε∥l∥k,ρ,σ,

due to Corollary 5.4, (5.32) and by the inductive hypothesis. Together
with Lemma 5.1 and the definition of σ̂ this leads to the conclusion

∥(DXΨ)(·, t, ε)− I∥Cj(Gr̂) ≤
∞∑
m=1

2j(m−1)
(
22jBjε∥l∥k,ρ,σ

)m
≤ 22j+1Bjε∥l∥k,ρ,σ ≤ 2.

On the one hand this proves (5.36) and on the other hand it implies that

lim
ε→0

(
∂
ℓj
XΨ(X, t, ε)

)kj
=

{
1, (kj , ℓj) ∈

{(
(m, 0), (1, 0)

)
, ((0,m), (0, 1)) : 0 ≤ m ≤ k

}
0, otherwise,

holds uniformly. Therefore only one partition has to be considered in the
limit ε→ 0, namely the one for which (kn−1, ℓn−1) = ((0, ν2), (0, 1)) and
(kn, ℓn) = ((ν1, 0), (1, 0)). Hence

lim
ε→0

∂νX [li(Ψ(X, t, ε), εχ(t))] = lim
ε→0

∂νx li(Ψ(X, t, ε), εχ(t)) = ∂νx li(X, 0).
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The second part in the derivative of (5.35) vanishes for ε → 0, since
l ∈Mk

ρ,σ and (5.36) imply that ∂νX [∂εl(Ψ(X, t, ε), εχ(t))] is bounded. Thus
we have shown the continuity of ∇Haux and its derivatives. Also the bound

∥∇Haux∥k,r̂,σ̂ ≤ 22kBk∥χ̇∥∞∥l∥∗k,ρ,σ

follows from (5.35) by applying Corollary 5.4 and (5.36). In summary, we
have proven that Haux ∈ Hk+1

r̂,σ̂ .
According to Remark 5.19 the function X(t) = Φ(x, t, ε) is a solution to
the differential equation

Ẋ = εJ∇Haux(X, t, ε),

for the initial value X(0) = x ∈ Gr. Since σ̂∥l∥k,ρ,σ ≤ r̂ − r, we have
Φ(Gr, t, ε) ⊂ Gr̂ for t ∈ [0, 1], ε ∈ [0, σ̂] and thus also X(t) ∈ Gr̂ for
t ∈ [0, 1]. Hence we have shown, that x 7→ Φ(x, 1, ε) = x+ εl(x, ε) = Pε(x)
coincides with the time-1 map for this Hamiltonian system on Gr.
It remains to prove (5.30), i.e. the existence of a constant Caux > 0 so that

|Haux(X, t, ε)−Haux(X, t, 0)| ≤ Cauxε

holds uniformly in X = (Q,P ) ∈ Gr̂, t ∈ [0, 1] and ε ∈ [0, σ̂]. Again, for
t = 0 or ε = 0 both terms are zero. Thus suppose t, ε > 0. Using (5.34)
and the explicit formula for haux we obtain

|Haux(X, t, ε)−Haux(X, t, 0)|

= | χ̇(t)|

∣∣∣∣∣[l1(x, εχ(t)) + εχ(t)∂εl1(x, εχ(t))]P − ∂εζ(x, εχ(t))− [l1(X, 0)P −m(X)]

∣∣∣∣∣
≤ ∥ χ̇∥∞

(
T1(X, t, ε)|P |+ T2(X, t, ε) + εχ(t) |∂εl1(x, εχ(t))| |P |

)
,

where again x = Ψ(X, t, ε) and T1, T2 are given by

T1(X, t, ε) = |l1(x, εχ(t))−l1(X, 0)|, T2(X, t, ε) = |m(X)− ∂εζ(x, εχ(t))| .

Now, we study the latter terms more thoroughly. First, observe that due
to the definition of Φ we have

|x−X| = εχ(t)∥l(x, εχ(t))∥ ≤ ε∥l∥k,ρ,σ.
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Moreover, X ∈ Gr̂ implies x ∈ Gρ and hence λx + (1 − λ)X ∈ Gρ for
λ ∈ [0, 1] by convexity. Thus

|l1(x, εχ(t))− l1(X, εχ(t))| =
∣∣∣∣∫ 1

0
∇l1(λx+ (1− λ)X, εχ(t))(x−X) dλ

∣∣∣∣
≤ ε∥l∥2k,ρ,σ.

Therefore, we can find a bound for T1. Namely, the mean value theorem
yields

T1(X, t, ε) = |l1(x, εχ(t))− l1(X, 0)|
≤ |l1(x, εχ(t))− l1(X, εχ(t))|+ |l1(X, εχ(t))− l1(X, 0)|
≤ ε∥l∥2k,ρ,σ + ε∥l∥∗k,ρ,σ.

The bound on T2 can be obtained in a similar way. We have

T2(X, t, ε) ≤ |m(X)− ∂εζ(X, εχ(t))|+ |∂εζ(X, εχ(t))− ∂εζ(x, εχ(t))|
≤ Cmε+ ε∥ζ∥∗k,ρ,σ∥l∥k,ρ,σ,

where Cm > 0 is the constant from (5.23). Therefore, in total we get

|Haux(X, t, ε)−Haux(X, t, 0)|
≤ ε∥ χ̇∥∞

[(
∥l∥2k,ρ,σ + ∥l∥∗k,ρ,σ

)
CI + Cm + ∥ζ∥∗k,ρ,σ∥l∥k,ρ,σ + ∥l∥∗k,ρ,σCI

]
.

Thus we have verified (5.30).

Before stating the main result of this section, we make the following
simple observation, which will be used several times in the proof. Given
H ∈ Hkρ,σ with k ∈ N and 0 < r < ρ, we call Φ(x, t, ε) the solution

map to the corresponding Hamiltonian system Ẋ = εJ∇H(X, t, ε) if
X(t) = Φ(x, t, ε) is the solution satisfying X(0) = x ∈ Gρ. Clearly,
Φ(x, t, ε) can be written in the form

Φ(x, t, ε) = x+ ε

∫ t

0
J∇H(Φ(x, s, ε), s, ε) ds.

Since ∇H is bounded, one can find σ∗ ∈ (0, σ] such that

Φ(Gr, t, ε) ⊂ Gρ

for all t ∈ [0, 1] and ε ∈ [0, σ∗].
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Theorem 5.21. Let G = R×I for an open bounded interval I ⊂ R, k ∈ N,
σ > 0 and ρ > 0. Suppose l ∈Mk+1

ρ,σ and for ε ∈ [0, σ] consider the family
of maps Pε : Gρ → R2 given by

Pε : x1 = x+ εl(x, ε).

Let {Pε} be an E-symplectic family of class Ck+1. Then there exist
σ̂ ∈ (0, σ), Ĉ > 0 (depending only upon k, ρ, σ, ∥l∥∗k+1,ρ,σ, ∥ζ∥∗k+1,ρ,σ, Cm

from (5.23) and CI = max{ρ+ |p| : p ∈ I}) and a function E(x) satisfying
J∇E(x) = l(x, 0) with the following property. If ε ∈ [0, σ̂] and

(xn)0≤n≤N = (Pnε (x0))0≤n≤N

denotes a forward orbit piece of Pε such that xn ∈ G for 0 ≤ n ≤ N , then

|E(xn)− E(x0)| ≤ Ĉε, 0 ≤ n ≤ min{N, ⌊ε−k⌋}.

Proof. Let 0 < r3 < r2 < r1 < r0 = ρ. First, applying Lemma 5.20
with r = r2 and r̂ = r1 yields σ1 ∈ (0, σ] and Haux ∈ Hk+2

r1,σ1 such that if
ε ∈ [0, σ1], then Pε restricted to Gr2 coincides with the time-1 map for the
1-periodic Hamiltonian system

ẋ = εJ∇Haux(x, t, ε). (5.37)

Moreover, there is a constant Caux > 0 such that ∥Haux∥k+2,r1,σ1 ≤ Caux

and
|Haux(x, t, ε)−Haux(x, t, 0)| ≤ Cauxε (5.38)

holds for all x ∈ Gr1 , t ∈ R and ε ∈ [0, σ1].
Now, since 0 < r3 < r2 < r1 we can apply Theorem 5.13 to the

Hamiltonian Haux ∈ Hk+2
r1,σ1 . This gives us σ2 ∈ (0, σ1] and C∗ > 0 such

that the following holds. For t ∈ R and ε ∈ [0, σ2] there exists an admissible
change of variables Γ : Gr2 × R× [0, σ2]→ Gr1 , x = Γ(y, t, ε), of class C2

such that
Γ(Gr2 , t, ε) ⊃ Gr3

for all t ∈ R, ε ∈ [0, σ2], and so that (5.37) is transformed into

ẏ = ε(J∇N (y, ε) + J∇R(y, t, ε)), (5.39)
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where N ∈ H2
r2,σ2 , R ∈ H̃

2
r2,σ2 . Moreover, for every t ∈ R, ε ∈ [0, σ2] we

have

∥R(·, t, ε)∥C2(Gr2 )
≤ C∗ε

k (5.40)

∥N∥2,r2,σ2 ≤ 2∥Haux∥k+2,r1,σ1 ,

∥N (·, ε)− H̄aux(·, ε)∥C2(Gr2 )
≤ C∗ε. (5.41)

Denote by Φ(x, t, ε) and ϕ(y, t, ε) the solution maps to (5.37) and (5.39),
respectively. Furthermore, let σ3 ∈ (0, σ2] be such that Φ(x, t, ε) ∈ Gr3 for
x ∈ G, t ∈ [0, 1] and ε ∈ [0, σ3]. Then, these maps satisfy

ϕ(y, t, ε) = Γ−1(Φ(Γ(y, 0, ε), t, ε), t, ε) = Γ−1(Φ(y, t, ε), t, ε)

for y ∈ G, t ∈ [0, 1] and ε ∈ [0, σ3]. Since Γ(·, 1, ε) = Γ(·, 0, ε) = id, this
also implies

ϕ(y, 1, ε) = Γ−1(Φ(y, 1, ε), 1, ε) = Φ(y, 1, ε) = Pε(y).

Thus, (5.39) is constructed in such a way that Pε restricted to G coincides
with the time-1-map of this new system. Finally, consider the autonomous
system

ẏ = εJ∇N (y, ε), (5.42)

together with its solution map ϕ̂(y, t, ε) and let σ̂ ∈ (0, σ3] be such that

ϕ̂(G× [0, 1]× [0, σ̂]) ⊂ Gr3 . Then, using (5.40) we conclude

|ϕ(y, t, ε)− ϕ̂(y, t, ε)|

= ε

∣∣∣∣∫ t

0

J [∇N (ϕ(y, s, ε), ε)−∇N (ϕ̂(y, s, ε), ε)] ds+

∫ t

0

∇R(ϕ(y, s, ε), s, ε) ds
∣∣∣∣

≤ ε∥N∥2,r3,σ̂
∫ t

0

|ϕ(y, t, ε)− ϕ̂(y, t, ε)| ds+ C∗ε
k+1

Hence Gronwall’s inequality yields

|ϕ(y, t, ε)− ϕ̂(y, t, ε)| ≤ C∗ε
k+1eε∥N∥2,r3,σ̂t ≤ C∗e

2Cauxtεk+1.

Let C = C∗e
2Caux and define P̂ε(x) = ϕ̂(x, 1, ε), then the latter estimate

implies
|Pε(x)− P̂ε(x)| ≤ Cεk+1 (5.43)
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for x ∈ G and ε ∈ [0, σ̂]. Moreover, since (5.42) is autonomous we have

N (P̂ε(x), ε) = N (x, ε).

By (5.41), we have |N (x, ε)− H̄aux(x, ε)| ≤ C∗ε and (5.38) implies

|H̄aux(X, ε)− H̄aux(X, 0)| ≤ Cauxε.

Together this yields

|N (x, ε)− H̄aux(x, 0)| ≤ (C∗ + Caux)ε.

Let (xn)0≤n≤N = (Pnε (x0))0≤n≤N be such that xn ∈ G for 0 ≤ n ≤ N . If
we define E(x) = N (x, 0), then the latter estimate and (5.29) show that

J∇E(x) = J∇N (x, 0) = J∇H̄aux(x, 0) = l(x, 0).

Furthermore, it follows

|E(xn)− E(x0)|
≤ |N (xn, 0)−N (xn, ε)|+ |N (xn, ε)−N (x0, ε)|+ |N (x0, ε)−N (x0, 0)|
≤ 2(C∗ + Caux)ε+ |N (xn, ε)−N (x0, ε)|.

Finally, (5.43) yields

|N (xn, ε)−N (x0, ε)| ≤
n−1∑
j=0

|N (Pε(xj), ε)−N (xj , ε)|

=

n−1∑
j=0

|N (Pε(xj), ε)−N (P̂ε(xj), ε)|

≤ n∥N∥2,r3,σ̂Cεk+1.

Therefore, one can choose Ĉ = 2(C∗ + Caux) + 2CauxC to verify the
assertion.
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5.4 Application to twist maps

In this section, we will prove our main result of the chapter. Preliminary
to the proof, we briefly discuss some properties of difference equations
with the form

xn+1 = g(xn), (5.44)

where g : I 7→ R is an increasing function defined on I = (d,∞). More
specifically, we discuss the notion of upper and lower solutions. A sequence
(γn)n∈N0 ⊂ I is called a lower solution of (5.44), if γn+1 ≤ g(γn) for
n ∈ N0. An upper solution has to satisfy the reversed inequality.

Lemma 5.22. Suppose (γn)n∈N0 is a lower solution and (Γn)n∈N0 is an
upper solution of (5.44) such that γ0 ≤ Γ0, then γn ≤ Γn holds for all
n ∈ N0.

By imposing some additional properties one gets the following result
(cf. [KO21], Lemma 3.4 and Remark 3.5).

Lemma 5.23. Let h : N0 → N0 be a function such that h(n) ≥ n+ 1 for
all n ∈ N0. Moreover, suppose

(a) (γn)n∈N0 ⊂ I is a sequence such that

γm ≤ g(γn), n ≤ m ≤ h(n),

(b) (Γn)n∈N0 ⊂ I is an upper solution of (5.44),

(c) γ0 ≤ Γ0,

(d) (Γn) is increasing and lim supn→∞ γn =∞.

Then, there is a non-decreasing function σ : N0 → N such that

γσ(m) > Γm and γn ≤ Γm, n ∈ {0, . . . , σ(m)− 1}.

In addition,
σ(n+ 1) > h(σ(n)− 1), n ∈ N0.

Remark 5.24. Condition (a) implies that (γn) is a lower solution. The
statement of Lemma (5.23) remains true under the following relaxation.
Instead of (a), one can also impose
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(a∗) (γn)n∈N0 ⊂ R is a sequence such that there is a number d∗ > d with
Γ0 ≥ d∗ so that

γn+1 ≥ d∗ =⇒ d ≤ γm ≤ g(γn), n ≤ m ≤ h(n).

Now we are in position to prove the main result. For the sake of clarity,
we restate it.

Theorem 5.25. For k ∈ N, r∗ > 0, α ∈ (0, 1) and γ ∈ R \ {0}, consider
a twist map f :Mr∗ → R× [0,∞) with (θ, r) 7→ (θ1, r1) given by

θ1 = θ +
1

rα
(γ + F1(θ, r)), r1 = r + r1−αF2(θ, r),

where F1, F2 ∈ Fk+2(α). Moreover, suppose there is h ∈ Ck+2(Mr∗) such
that dh = r1 dθ1 − r dθ and

h(θ, r) = h0(θ, r) +R(θ, r),

where h0(θ, r) = −
(
αγ
1−α

)
r1−α and R ∈ Fk+2(2α − 1). Then, there is a

constant C > 0 such that if (θn, rn)n∈N0 denotes a complete forward orbit
of f , then there is n0 ∈ N so that

rn ≤ Cn1/(k+1)α, n ≥ n0.

Proof. The proof will be presented in three parts. First, a rescaling brings
the map f into a form suitable for the application of Theorem 5.21. In
the second step, the Theorem is applied and the resulting estimate is
translated into some growth condition for the original map. Finally, the
last part contains a further change of variables allowing for the usage of
Lemma 5.23. Then, the sought growth estimate can be concluded in a
rigorous way. The corresponding constant C > 0 from the assertion will
be obtained from a sequence of constants C1, . . . , C9 > 0, all depending
only upon the parameters.

Step 1: We rescale the map by using the transformation ξ = ε1/αr. The
twist map f then becomes

ψε(θ, ξ) = (θ, ξ) + εl(θ, ξ, ε),
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where l = (l1, l2) is given by

l1(θ, ξ, ε) =
1

ξα

(
γ + F1

(
θ,

ξ

ε1/α

))
, l2(θ, ξ, ε) = ξ1−αF2

(
θ,

ξ

ε1/α

)
for ε ∈ (0, σ], and

l1(θ, ξ, 0) =
γ

ξα
, l2(θ, ξ, 0) = 0.

Define σ = (2r∗)
−α and let ε ∈ (0, σ]. Then, the map ψε is well-defined for

ξ > ε1/αr∗ ≥ 1
2 . In particular, ψε is defined on G = R×I, where I = (1, 2).

In order to apply Theorem 5.21, we will show that l ∈ Mk+1
ρ,σ for ρ > 0

small enough and that {ψε} is an E-symplectic family of class Ck+1. We
have seen that a function g ∈ Cm(Mr∗) lies in Fm(λ) iff

∂νg(θ, r) = O(r−λ−ν2), |ν| ≤ m,

holds uniformly in θ ∈ R. After applying the rescaling it follows

∂|ν|

∂θν1∂ξν2

[
g

(
θ,

ξ

ε1/α

)]
=

1

εν2/α
∂|ν|g

∂θν1∂rν2

(
θ,

ξ

ε1/α

)
= O(ελ/α), (5.45)

uniformly in x = (θ, ξ) ∈ Gρ. Clearly, l ∈ C2(Gρ × (0, σ],R2) and l(·, ε) ∈
Ck+1(Gρ,R2) for ε ∈ [0, σ] are satisfied. Considering (5.45), the fact that
F1, F2 ∈ Fk+2(α) implies

∂νx

[
Fi

(
θ,

ξ

ε1/α

)]
= O(ε), |ν| ≤ k + 1,

for i = 1, 2 and uniformly in (θ, ξ) ∈ Gρ. Since also (θ, ξ) 7→ ξs is in
C∞
b (Gρ) for every s ∈ R, it follows ∂νx l ∈ C(Gρ× [0, σ],R2) for |ν| ≤ k+1

and
sup
ε∈[0,σ]

∥l(·, ε)∥Ck+1(Gρ) <∞.

Furthermore, for ε ∈ (0, σ] it is

∂εl1(θ, ξ, ε) = −
1

α

ξ1−α

ε1+1/α
∂rF1

(
θ,

ξ

ε1/α

)
,

∂εl2(θ, ξ, ε) = −
1

α

ξ2−α

ε1+1/α
∂rF2

(
θ,

ξ

ε1/α

)
.
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Thus, clearly ∂νx ∂εl ∈ C(Gρ × (0, σ],R2) for |ν| ≤ k + 1. Since we have
∂rFi ∈ Fk+1(α+ 1), equation (5.45) implies

∂νx

[
∂rFi

(
θ,

ξ

ε1/α

)]
= O(ε1+1/α),

which in turn yields supε∈(0,σ] ∥∂εl(·, ε)∥Ck+1(Gρ)
< ∞. So far we have

shown that l ∈Mk+1
ρ,σ . Next, we prove that the family {ψε} is E-symplectic.

Define ζ(θ, ξ, 0) = 0 and ζ(θ, ξ, ε) = ε1/αh
(
θ, ξ

ε1/α

)
for ε > 0. Then, ζ is a

potential for ψε, that is ξ1 dθ1 − ξ dθ = dζ(·, ε). Moreover, we have

ζ(θ, ξ, ε) = εh0(θ, ξ) + ε1/αR
(
θ,

ξ

ε1/α

)
,

where R ∈ Fk+2(2α− 1). Thus by (5.45), it follows

∂νx ζ(θ, ξ, ε) = ε∂νh0(θ, ξ) +O(ε2)

for |ν| ≤ k + 1 uniformly in x = (θ, ξ) ∈ Gρ. This equation shows that
∂νx ζ ∈ C(Gρ × [0, σ]). Similarly

∂εζ(θ, ξ, ε) = h0(θ, ξ) +
1

α
ε
1−α
α R

(
θ,

ξ

ε1/α

)
− 1

α

ξ

ε
∂rR

(
θ,

ξ

ε1/α

)
and so ∂νx ∂εζ(θ, ξ, ε) = ∂νh0(θ, ξ) + O(ε) by (5.45). Together, these
estimates verify ∥ζ∥∗k+1,ρ,σ <∞ and show that the conditions (5.22) and
(5.23) are satisfied.

Step 2: Application of Theorem 5.21. Since

l(x, 0) =

(
γξ−α

0

)
,

the function E(θ, ξ) = E(ξ) = γ
1−αξ

1−α satisfies J∇E(x) = l(x, 0). If

(θn, ξn) = ψnε (θ0, ξ0), 0 ≤ n ≤ N,

is such that ξn ∈ I for 0 ≤ n ≤ N , then according to Theorem 5.21
there are σ̂ ∈ (0, σ] and Ĉ > 0 (depending only upon k, ρ, σ, ∥l∥∗k+1,ρ,σ,
∥ζ∥∗k+1,ρ,σ, CI = max{ρ+ |p| : p ∈ I} and Cm from (5.23)) such that

|E(ξn)− E(ξ0)| ≤ Ĉε, 0 ≤ n ≤ min{N, ⌊ε−k⌋}. (5.46)
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Fix two numbers 1 < a < 3/2 < b < 2. By decreasing σ̂ if necessary, we
can assume that

σ̂ ≤ γ

(1− α)Ĉ
min

{(3
2

)1−α
− a1−α, b1−α −

(3
2

)1−α}
(5.47)

and

σ̂ ≤ min
{ a− 1

∥l∥k+1,ρ,σ
,

2− b
∥l∥k+1,ρ,σ

}
(5.48)

Now let (θn, rn)n∈N0 be a complete forward orbit. Assume there is m ∈ N0

such that (2rm/3)
−α < σ̂. If we apply the rescaling introduced in the first

step with ε = (2rm/3)
−α, then by construction we have ξm = 3/2. Thus

Nmax = max{M ≥ m : 1 < ξn < 2 for m ≤ n ≤M}

is well-defined. From (5.46) we know that∣∣∣ξ1−αn −
(3
2

)1−α∣∣∣ ≤ 1− α
γ

Ĉε, for m ≤ n ≤ min{Nmax,m+ ⌊ε−k⌋}.

For these n, (5.47) implies

a1−α <
(3
2

)1−α
− 1− α

γ
Ĉε < ξ1−αn ≤

(3
2

)1−α
+

1− α
γ

Ĉε < b1−α.

In fact one can deduce that Nmax ≥ m+⌊ε−k⌋, since ξn ∈ (a, b), (5.48) and
ξn+1 = ξn + εl2(θn, ξn, ε) yield ξn+1 ∈ (1, 2). In the original coordinates,
this means

|r1−αn − r1−αm | ≤ C1r
1−2α
m for m ≤ n ≤ m+ ⌊(2rm/3)kα⌋, (5.49)

where C1 > 0 depends on α, γ and Ĉ.

Step 3: A difference equation. We write sn =
(
2rn
3

)1−α
for all n ∈ N0. To

complete the proof, one thus has to show that

lim sup
n→∞

sn

n
1−α

(k+1)α

≤ C∗ (5.50)
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for a suitable constant C∗ > 0. This will be achieved by applying Lemma
5.23 and Remark 5.24 with γn = sn. In terms of sn, the estimate (5.49)

yields that if sm > σ̂
α−1
α , then

|sn − sm| ≤ C2s
β
m for m ≤ n ≤ m+ ⌊sk(1−β)m ⌋,

where β = 1−2α
1−α and C2 =

(
2
3

)α
C1. The corresponding difference equation

is thus induced by the function g(x) = x+ C2x
β, which is increasing on

I = (d,∞), where

d =

{
0, if β ≥ 0,

(C2|β|)
1

1−β , if β < 0.

Furthermore, let
h(n) = n+max{1, ⌊sk(1−β)n ⌋}.

In order to find d∗ such that condition (a∗) from the Remark 5.24 is
satisfied, we will first establish an estimate of the type sn ≥ Csn+1 − 1
with a suitable constant C > 0. We have

rn+1 = rn + r1−αn F2(θn, rn).

With C3 = sup(θ,r)∈Mr∗
|F2(θ, r)|, this implies

sn+1 =
(
2
3

)1−α(
rn + r1−αn F2(θn, rn)

)1−α ≤ (23)1−α(r1−αn + r(1−α)
2

n C1−α
3

)
= sn + C4s

1−α
n ≤ (C4 + 1)(sn + 1),

where C4 =
(
2
3

)α(1−α)
C1−α
3 . In particular, it follows

sn ≥ (C4 + 1)−1sn+1 − 1. (5.51)

Thus define
d∗ = max{σ̂

α−1
α + 1, 2d, (2C2)

1
1−β } (5.52)

and let d∗ = (C4+1)(d∗+1). Then sm+1 ≥ d∗ implies that sm ≥ d∗ > σ̂
α−1
α

and hence

sm − C2s
β
m ≤ sn ≤ g(sm), for m ≤ n ≤ m+ h(m),



122 Chapter 5. The non-periodic case

where we also used the fact that s
k(1−β)
m ≥ 1. For the lower bound, (5.52)

also yields

sn ≥ sm(1− C2s
β−1
m ) ≥ 1

2
sm ≥ d.

Finally, note that we can assume lim supn→∞ sn = ∞, since otherwise
(5.50) is trivial. In summary, (sn) has all the required properties and
it only remains to find a suitable upper solution (Γn)n∈N0 . To this end,

define Γn = (A+Bn)
1

1−β , where B = 2C2(1−β) and A
1

1−β ≥ max{s0, d∗}
sufficiently big. The sequence is obviously increasing and Γ0 ≥ max{s0, d∗}.
The mean value theorem yields

Γn+1 − Γn =
B

1− β
(A+Bζn)

β
1−β

for some ζn ∈ (n, n+ 1). In the case that β ∈ [0, 1), it follows

Γn+1 ≥ Γn +
B

1− β
Γβn = Γn + 2C2Γ

β
n ≥ g(Γn),

If β < 0 on the other hand, we have

Γn+1 ≥ Γn +
B

1− β
Γβn+1.

Since

Γβn+1

Γβn
=

(
1 +

B

A+Bn

) β
1−β
≥
(
1 +

B

A

) β
1−β

,

the latter estimate yields

Γn+1 ≥ Γn + 2C2

(
1 +

2C2(1− β)
A

) β
1−β

Γβn ≥ g(Γn),

provided that A is chosen sufficiently big (depending on C2 and β). Hence,
Lemma 5.23 yields a non-decreasing function σ : N0 → N such that
sσ(m) > Γm, sn ≤ Γm for n ∈ {0, . . . , σ(m)− 1} and moreover

σ(m+ 1) > σ(m)− 1 + ⌊sk(1−β)σ(m)−1⌋, m ∈ N0.
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The latter estimate, (5.51), sσ(m) > Γm and Γm ≥ d∗ ≥ 2(C4 + 1) show
that

σ(m+ 1)− σ(m) > s
k(1−β)
σ(m)−1 − 2

≥ ((C4 + 1)−1sσ(m) − 1)k(1−β) − 2

> ((C4 + 1)−1Γm − 1)k(1−β) − 2

≥ (12(C4 + 1)−1Γm)
k(1−β) − 2

= C5(A+Bm)k − 2

≥ C6m
k − 2,

with suitable constants C5, C6 > 0 (depending only upon C2, C4, k and β).
Thus

σ(m) ≥ σ(0) +
m−1∑
j=0

(σ(j + 1)− σ(j)) ≥ 1 + C6

m−1∑
j=0

jk − 2m

Since
m−1∑
j=0

jk ≥
∫ m−1

0
zk dz =

(m− 1)k+1

k + 1
,

it follows
σ(m) ≥ C7(m− 1)k+1

for an appropriate constant C7 > 0 and m sufficiently large. Now define

ψ(m) = min{n ∈ N0 : m < σ(n)}.

If ψ(m) ≥ 1, this yields m ≥ σ(ψ(m)− 1). Thus for m large we have

m ≥ σ(ψ(m)− 1) ≥ C7(ψ(m)− 2)k+1,

that is
ψ(m) ≤ C8m

1
k+1 ,

where C8 = C
− 1
k+1

7 + 2. Moreover, the definition of ψ also implies that
m ≤ σ(ψ(m))− 1 and hence sm ≤ Γψ(m). It follows

sm ≤ (A+Bψ(m))
1

1−β ≤ (A+BC8m
1
k+1 )

1
1−β ≤ C9m

1/(k+1)(1−β)
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for a suitable constant C9 > 0. In the original variables, this yields

rm ≤ Cm1/(k+1)α,

for a constant C > 0 and m ≥ m0 with m0 sufficiently big. Note that m0

is depending on the initial condition (θ0, r0), whereas C is independent of
the specific orbit.

5.5 Growth rates for the Fermi-Ulam ping-pong

Fix k ∈ N and let p ∈ Ck+1
b (R) be a forcing function with 0 < a ≤ p(t) ≤ b

for t ∈ R. We consider the ping-pong map

(t0, v0) 7→ (t1, v1),

introduced in Section 4.3. That is

t1 = t̃+
p(t̃)

v1
, v1 = v0 − 2ṗ(t̃),

where t̃ = t̃(t0, v0) is defined implicitly through the equation

(t̃− t0)v0 = p(t̃).

To ensure that this map is well-defined, we will assume that

v0 > v∗ := 2max{sup
t∈R

ṗ(t), 0}.

The ping-pong map becomes symplectic if we change to time-energy
coordinates with E = 1

2v
2. It then has the form P : (t0, E0) 7→ (t1, E1)

given by

t1 = t̃+
p(t̃)√
2E1

, E1 = (
√
E0 −

√
2ṗ(t̃))2, (5.53)

where t̃ = t̃(t0, E0) is defined by the relation

t̃ = t0 +
p(t̃)√
2E0

.

Note, that P should not be confused with the map Pε from the previous
sections. Clearly, we have P ∈ Ck(ME∗) for E∗ = 1

2v
2
∗. By applying

Theorem 5.25, one can derive the following upper bound on the growth in
velocity.
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Theorem 5.26. Given k ≥ 3, let p ∈ Ck+1
b (R) be so that 0 < a ≤ p(t) ≤ b

for t ∈ R. There are constants C̃, Ẽ > 0 such that if (tn, En)n∈N0 denotes
any complete forward orbit of the ping-pong map P ∈ Ck(MẼ) defined in
(5.53), then

En ≤ C̃n2/(k−1), n ≥ n0,

for some n0 ∈ N, or in terms of velocity vn ≤
√
2C̃n1/(k−1).

The remainder of this section is divided into three parts. As a prepara-
tion for the proof, we will first determine some estimates for the ping-pong
map and its derivatives. Afterwards, we introduce a change of variables
that will be used to bring P into a form suitable for the application
of Theorem 5.25. This enables us to state the proof of Theorem 5.26.
Finally, the last part contains the construction of an admissible forcing
function p ∈ Ck+1

b (R), for arbitrary k ∈ N, having a complete forward
orbit (tn, vn)n∈N0 such that

vn ≥ v0 + C∗n
1/(k+1), n ≥ n∗,

where C∗ > 0 and n∗ ∈ N are appropriate constants. Note that this
example fails to show the optimality of the upper bound on growth given
above.

5.5.1 Expansions of the ping-pong map

Now, we establish some estimates for P. Also note, that in this section
the O-notation is always understood to be uniform in t0 ∈ R, even when
not explicitly stated. We start by showing that (t̃− t0) ∈ Fk(1/2).

Lemma 5.27. Let f ∈ Ckb (R). We have

∂ν [t̃− t0] = O
(
E

−1/2−ν2
0

)
and

∂νf(t̃) =

{
O
(
E

−1/2−ν2
0

)
, ν2 > 0,

O(1), ν2 = 0,
(5.54)

uniformly in t0 and for all ν ∈ N2
0 with |ν| ≤ k.
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Proof. We use induction over m = |ν|. By definition

t̃− t0 =
p(t̃)√
2E0

.

It follows easily that

∂t0 t̃ =

(
1− ṗ(t̃)√

2E0

)−1

= O(1).

Hence the assertion holds for m = 0 and ν = (1, 0). Now, assume that
the hypothesis is true for j = 0, . . . ,m ≤ k − 1 and fix ν ̸= (1, 0) with
|ν| = m+ 1. Using f(t) = p(t), we deduce

∂ν [t̃− t0] =
∑
µ≤ν

(
ν

µ

)
∂µp(t̃)∂ν−µ

(
1√
2E0

)
=

ṗ(t̃)√
2E0

∂ν t̃+O
(
E

−1/2−ν2
0

)
and thus ∂ν t̃ = O

(
E

−1/2−ν2
0

)
uniformly in t0. Moreover, applying the Faà

di Bruno formula (5.1) to f(t̃(t0, E0)) yields

∂νf(t̃) = ḟ(t̃)∂ν t̃+
m+1∑
r=2

f (r)(t̃)
∑
p(ν,r)

ν!
m+1∏
j=1

(∂ℓj t̃)rj

(rj !)(ℓj !)
.

In the case ν2 = 0, this clearly implies ∂νf(t̃) = O(1). This can not be
improved, since (0, . . . , 0, r,0, . . . ,0, (1, 0)) ∈ p(ν, r). If ν2 > 0 on the
other hand, the inductive hypothesis yields

∑
p(ν,r)

ν!
m+1∏
j=1

(∂ℓj t̃)rj

(rj !)(ℓj !)
=
∑
p(ν,r)

m+1∏
j=1

ℓj ̸=(1,0)

O
(
E

−1/2−ℓj,2
0

)rj = O(E−1/2−ν2
0

)
,

where ℓj = (ℓj,1, ℓj,2), because
∑

ℓj ̸=(1,0) rj ≥ 1 and
∑

ℓj ̸=(1,0) rjlj,2 = ν2.

Thus, we have shown that the assertion also holds for |ν| = m+ 1.

As a consequence we get
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Lemma 5.28. For any ν = (ν1, ν2) ∈ N2
0 with |ν| ≤ k we have

∂ν [t1 − t0] = O
(
E

−1/2−ν2
0

)
and ∂ν [E1 − E0] = O

(
E

1/2−ν2
0

)
.

Furthermore,

∂ν
[√

E1 −
√
E0

]
=

{
O
(
E

−ν2−1/2
0

)
, ν2 > 0

O(1), ν2 = 0.

Proof. First, recall that E1 = E0 − 2
√
2E0ṗ(t̃) + 2ṗ(t̃)2. Thus, Lemma

5.27 implies

∂ν [E1 − E0] = 2
∑
µ≤ν

(
ν

µ

)
∂µṗ(t̃) ∂ν−µ[ṗ(t̃)−

√
2E0]

=
∑
µ≤ν
µ2 ̸=0

O
(
E

−1/2−µ2
0

)
O
(
E

1/2−(ν2−µ2)
0

)
+O

(
E

1/2−ν2
0

)
= O

(
E

1/2−ν2
0

)
for any ν ∈ N2

0 with |ν| ≤ k. For t1 − t0 on the other hand we have

t1 − t0 =
(

1√
2E0

+
1√
2E1

)
p(t̃).

Here, the estimate for ∂νE1 yields

∂ν
[

1√
2E1

]
=

|ν|∑
r=1

(−1)r (2r)!

22r+1/2r!E
r+1/2
1

∑
p(ν,r)

ν!

|ν|∏
j=1

(∂ℓjE1)
rj

(rj !)(ℓj !)

=

|ν|∑
r=1

O
(
E

−1/2−r
0

) ∑
p(ν,r)

|ν|∏
j=1

ℓj ̸=(0,1)

O
(
E

1/2−ℓj,2
0

)rj

=

|ν|∑
r=1

O
(
E

−1/2−r
0

) ∑
p(ν,r)

O
(
E

(r−rJ )/2−ν2+rJ
0

)
= O

(
E

−1/2−ν2
0

)
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where rJ ∈ N0 denotes the multiplicity of ℓJ = (0, 1) in p(ν, r) and thus∑
ℓj ̸=(0,1) rj(

1
2 − ℓj,2) =

r−rJ
2 − ν2 + rJ ≤ r− ν2. So together with Lemma

5.27 we obtain
∂ν [t1 − t0] = O

(
E

−1/2−ν2
0

)
for all ν ∈ N2

0 with |ν| ≤ k. Finally, Lemma 5.27 also leads to

∂ν
[√

E1 −
√
E0

]
= −
√
2∂ν [ṗ(t̃)] =

{
O
(
E

−1/2−ν2
0

)
, ν2 > 0

O(1), ν2 = 0.

Remark 5.29. There is an analogue to (5.54) for convex-combinations of
t1, t̃ and t0. Let tλ = λ1t1 + λ2t̃ + λ3t0, where λi ∈ [0, 1] are such that
λ1 + λ2 + λ3 = 1 Given f ∈ Cmb (R) with 0 ≤ m ≤ k, we have

Dν
[
f(tλ)

]
=

{
O
(
E

−ν2−1/2
0

)
, ν2 > 0

O(1), ν2 = 0,

for all ν = (ν1, ν2) ∈ N2
0 with |ν| ≤ m. In particular, f(tλ) ∈ Fm(0).

Moreover, if m ≥ 1 one can write

f(t̃)− f(t0) = (t̃− t0)
∫ 1

0
ḟ(λt̃+ (1− λ)t0) dλ.

Thus, applying Lemma A.2 yields (f(t̃)− f(t0)) ∈ Fm−1(1/2). In fact, if
tβ denotes another convex-combination, then (f(tλ)− f(tβ)) ∈ Fm−1(1/2)
follows by the same argument.

5.5.2 Growth rates

Consider the change of variables Γ :ME∗ → R× (0,∞) defined by

(t, E) 7→ (τ,W ), τ(t) =

∫ t

0

ds

p(s)2
, W (t, E) = p(t)2E.

Γ is a Ck+1-diffeomorphism between ME∗ and Γ(ME∗). Moreover, note
that a ≤ p(t) ≤ b. Therefore, defining W∗ = b2E∗ and E∗∗ =

W∗
a2

yields

MW∗ ⊂ Γ(ME∗) and ME∗∗ ⊂ Γ−1(MW∗).
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Lemma 5.30. Given 0 ≤ m ≤ k+1 and a function f ∈ Cm(ME∗), denote
by f̂ = (f ◦ Γ−1) ∈ Cm(Γ(ME∗)) the same function in the new coordinates.
Then, f ∈ Fm(r) if and only if f̂ ∈ Fm(r).

Proof. We perform a proof by induction over m. Since a ≤ p(t) ≤ b, we
have f = O(E−r

0 ) if and only if f̂ = O(W−r
0 ) uniformly in t0 and τ0,

respectively. Now assume the hypothesis is true for some m ∈ {0, . . . , k}
and also let f̂ ∈ Fm+1(r). For f = f̂ ◦ Γ and E0 ≥ E∗∗ it follows

∂t0f(t0, E0) = p(t0)
−2∂τ0 f̂(Γ(t0, E0)) + 2p(t0)ṗ(t0)E0∂W0 f̂(Γ(t0, E0))

and

∂E0f(t0, E0) = p(t0)
2∂W0 f̂(Γ(t0, E0)).

Moreover, ∂τ0 f̂ ∈ Fm(r), ∂W0 f̂ ∈ Fm(r + 1) and thus the inductive
hypothesis implies that ∂τ0 f̂ ◦Γ ∈ Fm(r) and ∂W0 f̂ ◦Γ ∈ Fm(r+1). Thus,
f ∈ Fm+1(r) follows from Lemma A.2. The other direction can be shown
analogously.

Now we are ready to give the proof.

Proof of Theorem 5.26. Denote by P̂ = Γ ◦ P ◦ Γ−1 the ping-pong map in
the new coordinates. We will apply Theorem 5.25 to P̂ :MW∗ → R×[0,∞),
(τ0,W0) 7→ (τ1,W1) with γ =

√
2 and α = 1

2 . This map has the required
form if we take F1 = F and F2 = G, where

F (τ0,W0) =
√
W0(τ1 − τ0)−

√
2, G(τ0,W0) =

W1 −W0√
W0

.

We must confirm that F,G ∈ Fk(1/2). Since P̂ ∈ Ck(MW∗), we clearly
also have F,G ∈ Ck(MW∗). Moreover,

τ(t1)− τ(t0) = (t1 − t0)
∫ 1

0

1

p(λt1 + (1− λ)t0)2
dλ

=

(
1√
2E0

+
1√
2E1

)
p(t̃)

∫ 1

0

1

p(λt1 + (1− λ)t0)2
dλ.



130 Chapter 5. The non-periodic case

Plugging this into F yields

F (Γ(t0, E0)) =
1√
2

(
1 +

√
E0√
E1

)∫ 1

0

p(t0)p(t̃)

p(λt1 + (1− λ)t0)2
dλ−

√
2

=
1√
2
(2 +R1) (1 +R2)−

√
2

=
1√
2
R1 +

2√
2
R2 +

1√
2
R1R2,

where the two auxiliary functions R1, R2 ∈ Ck(Γ−1(MW∗)) are defined by

R1(t0, E0) = −
√
E1 −

√
E0√

E1

and

R2(t0, E0) =

∫ 1

0

p(t0)p(t̃)

p(λt1 + (1− λ)t0)2
dλ− 1.

Lemma 5.28 yields R1 ∈ Fk(1/2). Regarding R2 we have

p(t0)

p(λt1 + (1− λ)t0)
= 1 +

p(t0)− p(λt1 + (1− λ)t0)
p(λt1 + (1− λ)t0)

= 1 +R3,

where R3 ∈ Fk(1/2) by Remark 5.29. A similar argument shows that(
p(t̃)

p(λt1 + (1− λ)t0)
− 1

)
∈ Fk(1/2),

and thus it follows R2 ∈ Fk(1/2). So F ∈ Fk(1/2) is verified. For
G(τ0,W0) = W1−W0√

W0
we will use a representation developed in [KO11,

Lemma 3.11]. Denoting φ(t) = p(t)2, we have

W1−W0 =
1

2
φ(t̃)

∫ 1

0
(1−λ)[φ̈((1−λ)t̃+λt0)−φ̈((1−λ)t̃+λt1)] dλ. (5.55)

Applying Remark 5.29 yields

∂ν [W1 −W0] =

{
O
(
E

−1/2−ν2
0

)
, ν2 > 0

O(1), ν2 = 0,
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for ν = (ν1, ν2) with 0 ≤ |ν| ≤ k. Hence, in total G ∈ Fk(1/2). It remains
to prove that P̂ is E-symplectic with a suitable potential h ∈ Ck(MW∗)
satisfying

h(τ0,W0) = −
√
2W0 +R(τ0,W0), (5.56)

with a remainder R ∈ Fk(0). According to [KO11, Lemma 3.8], the
function G(t0, t1) defined on a suitable domain and given by

G(t0, t1) =
1

2
p(t̃)2

(
1

t̃− t0
+

1

t1 − t̃

)
,

is a generating function for the ping-pong map P on ME∗ , if E∗ > 0 is
sufficiently big. Thus g(τ0, τ1) = G(t(τ0), t(τ1)) is a generating function for
P̂, where t(τ) denotes inverse transformation of τ(t). That is W0 = ∂g

∂τ0

and −W1 =
∂g
∂τ1

. Hence, the function

h(τ0,W0) = −g(τ0, τ1(τ0,W0)),

is indeed a potential for P̂ , since ∂h
∂τ0

= − ∂g
∂τ0
− ∂g

∂τ1
∂τ1
∂τ0

= W1
∂τ1
∂τ0
−W0

as well as ∂h
∂W0

= − ∂g
∂τ1

∂τ1
∂W0

= W1
∂τ1
∂W0

. Using the definitions of t1 and t̃,

together with the fact that
√
E1 =

√
E0 −

√
2ṗ(t̃), we obtain

G(t0, t1) =
1

2
p(t̃)

(√
2E0 +

√
2E1

)
= p(t̃)

√
2E0 − p(t̃)ṗ(t̃)

= p(t0)
√

2E0 + R̃(t0, E0),

where
R̃(t0, E0) = (p(t̃)− p(t0))

√
2E0 − p(t̃)ṗ(t̃).

Since (p(t̃)− p(t0)) ∈ Fk(1/2) by Remark 5.29, we have R̃ ∈ Fk(0). Thus,
R = −R̃ ◦ Γ−1 defines a function in Fk(0) satisfying (5.56). In summary,
we have shown that all conditions of Theorem 5.25 are satisfied. This
yields a constant C > 0 such that if (τn,Wn)n∈N0 denotes any complete
forward orbit, then there is n0 ∈ N so that

Wn ≤ Cn2/(k−1), n ≥ n0.

Choosing C̃ = a−2C and Ẽ = E∗∗ proves the assertion.
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5.5.3 An example with escaping orbits

Let k ∈ N with k ≥ 2 and numbers 0 < a < b ≤ M be given. We will
construct p ∈ Ckb (R) with a ≤ p(t) ≤ b for t ∈ R and ∥p∥Ck(R) ≤M such

that there is a corresponding orbit (tn, vn)n∈N0 satisfying vn ≥ v0+C∗n
1/k

for n ≥ n∗ with some n∗ ∈ N and a constant C∗ > 0. The example was
introduced in [KO11] to prove the existence of unbounded orbits. Here,
we will additionally determine a lower bound for the growth in vn.

This forcing function p(t), which oscillates between a and b, will be
obtained by combining two basic motions: A “blocking motion”, in which
p moves monotonically from a to b (i.e. ṗ(t) ≥ 0) so that ṗ(t) = 0 at all
instances t = t̃n of collisions with the moving wall and an “accelerating
motion”, in which it moves monotonically from b to a such that ṗ(t) < 0
at all instances t = t̃n. We start by constructing these isolated parts.
Afterwards we combine them and show that the resulting function has the
desired properties. To this end, consider a smooth function w ∈ C∞([0, 1])
such that w(0) = 0, w(1) = 1, ẇ(t) > 0 for t ∈ (0, 1) and w(j)(0) =
w(j)(1) = 0 for j ∈ N. For example one could take

w(t) =

(
1 + exp

(1
t
− 1

1− t

))−1

.

The blocking motion p+(t)

Define µ = µ(v0) by

µ =
Mak

∥w∥Ck([0,1])vk0
.

Now, fix (t0, v0) ∈ R× (0,∞) with v0 > a so large that µ < b− a. Denote
by N+ ≥ 2 the integer such that

(N+ − 1)µ < b− a ≤ N+µ.

Moreover, define the sequence (τn)n∈Z by setting τ0 = t0 and

τn+1 − τn =


2a
v0
, n ≤ −1

2(a+(n+1)µ
v0

), 0 ≤ n ≤ N+ − 1
2b
v0
, n ≥ N+

.
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Now, consider the function p+ : R→ [a, b] given by

p+(t) =



a, t ≤ τ0

a+ nµ+ µw( v0
a
(t− τn)), n = 0, . . . , N+ − 2; t ∈ [τn, τn + a

v0
]

a+ (n+ 1)µ, n = 0, . . . , N+ − 2; t ∈ [τn + a
v0
, τn+1]

a+ (N+ − 1)µ+ µ̂w( v0
a
(t− τN+−1)), t ∈ [τN+−1, τN+−1 +

a
v0
]

b, t ≥ τN+−1 +
a
v0

,

where µ̂ ∈ (0, µ] is given by µ̂ = b− a− (N+ − 1)µ. Denote by (tn, vn)n∈Z
the complete orbit of the ping-pong map P using p = p+ and the given
initial condition (t0, v0). It is straight forward to check that

tn = τn and vn = v0 for all n ∈ Z.

Moreover, we have p+ ∈ C∞(R) and ∥p+∥Ck(R) ≤ M by construction.
Finally, note that the definition of N+ implies the bound

C1v
k
0 ≤ N+ ≤ (C1 + 1)vk0 , (5.57)

where

C1 =
(b− a)∥w∥Ck([0,1])

Mak
.

The accelerating motion p−(t)

Let

σ = sup
1≤m≤k

(
∥w(m)∥∞(b− a)

M

) 1
m

.

Given (t0, v0) ∈ R× (0,∞), consider the map p− : R→ [a, b] defined by

p−(t) =


b, t ≤ t0
b− (b− a)w(σ−1(t− t0)), t ∈ [t0, t0 + σ]

a, t ≥ t0 + σ

.

Then, again p− ∈ C∞(R) and ∥p−∥Ck(R) ≤ M by construction. Denote
by (tn, vn)n∈N0 the complete forward orbit of the ping-pong map P using
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p = p− and the given initial condition. Note, that ṗ−(t) ≤ 0 for all t ∈ R.
Hence vn+1 ≥ vn for all n ∈ N0. We have

2a

vn+1
≤ a

( 1

vn
+

1

vn+1

)
≤ tn+1 − tn ≤ b

( 1

vn
+

1

vn+1

)
≤ 2b

vn
. (5.58)

Let N− ∈ N be the first integer such that tN− ≥ t0 + σ. We will determine
constants C2, C3 > 0 depending only on the parameters such that

C2v0 ≤ N− ≤ C3v0. (5.59)

By (5.58), we get

σ ≤
N−−1∑
n=0

(tn+1 − tn) ≤ N−
2b

v0

and thus N− ≥ C2v0 with C2 = σ
2b . Since vn+1 − vn = 2|ṗ−(t̃n)|, where

t̃n ∈ (tn, tn+1) denotes the time of collision with the moving wall, we have
vn − v0 =

∑n−1
j=0 2|ṗ−(t̃j)| ≤ 2Mn. Using (5.58), it therefore follows

tn − t0 ≥
n−1∑
j=0

a

vj
≥

n−1∑
j=0

a

2Mj + v0
.

Moreover, it is

n−1∑
j=0

1

j + v0
2M

≥
∫ n

0

1

x+ v0
2M

dx = log
(2Mn

v0
+ 1
)
.

Hence tn − t0 ≥ a
2M log

(
2Mn
v0

+ 1
)
, which verifies (5.59) with

C3 =
1

2M
exp

((2Mσ

a

)
− 1
)
.

Now, one can establish bounds on the growth vN− − v0. Since we have
vN− ≤ v0 + 2MN−, estimate (5.59) yields

vN− ≤ (1 + 2MC3)v0. (5.60)
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For the lower bound, note that N− → ∞ and supn∈N(tn+1 − tn) → 0 as
v0 →∞. Hence, we can choose v0 so large that∣∣∣∣∣∣

∫ tN−

t0

ṗ(t) dt−
N−−1∑
n=0

ṗ(t̃n)(tn+1 − tn)

∣∣∣∣∣∣ < b− a
2

.

In particular, it follows

−
N−−1∑
n=0

ṗ(t̃n)(tn+1 − tn) > −
∫ tN−

t0

ṗ(t) dt− b− a
2

=
b− a
2

.

But then this yields

vN− − v0 = −2
N−−1∑
n=0

ṗ(t̃n) ≥ −
v0
b

N−−1∑
n=0

ṗ(t̃n)(tn+1 − tn) ≥
v0(b− a)

2b
. (5.61)

The combined function p(t)

Now, we glue p− and p+ together as follows. Given t0 = 0 and v0
large enough, we start by setting p(t) = p−(t) for t ∈ [0, tN− ], where
N− = N−(v0) is as described above. In particular, this means p(t0) = b,
p(tN−) = a and vn < vn+1 for 0 ≤ n ≤ N− − 1. Next, using (tN− , vN−) as
the initial condition for p+ yields some N+ = N+(vN−) as defined above.
Let N = N− +N+ and set p(t) = p+(t) for t ∈ [tN− , tN ]. Thus p(tN ) = b
and vn = vN− for N− ≤ n ≤ N . We want to find a lower bound for

(vN − v0)/N1/k. The numerator can be estimated using (5.61). For the
denominator, applying (5.59), (5.57) and then (5.60) yields

N = N− +N+(vN−) ≤ C3v0 + (C1 + 1)vkN−
≤
(
C3 + (C1 + 1)(1 + 2MC3)

k
)
vk0 .

In summary, one obtains

vN − v0 ≥ C4N
1
k ,

with a constant C4 > 0 depending only on the parameters. Until this
point, the forcing p(t) is only defined on the interval [0, tN ]. However, since
p(tN ) = b and vN > v0 the procedure above can be repeated infinitely
many times to obtain a forcing p ∈ C∞([0,∞)) ∩ Ckb ([0,∞)) oscillating
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between a and b. Moreover, this yields sequences of natural numbers

N
(j)
− , N

(j)
+ and N (j) with the following properties. For all j ∈ N we have

N
(1)
− = N−, N

(1)
+ = N+, N (0) = 0,

N (j−1) +N
(j)
− +N

(j)
+ = N (j),

p(tN(j)) = b,

vn < vn+1 for N (j−1) ≤ n ≤ N (j−1) +N
(j)
− − 1,

vn = v
N(j−1)+N

(j)
−

for N (j−1) +N
(j)
− ≤ n ≤ N (j).

Since the constants C4 depends only upon the parameters, the estimate

vN(j) − vN(j−1) ≥ C4(N
(j)
+ +N

(j)
− )

1
k

stays valid for all j ∈ N. In particular, through summation it follows

vN(j) ≥ v0 + C4(N
(j))

1
k .

Now, consider n ≥ N (1) arbitrary but fixed and let j ∈ N be such that

N (j) ≤ n < N (j+1). If n ≥ N (j) +N
(j+1)
− , then

vn − v0 = vN(j+1) − v0 ≥ C4(N
(j+1))

1
k ≥ C4n

1
k .

If N (j) ≤ n < N (j) +N
(j+1)
− on the other hand, it follows

vn − v0 ≥ vN(j) − v0 ≥ C4(N
(j))

1
k .

Moreover, n
1
k ≤ (N (j))1/k + (N

(j+1)
− )1/k and by (5.59), we have

N
(j+1)
− ≤ C3vN(j) ≤ C3(v0 + 2MN (j)) ≤ C3(v0 + 2M)N (j).

In total, we obtain

vn − v0 ≥ C∗n
1/k, n ≥ n∗,

where n∗ = N (1) and

C∗ =
C4

1 + (C3(v0 + 2M))1/k
.
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Conclusion

The development of the theories of Kolmogorow-Arnold-Moser and Aubry-
Mather, respectively, have been major breakthroughs in the theory of
dynamical systems, which led to a wealth of publications in the last
decades. In this work, we successfully demonstrated the utility of studying
twist maps even in cases where the classical theory is not available.

First, we used Maharam‘s Recurrence Theorem to prove the recurrence
of a class of periodic twist maps under low regularity assumptions. This
was shown to imply the Poisson stability of almost every solution to the
piecewise linear oscillator

ẍ+ n2x+ h̃L(x) = p(t), h̃L(x) =

{
sign(x) if |x| ≥ 1

L ,

Lx if |x| < 1
L ,

with p ∈ C(S1) and its discontinuous limit case.
Using a similar approach, the improbability of escaping orbits was

proven for some near-integrable systems having adiabatic invariants and
almost periodic time dependence. This includes the Fermi-Ulam ping-pong
with forcing functions p ∈ C2

b and the super-linear oscillator

ẍ+ |x|α−1x = p(t),

with p ∈ C4
b and α ≥ 3. For the latter, one has again Poisson stability.

Note, that by Theorem 4.9, the set of initial condition leading to
escaping orbits has measure zero. However, the author knows of no
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admissible example exhibiting even unbounded motions. Hence, it may be
an interesting and also promising task to either construct such a counter-
example or to show that there are indeed no escaping orbits, thereby
overcoming a possible shortcoming of the measure-theoretical approach.

Finally, we determined growth rates for a large family of twist maps
without imposing any periodicity condition. This class again covered the
ping-pong model and we were able to show that the velocity satisfies
vn = O(n1/k) if p ∈ Ck+2

b with k ≥ 2.
Since there is a gap between the maximal growth proven for twist maps

of the form (1.3) and the actual growth rates realized in the ping-pong
example, it remains an open question whether the upper limit is optimal.



Appendices

A The space Fk(r)

Given k ∈ N0 and r ∈ R, we define Fk(r) to be the space of functions
F (τ, v) such that F ∈ Ck(Mv∗) for some v∗ > 0 and

sup
(τ,v)∈Mv∗

vr+ν2 |∂νF (τ, v)| <∞

for every multi-index ν = (ν1, ν2) with |ν| ≤ k. Moreover, we define
Fu(r) to be the space of functions F ∈ F0(r) such that vrF (·, v) converges
uniformly as v →∞. We also write Fku (r) = Fk(r) ∩ Fu(r).

In this section, we state some properties that are true for Fk and Fku
with any k ∈ N ∪ {0}. The proofs regarding Fk can be found in Section 5
of [Ort99]. For this reason, we only include proofs for the spaces Fu.

Remark A.1. In contrast to [Ort99], functions in Fk(r) are in general
not periodic. If periodicity is assumed, the listed operations retain this
property.

First, we state some algebraic features.

Lemma A.2. (i) If r1 < r2, then Fku (r2) ⊂ Fku (r1).

(ii) If r1 ≤ r2, F1 ∈ Fku (r1) and F2 ∈ Fku (r2), then F1 + F2 ∈ Fku (r1).

(iii) If F1 ∈ Fku (r1) and F2 ∈ Fku (r2), then F1 · F2 ∈ Fku (r1 + r2).

The remaining lemmata deal with different composite functions.
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Lemma A.3. Consider a function φ ∈ C∞([−δ, δ]) for some δ > 0
satisfying

φ(0) = 0, or φ(0) = φ′(0) = 0.

If r > 0 and F ∈ Fku (r), then φ◦F ∈ Fku (r) or φ◦F ∈ Fku (2r), respectively.

Proof. By taylor φ(x) = φ′(0)x+ φ′′(0)x2 + R(x) with R ∈ C∞(R) and
R = o(x2). Hence limv→∞ vrφ(F (τ, v)) = φ′(0) limv→∞ vrF (τ, v). If also
φ′(0) = 0, then

v2rφ(F (τ, v)) = φ′′(0)v2rF (τ, v)2 + v2rF (τ, v)2
R(F (τ, v)2)

F (τ, v)2

converges uniformly as v →∞.

Lemma A.4. If G ∈ Fku (0) and F ∈ Fku (1), then

1

v +G(τ, v) + F (τ, v)
=

1

v
− G(τ, v)

v2
+ F̃ (τ, v),

with F̃ ∈ Fku (3).

Proof. Consider the smooth functions

φ(ξ) =
1

1 + ξ
− 1, ψ(ξ) =

1

1 + ξ
− 1 + ξ.

Then, we have

1

v +G+ F
=

1

v
− G

v2
+

1

v
ψ

(
G

v

)
+

1

v +G
φ

(
F

v +G

)
Since φ(0) = 0 and ψ(0) = ψ′(0) = 0, Lemma A.3 proves the assertion.

Lemma A.5. Let R,S ∈ Fku (0) and F ∈ Fku (r) be given. If F is uniformly
continuous, the map F̃ defined by

F̃ (τ, v) = F (τ +R(τ, v), v + S(τ, v)),

satisfies F̃ ∈ Fku (r).
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Proof. Denote by α(τ) = limv→∞ vrF (τ, v) and β(τ) = limv→∞R(τ, v)
the uniform limits. We show that F̃ (τ, v) → α(τ + β(τ)) uniformly. To
this end, let ε > 0. Since S(τ, v) is bounded, we have

α(τ) = lim
v→∞

(v + S)rF (τ, v + S) = lim
v→∞

vrF (τ, v + S),

uniformly and independently of the arguments of S. Here, we used the
expansion (v + S)r = vr + rSvr−1 + o(vr−1). In particular, one can find
ṽ > 0 such that for (τ, v) ∈Mṽ the estimate

|vrF (τ, v + S(t, w))− α(τ)| < ε
2

holds for all (t, w) ∈Mṽ. Moreover, α(τ) is uniformly continuous. There-
fore, we can find δ > 0 such that |τ − τ ′| < δ yields |α(τ) − α(τ ′)| < ε

2 .
Now, choose v̂ ≥ ṽ so that |R(τ, v)− β(τ)| < δ for v ≥ v̂. Then, it follows
|vrF̃ (τ, v)− α(τ + β(τ))| < ε for all (τ, v) ∈Mv̂.

Lemma A.6. Given f ∈ Ck+1
b (R) such that f ′ is uniformly continuous

and F ∈ Fku (r) with r ≥ 0, define

G(τ, v) = f(τ + F (τ, v))− f(τ).

Then G ∈ Fku (r).

Proof. Write α(τ) = limv→∞ vrF (τ, v) for the uniform limit. First, con-
sider the case r = 0. Since f is uniformly continuous, the limit

lim
v→∞

G(τ, v) = f(τ + α(τ))− f(τ)

follows directly from the definition of G. If r > 0 on the other hand, the
identity

G(τ, v) = F (τ, v)

∫ 1

0
f ′(τ + λF (τ, v)) dλ

implies the uniform limit limv→∞ vrG(τ, v) = α(τ)f ′(τ).
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B Expansions for a piecewise linear oscillator

Here, we will verify the expansion of the map P introduced in (3.13). We
start by determining the expansions in the linear case. To this end, let
y(t) be the solution of

ÿ + n2y = f(t), x(τ) = 0, ẏ(τ) = v,

where f ∈ C(S1). Moreover, consider the functions

F (τ, t) =

∫ t

τ
f(s) sin(n(t− s)) ds, G(τ, t) =

∫ t

τ
f(s) cos(n(t− s)) ds.

We have F,G ∈ C1
b (R2) and

∂τF (τ, t) = −f(τ) sin(n(t− τ)), ∂τG(τ, t) = −f(τ) cos(n(t− τ)),
∂tF (τ, t) = nG(τ, t), ∂tG(τ, t) = f(t)− nF (τ, t).

Then, y(t) has the form

y(t) =
v

n
sin(n(t− τ)) + 1

n
F (t, τ). (B.1)

As shown in Section 3.3, the successor maps

S± : R× R± → R× (R∓ ∪ {0}), S±(τ, v) = (τ̂ , v̂),

sending (τ, v) to the coordinates of the subsequent zero, are well-defined
and of class C1 on (R× R±) \ Σ±, where Σ± = {(τ, v) ∈ R× R± : v̂ = 0}.
Also, note that

Σ± ∩Mv∗ = ∅

for v∗ > 0 sufficiently large. This leads to the following.

Lemma B.1. For v∗ sufficiently large S+ and S− have expansions of the
form {

τ̂ = τ + π
n + 1

nvF (τ, τ +
π
n) + R̂(τ, |v|),

v̂ = −v +G(τ, τ + π
n) + Ŝ(τ, |v|),

where R̂, Ŝ ∈ C1(Mv∗), R̂ ∈ F1
u(2) and Ŝ ∈ Fu(1) ∩ F1(0).
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Proof. It follows from (B.1) that for v sufficiently large S+ has the form{
τ̂ = τ + π

n + 1
n arcsin

(
F (τ,τ̂)
v

)
,

v̂ = G(τ, τ̂)−
√
v2 − F (τ, τ̂)2,

where arcsin maps [−1, 1] onto [−π
2 ,

π
2 ]. Since F ∈ C1

b (R2), it follows
limv→∞ τ̂ = τ + π

n and thus also limv→∞ F (τ, τ̂) = F (τ, τ + π
n) uniformly

in τ . Moreover, a direct calculation shows that

∂τ τ̂ = 1 +O(v−1), ∂v τ̂ = O(v−2).

In summary, we have F (τ, τ̂) ∈ F1
u(0). Since φ(x) = arcsin(x)− x satisfies

φ(0) = φ′(0) = 0, we may apply Lemma A.3 to infer that

τ̂ = τ + π
n + 1

vF (τ, τ̂) +R1(τ, v),

where R1 ∈ F1
u(2). The fact that ∂tF = nG ∈ C1

b (R2) yields

F (τ, τ̂)− F (τ, τ + π
n) = (τ̂ − τ − π

n)

∫ 1

0
nG(τ, τ + π

n + λ(τ̂ − τ − π
n)) dλ.

Consequently, we have

F (τ, τ̂) = F (τ, τ + π
n) +R2(τ, v)

with R2 ∈ F1
u(1). Thus, we have proven the claimed expansion for τ̂ . Note

that in contrast to F , the function G(τ, t) is not of class C2 in t. However,
we still obtain

(
G(τ, τ̂)−G(τ, τ + π

n)
)
∈ Fu(1) ∩ F1(0). Hence, one can

derive the formula for v̂ by applying Lemma A.3 with φ̃(x) =
√
1− x2− 1.

The expansion of S− follows by considering z(t) = −y(t).

Now, for p ∈ C(S1) consider the piecewise linear oscillator

ẍ+ n2x+ sign(x) = p(t),

and the map P defined in (3.13).
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Lemma B.2. For v > 0 sufficiently big, P (τ, v) = (τ ′, v′) has an expansion
of the form {

τ ′ = τ + 2π − L1(τ)
nv +R′(τ, v),

v′ = v + L2(τ) + S′(τ, v),
(B.2)

where

L1(τ) = 2πℑ(einτ p̂n) + 4, L2(τ) = 2πℜ(einτ p̂n),

and R′, S′ ∈ C1(Mv∗), R
′ ∈ F1

u(2), S
′ ∈ Fu(1).

Proof. Define

φ(τ) =

∫ τ+
π
n

τ
p(s) sin(n(s−τ)) ds, ψ(τ) =

∫ τ+
π
n

τ
p(s) cos(n(s−τ)) ds.

For t ∈ [τ, τ1], the corresponding equation is ẍ+ n2x = p(t)− 1. Hence,
one could apply Lemma B.1 with f = p− 1 to obtain the expansions of τ1
and v1. Since

F (τ, τ + π
n) =

∫ τ+
π
n

τ
(p(s)− 1) sin(n(τ + π

n − s)) ds = φ(τ)− 2
n

and similarly G(τ, τ + π
n) = −ψ(τ), we get the expansion{

τ1 = τ + π
n + 1

nv

(
φ(τ)− 2

n

)
+R1(τ, v),

v1 = −v − ψ(τ) + S1(τ, v),

with R1 ∈ F1
u(2) and S1 ∈ Fu(1)∩F1(0). In the same way, one can derive

the expansions{
τj+1 = τj +

π
n + 1

nvj

(
φ(τj) + (−1)j+1 2

n

)
+Rj+1(τj , |vj |),

vj+1 = −vj − ψ(τj) + Sj+1(τj , |vj |),

for j = 1, . . . , 2n− 1, where Rj+1 ∈ F1
u(2) and Sj+1 ∈ Fu(1) ∩ F1(0). In

particular since Sj+1 ∈ F1(0), Lemma A.4 yields 1
vj

= − 1
vj−1

+ . . . with a

remainder in F1
u(2). By repeatedly using this fact as well as Lemmata A.6
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and A.5, we obtain
τ2n = τ + 2π +

1

nv0

2n−1∑
j=0

(−1)jφ(τ0 + jπ
n )− 4

+R′(τ, v),

v2n = v0 +

2n−1∑
j=0

(−1)jψ(τ0 + jπ
n ) + S′(τ, v),

where R′ ∈ F1
u(2), S

′ ∈ Fu(1) ∩ F1(0). Thus, the assertion follows from

2πeinτ0 p̂n =

∫ 2π

0
p(t)ein(τ0−t) dt =

2n−1∑
j=0

(−1)j
[
ψ(τ0 +

jπ
n )− iφ(τ0 + jπ

n )
]
.

C The hull of an almost periodic function

Consider an almost periodic function u ∈ C(R). We write uτ (t) for the
translation u(τ + t). The hull of u is given by

Hu = {uτ : τ ∈ R},

where the closure is taken with respect to uniform convergence. On
Hu we define the group operation ∗ as follows. For v, w ∈ Hu with
v = limn→∞ uτvn and w = limn→∞ uτwn , let

v ∗ w = lim
n→∞

uτvn+τwn , −v = lim
n→∞

u−τvn .

These limits exist and define continuous operations.

Lemma C.1. Let u ∈ C(R) be almost periodic. If the sequences (uτn), (usn)
are uniformly convergent, then (uτn−sn) is uniformly convergent as well.

Proof. Let ε > 0 be given. Since (uτn), (usn) are Cauchy sequences, there
exists N ∈ N such that for n,m ≥ N we have

|uτn(−sn + t)− uτm(−sn + t)| < ε

2
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and
|usn(τm − sn − sm + t)− usm(τm − sn − sm + t)| < ε

2
,

where t ∈ R is arbitrary. Together this yields

|u(τn − sn + t)− u(τm − sm + t)| < ε.

for all n,m ≥ N and t ∈ R, and thus proves the assertion.

The continuity of both operations can be shown by a similar argument.
Therefore, the hull becomes a commutative topological group with neutral
element u.

If u ∈ C(R) is an almost periodic function representable over (Ω, ψ),
then also any element of its hull is a.p. and representable over (Ω, ψ). In
fact, we have the following.

Lemma C.2. Given U ∈ C(Ω) and u(t) = U(ψ(t)), let v ∈ Hu. Then,
there is ω ∈ Ω such that v(t) = U(ω + ψ(t)).

Proof. Let (τn)n∈N be such that limn→∞ uτn = v. Since Ω is compact,
there is ω ∈ Ω and a subsequence (τnk)k∈N such that limk→∞ ψ(τnk) = ω.
But this implies

v(t) = lim
k→∞

uτnk (t) = lim
k→∞

U(ψ(τnk) + ψ(t)) = U(ω + ψ(t)).

In particular, this implies that if u ∈ Ck(R) then also its hull Hu
consists of functions in Ck(R).



Notation index

Symbol Meaning
N,N0 the positive and non-negative integer numbers
S1 the circle R/2πZ
Mv the upper plane R× [v,∞)
Mv the cylinder S1 × [v,∞)
Gρ the ρ-neighborhood of a domain G ⊂ Rd
TN the N -torus, where T = R/Z
(Ω, ψ) a compact group Ω together with a homomorphism

ψ : R→ Ω (see Section 4.1.1)
λ, λ2 the Lebesgue measure of R and R2, respectively
µΩ the Haar-measure of Ω (see Section 4.1.3)
∂x partial derivative with respect to a variable x
∂ν mixed derivative ∂ν11 · · · ∂

νd
d , where ν = (ν1, . . . , νd) ∈ Nd0

denotes a multi-index and ∂i is the derivative with respect
to the i-th coordinate

∂ψ derivative along the flow (see Section 4.1.2)
Df Jacobian matrix of a function f
p(ν, r) set of all ordered partitions of a multi-index ν into r

non-zero multi-indices (see Lemma 5.2)
Hu the hull of an a.p. function u (see Appendix C)
Ck(G) space of k times continuously differentiable functions

f : G→ R; if G ∈ {S1,Mv} we refer to functions periodic
in the respective coordinate

Ckb space of functions in Ck with bounded derivatives up to
order k
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148 Notation index

Symbol Meaning
Ck,β space of functions in Ck such that the k-th order deriva-

tives are Hölder continuous with exponent β
Ckψ(Ω) space of functions with continuous derivatives along the

flow up to order k; Ckψ(Ω × G) with G ⊂ Rd is defined
accordingly

Fk(r) space of functions F (τ, v) in Ck(Mv∗) for some v∗ > 0
such that ∂νF = O(v−r−ν2); Fku (r) denotes the subspace
where vrF (τ, v) converges uniformly as v →∞

Hkρ,σ, H̃kρ,σ classes of Hamiltonians H(x, t, ε) defined on Gρ×T×[0, σ]
and with bounded derivatives in x up to order k (see
Definition 5.5)

Mk
ρ,σ class of functions l(x, ε) with bounded continuous deriva-

tives (see Definition 5.14)
| · | depending on the context, the maximum norm on R,Rd

or the length |ν| = |ν1|+ . . .+ |νd| of a multi-index ν ∈ Nd0
∥·∥∞ the supremum norm
∥·∥Ck the norm ∥f∥Ck = max|ν|≤k ∥∂νf∥∞
∥·∥k,ρ,σ the norm ∥H∥k,ρ,σ = supε∈[0,σ] supt∈R∥H(·, t, ε)∥Ck(Gρ)
∥·∥∗k,ρ,σ the norm ∥l∥∗k,ρ,σ = ∥l∥k,ρ,σ + supε∈(0,σ] ∥∂εl(·, ε)∥Ck(Gρ)
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