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Chapter 1
Introduction

1.1 The Statistical Modeling Cycle

We consider statistical modeling of insurance problems. This comprises the process
of data collection, data analysis and statistical model building to forecast insured
events that (may) happen in the future. This problem is at the very heart of statistics
and statistical modeling. Our goal here is to present and provide the statistical tools
that are useful in daily actuarial practice, in particular, we aim at describing the
mathematical foundation behind these statistical concepts and how they can be
applied. Statistical modeling has a wide range of applications, and, depending on
the application, the theoretical aspects may be weighted differently. In insurance
pricing we are mainly interested in optimal predictions, whereas economists often
use statistical tools to explain observations, and in medical fields one is interested
in causal effects that medications have on patients. Therefore, statistical theory is
wide ranging, and one should always keep the corresponding application in mind.
Shmueli [338] nicely discusses the difference between prediction and explanation;
our focus here is mainly on prediction.

Box–Jenkins [49] and McCullagh–Nelder [265] distinguish three processes in
statistical modeling: (i) model identification/selection, (ii) estimation, and (iii)
prediction. In our statistical modeling cycle these three points are slightly modified
and extended:

(1) Data collection, cleaning and pre-processing:
This item takes at least 80% of the total time in statistical modeling. It includes
exploratory data analysis, data visualization and data pre-processing. This part
of the modeling cycle does not seem to be very scientific, however, it is a highly
important step because only extended data analysis allows the modeler to fully
understand the data. Based on this knowledge the modeler can formulate her/his
research question, her/his model, etc.

© The Author(s) 2023
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2 1 Introduction

(2) Selection of a model class:
Based on the knowledge collected in the first item, the modeler has to select a
suitable model class that is able to answer her/his research question. This model
class can be in the sense of a data model (proper stochastic model), but it can
also be an algorithmic model; we refer to the discussion on the “two modeling
cultures” by Breiman [53].

(3) Choice of an objective function:
Once the modeler has specified a model class, she/he needs to define a decision
rule how a particular member of the model class is selected for the collected
data. Often this is in terms of an objective function, e.g., a scoring rule or a loss
function that quantifies misspecification.

(4) Solving a (non-convex) optimization problem:
Once the first three items are completed, one is left with an optimization
problem that tries to find the best model within the selected model class w.r.t. the
given objective function and the collected data. In simple cases this optimization
problem is a convex minimization problem for which numerical tools are in
place. In more complex cases the optimization problem is neither convex nor
concave, and the ‘best’ solution can often not be found explicitly. In that case,
also the meaning of solution needs to be discussed.

(5) Model validation:
In the final/next step, the selected and fitted model needs to be validated. That
is, does the model fit to the data, does it serve at predicting new data, does
it answer the research question adequately, is there any better model/process
choice, etc.?

(6) Possibly go back to (1):
If the answers in item (5) are not satisfactory, one typically goes back to (1).
For instance, data pre-processing needs to be done differently, etc.

Especially, the two modeling cultures discussion of Breiman [53], after the turn
of the millennium, has shaken up the statistical community. Having predictive
performance as the main criterion, the data modeling culture has gradually shifted
to the algorithmic culture, where the model itself plays a secondary role as long
as the prediction is accurate. The latter is often in the form of a point predictor
which can come from an algorithm. Lifting this discussion to a more scientific
level, providing prediction uncertainty will slowly merge the two modeling cultures.
There is an other interesting discussion by Efron [116] on prediction, estimation
(of model parameters) and attribution (predictor selection), that is very much at
the core of statistical modeling. In these notes we want to especially emphasize
the one modeling culture view of Yu–Barter [397] who expect the two modeling
cultures of Breiman [53] to merge much closer than one would expect. Our goal is
to demonstrate how all these different techniques and views can be seen as a unified
modeling framework.

Concluding, the purpose of these notes is to discuss and illustrate how the
different statistical techniques from the data modeling culture and the algorithmic
modeling culture can be combined to solve actuarial questions in the best possible
way. The main emphasis in this discussion lies on the statistical modeling tools,
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and we present these tools along with actuarial examples. In actuarial practice one
often distinguishes between life and general insurance. This distinction is done for
good reasons. There are legislative reasons that require to legally separate life from
general insurance business, but there are also modeling reasons, because insurance
products in life and general insurance can have rather different features. In this book,
we do not make this distinction because the statistical methods presented here can be
useful in both branches of insurance, and we are going to consider life and general
insurance examples, e.g., the former considering mortality forecasting and the latter
aiming at insurance claims prediction for pricing.

1.2 Preliminaries on Probability Theory

The modern axiomatic foundation of probability theory was introduced in 1933 by
the famous mathematician Kolmogoroff [221] in his book called “Grundbegriffe der
Wahrscheinlichkeitsrechnung”. We give a brief introduction to probability theory
and random variables; this introduction follows the lecture notes [387]. Throughout
we assume to work on a sufficiently rich probability space (�,A,P), meaning that
this probability space should be able to carry all objects that we study. We denote
(real-valued) random variables on this probability space by capital letters Y,Z, . . .,
and random vectors use boldface capital letters, e.g., we have a random vector Y =
(Y1, . . . , Yq)

� of dimension q ∈ N, where each component Yk , 1 ≤ k ≤ q , is a
random variable. Random variables Y are characterized by (cumulative) distribution
functions1 F : R → [0, 1], for y ∈ R

F(y) = P [Y ≤ y] ,

being the probability of the event that Y has a realization of less or equal to y. We
write Y ∼ F for Y having distribution function F . Similarly random vectors Y ∼ F
are characterized by (cumulative) distribution functions F : Rq → [0, 1] with

F(y) = P
[
Y1 ≤ y1, . . . , Yq ≤ yq

]
for y = (y1, . . . , yq)

� ∈ R
q .

In insurance modeling, there are two important types of random variables,
namely, discrete random variables and absolutely continuous random variables:

• The distribution function F of a discrete random variable Y is a step function
with countably many steps in discrete points k ∈ N ⊂ R. A discrete random
variable has probability weights in these discrete points

f (k) = P [Y = k] > 0 for k ∈ N,

1 Cumulative distribution functions F are right-continuous, non-decreasing with limx→−∞ F(x) =
0 and limx→∞ F(x) = 1.
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satisfying
∑
k∈N f (k) = 1. If N ⊆ N0, the integer-valued random variable Y

is called count random variable. Count random variables are used to model the
number of claims in insurance. A similar situation occurs if Y models nominal
outcomes, for instance, if Y models gender with female being encoded by 0 and
male being encoded by 1, then f (0) is the probability weight of having a female
and f (1) = 1 − f (0) the probability weight of having a male; in this case we
identify the finite set N = {0, 1} = {female,male}.

• A random variable Y ∼ F is said to be absolutely continuous2 if there exists a
non-negative (measurable) function f , called density of Y , such that

F(y) =
∫ y

−∞
f (x) dx for all y ∈ R.

In that case we equivalently write Y ∼ f and Y ∼ F . Absolutely continuous
random variables are often used to model claim sizes in insurance.

More generally speaking, discrete and absolutely continuous random variables
have densities f (·) w.r.t. a σ -finite measure ν on R. In the former case, this σ -
finite measure ν is the counting measure on N ⊂ R, and in the latter case it is
the Lebesgue measure on R. In actuarial science we also consider mixed cases, for
instance, Tweedie’s compound Poisson random variable is absolutely continuous on
(0,∞) having an additional point mass in 0; this model will be studied in Sect. 2.2.3,
below.

Choose a random variable Y ∼ F and a measurable function h : R → R. The
expected value of h(Y ) is defined by (upon existence)

E [h(Y )] =
∫

R

h(y) dF (y).

We mainly focus on the following important examples of function h:

• expected value, mean or first moment of Y ∼ F : for h(y) = y

μ = E [Y ] =
∫

R

y dF(y);

• k-th moment of Y ∼ F for k ∈ N: for h(y) = yk

E

[
Y k
]

=
∫

R

yk dF (y);

2 Absolutely continuous is a stronger property than continuous.



1.2 Preliminaries on Probability Theory 5

• moment generating function of Y ∼ F in r ∈ R: for h(y) = ery

MY (r) = E

[
erY
]

=
∫

R

ery dF (y);

always subject to existence.
The moment generating function MY(·) is sufficient for identifying distribution

functions of random variables Y . The following statements are elementary and their
proofs are based on Section 30 of Billingsley [34], for more details we also refer to
Chapter 1 in the lecture notes [387]. Assume that the moment generating function
of Y ∼ F has a strictly positive radius of convergence ρ0 > 0 around the origin
implying that MY (r) < ∞ for all r ∈ (−ρ0, ρ0). In this case we can write MY (r)
as a power series expansion

MY (r) =
∞∑

k=0

rk

k! E
[
Y k
]

for all r ∈ (−ρ0, ρ0).

As a consequence we can differentiate MY (·) in the open interval (−ρ0, ρ0)

arbitrarily often, term by term under the sum. The derivatives in r = 0 provide
the k-th moments (which all exist and are finite)

dk

drk
MY (r)|r=0 = E

[
Y k
]

for all k ∈ N0. (1.1)

In particular, in this case we immediately know that all moments of Y exist, and
these moments completely determine the moment generating function MY of Y .
Another consequence is that for a random variable Y , whose moment generating
function MY has a strictly positive radius of convergence around the origin, the
distribution function F is fully determined by this moment generating function.
That is, if we have two such random variables Y1 and Y2 with MY1(r) = MY2(r)

for all r ∈ (−r0, r0), for some r0 > 0, then Y1
(d)= Y2.3 Thus, these two

random variables have the same distribution function. This statement carries over
to the limit, i.e., if we have a sequence of random variables (Yn)n whose moment
generating functions converge on a common interval (−r0, r0), for some r0 > 0,
to the moment generating function of Y , also being finite on (−r0, r0), then (Yn)n
converges in distribution to Y ; such an argument is used to prove the central limit
theorem (CLT).

3 The notation Y1
(d)= Y2 is generally used for equality in distribution meaning that Y1 and Y2 have

the same distribution function.
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In insurance, we often deal with so-called positive random variables Y , meaning
that Y ≥ 0, almost surely (a.s.). In that case, the statements about moment
generating functions and distributions hold true without the assumption of having a
positive radius of convergence around the origin, see Theorem 22.2 in Billingsley
[34]. Note that for positive random variables the moment generating functionMY (r)
exists for all r ≤ 0.

Existence of the moment generating function MY(r) for some positive r > 0
can also be interpreted as having a light-tailed distribution function. Observe that
if MY(r) exists for some positive r > 0, then we can choose s ∈ (0, r) and
Chebychev’s inequality gives us (we assume Y ≥ 0, a.s., here)

P [Y > y] = P
[
exp{sY } > exp{sy}] ≤ exp{−sy}MY(s). (1.2)

The latter tells us that the survival function 1 − F(y) = P[Y > y] decays
exponentially for y → ∞. Heavy-tailed distribution functions do not have this
property, but the survival function decays slower than exponentially as y → ∞.
This slower decay of the survival function is the case for so-called subexponential
distribution functions (an example is the log-normal distribution, we refer to Rolski
et al. [320]) and for regularly varying survival functions (an example is the Pareto
distribution). Regularly varying survival functions 1 − F have the property

lim
y→∞

1 − F(ty)
1 − F(y) = t−β for all t > 0 and some β > 0. (1.3)

These distribution functions have a polynomial tail (power tail) with tail index β >
0. In particular, if a positively supported distribution function F has a regularly
varying survival function with tail index β > 0, then this distribution function is
also subexponential, see Theorem 2.5.5 in Rolski et al. [320].

We are not going to specifically focus on heavy-tailed distribution functions,
here, but we will explain how light-tailed random variables can be transformed to
enjoy heavy-tailed properties. In these notes, we are mainly interested in studying
different aspects of regression modeling. Regression modeling requires numerous
observations to be able to successfully fit these models to the data. By definition,
large claims are scarce, as they live in the tail of the distribution function and, thus,
correspond to rare events. Therefore, it is often not possible to employ a regression
model for scarce tail events. For this reason, extreme value analysis only plays
a marginal role in these notes, though, it has a significant impact on insurance
prices. For more on extreme value theory we refer to the relevant literature, see,
e.g., Embrechts et al. [121], Rolski et al. [320], Mikosch [277] and Albrecher et
al. [7].
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1.3 Lab: Exploratory Data Analysis

Our theory is going to be supported by several data examples. These examples are
mostly based on publicly available data. The different data sets are described in
detail in Chap. 13. We highly recommend the reader to use these data sets to gain
her/his own modeling experience.

We describe some tools here that allow for a descriptive and exploratory analysis
of the available data; exploratory data analysis has been introduced and promoted by
Tukey [357]. We consider the observed claim sizes of the Swedish motorcycle data
set described in Sect. 13.2. This data set consists of 656 (positive) claim amounts yi ,
1 ≤ i ≤ n = 656. These claim amounts are illustrated in the boxplots of Fig. 1.1.

Typically in insurance, there are large claims that dominate the picture, see
Fig. 1.1 (lhs). This results in right-skewed distribution functions, and such data is
better illustrated on the log scale, see Fig. 1.1 (rhs). The latter, of course, assumes
that all claims are strictly positive.

Figure 1.2 (lhs) shows the empirical distribution function of the observations yi ,
1 ≤ i ≤ n, which is obtained by

F̂n(y) = 1

n

n∑

i=1

1{yi≤y} for y ∈ R.

If this data set has been generated by i.i.d. random variables, then the Glivenko–
Cantelli theorem [64, 159] tells us that this empirical distribution function F̂n
converges uniformly to the (true) data generating distribution function, a.s., as the
number n of observations converges to infinity, see Theorem 20.6 in Billingsley
[34].

Figure 1.2 (rhs) shows the empirical density of the observations yi , 1 ≤ i ≤
n. This empirical density is obtained by considering a kernel smoother of a given
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bandwidth around each observation yi . The standard choice is the Gaussian kernel,
with the bandwidth determining the variance parameter σ 2 > 0 of the Gaussian
density,

y �→ f̂n(y) = 1

n

n∑

i=1

1√
2πσ 2

exp

{
−1

2

(y − yi)2
σ 2

}
.

From the graph in Fig. 1.2 (rhs) we observe that the main body of the claim sizes
is below an amount of 50’000, but the biggest claim exceeds 200’000. The latter
motivates to study heavy-tailedness of the claim size data. Therefore, one usually
benchmarks with a distribution function F that has a regularly varying survival
function with a tail index β > 0, see (1.3). Asymptotically a regularly varying
survival function behaves as y−β ; for this reason the log-log plot is a popular tool
to identify regularly varying tails. The log-log plot of a distribution function F is
obtained by considering

y > 0 �→ (logy, log(1 − F(y))) ∈ R
2.

Figure 1.3 gives the log-log plot of the empirical distribution function F̂n. If this
plot looks asymptotically (for y → ∞) like a straight line with a negative slope
−β, then the data shows heavy-tailedness in the sense of regular variation. Such
data cannot be modeled by a distribution function for which the moment generating
functionMY (r) exists for some positive r > 0, see (1.2). Figure 1.3 does not suggest
a regularly varying tail as we do not see an obvious asymptotic straight line for
increasing claim sizes.

These graphs give us a first indication what the claim size data is about. Later
on we are going to introduce explanatory variables that describe the insurance
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Fig. 1.3 Log-log plot of the
empirical distribution
function F̂n
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policyholders behind these claims. These explanatory variables characterize the
policyholder and the general goal is to get a better description of the claim sizes
as a function of these explanatory variables, e.g., older policyholders may cause
larger claims than younger ones, etc. Such patterns are called systematic effects that
can be explained by explanatory variables.

1.4 Outline of This Book

This book has eleven chapters (including the present one), and it has two appendices.
We briefly describe the contents of these chapters and appendices.

In Chap. 2 we introduce and discuss the exponential family (EF) and the
exponential dispersion family (EDF). The EF and the EDF are by far the most
important classes of distribution functions for regression modeling. They include,
among others, the Gaussian, the binomial, the Poisson, the gamma, the inverse
Gaussian and Tweedie’s models. We introduce these families of distribution func-
tions, discuss their properties and provide several examples. Moreover, we introduce
the Kullback–Leibler (KL) divergence and the Bregman divergence, which are
important tools in model evaluation.

Chapter 3 is on classical statistical decision theory. This chapter is important for
historical reasons, but it also provides the right mathematical grounding and intu-
ition for more modern tools from data science and machine learning. In particular,
we discuss maximum likelihood estimation (MLE), unbiasedness, consistency and
asymptotic normality of MLEs in this chapter.

Chapter 4 is the core theoretical chapter on predictive modeling and forecast
evaluation. The main problem in actuarial modeling is to forecast and price future
claims. For this, we build predictive models, and this chapter deals with assessing
and ranking these predictive models. We therefore introduce the mean squared
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error of prediction (MSEP) and, more generally, the generalization loss (GL)
to assess predictive models. This chapter is complemented by a more decision-
theoretic approach to forecast evaluation, it discusses deviance losses, proper
scoring, elicitability, forecast dominance, cross-validation, Akaike’s information
criterion (AIC) and we give an introduction to the bootstrap simulation method.

Chapter 5 discusses state-of-the-art statistical modeling in insurance which is the
generalized linear model (GLM). We discuss GLMs in the light of claim count and
claim size modeling, we present feature engineering, model fitting, model selection,
over-dispersion, zero-inflated claim counts problems, double GLMs, and insurance-
specific issues such as the balance property for having unbiasedness.

Chapter 6 summarizes some techniques that use Bayes’ theorem. These are
classical Bayesian statistical models, e.g., using the Markov chain Monte Carlo
(MCMC) method for model fitting. This chapter discusses regularization of regres-
sion models such as ridge and LASSO regularization, which has a Bayesian
interpretation, and it concerns the Expectation-Maximization (EM) algorithm. The
EM algorithm is a general purpose tool that can handle incomplete data settings. We
illustrate this for different examples coming from mixture distributions, censored
and truncated claims data.

The core of this book are deep learning methods and neural networks. Chapter 7
considers deep feed-forward neural (FN) networks. We introduce the generic
architecture of deep FN networks, and we discuss universality theorems of FN
networks. We present network fitting, back-propagation, embedding layers for
categorical variables and insurance-specific issues such as the balance property in
network fitting and network ensembling to reduce model uncertainty. This chapter
is complemented by many examples on non-life insurance pricing, but also on
mortality modeling, as well as tools that help to explain deep FN network regression
results.

Chapters 8 and 9 consider recurrent neural (RN) networks and convolutional
neural (CN) networks. These are special network architectures that are useful for
time-series and spatial data modeling, e.g., applied to image recognition problems.
Time-series and images have a natural topology, and RN and CN networks try to
benefit from this additional structure (over tabular data). We introduce these network
architectures and provide insurance-relevant examples.

Chapter 10 discusses natural language processing (NLP) which deals with
regression modeling of non-tabular or unstructured text data. We explain how
words can be embedded into low-dimension spaces that serve as numerical word
encodings. These can then be used for text recognition, either using RN networks or
attention layers. We give an example where we aim at predicting claim perils from
claim descriptions.

Chapter 11 is a selection of different topics. We mention forecasting under
model uncertainty, deep quantile regression, deep composite regression or the
LocalGLMnet which is an interpretable FN network architecture. Moreover, we
provide a bootstrap example to assess prediction uncertainty, and we discuss mixture
density networks.
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Chapter 12 (Appendix A) is a technical chapter that discusses universality the-
orems for networks and sieve estimators, which are useful for studying asymptotic
normality within a network framework. Chapter 13 (Appendix B) illustrates the data
used in this book.

Finally, we remark that the book is written in a typical mathematical style
using the structure of Lemmas, Theorems, etc. Results and statements which are
particularly important for applications are highlighted with gray boxes.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.



Chapter 2
Exponential Dispersion Family

We introduce the exponential family (EF) and the exponential dispersion family
(EDF) in this chapter. The single-parameter EF has been introduced in 1934
by the British statistician Sir Fisher [128], and it has been extended to vector-
valued parameters by Darmois [88], Koopman [223] and Pitman [306] between
1935 and 1936. It is the most commonly used family of distribution functions
in statistical modeling; among others, it contains the Gaussian distribution, the
gamma distribution, the binomial distribution and the Poisson distribution. Its
parametrization is taken in a special form that is convenient for statistical modeling.
The EF can be introduced in a constructive way providing the main properties of
this family of distribution functions. In this chapter we follow Jørgensen [201–203]
and Barndorff-Nielsen [23], and we state the most important results based on this
constructive introduction. This gives us a unified notation which is going to be useful
for our purposes.

2.1 Exponential Family

2.1.1 Definition and Properties

We define the EF w.r.t. a σ -finite measure ν on R. The results in this section can be
generalized to σ -finite measures on R

m, but such an extension is not necessary for
our purposes. Select an integer k ∈ N, and choose measurable functions a : R →
R and T : R → R

k .1 Consider for a canonical parameter θ ∈ R
k the Laplace

1 We could also use boldface notation for T because T (y) ∈ R
k is vector-valued, but we prefer to

not use boldface notation for (vector-valued) functions.

© The Author(s) 2023
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transform

L(θ) =
∫

R

exp
{
θ�T (y)+ a(y)

}
dν(y).

Assume that this Laplace transform is not identically equal to +∞. The effective
domain is defined by

� =
{
θ ∈ R

k; L(θ) <∞
}

⊆ R
k. (2.1)

Lemma 2.1 The effective domain � ⊆ R
k is a convex set.

The effective domain � is not necessarily an open set, but in many applications it
is open. Counterexamples are given in Problem 4.1 of Chapter 1 in Lehmann [244],
and in the inverse Gaussian example in Sect. 2.1.3, below.
Proof of Lemma 2.1 Choose θ i ∈ R

k , i = 1, 2, with L(θ i ) < ∞. Set θ = cθ1 +
(1 − c)θ2 for c ∈ (0, 1). We use Hölder’s inequality, applied to the norms p = 1/c
and q = 1/(1 − c),

L(θ) =
∫

R

exp
{
(cθ1 + (1 − c)θ2)

�T (y)+ a(y)
}
dν(y)

=
∫

R

exp
{
θ�

1 T (y)+ a(y)
}c

exp
{
θ�

2 T (y)+ a(y)
}1−c

dν(y)

≤ L(θ1)
cL(θ2)

1−c <∞.

This implies θ ∈ � and proves the claim. �
We define the cumulant function on the effective domain �

κ : � → R, θ �→ κ(θ) = logL(θ).

Definition 2.2 The EF with σ -finite measure ν on R and cumulant function
κ : � → R is given by the distribution functions F on R with

dF(y; θ) = f (y; θ)dν(y) = exp
{
θ�T (y)− κ(θ)+ a(y)

}
dν(y),

(2.2)
for canonical parameters θ ∈ � ⊆ R

k .
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Remarks 2.3

• The definition of the EF (2.2) assumes that the effective domain � ⊆ R
k has

been constructed from the choices a : R → R and T : R → R
k as described

in (2.1). This is not explicitly stated in the surrounding text of (2.2).
• The support of any random variable Y ∼ F(·; θ) of this EF does not depend on

the explicit choice of the canonical parameter θ ∈ �, but solely on the choice of
the σ -finite measure ν on R, and the distribution functions F(·; θ) are mutually
absolutely continuous (equivalent) w.r.t. ν.

• In statistics, the main object of interest is the canonical parameter θ . Importantly
for parameter estimation, the function a(·) does not involve the canonical
parameter. Therefore, it is irrelevant for parameter estimation and (only) serves
as a normalization so that F in (2.2) is a proper distribution function. In fact, this
is the way how the EF is often introduced in the statistical and actuarial literature,
but in this latter introduction we lose the deeper interpretation of the cumulant
function κ , nor is it immediately clear what properties it possesses.

• The case k ≥ 2 gives a vector-valued canonical parameter θ . The case k = 1
gives a single-parameter EF, and, if additionally T (y) = y, it is called a single-
parameter linear EF.

Theorem 2.4 Assume the effective domain � has a non-empty interior �̊. Choose
Y ∼ F(·; θ) for fixed θ ∈ �̊. The moment generating function of T (Y ) for
sufficiently small r ∈ R

k is given by

MT (Y)(r) = Eθ

[
exp

{
r�T (Y )

}]
= exp {κ(θ + r)− κ(θ)} ,

where the expectation operator Eθ illustrates the selected canonical parameter θ

for Y .

Proof Choose θ ∈ �̊ and r ∈ R
k so small that θ + r ∈ �̊. We receive

MT (Y)(r) =
∫

R

exp
{
(θ + r)�T (y)− κ(θ )+ a(y)

}
dν(y)

= exp {κ(θ + r)− κ(θ)}
∫

R

exp
{
(θ + r)�T (y)− κ(θ + r)+ a(y)

}
dν(y)

= exp {κ(θ + r)− κ(θ)} ,

where the last identity follows from the fact that the support of the EF does not
depend on the explicit choice of the canonical parameter. �

Theorem 2.4 has a couple of immediate implications. First, in any interior point
θ ∈ �̊ both the moment generating function r �→ MT (Y)(r) (in the neighborhood of
the origin) and the cumulant function θ �→ κ(θ) have derivatives of all orders, and,
similarly to Sect. 1.2, moments of all orders of T (Y ) exist, see also (1.1). Existence
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of moments of all orders implies that the distribution function of T (Y ) cannot have
a regularly varying tails.

Corollary 2.5 Assume �̊ is non-empty. The cumulant function θ �→ κ(θ) is
convex, and for Y ∼ F(·; θ) with θ ∈ �̊

μ = Eθ [T (Y )] = ∇θκ(θ) and Varθ (T (Y )) = ∇2
θ κ(θ),

where ∇θ is the gradient and ∇2
θ
the Hessian w.r.t. vector θ .

Similarly to T : R → R
k, we will not use boldface notation for the (multi-

dimensional) mean because later on we will understand the mean μ = μ(θ) ∈ R
k

as a function of the canonical parameter θ ; see Footnote 1 on page 13 on boldface
notation.
Proof Existence of the moment generating function for all sufficiently small r ∈ R

k

(around the origin) implies that we have first and second moments. For the first
moment we receive

μ = Eθ [T (Y )] = ∇rMT (Y)(r)
∣
∣
r=0 = exp {κ(θ + r)− κ(θ)} ∇rκ(θ + r)|r=0 = ∇θκ(θ).

Denote component j of T (Y ) ∈ R
k by Tj (Y ). We have for 1 ≤ j, l ≤ k

Eθ

[
Tj (Y )Tl (Y )

] = ∂2

∂rj ∂rl
MT (Y )(r)

∣∣
∣∣
r=0

= exp {κ(θ + r)− κ(θ)}
(

∂2

∂rj ∂rl
κ(θ + r)+ ∂

∂rj
κ(θ + r)

∂

∂rl
κ(θ + r)

)∣∣∣∣
r=0

=
(

∂2

∂θj ∂θl
κ(θ)+ ∂

∂θj
κ(θ)

∂

∂θl
κ(θ)

)
.

This implies for the covariance

Covθ (Tj (Y ), Tl(Y )) = ∂2

∂θj ∂θl
κ(θ).

The convexity of κ follows because ∇2
θ
κ(θ) is the positive semi-definite covariance

matrix of T (Y ), for all θ ∈ �̊. This finishes the proof. �

Assumption 2.6 (Minimal Representation) We assume that the interior �̊

of the effective domain � is non-empty and that the cumulant function κ is
strictly convex on this interior �̊.
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Remarks 2.7

• Throughout these notes we will work under Assumption 2.6 without making
explicit reference. This assumption strengthens the properties of the cumulant
function κ from being convex, see Corollary 2.5, to being strictly convex. This
strengthening implies that the mean function θ �→ μ = μ(θ) = ∇θκ(θ) can be
inverted; this is needed for the canonical link, see Definition 2.8, below.

• The strict convexity of κ means that the covariance matrix ∇2
θ κ(θ) of T (Y ) is

positive definite and has full rank k for all θ ∈ �̊, see Corollary 2.5. This property
is important, otherwise we do not have identifiability in the canonical parameter
θ because we have a linear dependence between the components of T (Y ).

• Mathematically, this strict convexity is not a restriction because it can be obtained
by working under a so-called minimal representation. If the covariance matrix
∇2

θ
κ(θ) does not have full rank k, the choice k is “non-optimal” because the

problem lives in a smaller dimension. Thus, w.l.o.g., we may and will assume to
work in this smaller dimension, called minimal representation; for a rigorous
derivation of a minimal representation we refer to Section 8.1 in Barndorff-
Nielsen [23].

Definition 2.8 The canonical link is defined by h = (∇θκ)
−1.

The application of the canonical link h to the mean implies under Assumption 2.6

h (μ) = h (Eθ [T (Y )]) = θ ,

for mean μ = Eθ [T (Y )] of Y ∼ F(·; θ) with θ ∈ �̊.

Remarks 2.9 (Dual Parameter Space) Assumption 2.6 provides that the
canonical link h is well-defined, and we can either work with the canonical
parameter representation θ ∈ �̊ ⊆ R

k or with its dual (mean) parameter
representation μ = Eθ [T (Y )] ∈ M with

M def.= ∇θκ(�̊) = {∇θκ(θ); θ ∈ �̊} ⊆ R
k. (2.3)

Strict convexity of κ implies that there is a one-to-one correspondence
between these two parametrizations. � is called the effective domain and M
is called the dual parameter space or the mean parameter space.

In Sect. 2.2.4, below, we introduce one more property called steepness that the
cumulant function κ should satisfy. This additional property gives a relationship
between the support T of the random variables T (Y ) of the given EF and the
boundary of the dual parameter space M. This steepness property is important for
parameter estimation.
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2.1.2 Single-Parameter Linear EF: Count Variable Examples

We start by giving single-parameter discrete linear EF examples based on counting
measures on N0. Since we work in one dimension k = 1, we replace boldface θ by
scalar θ ∈ � ⊆ R in this section.

Bernoulli Distribution as a Single-Parameter Linear EF

For the Bernoulli distribution with parameterp ∈ (0, 1)we choose as ν the counting
measure on {0, 1}. We make the following choices: T (y) = y,

a(y) = 0, κ(θ) = log(1 + eθ ), p = κ ′(θ) = eθ

1 + eθ , θ = h(p) = log
(

p

1 − p
)
,

for effective domain � = R, dual parameter space M = (0, 1) and support T =
{0, 1} of Y = T (Y ). With these choices we have

dF(y; θ) = exp
{
θy − log(1 + eθ )} dν(y) =

(
eθ

1 + eθ
)y (

1

1 + eθ
)1−y

dν(y).

θ �→ κ ′(θ) is the logistic or sigmoid function, and the canonical link p �→ h(p) is
the logit function. Mean and variance are given by

μ = Eθ [Y ] = κ ′(θ) = p and Varθ (Y ) = κ ′′(θ) = eθ

(1 + eθ)2 = p(1 − p),

and the probability weights satisfy for y ∈ T = {0, 1}

Pθ [Y = y] = py(1 − p)1−y .

Binomial Distribution as a Single-Parameter Linear EF

For the binomial distribution with parameters n ∈ N and p ∈ (0, 1) we choose as ν
the counting measure on {0, . . . , n}. We make the following choices: T (y) = y,

a(y) = log
(
n

y

)
, κ(θ) = nlog(1+eθ ), μ = κ ′(θ) = neθ

1 + eθ , θ = h(μ) = log
(

μ

n− μ
)
,

for effective domain � = R, dual parameter space M = (0, n) and support T =
{0, . . . , n} of Y = T (Y ). With these choices we have

dF(y; θ) =
(
n

y

)
exp

{
θy − nlog(1 + eθ )} dν(y) =

(
n

y

)(
eθ

1 + eθ
)y (

1

1 + eθ
)n−y

dν(y).



2.1 Exponential Family 19

Mean and variance are given by

μ = Eθ [Y ] = κ ′(θ) = np and Varθ (Y ) = κ ′′(θ) = n eθ

(1 + eθ )2 = np(1 − p),

where we set p = eθ/(1 + eθ ). The probability weights satisfy for y ∈ T =
{0, . . . , n}

Pθ [Y = y] =
(
n

y

)
py(1 − p)n−y .

Poisson Distribution as a Single-Parameter Linear EF

For the Poisson distribution with parameter λ > 0 we choose as ν the counting
measure on N0. We make the following choices: T (y) = y,

a(y) = log

(
1

y!
)
, κ(θ) = eθ , μ = κ ′(θ) = eθ , θ = h(μ) = log(μ),

for effective domain � = R, dual parameter space M = (0,∞) and support T =
N0 of Y = T (Y ). With these choices we have

dF(y; θ) = 1

y! exp
{
θy − eθ} dν(y) = e−μμ

y

y! dν(y). (2.4)

The canonical link μ �→ h(μ) is the log-link. Mean and variance are given by

μ = Eθ [Y ] = κ ′(θ) = λ and Varθ (Y ) = κ ′′(θ) = λ = μ = Eθ [Y ] ,

where we set λ = eθ . The probability weights in the Poisson case satisfy for y ∈
T = N0

Pθ [Y = y] = e−λ λ
y

y! .

Negative-Binomial (Pólya) Distribution as a Single-Parameter Linear EF

For the negative-binomial distribution with α > 0 and p ∈ (0, 1) we choose as
ν the counting measure on N0; α plays the role of a nuisance parameter or hyper-
parameter. We make the following choices: T (y) = y,

a(y) = log

(
y + α − 1

y

)
, κ(θ) = −αlog(1 − eθ ),
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μ = κ ′(θ) = α eθ

1 − eθ , θ = h(μ) = log

(
μ

μ+ α
)
,

for effective domain � = (−∞, 0), dual parameter space M = (0,∞) and support
T = N0 of Y = T (Y ). With these choices we have

dF(y; θ) =
(
y + α − 1

y

)
exp

{
θy + αlog(1 − eθ )} dν(y)

=
(
y + α − 1

y

)
py (1 − p)α dν(y),

with p = eθ . Parameter α > 0 is treated as nuisance parameter, otherwise we drop
out of the EF framework. We have first the two moments

μ = Eθ [Y ] = α eθ

1 − eθ = α p

1 − p and Varθ (Y ) = Eθ [Y ]
(

1 + eθ

1 − eθ
)
> Eθ [Y ].

This model allows us to model over-dispersion, in contrast to the Poisson model.
In fact, the negative-binomial model is a mixed Poisson model with a gamma
mixing distribution, for details see Sect. 5.3.5, below. Typically, one uses a different
parametrization. Set eθ = λ/(α + λ), for λ > 0. This implies

μ = Eθ [Y ] = λ and Varθ (Y ) = λ
(

1 + λ

α

)
> λ.

For α ∈ N this model can also be interpreted as the waiting time until we observe
α successful trials among i.i.d. trials, for instance, for α = 1 we have the geometric
distribution (with a small reparametrization).

The probability weights of the negative-binomial model satisfy for y ∈ T = N0

Pθ [Y = y] =
(
y + α − 1

y

)
py (1 − p)α . (2.5)

2.1.3 Vector-Valued Parameter EF: Absolutely Continuous
Examples

We give vector-valued parameter absolutely continuous EF examples with k = 2,
and being based on the Lebesgue measure on (subsets of) R, in this section.
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Gaussian Distribution as a Vector-Valued Parameter EF

For the Gaussian distribution with parameters μ ∈ R and σ 2 > 0 we choose as ν
the Lebesgue measure on R, and we make the following choices: T (y) = (y, y2)�,

a(y) = −1

2
log(2π), κ(θ) = − θ2

1

4θ2
− 1

2
log(−2θ2),

(μ, σ 2 + μ2)� = ∇θκ(θ) =
(
θ1

−2θ2
, (−2θ2)

−1 + θ2
1

4θ2
2

)�
,

for effective domain � = R × (−∞, 0), dual parameter space M = R × (0,∞)
and support T = R × [0,∞) of T (Y ) = (Y, Y 2)�. With these choices we have

dF(y; θ) = 1√
2π

exp

{

θ�T (y)+ θ2
1

4θ2
+ 1

2
log(−2θ2)

}

dν(y)

= 1√
2π(−2θ2)−1/2

exp

{

−1

2

1

(−2θ2)−1

(
y − θ1

−2θ2

)2
}

dν(y).

This is the Gaussian model with mean μ = θ1/(−2θ2) and variance σ 2 =
(−2θ2)

−1.
If we treat σ > 0 as a nuisance parameter, we obtain the Gaussian model as a

single-parameter EF. This is the most common example of an EF. Set T (y) = y/σ

and

a(y) = −1

2
log(2πσ 2)− y2/(2σ 2), κ(θ) = θ2/2, μ = κ ′(θ) = θ, θ = h(μ) = μ,

for effective domain � = R, dual parameter space M = R and support T = R of
T (Y ) = Y/σ . With these choices we have

dF(y; θ) = 1√
2πσ

exp
{
θy/σ − y2/(2σ 2)− θ2/2

}
dν(y)

= 1√
2πσ

exp

{
− 1

2σ 2 (y − σθ)2
}
dν(y),

and, in particular, the canonical link is the identity link μ �→ θ = h(μ) = μ in this
single-parameter EF example.
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Gamma Distribution as a Vector-Valued Parameter EF

For the gamma distribution with parameters α, β > 0 we choose as ν the Lebesgue
measure on R+. Then we make the following choices: T (y) = (y, logy)�,

a(y) = −logy, κ(θ) = log(θ2)− θ2log(−θ1),

(
α/β,

′(α)
(α)

− log(β)

)�
= ∇θκ(θ) =

(
θ2

−θ1
,
′(θ2)

(θ2)
− log(−θ1)

)�
,

for effective domain � = (−∞, 0) × (0,∞), and setting β = −θ1 > 0 and
α = θ2 > 0. The dual parameter space is M = (0,∞) × R, and we have support
T = (0,∞)× R of T (Y ) = (Y, logY )�. With these choices we obtain

dF(y; θ) = exp
{
θ�T (y)− log(θ2)+ θ2log(−θ1)− logy

}
dν(y)

= (−θ1)
θ2

(θ2)
yθ2−1 exp {−(−θ1)y} dν(y)

= βα

(α)
yα−1 exp {−βy} dν(y).

This is a vector-valued parameter EF with k = 2, and the first moment is given by

Eθ

[
(Y, logY )�

]
= ∇θκ(θ) =

(
α/β,

′(α)
(α)

− log(β)

)�
.

Parameter α is called shape parameter and parameter β is called scale parameter.2

If we treat the shape parameter α > 0 as a nuisance parameter we can turn the
gamma distribution into a single-parameter linear EF. Set T (y) = y and

a(y) = (α− 1)logy− log(α), κ(θ) = −αlog(−θ), μ = κ ′(θ) = α

−θ , θ = h(μ) = −α
μ
,

for effective domain � = (−∞, 0), dual parameter space M = (0,∞) and support
T = (0,∞). With these choices we have for β = −θ > 0

dF(y; θ) = (−θ)α
(α)

yα−1 exp {−(−θ)y}dν(y). (2.6)

This provides us with mean and variance

μ = Eθ [Y ] = α

β
and σ 2 = Varθ (Y ) = α

β2 = 1

α
μ2.

2 The function �(x) = d
dx

log(x) = ′(x)/(x) is called digamma function.
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For parameter estimation one often needs to invert these identities which gives us

α = μ2

σ 2 and β = μ

σ 2 .

Remarks 2.10

• The gamma distribution contains as special cases the exponential distribution for
α = θ2 = 1 and β = −θ1 > 0, and the χ2

r -distribution with r degrees of freedom
for α = θ2 = r/2 and β = −θ1 = 1/2.

• The distributions of the EF are all light-tailed in the sense that all moments
of T (Y ) exist. Therefore, the EF does not allow for regularly varying survival
functions, see (1.3). If Y is gamma distributed, then Z = exp{Y } is log-gamma
distributed (with the special case of the Pareto distribution for the exponential
case α = θ2 = 1). For an example we refer to Sect. 2.2.5. However, this log-
transformation is not always recommended because it may provide accurate
models on the transformed log-scale, but back-transformation to the original
scale may not necessarily provide a good predictive model on that original scale.

• The gamma density (2.6) may be a bit tricky in applications because the effective
domain � = (−∞, 0) is one-sided bounded (we come back to this below). For
this reason, in practice, one often uses links different from the canonical link
h(μ) = −α/μ. For instance, a parametrization θ = − exp{−ϑ} for ϑ ∈ R, see
Ohlsson–Johansson [290], leads to the following model

dF(y;ϑ) = yα−1

(α)
exp

{−e−ϑy − αϑ} dν(y). (2.7)

We will study the gamma model in more depth below, and parametrization (2.7)
will correspond to the log-link choice, see Example 5.5, below.

Figure 2.1 gives examples of gamma densities for shape parameters α ∈
{1/2, 1, 3/2, 2} and scale parameters β ∈ {1/2, 1, 3/2, 2} with α = β all providing
the same mean μ = Eθ [Y ] = α/β = 1. The crucial observation is that these gamma
densities can have two different shapes, for α ≤ 1 we have a strictly decreasing
shape and for α > 1 we have a unimodal density with mode in (α − 1)/β.

Inverse Gaussian Distribution as a Vector-Valued Parameter EF

For the inverse Gaussian distribution with parameters α, β > 0 we choose as ν the
Lebesgue measure on R+. Then we make the following choices: T (y) = (y, 1/y)�,

a(y) = −1

2
log(2πy3), κ(θ) = − 2(θ1θ2)

1/2 − 1

2
log(−2θ2),

(
α/β, β/α + 1/α2

)� = ∇θκ(θ) =
((−2θ2

−2θ1

)1/2

,

(−2θ1

−2θ2

)1/2

+ 1

−2θ2

)�
,
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Fig. 2.1 Gamma densities
for shape parameters
α ∈ {1/2, 1, 3/2, 2} and scale
parameters
β ∈ {1/2, 1, 3/2, 2} all
providing the same mean
μ = α/β = 1
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for θ = (θ1, θ2)
� ∈ (−∞, 0)2, and setting β = (−2θ1)

1/2 and α = (−2θ2)
1/2.

The dual parameter space is M = (0,∞)2, and we have support T = (0,∞)2 of
T (Y ) = (Y, 1/Y )�. With these choices we obtain

dF (y; θ ) = exp

{
θ�T (y) + 2(θ1θ2)

1/2 + 1

2
log(−2θ2)− 1

2
log(2πy3)

}
dν(y)

= 1

(2πy3)1/2
(−2θ2)

1/2 exp

{
− 1

2y

(
(−2θ1)y

2 + (−2θ2)− 4(θ1θ2)
1/2y

)}
dν(y)

= α

(2πy3)1/2
exp

{

−α
2

2y

(
1 − β

α
y

)2
}

dν(y). (2.8)

This is a vector-valued parameter EF with k = 2 and with first moment

Eθ

[
(Y, 1/Y )�

]
= ∇θκ(θ) =

(
α/β, β/α + 1/α2

)�
.

For receiving (2.8) we have chosen canonical parameter θ = (θ1, θ2)
� ∈ (−∞, 0)2.

Interestingly, we can close this parameter space for θ1 = 0, i.e., the effective domain
� is not open in this example. The choice θ1 = 0 gives us cumulant function κ(θ) =
− 1

2 log(−2θ2) and boundary case

dF(y; θ) = exp

{
θ�T (y)+ 1

2
log(−2θ2)− 1

2
log(2πy3)

}
dν(y)

= 1

(2πy3)1/2
(−2θ2)

1/2 exp

{
−−2θ2

2y

}
dν(y)

= α

(2πy3)1/2
exp

{
−α

2

2y

}
dν(y). (2.9)
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This is the distribution of the first-passage time of level α > 0 of a standard
Brownian motion, see Bachelier [20]; this distribution is also known as Lévy
distribution.

If we treat α > 0 as a nuisance parameter, we can turn the inverse Gaussian
distribution into a single-parameter linear EF by setting T (y) = y,

a(y) = log

(
α

(2πy3)1/2

)
− α2

2y
, κ(θ) = −α(−2θ)1/2,

μ = κ ′(θ) = α

(−2θ)1/2
, θ = h(μ) = −1

2

α2

μ2 ,

for θ ∈ (−∞, 0), dual parameter space M = (0,∞) and support T = (0,∞). With
these choices we have the inverse Gaussian model for β = (−2θ)1/2 > 0

dF(y; θ) = exp{a(y)} exp

{
− 1

2y

(
(−2θ)y2 − 2α(−2θ)1/2y

)}
dν(y)

= α

(2πy3)1/2
exp

{

−α
2

2y

(
1 − β

α
y

)2
}

dν(y).

This provides us with mean and variance

μ = Eθ [Y ] = α

β
and σ 2 = Varθ (Y ) = α

β3
= 1

α2
μ3.

For parameter estimation one often needs to invert these identities, which gives us

α = μ3/2

σ
and β = μ1/2

σ
.

Figure 2.2 gives examples of inverse Gaussian densities for parameter choices
α = β ∈ {1/2, 1, 3/2, 2} all providing the same mean μ = Eθ [Y ] = α/β = 1.

Generalized Inverse Gaussian Distribution as a Vector-Valued Parameter
EF

For the generalized inverse Gaussian distribution with parameters α, β > 0 and
γ ∈ R we choose as ν the Lebesgue measure on R+. We combine the terms of
the gamma and the inverse Gaussian models to the vector-valued choice: T (y) =
(y, logy, 1/y)� with k = 3. Moreover, we choose a(y) = −logy and cumulant
function

κ(θ) = log
(

2Kθ2(2
√
θ1θ3)

)
− θ2

2
log(θ1/θ3),
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Fig. 2.2 Inverse Gaussian
densities for parameters
α = β ∈ {1/2, 1, 3/2, 2} all
providing the same mean
μ = α/β = 1
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for θ = (θ1, θ2, θ3)
� ∈ (−∞, 0) × R × (−∞, 0), and where Kθ2 denotes the

modified Bessel function of the second kind with index γ = θ2 ∈ R. With these
choices we obtain generalized inverse Gaussian density

dF(y; θ) = exp

{
θ�T (y)− log

(
2Kθ2(2

√
θ1θ3)

)
+ θ2

2
log(θ1/θ3)− logy

}
dν(y)

= (α/β)γ/2

2Kγ (
√
αβ)

yγ−1 exp

{
−1

2

(
αy + βy−1

)}
dν(y), (2.10)

setting α = −2θ1 and β = −2θ3. This is a vector-valued parameter EF with k = 3,
and the first moment is given by

Eθ

[(
Y, logY,

1

Y

)�]
= ∇θκ(θ)

=
(
Kγ+1(

√
αβ)

Kγ (
√
αβ)

√
β

α
, log

√
β

α
+ ∂

∂γ
logKγ (

√
αβ),

Kγ+1(
√
αβ)

Kγ (
√
αβ)

√
α

β
− 2γ

β

)�
.

The effective domain � is a bit complicated because the possible choices of (θ1, θ3)

depend on θ2 ∈ R, namely, for θ2 < 0 the negative half-line (−∞, 0] can be closed
at the origin for θ1, and for θ2 > 0 it can be closed at the origin for θ3. The inverse
Gaussian model is obtained for θ2 = −1/2 and the gamma model is obtained for
θ3 = 0. For further properties of the generalized inverse Gaussian distribution we
refer to the textbook of Jørgensen [200].
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2.1.4 Vector-Valued Parameter EF: Count Variable Example

We close our EF examples by giving a discrete example with a vector-valued
parameter.

Categorical Distribution as a Vector-Valued Parameter EF

For the categorical distribution with k ∈ N and p ∈ (0, 1)k such that
∑k
i=1 pi < 1,

we choose as ν the counting measure on the finite set {1, . . . , k+ 1}. Then we make
the following choices: T (y) = (1{y=1}, . . . ,1{y=k})� ∈ R

k , θ = (θ1, . . . , θk)
�,

eθ = (eθ1, . . . , eθk )� and

a(y) = 0, κ(θ) = log

(

1 +
k∑

i=1

eθi

)

, p = ∇θκ(θ) = eθ

1 +∑k
i=1 e

θi
,

for effective domain � = R
k , dual parameter space M = (0, 1)k, and the support

T of T (Y ) are the k + 1 corners of the unit simplex in R
k . This representation is

minimal, see Assumption 2.6. With these choices we have (set θk+1 = 0)

dF(y; θ ) = exp

{

θ�T (y)− log

(

1 +
k∑

i=1

eθi

)}

dν(y) =
k+1∏

j=1

(
eθj

∑k+1
i=1 e

θi

)1{y=j }
dν(y).

This is a vector-valued parameter EF with k ∈ N. The canonical link is slightly
more complicated. Set vectors v = exp{θ} ∈ R

k and w = (1, . . . , 1)� ∈ R
k . This

provides p = ∇θκ(θ) = 1
1+w�v

v ∈ R
k . Set matrix Ap = 1 − pw� ∈ R

k×k , the
latter gives us p = Apv, and since Ap has full rank k, we obtain canonical link

p �→ θ = h(p) = log
(
A−1

p p
)

= log

(
p

1 − w�p

)
.

The last identity can be verified by explicit calculation

log

(
p

1 − w�p

)
= log

(
eθ/(1 +∑k

j=1 e
θj )

1 −∑k
i=1 e

θi /(1 +∑k
j=1 e

θj )

)

= log
(
eθ
)

= θ .

Remarks 2.11

• There are many more examples that belong to the EF. From Theorem 2.4, we
know that all examples of the EF are light-tailed in the sense that all moments of
T (Y ) exist. If we want to model heavy-tailed distributions within the EF, we first
need to apply a suitable transformation. We could model the Pareto distribution
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using transformation T (y) = logy, and assuming that the transformed random
variable has an exponential distribution. Different light-tailed examples are
obtained by, e.g., using transformation T (y) = yτ for the Weibull distribution
or T (y) = (logy, log(1 − y))� for the beta distribution. We refrain from giving
explicit formulas for these or other examples.

• Observe that in all examples above we have T ⊂ M, i.e., the support of T (Y )
is contained in the closure of the dual parameter space M, we come back to this
observation in Sect. 2.2.4, below.

2.2 Exponential Dispersion Family

In the previous section we have introduced the EF, and we have explicitly studied the
vector-valued parameter EF examples of the Gaussian, the gamma and the inverse
Gaussian models. We have highlighted that these three vector-valued parameter
EFs can be turned into single-parameter EFs by declaring one parameter to be
a nuisance parameter that is not modeled (and acts as a hyper-parameter). This
changes these three models into single-parameter EFs. These three single-parameter
EFs with nuisance parameter can also be interpreted as EDF models. In this section
we discuss the single-parameter EDF; this is sufficient for our purposes, and vector-
valued parameter extensions can be obtained in a canonical way.

2.2.1 Definition and Properties

The EFs of Sect. 2.1 can be extended to EDFs. In the single-parameter case this
is achieved by a transformation Y = X/ω, where ω > 0 is a scaling and where X
belongs to a single-parameter linear EF, i.e., with T (x) = x. We restrict ourselves to
the single-parameter case k = 1 throughout this section. Choose a σ -finite measure
ν1 on R and a measurable function a1 : R → R. These choices give a single-
parameter linear EF, directly modeling a real-valued random variable T (X) = X.
By (2.2) we have distribution for the single-parameter linear EF random variableX

dF(x; θ, 1) = f (x; θ, 1)dν1(x) = exp
{
θx − κ(θ)+ a1(x)

}
dν1(x),

on the effective domain

� =
{
θ ∈ R;

∫

R

exp {θx + a1(x)} dν1(x) <∞
}
, (2.11)
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and with cumulant function

θ ∈ � �→ κ(θ) = log

(∫

R

exp {θx + a1(x)} dν1(x)

)
. (2.12)

Throughout, we assume that the effective domain � has a non-empty interior �̊.
Thus, since � is convex, we assume that �̊ is a non-empty (possibly infinite) open
interval in R.

Following Jørgensen [201, 202], we extend this linear EF to an EDF as follows.
Choose a family of σ -finite measures νω on R and measurable functions aω : R →
R for a given index set W � ω with {1} ⊂ W ⊂ R+. Assume that we have an
ω-independent scaled cumulant function κ on this index set W , that is,

θ ∈ � �→ κ(θ) = 1

ω

(
log
∫

R

exp {θx + aω(x)} dνω(x)
)

for all ω ∈ W,

with effective domain � defined by (2.11), i.e., forω = 1. This allows us to consider
the distribution functions

dF(x; θ, ω) = f (x; θ, ω)dνω(x) = exp
{
θx − ωκ(θ)+ aω(x)

}
dνω(x)

= exp
{
ω (θy − κ(θ))+ aω(ωy)

}
dνω(ωy), (2.13)

in the third identity we did a change of variable x �→ y = x/ω. By re-
parametrizing the function aω(ω ·) and the σ -finite measures νω(ω ·) slightly
differently, depending on the particular structure of the chosen σ -finite measures,
we arrive at the following single-parameter EDF.

Definition 2.12 The (single-parameter) EDF is given by densities of the form

Y ∼ f (y; θ, v/ϕ) = exp

{
yθ − κ(θ)
ϕ/v

+ a(y; v/ϕ)
}
, (2.14)

with

κ : � → R is the cumulant function (2.12),

θ ∈ � is the canonical parameter in the effective domain (2.11),

v > 0 is a given weight (exposure, volume),

ϕ > 0 is the dispersion parameter,

a(·; ·) is the normalization, not depending on the canonical parameter θ.
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Remarks 2.13

• Exposure v > 0 and dispersion parameter ϕ > 0 provide the parametrization
usually used for ω = v/ϕ ∈ W . Their meaning and interpretation will become
clear below, and they will always appear as a ratio ω = v/ϕ.

• The support of these EDF distributions does not depend on the explicit choice of
the canonical parameter θ ∈ �, but it may depend on ω = v/ϕ ∈ W through
the choices of the σ -finite measures νω, for ω ∈ W . Consequently, a(y;ω) is
a normalization such that f (y; θ, ω) integrates to 1 w.r.t. the chosen σ -finite
measure νω to receive a proper distributional model.

• The transformation x �→ y = x/ω in (2.13) is called duality transformation, see
Section 3.1 in Jørgensen [203]. It provides the duality between the additive form
(in variable x in (2.13)) and the reproductive form (in variable y in (2.13)) of the
EDF; Definition 2.12 is the reproductive form.

• Lemma 2.1 tells us that � is convex, thus, it is a possibly infinite interval in R.
To exclude trivial cases we will always assume that the σ -finite measure ν1 is not
concentrated in one single point (this relates to the minimal representation for
k = 1 in the linear EF case, see Assumption 2.6), and that the interior �̊ of the
effective domain � is non-empty.

Corollary 2.14 Assume �̊ is non-empty and that ν1 is not concentrated in
one single point. Choose Y ∼ F(·; θ, v/ϕ) for fixed θ ∈ �̊. The moment
generating function of Y for small r ∈ R satisfies

MY(r) = Eθ

[
exp {rY }] = exp

{
v

ϕ
[κ(θ + rϕ/v)− κ(θ)]

}
.

The first two moments of Y are given by

μ = Eθ [Y ] = κ ′(θ) and Varθ (Y ) = ϕ

v
κ ′′(θ) > 0.

The cumulant function κ is smooth and strictly convex on �̊ with canonical
link h = (κ ′)−1. The variance function is defined byμ �→ V (μ) = (κ ′′◦h)(μ)
and, consequently, for the variance of Y we have Varμ (Y ) = ϕ

v
V (μ) for

μ ∈ M.

Proof This follows analogously to Theorem 2.4. The linear case T (y) = y with ν1
not being concentrated in one single point guarantees that the minimal dimension is
k = 1, providing a minimal representation in this dimension, see Assumption 2.6.

�
Before giving explicit examples we state the so-called convolution formula.



2.2 Exponential Dispersion Family 31

Corollary 2.15 (Convolution Formula) Assume �̊ is non-empty and that ν1 is not
concentrated in one single point. Assume that Yi ∼ F(·; θ, vi/ϕ) are independent,
for 1 ≤ i ≤ n, with fixed θ ∈ �̊. Set v+ =∑n

i=1 vi . Then

Y+ = 1

v+

n∑

i=1

viYi ∼ F(·; θ, v+/ϕ).

Proof The proof immediately follows from calculating the moment generating
functionMY+(r) and from using the independence between the Yi’s. �

2.2.2 Exponential Dispersion Family Examples

The single-parameter linear EF examples introduced above can be reformulated as
EDF examples.

Binomial Distribution as a Single-Parameter EDF

For the binomial distribution with parameters p ∈ (0, 1) and n ∈ N we choose
the counting measure on {0, 1/n, . . . , 1} with ω = n. Then we make the following
choices

a(y) = log
(
n

ny

)
, κ(θ) = log(1+eθ ), p = κ ′(θ) = eθ

1 + eθ , θ = h(p) = log
(

p

1 − p
)
,

for effective domain � = R and dual parameter space M = (0, 1). With these
choices we have

f (y; θ, n) =
(
n

ny

)
exp

{
n
(
θy − log(1 + eθ ))} =

(
n

ny

)(
eθ

1 + eθ
)ny (

1

1 + eθ
)n−ny

.

This is a single-parameter EDF. The canonical link p �→ h(p) gives the logit
function. Mean and variance are given by

p = Eθ [Y ] = κ ′(θ) = eθ

1 + eθ and Varθ (Y ) = 1

n
κ ′′(θ) = 1

n

eθ

(1 + eθ )2 = 1

n
p(1 − p),

and the variance function is given by V (μ) = μ(1 − μ). The binomial random
variable is obtained by setting X = nY ∼ Binom(n, p).
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Poisson Distribution as a Single-Parameter EDF

For the Poisson distribution with parameters λ > 0 and v > 0 we choose the
counting measure on N0/v for exposureω = v. Then we make the following choices

a(y) = log

(
vvy

(vy)!
)
, κ(θ) = eθ , λ = κ ′(θ) = eθ , θ = h(λ) = log(λ),

for effective domain � = R and dual parameter space M = (0,∞). With these
choices we have

f (y; θ, v) = vvy

(vy)! exp
{
v
(
θy − eθ )} = e−vλ (vλ)

vy

(vy)! . (2.15)

This is a single-parameter EDF. The canonical link λ �→ h(λ) is the log-link. Mean
and variance are given by

λ = Eθ [Y ] = κ ′(θ) = eθ and Varθ (Y ) = 1

v
κ ′′(θ) = 1

v
eθ = 1

v
λ,

and the variance function is given by V (λ) = λ, that is, the variance function is
linear in the mean parameter λ. The Poisson random variable is obtained by setting
X = vY ∼ Poi(vλ). We choose ϕ = 1, here, meaning that we have neither under-
nor over-dispersion. Thus, the choices v and ϕ in ω = v/ϕ have the interpretation
of an exposure and a dispersion parameter, respectively. This interpretation is going
to be important in claim counts modeling, below.

Gamma Distribution as a Single-Parameter EDF

For the gamma distribution with parameters α, β > 0 we choose the Lebesgue
measure on R+ and shape parameterω = v/ϕ = α. We make the following choices

a(y) = (α − 1)logy + αlogα − log(α), κ(θ) = −log(−θ),
μ = κ ′(θ) = −1/θ, θ = h(μ) = −1/μ,

for effective domain � = (−∞, 0) and dual parameter space M = (0,∞). With
these choices we have

f (y; θ, α) = αα

(α)
yα−1 exp

{
α
(
yθ + log(−θ))} = (−θα)α

(α)
yα−1 exp {−(−θα)y} .
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This is analogous to (2.6) with shape parameter α > 0 and scale parameter β =
−θ > 0. Mean and variance are given by

μ = Eθ [Y ] = κ ′(θ) = −θ−1 and Varθ (Y ) = 1

α
κ ′′(θ) = 1

α
θ−2,

and the variance function is given by V (μ) = μ2, that is, the variance function
is quadratic in the mean parameter μ. The gamma random variable is obtained by
setting X = αY ∼ (α, β). This gives us for the first two moments of X

μX = Eθ [X] = α

β
and Varθ (X) = α

β2 = 1

α
μ2
X.

Suppose v = 1, for shape parameter α > 1, we have under-dispersion ϕ = 1/α < 1
and the gamma density is unimodal; for shape parameter α < 1, we have over-
dispersion ϕ = 1/α > 1 and the gamma density is strictly decreasing, we refer to
Fig. 2.1.

Inverse Gaussian Distribution as a Single-Parameter EDF

For the inverse Gaussian distribution with parameters α, β > 0 we choose the
Lebesgue measure on R+ and we set ω = v/ϕ = α. We make the following choices

a(y) = log

(
α1/2

(2πy3)1/2

)
− α

2y
, κ(θ) = −(−2θ)1/2,

μ = κ ′(θ) = 1

(−2θ)1/2
, θ = h(μ) = − 1

2μ2 ,

for θ ∈ (−∞, 0) and dual parameter space M = (0,∞). With these choices we
have

f (y; θ, α)dy = α1/2

(2πy3)1/2
exp

{
α
(
θy + (−2θ)1/2

)
− α

2y

}
dy

= α1/2

(2πy3)1/2
exp

{
− α

2y

(
1 − (−2θ)1/2y

)2
}
dy

= α

(2πx3)1/2
exp

{

−α
2

2x

(
1 − (−2θ)1/2

α
x

)2}

dx,
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where in the last step we did a change of variable y �→ x = αy. This is exactly (2.8).
Mean and variance are given by

μ = Eθ [Y ] = κ ′(θ) = (−2θ)−1/2 and Varθ (Y ) = 1

α
κ ′′(θ) = 1

α
(−2θ)−3/2,

and the variance function is given by V (μ) = μ3, that is, the variance function is
cubic in the mean parameterμ. The inverse Gaussian random variable is obtained by
setting X = αY . The mean and variance of X are given by, set β = (−2θ)1/2 > 0,

μX = Eθ [X] = α

β
and Varθ (X) = α

β3 = 1

α2μ
3
X.

This inverse Gaussian density is illustrated in Fig. 2.2.
Similarly to (2.9), we can extend the inverse Gaussian model to the boundary

case θ = 0, i.e., the effective domain � = (−∞, 0] is not open. This provides us
with density

f (y; θ = 0, α)dy = α

(2πx3)1/2
exp

{
−α

2

2x

}
dx, (2.16)

using, as above, the change of variable y �→ x = αy. An additional transformation
x �→ 1/x gives a gamma distribution with shape parameter 1/2 and scale parameter
α2/2.

Remark 2.16 The inverse Gaussian case gives an example of a non-open effective
domain � = (−∞, 0]. It is worth noting that for the boundary parameter θ = 0,
the first moment does not exist, i.e., Corollary 2.14 only makes statements in the
interior �̊ of the effective domain �. This also relates to Remarks 2.9 on the dual
parameter space M.

2.2.3 Tweedie’s Distributions

Tweedie’s compound Poisson (CP) model was introduced in 1984 by Tweedie [358],
and it has been studied in detail in Jørgensen [202], Jørgensen–de Souza [204],
Smyth–Jørgensen [342] and in the review paper of Delong et al. [94]. Tweedie’s CP
model belongs to the EDF. We spend more time on explaining Tweedie’s CP model
because it plays an important role in actuarial modeling.

Tweedie’s CP model is received by choosing as σ -finite measure ν1 a mixture of
the Lebesgue measure on (0,∞) and a point measure in 0. Furthermore, we choose
power variance parameter p ∈ (1, 2) and cumulant function

κ(θ) = κp(θ) = 1

2 − p ((1 − p)θ) 2−p
1−p , (2.17)
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on the effective domain θ ∈ � = (−∞, 0). This provides us with Tweedie’s CP
model

Y ∼ f (y; θ, v/ϕ) = exp

{
yθ − κp(θ)
ϕ/v

+ a(y; v/ϕ)
}
,

with exposure v > 0 and dispersion parameter ϕ > 0; the normalizing function
a(·; v/ϕ) does not have any simple closed form, we refer to Section 2.1 in
Jørgensen–de Souza [204] and Section 4.2 in Jørgensen [203].

The first two moments of Tweedie’s CP random variable Y are given by

μ = Eθ [Y ] = κ ′
p(θ) = ((1 − p)θ) 1

1−p ∈ M = (0,∞), (2.18)

Varθ (Y ) = ϕ

v
κ ′′
p(θ) =

ϕ

v
((1 − p)θ) p

1−p = ϕ

v
μp > 0. (2.19)

The parameter p ∈ (1, 2) determines the power variance functions V (μ) =
μp between the Poisson p = 1 and the gamma p = 2 cases, see Sect. 2.2.2.

The moment generating function of Tweedie’s CP random variableX = vY/ϕ =
ωY in its additive form is given by, we use Corollary 2.14,

MX(r) = MvY/ϕ(r) = exp

⎧
⎨

⎩
v

ϕ
κp(θ)

⎛

⎝
( −θ

−θ − r
) 2−p
p−1 − 1

⎞

⎠

⎫
⎬

⎭
for r < −θ.

Some readers will notice that this is the moment generating function of a CP
distribution having i.i.d. gamma claim sizes. This is exactly the statement of the
next proposition which is found, e.g., in Smyth–Jørgensen [342].

Proposition 2.17 Assume S = ∑N
i=1 Zi is CP distributed with Poisson claim

counts N ∼ Poi(λv) and i.i.d. gamma claim sizes Zi ∼ (α, β) being independent
of N . We have S

(d)= vY/ϕ by identifying the parameters as follows

p = α + 2

α + 1
∈ (1, 2), β = −θ > 0 and λ = 1

ϕ
κp(θ) > 0.

Proof of Proposition 2.17 Assume S is CP distributed with i.i.d. gamma claim
sizes. From Proposition 2.11 and Section 3.2.1 in Wüthrich [387] we receive that
the moment generating function of S is given by

MS(r) = exp

{
λv

((
β

β − r
)α

− 1

)}
for r < β.
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Using the proposed parameter identification, the claim immediately follows. �

Proposition 2.17 gives us a second interpretation of Tweedie’s CP model which
was introduced in an EDF fashion, above. This second interpretation explains the
name of this EDF model, it explains the mixture of the Lebesgue measure and the
point measure in 0, and it also highlights why the Poisson model and the gamma
model are the boundary cases in terms of power variance functions.

An interesting question is whether the EDF can be extended beyond power
variance functions V (μ) = μp with p ∈ [1, 2]. The answer to this question is
yes, and the full answer is provided in Theorem 2 of Jørgensen [202]:

Theorem 2.18 (Jørgensen [202], Without Proof) Only power variance parame-
ters p ∈ (0, 1) do not allow for EDF models.

Table 2.1 gives the EDF distributions that have a power variance function. These
distributions are called Tweedie’s distributions, with the special case of Tweedie’s
CP distributions for p ∈ (1, 2). The densities for p ∈ {0, 1, 2, 3} have a closed form,
but the other Tweedie’s distributions do not have a closed-form density. Thus, they
cannot explicitly be constructed as suggested in Sect. 2.2.1. Besides the constructive
approach presented above, there is a uniqueness theorem saying that the variance
function V (·) on the domain M characterizes the single-parameter linear EF, see
Theorem 2.11 in Jørgensen [203]. This uniqueness theorem is the basis of the proof
of Theorem 2.18. Tweedie’s distributions for p �∈ [0, 1]∪{2, 3} involve infinite sums
for the normalization exp{a(·, ·)}, we refer to formulas (4.19), (4.20) and (4.31) in
Jørgensen [203], this is the reason that one has to go via the uniqueness theorem
to prove Theorem 2.18. Dunn–Smyth [112] provide methods of fast calculation
of some of these infinite sums; in Sect. 5.5.2, below, we present an approximation
(saddlepoint approximation). The uniqueness theorem is also useful to construct
new examples within the EF, see, e.g., Section 2 of Awad et al. [15].

Table 2.1 Power variance function models V (μ) = μp within the EDF (taken from Table 4.1 in
Jørgensen [203])

p Distribution Support of Y � M
p < 0 Generated by extreme stable distributions R [0,∞) (0,∞)
p = 0 Gaussian distribution R R R

p = 1 Poisson distribution N0 R (0,∞)
1 < p < 2 Tweedie’s CP distribution [0,∞) (−∞, 0) (0,∞)
p = 2 Gamma distribution (0,∞) (−∞, 0) (0,∞)
p > 2 Generated by positive stable distributions (0,∞) (−∞, 0] (0,∞)
p = 3 Inverse Gaussian distribution (0,∞) (−∞, 0] (0,∞)
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2.2.4 Steepness of the Cumulant Function

Assume we have a fixed EF satisfying Assumption 2.6. All random variables T (Y )
belonging to this EF have the same support, not depending on the particular choice
of the canonical parameter θ ∈ �. We denote this support of T (Y ) by T.

Below, we are going to estimate the canonical parameter θ ∈ � from data using
maximum likelihood estimation. For this it is advantageous to have the property
T ⊂ M, because, intuitively, this allows us to directly select μ̂ = T (Y ) as the
parameter estimate in the dual parameter space M, for a given observation T (Y ) ∈
T. This then translates to a canonical parameter θ̂ = h(μ̂) = h(T (Y )) ∈ �, using
the canonical link h; this estimation approach will be better motivated in Chap. 3,
below. Unfortunately, many examples of the EF do not satisfy this propertyT ⊂ M.
For instance, in the Poisson model the observation T (Y ) = Y = 0 is not included
in M, see Table 2.1. This poses some challenges in parameter estimation, and the
purpose of this small discussion is to be prepared for these challenges.

A cumulant function κ is called steep if for all θ ∈ �̊ and all θ̃ in the boundary
of �

(̃
θ − θ

)� ∇θκ
(
αθ + (1 − α)̃θ) → ∞ for α ↓ 0, (2.20)

we refer to Formula (20) in Section 8.1 of Barndorff-Nielsen [23]. Define the convex
closure of the support T by C = conv(T).

Theorem 2.19 (Theorem 9.2 in Barndorff-Nielsen [23], Without Proof) Assume
we have a fixed EF satisfying Assumption 2.6. The cumulant function κ is steep if
and only if C̊ = M = ∇θκ(�̊).

Theorem 2.19 tells us that for a steep cumulant function we have C = M =
∇θκ(�̊). In this case parameter estimation can be extended to observations T (Y ) �∈
M such that we may obtain a degenerate model at the boundary of M. Coming
back to our Poisson example from above, in this case we set μ̂ = 0, which gives a
degenerate Poisson model.

Throughout this book we will work under the assumption that κ is steep.
The classical examples satisfy this assumption: the examples with power variance
parameter p in {0} ∪ [1,∞) satisfy Theorem 2.19; this includes the Gaussian, the
Poisson, the gamma, the inverse Gaussian and Tweedie’s CP models, see Table 2.1.
Moreover, the examples we have met in Sect. 2.1 fulfill this assumption; these
are the single-parameter linear EF models of the Bernoulli, the binomial and the
negative binomial distributions, as well as the vector-valued parameter examples of
the Gaussian, the gamma and the inverse Gaussian models and of the categorical
distribution. The only models we have seen that do not have a steep cumulant
function are the power variance models with p < 0, see Table 2.1.

Remark 2.20 Working within the EDF needs some additional thoughts because the
supportT = Tω of the single-parameter linear EDF random variable Y = T (Y )may
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depend on the specific choice of the dispersion parameter ω ∈ W ⊃ {1} through the
σ -finite measure dνω(ω ·), see (2.13). For instance, in the binomial case the support
of Y is given by Tω = {0, 1/n, . . . , 1} with ω = n, see Sect. 2.2.2.

Assume that the cumulant function κ is steep for the single-parameter linear
EF that corresponds to the single-parameter EDF with ω = 1. Theorem 2.19
then implies that for this choice we have C̊ω=1 = ∇θκ(�̊) with convex closure
Cω=1 = conv(Tω=1).

Consider ω ∈ W \{1} which corresponds to the choice νω of the σ -finite measure
on R. This choice belongs to the cumulant function θ �→ ωκ(θ) in the additive form
(x-parametrization in (2.13)). Since steepness (2.20) holds for any ω > 0 we receive
that the convex closure of the support of this distribution in the x-parametrization

in (2.13) is given by ∇θωκ(�̊) = ω∇θκ(�̊). The duality transformation x �→ y =
x/ω leads to the change of measure dνω(x) �→ dνω(ωy) and to the corresponding
change of support, see (2.13). The latter implies that in the reproductive form (y-
parametrization) the convex closure of the support does not depend on the specific
choice of ω ∈ W . Since the EDF representation given in (2.14) corresponds to the
y-parametrization (reproductive form), we can use Theorem 2.19 without limitation
also for the single-parameter linear EDF given by (2.14), and C does not depend on
ω ∈ W .

2.2.5 Lab: Large Claims Modeling

From Corollary 2.14 we know that the moment generating function exists around the
origin for all examples belonging to the EDF. This implies that the moments of all
orders exist, and that we have an exponentially decaying survival function Pθ [Y >
y] = 1 − F(y; θ, ω) ∼ exp{−�y} for some � > 0 as y → ∞, see (1.2). In many
applied situations the data is more heavy-tailed and, thus, cannot be modeled by
such an exponentially decaying survival function. In such cases one often chooses
a distribution function with a regularly varying survival function; regular variation
with tail index β > 0 has been introduced in (1.3). A popular choice is a log-gamma
distribution which can be obtained from the gamma distribution (belonging to the
EDF). We briefly explain how this is done and how it relates to the Pareto and the
Lomax [256] distributions.

We start from the gamma density (2.6). The random variableZ has a log-gamma
distribution with shape parameter α > 0 and scale parameter β = −θ > 0 if
log(Z) = Y has a gamma distribution with these parameters. Thus, the gamma
density of Y = log(Z) is given by

f (y; β, α)dy = βα

(α)
yα−1 exp {−βy} dy for y > 0.



2.2 Exponential Dispersion Family 39

We do a change of variable y �→ z = exp{y} to receive the density of the log-gamma
distributed random variable Z = exp{Y }

f (z; β, α)dz = βα

(α)
(logz)α−1z−(β+1)dz for z > 1.

This log-gamma density has support (1,∞). The distribution function of this log-
gamma distributed random variable needs to be calculated numerically, and its
survival function is regularly varying with tail index β > 0.

A special case of the log-gamma distribution is the Pareto distribution. The Pareto
distribution is more tractable and it is obtained by setting shape parameter α = 1 in
the log-gamma density. This gives us the Pareto density

f (z; β)dz = f (z; β, α = 1)dz = βz−(β+1)dz for z > 1.

The distribution function in this Pareto case is for z ≥ 1 given by

F(z; β) = 1 − z−β.

Obviously, this provides a regularly varying survival function with tail index β > 0;
in fact, in this case we do not need to go over to the limit in (1.3) because we
have an exact identity. The Pareto distribution has the nice property that it is closed
under thresholding (lower-truncation) with M , that is, we remain within the family
of Pareto distributions with the same tail index β by considering lower-truncated
claims: for 1 ≤M ≤ z we have

F(z; β,M) = P [Z ≤ z|Z > M] = P [M < Z ≤ z]
P [Z > M]

= 1 −
( z
M

)−β
.

This is the classical definition of the Pareto distribution, and it allows to preserve
full flexibility in the choice of the thresholdM > 0.

The disadvantage of the Pareto distribution is that it does not provide a
continuous density on R+ as there is a discontinuity in thresholdM . For this reason,
one sometimes explores another change of variable Z �→ X = Z −M for a Pareto
distributed random variable Z ∼ F(·; β,M). This provides the Lomax distribution,
also called Pareto Type II distribution. X has the following distribution function on
(0,∞)

P [X ≤ x] = 1 −
(
x +M
M

)−β
for x ≥ 0.

This distribution has again a regularly varying survival function with tail index β >
0. Moreover, we have

lim
x→∞

(
x+M
M

)−β
(
x
M

)−β = lim
x→∞

(
1 + M

x

)−β
= 1.
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Fig. 2.3 Log-log plot of a
Pareto and a Lomax
distribution with tail index
β = 2 and threshold
M = 1′000′000
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This says that we should choose the same thresholdM > 0 for both the Pareto and
the Lomax distribution to receive the same asymptotic tail behavior, and this also
quantifies the rate of convergence between the two survival functions. Figure 2.3
illustrates this convergence in a log-log plot choosing tail index β = 2 and threshold
M = 1′000′000.

For completeness we provide the density of the Pareto distribution

f (z; β,M) = β

M

( z
M

)−(β+1)
for z ≥ M,

and of the Lomax distribution

f (x; β,M) = β

M

(
x +M
M

)−(β+1)

for x ≥ 0.

2.3 Information Geometry in Exponential Families

We do a short excursion to information geometry. This excursion may look a bit
disconnected from what we have done so far, but it provides us with important
background information for the chapter on forecast evaluation, see Chap. 4, below.

2.3.1 Kullback–Leibler Divergence

There is literature in information geometry which uses techniques from differential
geometry to study EFs as Riemannian manifolds with points corresponding to EF
densities parametrized by their canonical parameters θ ∈ �, we refer to Amari [10],
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Ay et al. [16] and Nielsen [285] for an extended treatment of these mathematical
concepts.

Choose a fixed EF (2.2) with cumulant function κ on the effective domain
� ⊆ R

k and with σ -finite measure ν on R. We define the Kullback–Leibler (KL)
divergence (relative entropy) from model θ1 ∈ � to model θ0 ∈ � within this EF
by

DKL(f (·; θ0)||f (·; θ1)) =
∫

R

f (y; θ0)log

(
f (y; θ0)

f (y; θ1)

)
dν(y) ≥ 0.

Recall that the support of the EF does not depend on the specific choice of the
canonical parameter θ in �, see Remarks 2.3; this implies that the KL divergence
is well-defined, here. The positivity of the KL divergence is obtained from Jensen’s
inequality; this is proved in Lemma 2.21, below.

The KL divergence has the interpretation of having a data model that is
characterized by the distribution f (·; θ0), and we would like to measure how close
another model f (·; θ1) is to the data model. Note that the KL divergence is not
a distance function because it is neither symmetric nor does it satisfy the triangle
inequality.

We calculate the KL divergence within the chosen EF

DKL(f (·; θ0)||f (·; θ1)) =
∫

R

f (y; θ0)
[
(θ0 − θ1)

�T (y)− κ(θ0)+ κ(θ1)
]
dν(y)

= (θ0 − θ1)
� ∇θκ(θ0)− κ(θ0)+ κ(θ1) ≥ 0, (2.21)

where we have used Corollary 2.5, and the positivity of the KL divergence can be
seen from the convexity of κ . This allows us to consider the following (Taylor)
expansion

κ(θ1) = κ(θ0)+ ∇θκ(θ0)
� (θ1 − θ0)+DKL(f (·; θ0)||f (·; θ1)). (2.22)

This illustrates that the KL divergence corresponds to second and higher order
differences between the cumulant value κ(θ0) and another cumulant value κ(θ1).
The gradients of the KL divergence w.r.t. θ1 in θ1 = θ0 and w.r.t. θ0 in θ0 = θ1 are
given by

∇θ1DKL(f (·; θ0)||f (·; θ1))
∣
∣
θ1=θ0

(2.23)

= ∇θ0DKL(f (·; θ0)||f (·; θ1))
∣
∣
θ0=θ1

= 0.

This emphasizes that the KL divergence reflects second and higher-order terms in
cumulant function κ ; and that the data model θ0 forms the minimum of this KL
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divergence (as a function of θ1) as we will just see. We calculate the Hessian (second
order term) w.r.t. θ1 in θ1 = θ0

∇2
θ1
DKL(f (·; θ0)||f (·; θ1))

∣
∣∣
θ1=θ0

= ∇2
θ κ(θ)

∣
∣∣
θ=θ0

def.= I(θ0).

The positive definite matrix I(θ0) (in a minimal representation) is called Fisher’s
information. Fisher’s information is an important tool in statistics that we will
meet in Theorem 3.13 of Sect. 3.3, below. A function satisfying (2.21) (with
being zero if and only if θ0 = θ1), fulfilling (2.23) and having positive definite
Fisher’s information is called divergence, see Definition 5 in Nielsen [285]. Fisher’s
information I(θ0) measures the curvature of the KL divergence in θ0 and we have
the second order Taylor approximation

κ(θ1) ≈ κ(θ0)+ ∇θκ(θ0)
� (θ1 − θ0)+ 1

2
(θ1 − θ0)

� I(θ0) (θ1 − θ0) .

Next-order terms are obtained from the so-called Amari–Chentsov tensor, see Amari
[10] and Section 4.2 in Ay et al. [16]. In information geometry one studies the
(possibly degenerate) Riemannian metric on the effective domain � induced by
Fisher’s information; we refer to Section 3.7 in Nielsen [285].

Lemma 2.21 Consider two densities p and q w.r.t. a given σ -finite measure ν. We
haveDKL(p||q) ≥ 0, andDKL(p||q) = 0 if and only if p = q , ν-a.s.
Proof Assume Y ∼ pdν, then we can rewrite the KL divergence, using Jensen’s
inequality,

DKL(p||q) =
∫
p(y)log

(
p(y)

q(y)

)
dν(y) = − Ep

[
log

(
q(Y )

p(Y )

)]

≥ −logEp

[
q(Y )

p(Y )

]
= − log

∫
q(y)dν(y) ≥ 0. (2.24)

Equality holds if and only if p = q , ν-a.s. The last inequality of (2.24) considers
that q does not necessarily need to be a density w.r.t. ν, i.e., we can also have∫
q(y)dν(y) < 1. �

2.3.2 Unit Deviance and Bregman Divergence

In the next chapter we are going to introduce maximum likelihood estimation for
parameters, see Definition 3.4, below. Maximum likelihood estimators are obtained
by maximizing likelihood functions (evaluated in the observations). Maximizing
likelihood functions within the EDF is equivalent to minimizing deviance loss
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functions. Deviance loss functions are based on unit deviances, which, in turn,
correspond to KL divergences. The purpose of this small section is to discuss this
relation. This should be viewed as a preparation for Chap. 4.

Assume we work within a single-parameter linear EDF, i.e., T (y) = y. Using
the canonical link h we obtain the canonical parameter θ = h(μ) ∈ � ⊆ R

from the mean parameter μ ∈ M. If we replace the (typically unknown) mean
parameter μ by an observation Y , supposed Y ∈ M, we get the specific model
that is exactly calibrated to this observation. This provides us with the canonical
parameter estimate θ̂Y = h(Y ) for θ . We can now measure the KL divergence from
any model represented by θ to the observation calibrated model θ̂Y = h(Y ). This
KL divergence is given by (we use (2.21) and we set ω = v/ϕ = 1)

DKL (f (·; h(Y ), 1)| |f (·; θ, 1)) =
∫

R

f (y; θ̂Y , 1)log

(
f (y; θ̂Y , 1)
f (y; θ, 1)

)
dν(y)

= (h(Y )− θ) Y − κ(h(Y ))+ κ(θ) ≥ 0.

This latter object is the unit deviance (up to factor 2) of the chosen EDF. It plays a
crucial role in predictive modeling.

We define the unit deviance under the assumption that κ is steep as follows:

d : C̊ ×M → R+ (2.25)

(y, μ) �→ d(y, μ) = 2
(
yh(y)− κ (h(y))− yh(μ)+ κ (h(μ))

)
≥ 0,

where C is the convex closure of the support T of Y and M is the dual parameter
space of the chosen EDF. Steepness of κ implies C̊ = M, see Theorem 2.19.

This unit deviance d is received from the KL divergence, and it is (twice) the dif-
ference of two log-likelihood functions, one using canonical parameter h(y) and the
other one having any canonical parameter θ = h(μ) ∈ �̊. That is, for μ = κ ′(θ),

d(y, μ) = 2 DKL(f (·; h(y), 1)||f (·; θ, 1)) (2.26)

= 2
ϕ

v
(logf (y; h(y), v/ϕ)− logf (y; θ, v/ϕ)) ,

for general ω = v/ϕ ∈ W . The latter can be rewritten as

f (y; θ, v/ϕ) = f (y; h(y), v/ϕ) exp

{
− 1

2ϕ/v
d(y, κ ′(θ))

}
. (2.27)

This looks like a generalization of the Gaussian distribution, where the square
difference (y − μ)2 in the exponent is replaced by the unit deviance d(y, μ) with
μ = κ ′(θ). This interpretation gets further support by the following lemma.
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Lemma 2.22 Under Assumption 2.6 and the assumption that the cumulant function
κ is steep, the unit deviance d (y, μ) ≥ 0 of the chosen EDF is zero if and only if
y = μ. Moreover, the unit deviance d (y, μ) is twice continuously differentiable
w.r.t. (y, μ) in C̊ × M, and

∂2d (y, μ)

∂μ2

∣
∣
∣
∣
y=μ

= ∂2d (y, μ)

∂y2

∣
∣
∣
∣
y=μ

= − ∂2d (y, μ)

∂μ∂y

∣
∣
∣
∣
y=μ

= 2/V (μ) > 0.

Proof The positivity and the if and only if statement follows from Lemma 2.21 and
the strict convexity of κ . Continuous differentiability follows from the smoothness
of κ in the interior of �. Moreover we have

∂2d (y, μ)

∂μ2

∣∣
∣∣
y=μ

= ∂

∂μ
2
(−yh′(μ)+ μh′(μ)

)
∣∣
∣∣
y=μ

= 2h′(μ) = 2/κ ′′(h(μ)) = 2/V (μ) > 0,

where V (μ) is the variance function of the chosen EDF introduced in Corol-
lary 2.14. The remaining second derivatives are received by similar (straightfor-
ward) calculations. �

Remarks 2.23

• Lemma 2.22 shows that the unit deviance definition of d(y, μ) provides a so-
called regular unit deviance according to Definition 1.1 in Jørgensen [203].
Moreover, any model that can be brought into the form (2.27) for a (regular) unit
deviance is called (regular) reproductive dispersion model, see Definition 1.2 of
Jørgensen [203].

• In general the unit deviance d(y, μ) is not symmetric in its two arguments y and
μ, we come back to this in Fig. 11.1, below.

More generally, the KL divergence and the unit deviance can be embedded into
the framework of Bregman loss functions [50]. We restrict to the single-parameter
EDF case. Assume that ψ : C̊ → R is a strictly convex function. The Bregman
divergence w.r.t. ψ between y and μ is defined by

Dψ(y,μ) = ψ(y)− ψ(μ)− ψ ′(μ) (y − μ) ≥ 0, (2.28)

where ψ ′ is a (sub-)gradient of ψ . The lower bound holds because of convexity of
ψ . Consider the specific choice ψ(μ) = μh(μ) − κ(h(μ)) for the chosen EDF.
Similar to Lemma 2.22 we have ψ ′′(μ) = h′(μ) = 1/V (μ) > 0, which says that
this choice is strictly convex. Using this choice for ψ gives us unit deviance (up to
factor 1/2)

Dψ(y,μ) = yh(y)− κ(h(y))+ κ(h(μ))− h(μ)y = 1

2
d(y, μ). (2.29)
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Thus, the unit deviance d can be understood as a difference of log-likelihoods
(2.26), as a KL divergenceDKL and as a Bregman divergenceDψ .

Example 2.24 (Poisson Model) We start with a single-parameter EF example.
Consider cumulant function κ(θ) = exp{θ} for canonical parameter θ ∈ � = R,
this gives us the Poisson model. For the KL divergence from model θ1 to model θ0
we receive

DKL(f (·; θ0)||f (·; θ1)) = exp{θ1} − exp{θ0} − (θ1 − θ0) exp{θ0} ≥ 0,

which is zero if and only if θ0 = θ1. Fisher’s information is given by

I(θ) = κ ′′(θ) = exp{θ} > 0.

If we have observation Y > 0 we receive a model described by canonical parameter
θ̂Y = h(Y ) = log(Y ). This gives us unit deviance, see (2.26),

d(Y, μ) = 2DKL(f (·; h(Y ), 1)||f (·; θ, 1))
= 2

(
eθ − Y − (θ − log(Y ))Y

)

= 2
(
μ− Y − Y log

(μ
Y

))
≥ 0,

with μ = κ ′(θ) = exp{θ}. This Poisson unit deviance will commonly be used for
model fitting and forecast evaluation, see, e.g., (5.28). �

Example 2.25 (Gamma Model) The second example considers a vector-valued
parameter EF example. We consider the cumulant function κ(θ) = log(θ2) −
θ2log(−θ1) for θ = (θ1, θ2)

� ∈ � = (−∞, 0)× (0,∞); this gives us the gamma
model, see Sect. 2.1.3. For the KL divergence from model θ1 to model θ0 we receive

DKL(f (·; θ0)||f (·; θ1)) = (θ0,2 − θ1,2
) ′(θ0,2)

(θ0,2)
− log

(
(θ0,2)

(θ1,2)

)

+ θ1,2log

(−θ0,1

−θ1,1

)
+ θ0,2

(−θ1,1

−θ0,1
− 1

)
≥ 0.

Fisher’s information matrix is given by

I(θ) = ∇2
θ κ(θ) =

( θ2
(−θ1)2

1
−θ1

1
−θ1

′′(θ2)(θ2)−′(θ2)2
(θ2)2

)

.
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The off-diagonal terms in Fisher’s information matrix I(θ) are non-zero which
means that the two components of the canonical parameter θ interact. Choosing
a different parametrization μ = θ2/(−θ1) (dual mean parametrization) and α = θ2
we receive diagonal Fisher’s information in (μ, α)

I(μ, α) =
(
α
μ2 0

0 ′′(α)(α)−′(α)2
(α)2

− 1
α

)

=
(
α

μ2 0

0 � ′(α)− 1
α

)

, (2.30)

where � is the digamma function, see Footnote 2 on page 22. This transformation
is obtained by using the corresponding Jacobian matrix for variable transformation;
more details are provided in (3.16) below. In this new representation, the parameters
μ and α are orthogonal; the term � ′(α) − 1

α
is further discussed in Remarks 5.26

and Remarks 5.28, below.
Using this second parametrization based on mean μ and dispersion 1/α, we

arrive at the EDF representation of the gamma model. This allows us to calculate the
corresponding unit deviance (within the EDF), which in the gamma case is given by

d(Y, μ) = 2

(
Y

μ
− 1 + log

(μ
Y

))
≥ 0.

�

Example 2.26 (Inverse Gaussian Model) Our final example considers the inverse
Gaussian vector-valued parameter EF case. We consider the cumulant function
κ(θ) = −2(θ1θ2)

1/2 − 1
2 log(−2θ2) for θ = (θ1, θ2)

� ∈ � = (−∞, 0] × (−∞, 0),
see Sect. 2.1.3. For the KL divergence from model θ1 to model θ0 we receive

DKL(f (·; θ0)||f (·; θ1)) = −θ1,1

√
−θ0,2

−θ0,1
− θ1,2

√
−θ0,1

−θ0,2
− 2
√
θ1,1θ1,2

+ θ0,2 − θ1,2

−2θ0,2
+ 1

2
log

(−θ0,2

−θ1,2

)
≥ 0.

Fisher’s information matrix is given by

I(θ) = ∇2
θ κ(θ) =

⎛

⎝
(−2θ2)1/2

(−2θ1)3/2
− 1

2(θ1θ2)1/2

− 1
2(θ1θ2)1/2

(−2θ1)1/2

(−2θ2)3/2
+ 2
(−2θ2)2

⎞

⎠ .

Again the off-diagonal terms in Fisher’s information matrix I(θ ) are non-zero in
the canonical parametrization. We switch to the mean parametrization by setting
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μ = (−2θ2/(−2θ1))
1/2 and α = −2θ2. This provides us with diagonal Fisher’s

information

I(μ, α) =
(
α

μ3 0

0 1
2α2

)

. (2.31)

This transformation is again obtained by using the corresponding Jacobian matrix
for variable transformation, see (3.16), below. We compare the lower-right entries
of (2.30) and (2.31). Remark that we have first order approximation of the digamma
function

�(α) ≈ logα − 1

2α
,

and taking derivatives says that these entries of Fisher’s information are first order
equivalent; this is also used in the saddlepoint approximation in Sect. 5.5.2, below.
Using this second parametrization based on mean μ and dispersion 1/α, we arrive
at the EDF representation of the inverse Gaussian model with unit deviance

d(Y, μ) = (Y − μ)2
μ2Y

≥ 0.

�

More examples will be given in Chap. 4, below.
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Chapter 3
Estimation Theory

This chapter gives an introduction to decision and estimation theory. This intro-
duction is based on the books of Lehmann [243, 244], the lecture notes of Künsch
[229] and the book of Van der Vaart [363]. This chapter presents classical statistical
estimation theory, it embeds estimation into a historical context, and it provides
important aspects and intuition for modern data science and predictive modeling.
For further reading we recommend the books of Barndorff-Nielsen [23], Berger
[31], Bickel–Doksum [33] and Efron–Hastie [117].

3.1 Introduction to Decision Theory

We start from an observation vector Y = (Y1, . . . , Yn)
� taking values in a

measurable space Y ⊂ R
n, where n ∈ N denotes the number of components Yi ,

1 ≤ i ≤ n, in Y . Assume that this observation vector Y has been generated by a
distribution belonging to the family P = {P(·; θ); θ ∈ �} being parametrized by a
parameter set �.

Remarks 3.1 There are some subtle points in the notation that we are going to
use. We use P(·; θ) for the distribution of the observation vector Y , and if we
consider a specific component Yi of Y we will use the notation Yi ∼ F(·; θ). We
make this distinction as in estimation theory one often considers i.i.d. observations
Yi ∼ F(·; θ), 1 ≤ i ≤ n, with (in this case) joint product distribution Y ∼ P(·; θ).
This latter distribution is then used for purposes of maximum likelihood estimation,
etc. The family P is parametrized by θ ∈ �, and if we want to emphasize that
this parameter is a k-dimensional vector we use boldface notation θ , this is similar
to the EFs introduced in Chap. 2, but in this chapter we do not restrict to EFs.
Finally, we assume identifiability meaning that different parameters θ give different
distributions P(·; θ) ∈ P .

© The Author(s) 2023
M. V. Wüthrich, M. Merz, Statistical Foundations of Actuarial Learning and its
Applications, Springer Actuarial, https://doi.org/10.1007/978-3-031-12409-9_3
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To fix ideas, assume we want to determine γ (θ) of a given functional γ (·) on �.
Typically, the true value θ ∈ � is not known, and we are not able to determine γ (θ)
explicitly. Therefore, we try to estimate γ (θ) from data Y ∼ P(·; θ) that belongs to
the same θ ∈ �. As an example we may think of working in the EDF of Chap. 2,
and we are interested in the mean μ = Eθ [Y ] = κ ′(θ) of Y . Thus, we aim at
determining γ (θ) = κ ′(θ). If the true θ is unknown, and if we have an observation
Y from this model, we can try to estimate γ (θ) = κ ′(θ) from Y . This motivation
is based on estimation of γ (θ), but the following framework of decision making is
more general, for instance, it may also be used for statistical hypothesis testing.

Denote the action space of possible decisions (actions) by A. In decision theory
we are looking for a decision rule (action rule)

A : Y → A, Y �→ A(Y ), (3.1)

which should be understood as an educated guess for γ (θ) based on observation Y .
A decision rule is evaluated in terms of a (given) loss function

L : � ×A → R+, (θ, a) �→ L(θ, a) ≥ 0. (3.2)

L(θ, a) describes the loss of an action a ∈ A w.r.t. a true parameter choice θ ∈ �.
The risk function of decision ruleA for data generated by Y ∼ P(·; θ) is defined by

θ �→ R(θ,A) = Eθ [L(θ,A(Y ))] =
∫

Y

L (θ,A(y)) dP (y; θ), (3.3)

where Eθ is the expectation w.r.t. the probability distribution P(·; θ). Risk func-
tion (3.3) describes the long-term average loss of using decision rule A. As an
example we may think of estimating γ (θ) for unknown (true) parameter θ by a
decision rule Y �→ A(Y ). Then, the loss function L(θ,A(Y )) should describe the
estimation loss if we consider the discrepancy between γ (θ) and its estimate A(Y ),
and the risk function R(θ,A) is the average estimation loss in that case.

Good decision rules A should provide a small risk R(θ,A). Unfortunately, this
statement is of rather theoretical nature because, in general, the true data generating
parameter θ is not known and the goodness of a decision rule for the true parameter
cannot be evaluated explicitly, but the risk can only be estimated (for instance, using
a bootstrap approach). Moreover, typically, there does not exist a uniformly best
decision rule A over all θ ∈ �. For these reasons we may (just) try to eliminate
decision rules that are obviously not good. We give two introductory examples.

Example 3.2 (Minimax Decision Rule) Decision rule A is called minimax if for all
alternative decision rules Ã : Y → A we have

sup
θ∈�

R(θ,A) ≤ sup
θ∈�

R(θ, Ã).
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A minimax decision rule is the best choice in the worst case of the true θ , i.e., it
minimizes the worst case risk. �

Example 3.3 (Bayesian Decision Rule) Assume we are given a distribution π on
�. Decision rule A is called Bayesian w.r.t. π if it satisfies

A = arg min
Ã

∫

�

R(θ, Ã)dπ(θ).

Distribution π is called prior distribution on �. �

The above examples give two possible choices of decision rules. The first one
tries to minimize the worst case risk, whereas the second one uses additional knowl-
edge in terms of a prior distribution π on �. This means that we impose stronger
assumptions in the second case to get stronger conclusions. The difficult part in
practice is to justify these stronger assumptions in order to validate the stronger
conclusions. Below, we are going to introduce other criteria that should be satisfied
by good decision rules, an important one in estimation will be unbiasedness.

3.2 Parameter Estimation

This section focuses on estimating the (unknown) parameter θ ∈ � from observa-
tion Y ∼ P(·; θ). For this we consider decision rules A : Y → A = � with A(Y )
estimating θ . We assume there exist densities p(·; θ) w.r.t. a fixed σ -finite measure
ν on Y ⊂ R

n,

dP(y; θ) = p(y; θ)dν(y),

for all distributions P(·; θ) ∈ P , i.e., all θ ∈ �.

Definition 3.4 (Maximum Likelihood Estimator, MLE) The maximum
likelihood estimator (MLE) of θ for a given observation Y ∈ Y is given by
(subject to existence and uniqueness)

θ̂MLE = arg max
θ̃∈�

p(Y ; θ̃ ) = arg max
θ̃∈�

�Y (θ̃),

where the log-likelihood function of p(Y ; θ) is defined by θ �→ �Y (θ) =
logp(Y ; θ).
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The MLE Y �→ θ̂MLE = θ̂MLE(Y ) = A(Y ) is nothing else than a specific
decision rule with action space A = � for estimating θ . We can now start to explore
the risk function R(θ, θ̂MLE) of that decision rule for a given loss function L.

Example 3.5 (MLE within the EDF) We emphasize that this example is used
throughout these notes. Assume that the (independent) components of Y =
(Y1, . . . , Yn)

� ∼ P(·; θ) follow a given EDF distribution. That is, we assume that
Y1, . . . , Yn are independent and have densities w.r.t. σ -finite measures on R given
by, see (2.14),

Yi ∼ f (yi; θ, vi/ϕ) = exp

{
yiθ − κ(θ)
ϕ/vi

+ a(yi; vi/ϕ)
}
,

for 1 ≤ i ≤ n. Note that these random variables are not i.i.d. because they may
differ in exposures vi > 0. Throughout, we assume that Assumption 2.6 is fulfilled
and that the cumulant function κ is steep, see Theorem 2.19. For the latter we also
refer to Remark 2.20: the supports Tvi/ϕ of Yi may differ; however, these supports
share the same convex closure.

Independence between the Yi ’s implies that the joint probability P(·; θ) is the
product distribution of the individual distributions F(·; θ, vi/ϕ), 1 ≤ i ≤ n.
Therefore, the MLE of θ in the EDF is found by solving

θ̂MLE = arg max
θ̃∈�

�Y (θ̃ ) = arg max
θ̃∈�

n∑

i=1

Yi θ̃ − κ(θ̃)
ϕ/vi

.

Since the cumulant function κ is strictly convex we receive the MLE (subject
to existence)

θ̂MLE = θ̂MLE(Y ) = (κ ′)−1
(∑n

i=1 viYi∑n
i=1 vi

)
= h

(∑n
i=1 viYi∑n
i=1 vi

)
.

Thus, the MLE is received by applying the canonical link h = (κ ′)−1, see
Definition 2.8, and strict convexity of κ implies that the MLE is unique. However,
existence needs to be analyzed more carefully! It may happen that the MLE θ̂MLE is
a boundary point of the effective domain � which may not exist (if � is open). We
give an example. Assume we work in the Poisson model presented in Sect. 2.1.2.
The canonical link in the Poisson model is the log-link μ �→ h(μ) = log(μ), for
μ > 0. With positive probability we have in the Poisson case

∑n
i=1 viYi = 0.
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Therefore, with positive probability the MLE θ̂MLE does not exist (we have a
degenerate Poisson model in that case).

Since the canonical link is strictly increasing we can also perform MLE in the
dual (mean) parametrization. The dual parameter space is given by M = κ ′(�̊),
see Remarks 2.9, with mean parameters μ = κ ′(θ) ∈ M. This motivates

μ̂MLE = arg max
μ̃∈M

�Y (h(μ̃)) = arg max
μ̃∈M

n∑

i=1

Yih(μ̃)− κ(h(μ̃))
ϕ/vi

. (3.4)

Subject to existence, this provides the unique MLE

μ̂MLE = μ̂MLE(Y ) =
∑n
i=1 viYi∑n
i=1 vi

. (3.5)

Also this dual MLE does not need to exist (in the dual parameter space M).
Under the assumption that the cumulant function κ is steep, we know that the closure
of the dual parameter space M contains the supports Tvi/ϕ of Yi , see Theorem 2.19
and Remark 2.20. Thus, in that case we can close the dual parameter space and
receive MLE μ̂MLE ∈ M (in a possibly degenerate model). In the aforementioned
degenerate Poisson situation we receive μ̂MLE = 0 which is in the boundary ∂M of
the dual parameter space. �

Definition 3.6 (Bayesian Estimator) The Bayesian estimator of θ for a given
observation Y ∈ Y and a given prior distribution π on � is given by (subject to
existence)

θ̂Bayes = θ̂Bayes(Y ) = Eπ [θ |Y ],

where the conditional expectation on the right-hand side is calculated under the
posterior distribution π(θ |y) ∝ p(y; θ)π(θ) for a given observation Y = y.

Example 3.7 (Bayesian Estimator) Assume that A = � = R and choose the square
loss function L(θ, a) = (θ − a)2. Assume that for ν-a.e. y ∈ Y the following
decision rule A : Y → A exists

A(y) = arg min
a∈A

Eπ [(θ − a)2|Y = y], (3.6)
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where the expectation is calculated w.r.t. the posterior distribution π(θ |y). In
this case, A is a Bayesian decision rule w.r.t. π and L(θ, a) = (θ − a)2: by
assumption (3.6) we have for any other decision rule Ã : Y → A, ν-a.s.,

Eπ [(θ − A(Y ))2|Y = y] ≤ Eπ [(θ − Ã(Y ))2|Y = y].

Applying the tower property we receive for any other decision rule Ã

∫

�

R(θ,A)dπ(θ) = E[(θ − A(Y ))2] ≤ E[(θ − Ã(Y ))2] =
∫

�

R(θ, Ã)dπ(θ),

where the expectation E is calculated over the joint distribution of Y and θ . This
proves that A is a Bayesian decision rule w.r.t. π and L(θ, a) = (θ − a)2, see
Example 3.3. Finally, note that the conditional expectation given in Definition 3.6 is
the minimizer of (3.6). This justifies the name Bayesian estimator in Definition 3.6
(for the square loss function). The case of the Bayesian estimator for a general loss
function L is considered in Theorem 4.1.1 of Lehmann [244]. �

Definition 3.8 (Method of Moments Estimator) Assume that � ⊆ R
k and that

the components Yi of Y are i.i.d. F(·; θ) distributed with finite k-th moments for all
θ ∈ �. The law of large numbers provides, a.s., for all 1 ≤ l ≤ k,

lim
n→∞

1

n

n∑

i=1

Y li = Eθ [Y l1].

Assume that the following map is invertible (on suitable range definitions for (3.7)–
(3.8))

γ : � → R
k, θ �→ γ (θ) = (Eθ [Y1], . . . ,Eθ [Y k1 ])�. (3.7)

The method of moments estimator of θ is defined by

θ̂
MM = θ̂

MM
(Y ) = γ−1

(
1

n

n∑

i=1

Yi, . . . ,
1

n

n∑

i=1

Y ki

)�
. (3.8)

The MLE, the Bayesian estimator and the method of moments estimator are the
most commonly used parameter estimators. They may have additional properties
(under certain assumptions) that we are going to explore below. In the remainder of
this section we give an additional view on estimators which is based on the empirical
distribution of the observation Y .
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Assume that the components Yi of Y are real-valued and i.i.d. F distributed. The
empirical distribution induced by the observation Y = (Y1, . . . , Yn)

� is given by

F̂n(y) = 1

n

n∑

i=1

1{Yi≤y} for y ∈ R, (3.9)

we also refer to Fig. 1.2 (lhs). The Glivenko–Cantelli theorem [64, 159] tells us that
the empirical distribution F̂n converges uniformly to F , a.s., for n→ ∞.

Definition 3.9 (Fisher-Consistency) Denote by P the set of all distribution
functions on the given probability space. Let Q : P → � be a functional with
the property

Q(F(·; θ)) = θ for all F(·; θ) ∈ F = {F(·; θ); θ ∈ �} ⊂ P.

Such a functional is called Fisher-consistent for F and θ ∈ �, respectively.

A given Fisher-consistent functionalQmotivates the estimator θ̂ = Q(F̂n) ∈ �.
This is exactly what we have applied for the method of moments estimator (3.8)
with Fisher-consistent functional induced by the inverse of (3.7). The next example
shows that this also works for MLE.

Example 3.10 (MLE and Kullback–Leibler (KL) Divergence) The MLE can be
received from a Fisher-consistent functional. Consider for F ∈ P the functional

Q(F) = arg max
θ̃

∫
log f (y; θ̃ )dF (y),

assuming that f (·; θ̃ ) are densities w.r.t. a σ -finite measure on R. Assume that F
has density f w.r.t. the σ -finite measure ν on R. Then, we can rewrite the above as

Q(F) = arg min
θ̃

∫
log

(
f (y)

f (y; θ̃ )
)
f (y)dν(y) = arg min

θ̃

DKL(f ||f (·; θ̃ )).

The latter is the Kullback–Leibler (KL) divergence which we have met in Sect. 2.3.
Lemma 2.21 states that the KL divergence is non-negative, and it is zero if and only
if the two densities f and f (·; θ̃ ) are identical, ν-a.s. This implies thatQ(F(·; θ)) =
θ . Thus,Q is Fisher-consistent for θ ∈ �, assuming identifiability, see Remarks 3.1.

Next, we use this Fisher-consistent functional (KL divergence) to receive the
MLE. Replace the unknown distribution F by the empirical one to receive

Q(F̂n) = arg min
θ̃

DKL(f̂n||f (·; θ̃ ))

= arg max
θ̃

1

n

n∑

i=1

logf (Yi; θ̃ ) = θ̂MLE,
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where we have used that the empirical density f̂n allocates point masses of size 1/n
to the i.i.d. observations Y1, . . . , Yn. Thus, the MLE θ̂MLE of θ can be obtained by
choosing the model f (·; θ̃ ), θ̃ ∈ �, that is closest in KL divergence to the empirical
distribution F̂n of i.i.d. observations Yi ∼ F . Note that in this construction we do
not assume that the true distribution F is in F , see Definition 3.9. �

Remarks 3.11

• Many properties of estimators of θ are based on properties of Fisher-consistent
functionalsQ (in cases where they exist). For instance, asymptotic properties as
n→ ∞ are obtained from smoothness properties of Fisher-consistent functionals
Q, or using the influence function we can analyze the impact of individual
observations Yi on decision rules θ̂ = θ̂ (Y ) = Q(F̂n). The latter is the basis of
robust statistics, see Huber [194] and Hampel et al. [180]. Since Fisher-consistent
functionals do not require that the true distribution belongs to F it requires a
careful consideration of the quantity to be estimated.

• The discussion on parameter estimation has implicitly assumed that the true data
generating model belongs to the family P = {P(·; θ); θ ∈ �}, and the only
problem was to find the true parameter in �. More generally, one should also
consider model uncertainty w.r.t. the chosen family P , i.e., the data generating
model may not belong to this family. Of course, this problem is by far more
difficult. We explore this in more detail in Sect. 11.1.4, below.

3.3 Unbiased Estimators

We introduce the property of uniformly minimum variance unbiased (UMVU) for
decision rules in this section. This is a very attractive property in insurance pricing
because it gives a quality statement to decision rules (and to the resulting prices). At
the current stage it is not clear how unbiasedness is related, e.g., to the MLE of θ .

3.3.1 Cramér–Rao Information Bound

Above we have stated some quality criteria for decision rules like the minimax
property. A crucial property in financial applications is the so-called unbiasedness
(for mean estimates) because this guarantees that the overall (price) levels are
correctly specified.
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Definition 3.12 (Uniformly Minimum Variance Unbiased, UMVU) A
decision rule A : Y → A = R is unbiased for γ : � → R if for all
Y ∼ P(·; θ), θ ∈ �, we have

Eθ [A(Y )] = γ (θ). (3.10)

The decision rule A is called UMVU for γ if additionally to the unbiased-
ness (3.10) we have

Varθ (A(Y )) ≤ Varθ (Ã(Y )),

for all θ ∈ � and for any other decision rule Ã : Y → R that is unbiased for
γ .

Note that unbiasedness is not invariant under transformations, i.e., if A(Y ) is
unbiased for γ (θ), then, in general, b(A(Y )) is not unbiased for b(γ (θ)). For
instance, if b is strictly convex then we get a counterexample by simply applying
Jensen’s inequality.

Our first step is to derive a general lower bound for Varθ (A(Y )). If this general
lower bound is met for an unbiased decision rule A for γ , then we know that it
is UMVU for γ . We start with the one-dimensional case given in Section 2.6 of
Lehmann [244].

Theorem 3.13 (Cramér–Rao Information Bound) Assume that the distri-
butions P(·; θ), θ ∈ �, have densities p(·; θ) for a given σ -finite measure ν
on Y, and that � ⊂ R is an open interval such that the set {y; p(y; θ) > 0}
does not depend on θ ∈ �. Let A(Y ) be unbiased for γ : � → R having
finite second moment. If the limit

∂

∂θ
logp(y; θ) = lim

�→0

1

�

p(y; θ +�)− p(y; θ)
p(y; θ)

exists in L2(P (·; θ)) and if

I(θ) = Eθ

[(
∂

∂θ
logp(Y ; θ)

)2
]

∈ (0,∞),

then the function θ �→ γ (θ) is differentiable, Eθ [ ∂∂θ logp(Y ; θ)] = 0 and we
have information bound

Varθ (A(Y )) ≥ γ ′(θ)2

I(θ) .
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Proof We start from an arbitrary function ψ : � × Y → R with finite variance
Varθ (ψ(θ,Y )) ∈ (0,∞) for all θ ∈ �. The Cauchy–Schwarz inequality implies

Varθ (A(Y )) ≥ Covθ (A(Y ), ψ(θ,Y ))2

Varθ (ψ(θ,Y ))
. (3.11)

If we manage to make the right-hand side of (3.11) independent of decision rule
A(·) we have a general lower bound, we also refer to Theorem 2.6.1 in Lehmann
[244].

The Cauchy–Schwarz inequality implies that for any U ∈ L2(P (·; θ)) the
following limit exists and is equal to

lim
�→0

Eθ

[
1

�

p(Y ; θ +�)− p(Y ; θ)
p(Y ; θ) U

]
= Eθ

[
∂

∂θ
logp(Y ; θ)U

]
. (3.12)

Setting U ≡ 1 gives average score Eθ [ ∂∂θ logp(Y ; θ)] = 0 because for sufficiently
small�

Eθ

[
p(Y ; θ +�)− p(Y ; θ)

p(Y ; θ)
]

=
∫

Y

p(y; θ +�)− p(y; θ)
p(y; θ) p(y; θ)dν(y) = 0,

where we have used that the support of the random variables does not depend on θ
and that the domain � of θ is open.

Secondly, we set U = A(Y ) in (3.12). We have similarly to above using
unbiasedness w.r.t. γ

Covθ

(
A(Y ),

p(Y ; θ +�)− p(Y ; θ)
p(Y ; θ)

)
=
∫

Y

A(y)
p(y; θ +�)− p(y; θ)

p(y; θ) p(y; θ)dν(y)

= γ (θ +�)− γ (θ).

Existence of limit (3.12) provides the differentiability of γ . Finally, from (3.11) we
have

Varθ (A(Y )) ≥ lim
�→0

Covθ
(
A(Y ),

p(Y ;θ+�)−p(Y ;θ)
p(Y ;θ)

)2

Varθ
(
p(Y ;θ+�)−p(Y ;θ)

p(Y ;θ)
) = γ ′(θ)2

I(θ) . (3.13)

This completes the proof. �

Remarks 3.14 (Fisher’s Information and Score)

• I(θ) is called Fisher’s information or Fisher metric.
• s(θ,Y ) = ∂

∂θ
logp(Y ; θ) is called score, and Eθ [s(Y ; θ)] = 0 in Theorem 3.13

expresses that the average score is zero under the assumptions of that theorem.
• Under the regularity conditions of Lemma 6.1 in Section 2.6 of Lehmann [244]
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I(θ) = Eθ

[(
∂

∂θ
logp(Y ; θ)

)2
]

= −Eθ

[
∂2

∂θ2
logp(Y ; θ)

]
. (3.14)

Fisher’s information I(θ) expresses the variance of the score s(θ,Y ). Iden-
tity (3.14) justifies the notion Fisher’s information in Sect. 2.3 for the EF.

• In order to determine the Cramér–Rao information bound for unknown θ we
need to estimate Fisher’s information I(θ) from the available data. There are
two different ways to do so, either we choose

I(θ̂ ) = Eθ̂

[(
∂

∂θ
logp(Y ; θ)

)2
]

,

or we choose the observed Fisher’s information

Î(θ̂ ) =
(
∂

∂θ
logp(Y ; θ)

)2
∣
∣
∣
∣
∣
θ=θ̂

,

for given data Y and where θ̂ = θ̂ (Y ). Both estimated Fisher’s information I(θ̂ )
and Î(θ̂ ) play a central role in MLE of generalized linear models (GLMs). They
are used in Fisher’s scoring method, the iterated re-weighted least squares (IRLS)
algorithm and the Newton–Raphson algorithm to determine the MLE.

• The Cramér–Rao information bound in Theorem 3.13 is stated in terms of the
observation Y ∼ p(·; θ). Assume that the components Yi of Y are i.i.d. f (·; θ)
distributed. In this case, Fisher’s information scales as

I(θ) = In(θ) = nI1(θ), (3.15)

with single risk’s Fisher’s information (contribution)

I1(θ) = Eθ

[(
∂

∂θ
logf (Y1; θ)

)2
]

.

In general, Fisher’s information is additive in independent random variables,
because the product of densities is additive after applying the logarithm, and
because the average score is zero.
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Proposition 3.15 The unbiased decision rule A for γ attains the Cramér–
Rao information bound if and only if the density is of the form p(y; θ) =
exp {δ(θ)T (y)− β(θ)+ a(y)} with T = A. In that case we have γ (θ) =
β ′(θ)/δ′(θ).

Proof of Proposition 3.15 The Cauchy–Schwarz inequality provides equality
in (3.13) if and only if ∂

∂θ
logp(y; θ) = δ′(θ)A(y)−β ′(θ), ν-a.s, for some functions

δ′(θ) and β ′(θ) on �. Integration and the fact that p(·; θ) is a density whose support
does not depend on the explicit choice of θ ∈ � provide the implication “⇒”. For
the implication “⇐” we study for A = T

0 = Eθ

[
∂

∂θ
logp(Y ; θ)

]
=
∫

Y

(δ′(θ)A(y)− β ′(θ))p(y; θ)dν(y) = δ′(θ)Eθ [A(Y )] − β ′(θ).

In that case we have γ (θ) = Eθ [A(Y )] = β ′(θ)/δ′(θ). Moreover, we have equality
in the Cauchy–Schwarz inequality. This finishes the proof. �

The single-parameter EF fulfills the properties of Proposition 3.15 with δ(θ) = θ
and β(θ) = κ(θ), and decision rule A(y) = T (y) attains the Cramér–Rao
information bound for γ (θ) = κ ′(θ).

We give a multi-dimensional version of the Cramér–Rao information bound.

Theorem 3.16 (Multi-Dimensional Version of the Cramér–Rao
Information Bound, Without Proof) Assume that the distributions P(·; θ),
θ ∈ �, have densities p(·; θ) for a given σ -finite measure ν on Y, and that
� ⊆ R

k is an open convex set such that the set {y; p(y; θ) > 0} does not
depend on θ ∈ �. Let A(Y ) be unbiased for γ : � → R having finite
second moment. Under additional regularity conditions, see Theorem 7.3 in
Section 2.7 of Lehmann [244], we have

Varθ (A(Y )) ≥ (∇θγ (θ))
�I(θ)−1∇θγ (θ),

with (positive definite) Fisher’s information matrix I(θ) = (Il,j (θ))1≤l,j≤k
given by

Il,j (θ) = Eθ

[
∂

∂θl
logp(Y ; θ)

∂

∂θj
logp(Y ; θ)

]
,

for 1 ≤ l, j ≤ k.
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Remarks 3.17

• Whenever an unbiased decision rule A(Y ) for γ (θ) meets the Cramér–Rao
information bound it is UMVU. Thus, it minimizes the risk function R(θ , A)
being based on the square loss L(θ , a) = (γ (θ) − a)2 among all unbiased
decision rules, because unbiasedness for γ (θ) gives R(θ , A) = Varθ (A(Y )).

• The regularity conditions in Theorem 3.16 include that Fisher’s information
matrix I(θ) is positive definite.

• Under additional regularity conditions we have the following identity for Fisher’s
information matrix

I(θ ) = Eθ

[
(∇θ logp(Y ; θ)) (∇θ logp(Y ; θ))�

]
= −Eθ

[
∇2

θ logp(Y ; θ)
]

∈ R
k×k.

Thus, Fisher’s information matrix can either be calculated from a quadratic
form of the score s(θ ,Y ) = ∇θ logp(Y ; θ) or from the Hessian ∇2

θ of the
log-likelihood �Y (θ) = logp(Y ; θ). Since the score has mean zero, Fisher’s
information matrix is equal to the covariance matrix of the score s(θ ,Y ).

In many situations we do not work under the canonical parametrization θ .
Considerations then require a change of variable. Assume that

ζ ∈ R
r �→ θ = θ(ζ ) ∈ R

k,

such that all derivatives ∂θl(ζ )/∂ζj exist for 1 ≤ l ≤ k and 1 ≤ j ≤ r . The Jacobian
matrix is given by

J (ζ ) =
(
∂

∂ζj
θl(ζ )

)

1≤l≤k,1≤j≤r
∈ R

k×r .

Fisher’s information matrix w.r.t. ζ is given by

I∗(ζ ) =
(
Eθ(ζ )

[
∂

∂ζl
logp(Y ; θ(ζ ))

∂

∂ζj
logp(Y ; θ(ζ ))

])

1≤l,j≤r
∈ R

r×r ,

and we have the identity

I∗(ζ ) = J (ζ )� I(θ(ζ )) J (ζ ). (3.16)

This formula is used quite frequently, e.g., in generalized linear models when
changing the parametrization of the models.
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3.3.2 Information Bound in the Exponential Family Case

The purpose of this section is to summarize the Cramér–Rao information bound
results for the EF and the EDF, since these families play a distinguished role in
statistical and actuarial modeling.

Cramér–Rao Information Bound in the EF Case

We start with the EF case. Assume we have i.i.d. observations Y1, . . . , Yn having
densities w.r.t. a σ -finite measure ν on R given by the EF, see (2.2),

dF(y; θ) = f (y; θ)dν(y) = exp
{
θ�T (y)− κ(θ)+ a(y)

}
dν(y),

for canonical parameter θ ∈ � ⊆ R
k . We assume to work under a minimal

representation implying that the cumulant function κ is strictly convex on the
interior �̊, see Assumption 2.6. Moreover, we assume that the cumulant function
κ is steep in the sense of Theorem 2.19. Consider the (aggregated) statistics of the
joint EF P = {P(·; θ); θ ∈ �}

y �→ S(y)
def.=

(
n∑

i=1

T1(yi), . . . ,

n∑

i=1

Tk(yi)

)�
∈ R

k. (3.17)

We calculate the score of this EF

s(θ ,Y ) = ∇θ logp(Y ; θ) = ∇θ

(

θ�
n∑

i=1

T (Yi)− nκ(θ)
)

= S(Y )− n∇θκ(θ).

An immediate consequence of Corollary 2.5 is that the expected value of the score
is zero for any θ ∈ �̊. This then reads as

μ = Eθ [T (Y1)] = Eθ [S(Y )/n] = ∇θκ(θ) ∈ R
k. (3.18)

Thus, the statistics S(Y )/n is an unbiased decision rule for the mean μ = ∇θκ(θ),
and we can study its Cramér–Rao information bound. Fisher’s information matrix
is given by the positive definite matrix

I(θ) = In(θ) = Eθ

[
s(θ,Y )s(θ,Y )�

]
= −Eθ

[
∇2

θ logp(Y ; θ)
]

= n∇2
θ κ(θ) ∈ R

k×k.

Note that the multi-dimensionally extended Cramér–Rao information bound in
Theorem 3.16 applies to the individual components of vector μ = ∇θκ(θ) ∈
R
k . Assume we would like to estimate its j -th component, set γj (θ) = μj =
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(∇θκ(θ))j = ∂κ(θ)/∂θj , for 1 ≤ j ≤ k. This corresponds to the j -th component
Sj (Y ) of the statistics S(Y ). We have unbiasedness of Sj (Y )/n for γj (θ) = μj =
(∇θκ(θ))j , and this unbiased statistics attains the Cramér–Rao information bound

Varθ (Sj (Y )/n) = 1

n

(
∇2

θ κ(θ)
)

j,j
= (∇θγj (θ))

�I(θ)−1(∇θγj (θ)). (3.19)

Recall that I(θ)−1 scales as n−1, see (3.15). This provides us with the following
corollary.

Corollary 3.18 Assume Y1, . . . , Yn are i.i.d. and follow an EF (under a
minimal representation). The components of the statistics S(Y )/n are UMVU
for γj (θ) = ∂κ(θ)/∂θj , 1 ≤ j ≤ k and θ ∈ �̊, with

Varθ

(
1

n
Sj (Y )

)
= 1

n

∂2

∂θ2
j

κ(θ).

The corresponding covariance terms are for 1 ≤ j, l ≤ k given by

Covθ

(
1

n
Sj (Y ),

1

n
Sl(Y )

)
= 1

n

∂2

∂θj∂θl
κ(θ).

The UMVU property stated in Corollary 3.18 is, in general, not related to MLE,
but within the EF there is the following link. We have (subject to existence)

θ̂
MLE = arg max

θ̃∈�

p(Y ; θ̃) = arg max
θ̃∈�

(
θ̃
�
S(Y )− nκ(̃θ)

)
= h

(
1

n
S(Y )

)
,

(3.20)

where h = (∇θκ)
−1 is the canonical link of this EF, see Definition 2.8; and where

we need to ensure that a solution to (3.20) exists; e.g., the solution to (3.20) might
be at the boundary of � which may cause problems, see Example 3.5.1 Because the
cumulant function κ is strictly convex (in a minimal representation), we receive the

1 Another example where there does not exist a proper solution to the MLE problem (3.20) is, for
instance, obtained within the 2-dimensional Gaussian EF if we have only one single observation Y1.
Intuitively this is clear because we cannot estimate two parameters from one observation T (Y1) =
(Y1, Y

2
1 ).
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MLE for the mean parameter μ = Eθ [T (Y1)]

μ̂MLE = arg max
μ̃∈M

(
h(μ̃)�S(Y )− nκ(h(μ̃))

)
= 1

n
S(Y ),

the dual parameter space M = ∇θκ(�) ⊆ R
k has been introduced in Remarks 2.9.

If S(Y )/n is contained in M, then this MLE is a proper solution; otherwise, because
we have assumed that the cumulant function κ is steep, the MLE exists in the closure
M, see Theorem 2.19, and it is UMVU for μ, see Corollary 3.18.

Corollary 3.19 (Balance Property) Assume Y1, . . . , Yn are i.i.d. and follow
an EF with θ ∈ �̊ and T (Yi) ∈ M, a.s. The MLE μ̂MLE ∈ M is UMVU for
μ, and it fulfills the balance property on portfolio level, i.e.,

n∑

i=1

Eμ̂MLE [T (Yi)] = nμ̂MLE = S(Y ).

Remarks 3.20

• The balance property is a very important property in insurance pricing because it
implies that the portfolio is priced on the right level: we have unbiasedness

Eθ

[
n∑

i=1

Eμ̂MLE [T (Yi)]

]

= Eθ [S(Y )] = nμ. (3.21)

• We emphasize that the balance property is much stronger than unbiased-
ness (3.21), note that the balance property provides unbiasedness even if Y

follows a completely different model, i.e., even if the chosen EF P is completely
misspecified.

• In general, the MLE θ̂
MLE

is not unbiased for θ . E.g., if the canonical link
h = (∇θκ)

−1 is strictly concave, we have from Jensen’s inequality, subject to
existence at the boundary of �,

Eθ

[
θ̂

MLE
]

= Eθ

[
h

(
1

n
S(Y n)

)]
< h

(
Eθ

[
1

n
S(Y n)

])
= h (μ) = θ .

(3.22)

• The statistics S(Y ) is a sufficient statistics of Y , this follows from the factoriza-
tion criterion; see Theorem 1.5.2 of Lehmann [244].
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Cramér–Rao Information Bound in the EDF Case

The single-parameter linear EDF case is very similar to the above vector-valued
parameter EF case. We briefly summarize the main results in the EDF case.

Recall Example 3.5: assume that Y1, . . . , Yn are independent having densities
w.r.t. a σ -finite measures on R (not being concentrated in a single point) given by,
see (2.14),

Yi ∼ f (yi; θ, vi/ϕ) = exp

{
yiθ − κ(θ)
ϕ/vi

+ a(yi; vi/ϕ)
}
, (3.23)

for 1 ≤ i ≤ n. Note that these random variables are not i.i.d. because they may differ
in the exposures vi > 0. The MLE of μ = κ ′(θ), θ ∈ �̊, is found by, see (3.5),

μ̂MLE = arg max
μ̃∈M

n∑

i=1

Yih(μ̃)− κ(h(μ̃))
ϕ/vi

=
∑n
i=1 viYi∑n
i=1 vi

, (3.24)

we assume that κ is steep to ensure μ̂MLE ∈ M. The convolution formula of
Corollary 2.15 says that the MLE μ̂MLE = Y+ belongs to the same EDF with the
same canonical parameter θ and the same dispersion ϕ, only the weight changes to
v+ =∑n

i=1 vi .

Corollary 3.21 (Balance Property) Assume Y1, . . . , Yn are independentwith
EDF distribution (3.23) for θ ∈ �̊ and Yi ∈ M, a.s. The MLE μ̂MLE ∈ M is
UMVU for μ = κ ′(θ), and it fulfills the balance property on portfolio level,
i.e.,

n∑

i=1

Eμ̂MLE [viYi ] =
n∑

i=1

viμ̂
MLE =

n∑

i=1

viYi.

The score in this EDF is given by

s(θ,Y ) = ∂

∂θ
logp(Y ; θ) = ∂

∂θ

n∑

i=1

vi

ϕ
(θYi − κ(θ)) =

n∑

i=1

vi

ϕ

(
Yi − κ ′(θ)

)
.

Of course, we have Eθ [s(θ,Y )] = 0 and we receive Fisher’s information for θ ∈ �̊

I(θ) = −Eθ

[
∂2

∂θ2 logp(Y ; θ)
]

=
n∑

i=1

vi

ϕ
κ ′′(θ) > 0. (3.25)
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Corollary 2.15 gives for the variance of the MLE

Varθ
(
μ̂MLE

)
= ϕ
∑n
i=1 vi

κ ′′(θ) = (κ ′′(θ))2

I(θ) = (∂μ(θ)/∂θ)2

I(θ) .

This verifies that μ̂MLE meets the Cramér–Rao information bound and is UMVU
for the mean μ = κ ′(θ).

Example 3.22 (Poisson Case) For this example, we consider independent Poisson
random variables Ni ∼ Poi(viλ). In Sect. 2.2.2 we have seen that Yi = Ni/vi can
be modeled within the single-parameter linear EDF framework using as cumulant
function the exponential function κ(θ) = eθ , and setting ωi = vi and ϕ = 1. Thus,
the probability weights of a single observation Yi are given by, see (2.15),

f (yi; θ, vi) = exp
{
vi
(
θyi − eθ

)+ a(yi; vi)
}
,

with canonical parameter θ = log(λ) ∈ � = R. The MLE in the mean
parametrization is given by, see (3.24),

λ̂MLE =
∑n
i=1 viYi∑n
i=1 vi

=
∑n
i=1Ni∑n
i=1 vi

∈ M = [0,∞).

This estimator is unbiased for λ. Having independent Poisson random variables we
can calculate the variance of this estimator as

Var
(
λ̂MLE

)
= λ
∑n
i=1 vi

.

Moreover, from Corollary 3.21 we know that this estimator is UMVU for λ, which
can easily be seen, and uses Fisher’s information (3.25) with dispersion parameter
ϕ = 1

I(θ) = −Eθ

[
∂2

∂θ2 logp(Y ; θ)
]

=
n∑

i=1

viκ
′′(θ) = λ

n∑

i=1

vi .

�

One could study many other properties of decision rules (and corresponding
estimators), for instance, admissibility or uniformly minimum risk equivariance
(UMRE), and we could also study other families of distribution functions such as
group families. We refrain from doing so because we will not need this for our
purposes.
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3.4 Asymptotic Behavior of Estimators

All results above have been based on a finite sample Y n = (Y1, . . . , Yn)
�, we add a

lower index n to Y n to indicate the finite sample size n ∈ N. The aim of this section
is to analyze properties of decision rules when the sample size n tends to infinity.

3.4.1 Consistency

Assume we have an infinite sequence of observations Yi , i ≥ 1, which allows us
to construct an infinite sequence of decision rules An = An(Y n), n ≥ 1, where
An always considers the first n observations Y n = (Y1, . . . , Yn)

� ∼ Pn(·; θ), for
θ ∈ � not depending on n. To fix ideas, one may think of i.i.d. random variables Yi .

Definition 3.23 (Consistency) The sequence An = An(Y n) ∈ R
r , n ≥ 1, is

consistent for γ : � → R
r if for all θ ∈ � and for all ε > 0 we have

lim
n→∞Pθ

[‖An(Y n)− γ (θ)‖2 > ε
] = 0.

Definition 3.23 says that An(Y n) converges in probability to γ (θ) as n→ ∞. If
we (even) have a.s. convergence, we callAn, n ≥ 1, strongly consistent for γ : � →
R
r . Consistency is a minimal property that decision rules should fulfill. Typically, in

applications, this is not enough, and we are interested in (fast) rates of convergence,
i.e., we would like to know the error rates between An(Y n) and γ (θ) for n→ ∞.

Example 3.24 (Consistency of the MLE in the EF) We revisit Corollary 3.19 and
consider an i.i.d. sequence of random variables Yi , i ≥ 1, belonging to an EF, and
we assume to work under a minimal representation and to have a steep cumulant
function κ . The MLE for μ is given by the statistics

μ̂MLE
n = 1

n
S(Y n) = 1

n

n∑

i=1

(T1(Yi), . . . , Tk(Yi))
� ∈ M.

We add a lower index n to the MLE to indicate the sample size. The i.i.d. property
of Yi , i ≥ 1, implies that we can apply the strong law of large numbers which tells
us that we have limn→∞ μ̂MLE

n = Eθ [T (Y1)] = ∇θκ(θ) = μ, a.s., for all θ ∈ �.
This implies strong consistency of the sequence of MLEs μ̂MLE

n , n ≥ 1, for μ.
We have seen that these MLEs are also UMVU for μ, but if we transform them

to the canonical scale θ̂
MLE
n they are, in general, biased for θ , see (3.22). However,

since the cumulant function κ is strictly convex (under a minimal representation)

we receive limn→∞ θ̂
MLE
n = θ , a.s., which provides strong consistency also on the

canonical scale. �
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Proposition 3.25 Assume the real-valued random variables Yi , i ≥ 1, are
i.i.d. F(·; θ) distributed with fixed θ ∈ �. The resulting empirical distributions
F̂n, n ≥ 1, are given by (3.9). AssumeQ is a Fisher-consistent functional for γ (θ),
i.e., Q(F(·; θ)) = γ (θ) for all θ ∈ �. Moreover, assume that Q is continuous in
F(·; θ), for all θ ∈ �, w.r.t. the supremum norm. The functionalsQ(F̂n), n ≥ 1, are
consistent for γ (θ).

Sketch of Proof The Glivenko–Cantelli theorem [64, 159] says that the empirical
distribution F̂n converges uniformly to F(·; θ), a.s., for n → ∞. Using the
assumptions made, we are allowed to exchange the corresponding limits, which
provides consistency. �

In view of Proposition 3.25, we discuss the case of the MLE of θ ∈ �. In
Example 3.10 we have seen that the MLE of θ ∈ � is obtained from a Fisher-
consistent functionalQ for θ on the set of probability distributions P given by

Q(F) = arg max
θ̃

∫
log f (y; θ̃ )dF (y) = arg min

θ̃

DKL(f ||f (·; θ̃ )),

in the second step we assumed that F has a density f w.r.t. a σ -finite measure ν on
R.

Assume we have i.i.d. data Yi ∼ f (·; θ), i ≥ 1. Thus, the true data generating
distribution is described by the parameter θ ∈ �. MLE requires the study of the
log-likelihood function (we scale with the sample size n)

θ̃ �→ 1

n
�Y n (θ̃) =

1

n

n∑

i=1

log f (Yi; θ̃ ).

The law of large numbers gives us, a.s.,

lim
n→∞

1

n

n∑

i=1

log f (Yi; θ̃ ) = Eθ

[
log f (Y ; θ̃ )] . (3.26)

Thus, if we are allowed to exchange the arg max operation and the limit in n→ ∞
we receive, a.s.,

lim
n→∞ θ̂

MLE
n = lim

n→∞

(

arg max
θ̃

1

n

n∑

i=1

log f (Yi; θ̃ )
)

?= arg max
θ̃

(

lim
n→∞

1

n

n∑

i=1

log f (Yi; θ̃ )
)

= arg max
θ̃

Eθ

[
log f (Y ; θ̃ )] = Q(F(·; θ)) = θ. (3.27)
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That is, we receive consistency of the MLE for θ if we are allowed to exchange the
arg max operation and the limit in n → ∞. This requires regularity conditions on
the considered family of distributions F = {F(·; θ); θ ∈ �}. The case of a finite
parameter space � = {θ1, . . . , θJ } is easy, this is a simplified version of Wald’s
[374] consistency proof,

Pθj

[

θj �∈ arg max
θk

1

n

n∑

i=1

log f (Yi; θk)
]

≤
∑

k �=j
Pθj

[
1

n

n∑

i=1

log f (Yi; θk) > 1

n

n∑

i=1

log f (Yi; θj )
]

.

The right-hand side converges to 0 as n → ∞ for all θk �= θj , which gives
consistency. For regularity conditions on more general parameter spaces we refer
to Section 5.2 in Van der Vaart [363]. Basically, one needs that the arg max of the
limiting function given on the right-hand side of (3.26) is well-separated from other
large values of that function, see Theorem 5.7 in Van der Vaart [363].

Remarks 3.26

• The estimator from the arg max operation in (3.27) is also called M-estimator,
and (y, a) �→ log(f (y; a)) plays the role of a scoring function (similar to
a loss function). The the last line of (3.27) says that this scoring function is
strictly consistent for the functional Q : F → �, and Fisher-consistency of
this functionalQ implies

Eθ

[
log f (Y ; θ̃ )] ≤ Eθ

[
log f (Y ;Q(F(·; θ)))] = Eθ

[
log f (Y ; θ)] ,

for all θ̃ ∈ �. Strict consistency of loss and scoring functions is going to be
defined formally in Sect. 4.1.3, below, and we have just seen that this plays an
important role for the consistency of M-estimators in the sense of Definition 3.23.

• Consistency (3.27) assumes that the data generating model Y ∼ F belongs to
the specified family F = {F(·; θ); θ ∈ �}. Model uncertainty may imply that
the data generating model does not belong to F . In this situation, and if we are
allowed to exchange the arg max operation and the limit in n in (3.27), the MLE
will provide the model in F that is closest in KL divergence to the true model F .
We come back to this in Sect. 11.1.4, below.

3.4.2 Asymptotic Normality

As mentioned above, typically, we would like to have stronger results than just
consistency. We give an introductory example based on the EF.

Example 3.27 (Asymptotic Normality of the MLE in the EF) We work under the
same EF as in Example 3.24. This example has provided consistency of the sequence
of MLEs μ̂MLE

n , n ≥ 1, for μ. Note that the i.i.d. property together with the finite
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variance property immediately implies the following convergence in distribution

√
n
(
μ̂MLE
n − μ

)
⇒ N (0,∇2

θ κ(θ))
(d)= N (0,I1(θ)) as n→ ∞,

where θ = θ(μ) = (∇θκ)
−1(μ) ∈ � for μ ∈ M, and N denotes the Gaussian

distribution. This is the multivariate version of the central limit theorem (CLT), and
it tells us that the rate of convergence is 1/

√
n. This asymptotic result is stated in

terms of Fisher’s information matrix under parametrization θ . We transform this
to the dual mean parametrization and call Fisher’s information matrix under the
dual mean parametrization I∗

1 (μ). This involves the change of variable μ �→ θ =
θ(μ) = (∇θκ)

−1(μ). The Jacobian matrix of this change of variable is given by
J (μ) = I1(θ(μ))

−1 and, thus, the transformation of Fisher’s information matrix
gives, see also (3.16),

μ �→ I∗
1 (μ) = J (μ)� I1(θ(μ)) J (μ) = I1(θ(μ))

−1.

This allows us to express the above CLT w.r.t. Fisher’s information matrix corre-
sponding to μ and it gives us

√
n
(
μ̂MLE
n − μ

)
⇒ N

(
0,I∗

1 (μ)
−1
)

as n→ ∞. (3.28)

We conclude that the appropriately normalized MLE μ̂MLE
n converges in distri-

bution to the centered Gaussian distribution having as covariance matrix the inverse
of Fisher’s information matrix I∗

1 (μ), and the rate of convergence is 1/
√
n.

Assume that the effective domain � is open, and that θ = θ(μ) ∈ �. This
allows us to transform asymptotic normality (3.28) to the canonical scale. Consider
again the change of variable μ �→ θ = θ(μ) = (∇θκ)

−1(μ) with Jacobian matrix
J (μ) = I1(θ(μ))

−1 = I∗
1 (μ). Theorem 1.9 in Section 5.2 of Lehmann [244] tells

us how the CLT transforms under such a change of variable, namely,

√
n
(
θ̂

MLE
n − θ

)
= √

n
(
(∇θκ)

−1
(
μ̂MLE
n

)
− (∇θκ)

−1(μ)
)

(3.29)

⇒ N
(

0, J (μ)I∗
1 (μ)

−1J (μ)
)

(d)= N
(

0,I1(θ)
−1
)

as n→ ∞.

We have exactly the same structural form in the two asymptotic results (3.28)
and (3.29). There is a main difference, μ̂MLE

n is unbiased for μ whereas, in general,

θ̂
MLE
n is not unbiased for θ , but we receive the same asymptotic behavior. �
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There are many different versions of asymptotic normality results similar
to (3.28) and (3.29), and the main difficulty often is to verify the assumptions made.
For instance, one can prove asymptotic normality based on a Fisher-consistent
functionalQ. The assumptions made are, among others, thatQ needs to be Fréchet
differentiable in P(·; θ) which, unfortunately, is rather difficult to verify. We make
a list of assumptions here that are easier to check and then we give a version of the
asymptotic normality result which is stated in the book of Lehmann [244]. This list
of assumptions in the one-dimensional case � ⊆ R reads as follows:

(i) � ⊆ R is an open interval (possibly infinite).
(ii) The real-valued random variables Yi ∼ F(·; θ), i ≥ 1, have common support

T = {y ∈ R; f (y; θ) > 0} which is independent of θ ∈ �.
(iii) For every y ∈ T, the density f (y; θ) is three times continuously differentiable

in θ .
(iv) The integral

∫
f (y; θ)dν(y) is twice differentiable under the integral sign.

(v) Fisher’s information satisfies I1(θ) = Eθ [(∂ log f (Y1; θ)/∂θ)2] ∈ (0,∞).
(vi) For every θ0 ∈ � there exist a positive constant c and a functionM(y) (both

may depend on θ0) such that Eθ0[M(Y1)] <∞ and

∣∣
∣
∣
∂3

∂θ3 log f (y; θ)
∣∣
∣
∣ ≤M(y) for all y ∈ T and θ ∈ (θ0 − c, θ0 + c).

Theorem 3.28 (Theorem 2.3 in Section 6.2 of Lehmann [244]) Assume Yi ,
i ≥ 1, are i.i.d. F(·; θ) distributed satisfying (i)–(vi) from above. Assume that
θ̂n = θ̂n(Y n), n ≥ 1, is a sequence of roots that solves the score equations

∂

∂θ̃

n∑

i=1

log f (Yi; θ̃ ) = ∂

∂θ̃
�Y n(θ̃ ) = 0,

and which is consistent for θ , i.e. this sequence of roots θ̂n(Y n) converges in
probability to the true parameter θ . Then we have asymptotic normality

√
n
(
θ̂n − θ) ⇒ N

(
0,I1(θ)

−1
)

as n→ ∞. (3.30)

Sketch of Proof Fix θ ∈ � and consider a Taylor expansion of the score �′Y n(·) in

θ for θ̂n. It is given by

�′Y n(θ̂n) = �′Y n(θ)+ �′′Yn (θ)
(
θ̂n − θ)+ 1

2
�′′′Y n
(θn)

(
θ̂n − θ)2 ,
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for θn ∈ [θ, θ̂n]. Since θ̂n is a root of the score, the left-hand side is equal to zero.
This allows us to re-arrange the above Taylor expansion as follows

√
n
(
θ̂n − θ) =

1√
n
�′Y n(θ)

− 1
n
�′′Y n(θ)− 1

2n�
′′′
Yn
(θn)

(
θ̂n − θ) .

The enumerator on the right-hand side converges in distribution to N (0,I1(θ)),
see (18) in Section 6.2 of [244], the first term in the denominator converges in
probability to I1(θ), see (19) in Section 6.2 of [244], and in the second term of
the denominator we have 1

2n�
′′′
Yn
(θn) which is bounded in probability, see (20) in

Section 6.2 of [244]. The claim then follows from Slutsky’s theorem.
�

Remarks 3.29

• A sequence (θ̂n)n≥1 satisfying Theorem 3.28 is called efficient likelihood esti-
mator (ELE) of θ . Typically, the sequence of MLEs θ̂MLE

n gives such an
ELE sequence, but there are counterexamples where this is not the case, see
Example 3.1 in Section 6.2 of Lehmann [244]. In that example θ̂MLE

n exists for
all n ≥ 1, but it converges in probability to ∞, regardless of the value of the true
parameter θ .

• Any sequence of estimators that fulfills (3.30) is called asymptotically efficient,
because, similarly to the Cramér–Rao information bound of Theorem 3.13, it
attains I1(θ)

−1 (which under certain assumptions is a lower variance bound
except on Lebesgue measure zero, see Theorem 1.1 in Section 6.1 of Lehmann
[244]). However, there are two important differences here: (1) the Cramér–
Rao information bound statement needs unbiasedness of the decision rule,
whereas (3.30) only requires consistency (but not unbiasedness nor asymptoti-
cally vanishing bias); and (2) the lower bound in the Cramér–Rao statement is
an effective variance (on a finite sample), whereas the quantity in (3.30) is only
an asymptotic variance. Moreover, any other sequence that differs in probability
from an asymptotically efficient one less than o(1/

√
n) is asymptotically effi-

cient, too.
• If we consider a differentiable function θ �→ γ (θ), then Theorem 3.28 implies

√
n
(
γ
(
θ̂n
)− γ (θ)) ⇒ N

(
0,
(γ ′(θ))2

I1(θ)

)
as n→ ∞. (3.31)

This follows from asymptotic normality, consistency and considering a Taylor
expansion around θ .

• We were starting from the MLE problem

θ̂MLE
n = arg max

θ̃

1

n

n∑

i=1

log f (Yi; θ̃ ). (3.32)



3.4 Asymptotic Behavior of Estimators 73

In statistical theory a parameter estimator that is obtained through a maximiza-
tion operation is called M-estimator (for maximizing or minimizing), see also
Remarks 3.26. If the log-likelihood is differentiable in θ̃ we can turn the above
problem into a root search problem for θ̃

1

n

n∑

i=1

∂

∂θ̃
log f (Yi; θ̃ ) = 0. (3.33)

If a parameter estimator is obtained through a root search problem it is called
Z-estimator (for equating to zero). The Z-estimator (3.33) does not require a
maximum of the original function, but only a critical point; this is exactly what
we have been exploring in Theorem 3.28. More generally, for a sufficiently nice
function ψ(·; θ) a Z-estimator θ̂Z

n for θ is obtained by solving the following
equation for θ̃

1

n

n∑

i=1

ψ(Yi; θ̃ ) = 0, (3.34)

for i.i.d. data Yi ∼ F(·; θ). Suppose that the first moment of ψ(Yi ; θ̃ ) exists. The
law of large numbers gives us, a.s., see also (3.26),

lim
n→∞

1

n

n∑

i=1

ψ(Yi ; θ̃ ) = Eθ

[
ψ(Y ; θ̃ )] . (3.35)

Consistency of the Z-estimator θ̂Z
n , n ≥ 1, for θ is related to the right-hand

side of (3.35) being zero for θ̃ = θ . Under additional regularity conditions (and
consistency) it then holds asymptotic normality

√
n
(
θ̂Z
n − θ

)
⇒ N

(

0,
Eθ

[
ψ(Y ; θ)2]

Eθ

[
∂
∂θ
ψ(Y ; θ)]2

)

as n→ ∞. (3.36)

For rigorous statements we refer to Theorems 5.21 and 5.41 in Van der Vaart
[363]. A modification to the regression case is given in Theorem 11.6 below.

Example 3.30 We consider the single-parameter linear EF for given strictly convex
and steep cumulant function κ and w.r.t. a σ -finite measure ν on R. The score
equation gives requirement

1

n
S(Y n)

!= κ ′(θ) = Eθ [Y1]. (3.37)

Strict convexity implies that the right-hand side strictly increases in θ . Therefore,
we have at most one solution of the score equation here. We assume that the



74 3 Estimation Theory

effective domain � ⊆ R is open. It is easily verified that assumptions (ii)–(vi)
hold, in particular, (vi) saying that the third derivative should have a uniformly
bounded integrable bound holds because the third derivative is independent of y and
continuous in θ . With probability converging to 1, (3.37) has a solution θ̂n which
is unique, consistent and Theorem 3.28 holds. Note that in Example 3.5 we have
mentioned the Poisson case which can be degenerate. For the asymptotic normality
result we use here that this degeneracy asymptotically vanishes with probability
converging to one. �

Remark 3.31 (Multi-Dimensional Extension) For an extension of Theorem 3.28 to
the multi-dimensional case � ⊆ R

k we refer to Section 6.4 in Lehmann [244]. The
assumptions made in the multi-dimensional case do not essentially differ from the
ones in the 1-dimensional case.
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Chapter 4
Predictive Modeling and Forecast
Evaluation

In the previous chapter, we have fully focused on parameter estimation θ ∈ � and
the estimation of functions θ �→ γ (θ) by exploiting decision rules A for estimating
Y n �→ θ̂ = A(Y n) or Y n �→ γ̂ (θ) = A(Y n), respectively. The derivations in
that chapter analyzed the quality of decision rules in terms of loss functions which
compare, e.g., the action θ̂ = A(Y n) to the true parameter θ . The Cramér–Rao
information bound considers this in terms of a square loss function. In actuarial
modeling, parameter estimation is only part of the problem, and the second part is
to predict new random variables Y . These new random variables should be thought
as claims in the future that we try to predict (and price) using decision rules being
developed based on past information Y n = (Y1, . . . , Yn)

�. In this case, we would
like to study how a decision rule A(Y n) generalizes to new data Y , and we then
call the decision rule rather a predictor for Y . This capability of suitable decision
rules to generalize to new (unseen) data is analyzed in Sect. 4.1. Such an analysis
often relies on (numerical) techniques such as cross-validation, which is examined
in Sect. 4.2, or the bootstrap technique, being presented in Sect. 4.3, below. In this
chapter, we denote past observations by Y n = (Y1, . . . , Yn)

� supported on Y, and
the (real-valued) random variables to be predicted are denoted by Y with support
Y ⊂ R. Often we have Y = Y × · · · × Y .

4.1 Generalization Loss

We start by considering the most commonly used expected generalization loss
(GL) which is the mean squared error of prediction (MSEP). The MSEP is based
on the square loss function, and it can be seen as a distribution-free approach to
measure expected GL. In subsequent sections we will study distribution-adapted
GL approaches. Expected GL measurement with MSEP is considered to be general
knowledge and we do not give a specific reference in this section. Distribution-
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adapted versions are mainly based on the strictly consistent scoring framework of
Gneiting–Raftery [163] and Gneiting [162]. In particular, we will discuss deviance
losses in Sect. 4.1.2 that are strictly consistent scoring functions for mean estimation
and, hence, provide proper scoring rules.

4.1.1 Mean Squared Error of Prediction

We denote by Y n = (Y1, . . . , Yn)
� (past) observations on which predictors and

decision rules A : Y → A are based on. The new observation that we would like
to predict is denoted by Y having support Y ⊂ R. In the previous chapter we have
used decision rule the A(Y n) to estimate an unknown quantity γ (θ). In this section
we will use this decision rule to directly predict the new (unseen) observation Y .

Theorem 4.1 (Mean Squared Error of Prediction, MSEP) Assume that
Y n and Y are independent. Assume that the predictor A : Y → A ⊆ R,
Y n �→ A(Y n) has finite second moment, and that the real-valued random
variable Y has finite second moment, too. The MSEP of predictorA to predict
Y is given by

E

[
(Y − A(Y n))2

]
= (E [Y ] − E [A(Y n)])2 + Var(A(Y n))+ Var(Y ).

(4.1)

Proof of Theorem 4.1 We compute

E

[
(A(Y n)− Y)2

]
= E

[
(A(Y n)− E[Y ] + E[Y ] − Y)2

]

= E

[
(A(Y n)− E[Y ])2

]
+ E

[
(E[Y ] − Y)2

]

+2 E [(A(Y n)− E[Y ]) (E[Y ] − Y)]
= E

[
(E [Y ] − E [A(Y n)] + E [A(Y n)] −A(Y n))2

]
+ Var(Y )

= (E [Y ] − E [A(Y n)])
2 + Var(A(Y n))+ Var(Y ),

where on the second last line we use the independence between Y n and Y . This
finishes the proof. �

Remarks 4.2 (Expected Generalization Loss)

• The quantity E[(Y − A(Y n))2] is an expected GL because it measures how well
the decision rule (predictor) A(Y n) generalizes to new (unseen) data Y . As loss
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function we use the square loss function

L : Y × A → R+, (y, a) �→ L(y, a) = (y − a)2. (4.2)

Therefore, this expected GL is called MSEP.
• MSEP (4.1) is called expected GL. If we condition on Y n, then we call it GL. For

the square loss function the GL (conditional MSEP) is given by

E

[
(Y − A(Y n))2

∣
∣
∣Y n

]
= (E [Y ] − A(Y n))2 + Var(Y ), (4.3)

where we have used independence between Y and Y n.
• We do not distinguish the terms ‘prediction’ and ‘forecast’. Sometimes the

literature makes a subtle difference between the two, the latter involving a
temporal component and the former not. In the context of prediction/forecasting
a loss function (4.2) is also called scoring function. We also use these two terms
interchangeably in the context of prediction/forecasting.

• The MSEP in Theorem 4.1 decouples into three terms:

– The first term (E [Y ] − E [A(Y n)])2 is the (squared) bias. Obviously, good
decision rules A(Y n) under the MSEP should be unbiased for E[Y ]. If we
compare this to the previous chapter, we note that now the bias is measured
w.r.t. the mean of the new observation Y . Additionally, there might be a slight
difference to the previous chapter if Y n and Y do not belong to the same
parameter θ ∈ � (if we work in a parametrized family): the risk function
in (3.3) considers R(θ,A) = Eθ [L(θ,A(Y n))] with both components of the
loss function L belonging to the same parameter value θ . For the MSEP we
replace θ in L(θ,A(Y n)) by the new observation Y that might originate from
a different distribution (or from a randomized θ in a Bayesian case).

– The second term Var(A(Y n)) is called estimation variance or statistical error.
– The last term Var(Y ) is called process variance or irreducible risk. It reflects

the pure randomness received from the fact that we try to predict random
variables Y with deterministic means E[Y ].

• All three terms on the right-hand side of (4.1) are non-negative. The MSEP
optimal predictor for Y is its expected value E[Y ]. For this choice, the first two
terms (squared bias and estimation variance) vanish, and we are only left with
the irreducible risk. Since this MSEP optimal predictor is typically unknown it
is replaced by a decision rule A(Y n) that is based on past experience Y n. This
decision rule is used to predict Y , but it can also be seen as an estimator for
E[Y ]. A good decision rule A(Y n) is unbiased for E[Y ], making the first term on
the right-hand side of (4.1) equal to zero, and at the same time trying to make
the estimation variance small. Typically, this cannot be achieved simultaneously
and, therefore, there is a trade-off between bias and estimation variance in most
applied statistical problems.
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• We emphasize that in financial applications we typically aim for unbiased
estimators for E[Y ], we especially refer to Sect. 7.4.2 that studies the balance
property in network regression models under a stationary portfolio assumption.
Here, this stationarity may, e.g., translate into a (stronger) i.i.d. assumption on
Y1, . . . , Yn, Y . Unbiasedness then implies that the predictor A(Y n) is optimal
in (4.1) if it meets the Cramér–Rao information bound, see Theorem 3.13.

Theorem 4.1 considers the MSEP which implicitly assumes that the square loss
function is the objective (scoring) function of interest. The square loss function may
be considered as being distribution-free, but it is motivated by a Gaussian model for
Y n and Y , respectively; this will be justified in Remarks 4.6, below. If we use the
square loss function for observations different from Gaussian ones it might under-
or over-weigh particular characteristics in these observations because they may not
look very Gaussian (e.g. more heavy-tailed). Therefore, we should always choose a
scoring function that fits the problem considered, for instance, a square loss function
is not appropriate if we model claim counts following a Poisson distribution. We
close this section with the example of the EDF.

Example 4.3 (MSEP Within the EDF) We choose a fixed single-parameter linear
EDF satisfying Assumption 2.6 and having a steep cumulant function κ , see
Theorem 2.19 and Remark 2.20. Assume we have independent random variables
Y1, . . . , Yn, Y belonging to this EDF having densities, see Example 3.5,

Yi ∼ f (yi; θ, vi/ϕ) = exp

{
yiθ − κ(θ)
ϕ/vi

+ a(yi; vi/ϕ)
}
, (4.4)

and similarly for Y ∼ f (y; θ, v/ϕ). Note that all random variables share the same
canonical parameter θ ∈ �̊. The MLE of μ ∈ M based on Y n = (Y1, . . . , Yn)

� is
found by solving, see (3.4)–(3.5),

μ̂MLE = μ̂MLE(Y n) = arg max
μ̃∈M

�Y n(μ̃) (4.5)

= arg max
μ̃∈M

n∑

i=1

Yih(μ̃)− κ(h(μ̃))
ϕ/vi

,

with canonical link h = (κ ′)−1. Since the cumulant function κ is strictly convex and
assumed to be steep, there exists a unique solution μ̂MLE ∈ M. If μ̂MLE ∈ M we
have a proper solution providing θ̂MLE = h(μ̂MLE) ∈ �, otherwise μ̂MLE provides
a degenerate model. This decision rule Y n �→ μ̂MLE = μ̂MLE(Y n) is now used
to predict the (independent) new random variable Y and to estimate the unknown
parameters θ and μ, respectively. That is, we use the following predictor for Y

Y n �→ Ŷ = Êθ [Y ] = Eθ̂MLE [Y ] = μ̂MLE = μ̂MLE(Y n).
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Note that this predictor Ŷ is used to predict an unobserved (new) random variable
Y , and it is itself a random variable as a function of (independent) past observations
Y n. We calculate the MSEP in this model. Using Theorem 4.1 we obtain

Eθ

[(
Y − μ̂MLE

)2
]

=
(
Eθ [Y ] − Eθ

[
μ̂MLE

])2 + Varθ
(
μ̂MLE

)
+ Varθ (Y )

= (
κ ′(θ)− κ ′(θ)

)2 + ϕκ ′′(θ)
∑n
i=1 vi

+ ϕκ ′′(θ)
v

(4.6)

= (κ ′′(θ))2

I(θ) + ϕκ ′′(θ)
v

,

see (3.25) for Fisher’s information I(θ). In this calculation we have used that the
MLE μ̂MLE is UMVU for μ = κ ′(θ) and that Y n and Y come from the same
EDF with the same canonical parameter θ ∈ �̊. As a result, we are only left
with estimation variance and process variance, moreover, the estimation variance
asymptotically vanishes as

∑n
i=1 vi → ∞. �

4.1.2 Unit Deviances and Deviance Generalization Loss

The main estimation technique used in these notes is MLE introduced in Def-
inition 3.4. At this stage, MLE is un-related to any specific scoring function L
because it has been received by maximizing the log-likelihood function. In this
section we discuss the deviance loss function (as a scoring function) and we
highlight its connection to the Bregman divergence introduced in Sect. 2.3. Based
on the deviance loss function choice we rephrase Theorem 4.1 in terms of this
scoring function. A theoretical foundation to these considerations will be given in
Sect. 4.1.3, below.

For the derivations in this section we rely on the same single-parameter linear
EDF as in Example 4.3, having a steep cumulant function κ . The MLE of μ = κ(θ)
is found by solving, see (4.5),

μ̂MLE = μ̂MLE(Y n) = arg max
μ̃∈M

n∑

i=1

Yih(μ̃)− κ(h(μ̃))
ϕ/vi

∈ M,

with canonical link h = (κ ′)−1. This decision rule Y n �→ μ̂MLE = μ̂MLE(Y n)

is now used to predict the (new) random variable Y and to estimate the unknown
parameters θ and μ, respectively. We aim at studying the expected GL under a
distribution-adapted loss function choice potentially different from the square loss
function. Below we will justify this second choice more extensively.
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For the saturated model the common canonical parameter θ of the independent
random variables Y1, . . . , Yn in (4.4) is replaced by individual canonical parameters
θi , 1 ≤ i ≤ n. These individual canonical parameters are estimated with individual
MLEs. The individual MLEs are given by, respectively,

θ̂MLE
i = (κ ′)−1 (Yi) = h (Yi) and μ̂MLE

i = Yi ∈ M,

the latter always exists because of strict convexity and steepness of κ . Since the
MLE μ̂MLE

i = Yi maximizes the log-likelihood, we receive for any μ ∈ M the
inequality

0 ≤ 2
(

logf (Yi; h (Yi) , vi/ϕ)− logf (Yi; h(μ), vi/ϕ)
)

= 2
vi

ϕ

(
Yih (Yi)− κ (h (Yi))− Yih (μ)+ κ (h (μ))

)
(4.7)

= vi

ϕ
d (Yi , μ) .

The function (y, μ) �→ d(y, μ) ≥ 0 is the unit deviance introduced in (2.25),
extended to C, and it is zero if and only if y = μ, see Lemma 2.22. The latter
is also an immediate consequence of the fact that the MLE is unique within EDFs.

Remark 4.4 The unit deviance d(y, μ) has only been considered on C̊ × M
in (2.25). Having steepness of cumulant function κ implies C̊ = M, see Theo-
rem 2.19, and in the absolutely continuous EDF case, we always have Yi ∈ M, a.s.,
which makes (4.7) well-defined for all observations Yi , a.s. In the discrete or the
mixed EDF case, an observation Yi can be at the boundary of M. In that case (4.7)
must be calculated from

d (Yi , μ) = 2

(

sup
θ̃∈�

[
Yiθ̃ − κ (θ̃)]− Yih (μ)+ κ (h (μ))

)

. (4.8)

This applies, e.g., to the Poisson or Bernoulli cases for observation Yi = 0, in these
cases we obtain unit deviances 2μ and −2log(1 − μ), respectively.

The previous considerations (4.7)–(4.8) have been studying one single obser-
vation Yi of Y n. Aggregating over all observations in Y n (and additionally using
independence between the individual components of Y n) we arrive at the so-called
deviance loss function
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D(Y n, μ)
def.= 1

n

n∑

i=1

vi

ϕ
d (Yi , μ) (4.9)

= 2

n

n∑

i=1

vi

ϕ

(
Yih (Yi)− κ (h (Yi))− Yih (μ)+ κ (h (μ))

)
≥ 0.

The deviance loss function D(Y n, μ) subtracts twice the log-likelihood �Y n (μ)
from the one of the saturated model. Thus, it introduces a sign flip compared to (4.5).
This immediately gives us the following corollary.

Corollary 4.5 (Deviance Loss Function) The MLE problem (4.5) is equiva-
lent to solving

μ̂MLE = arg max
μ̃∈M

�Y n (μ̃) = arg min
μ̃∈M

D(Y n, μ̃). (4.10)

Remarks 4.6

• Formula (4.10) replaces a maximization problem by a minimization problem
with objective function D(Y n, μ) being bounded below by zero. We can use
this deviance loss function as a loss function not only for parameter estimation,
but also as a scoring function for analyzing GLs within the EDF (similarly to
Theorem 4.1).

• We draw the link to the KL divergence discussed in Sect. 2.3. In formula (2.26)
we have shown that the unit deviance is equal to the KL divergence (up to
scaling with factor 2), thus, equivalently, MLE aims at minimizing the average
KL divergence over all observations Y n

θ̂MLE = arg min
θ̃∈�

1

n

n∑

i=1

DKL

(
f (·; h(Yi), vi/ϕ)

∣
∣∣
∣
∣∣f (·; θ̃ , vi/ϕ)

)
,
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by finding an optimal parameter θ̂MLE somewhere ‘in the middle’ of the
observation θ̂MLE

1 = h(Y1), . . . , θ̂
MLE
n = h(Yn). This then provides us with,

see (2.27),

n∏

i=1

f
(
Yi; θ̃ , vi/ϕ

) =
[
n∏

i=1

f (Yi; h (Yi) , vi/ϕ)
]

e
− 1

2

∑n
i=1

vi
ϕ
d(Yi ,κ ′(θ̃)) (4.11)

∝ exp

{

−
n∑

i=1

DKL

(
f (·; h(Yi), vi/ϕ)

∣
∣∣
∣
∣∣f (·; θ̃ , vi/ϕ)

)
}

,

where ∝ highlights that we drop all terms that do not involve θ̃ . This describes the
change in joint likelihood by varying the canonical parameter θ̃ over its domain
�. The first line of (4.11) is in the spirit of minimizing a weighted square loss, but
the Gaussian square is replaced by the unit deviance d. The second line of (4.11)
is in the spirit of information geometry considered in Sect. 2.3, where we try to
find a canonical parameter θ̃ that has a small KL divergence to the n individual
models being parametrized by h(Y1), . . . , h(Yn), thus, the MLE θ̂MLE provides
an optimal balance over the entire set of (independent) observations Y1, . . . , Yn
w.r.t. the KL divergence.

• In contrast to the square loss function, the deviance loss function D(Y n, μ)
respects the distributional properties of Y n, see (4.11). That is, if the underlying
distribution allows for larger or smaller claims, this fact is appropriately valued
in the deviance loss function (supposed that we have chosen the right family of
distributions; model uncertainty will be studied in Sect. 11.1, below).

• Assume we work in the Gaussian model. In this model we have κ(θ) = θ2/2
and canonical link h(μ) = μ, see Sect. 2.1.3. This provides unit deviance in the
Gaussian case d (y, μ) = (y − μ)2, which is exactly the square loss function for
action space A = M. Thus, the square loss function is most appropriate in the
Gaussian case.

• As explained above, we use unit deviances d(y, μ) as a measure of discrepancy.
Alternatively, as in the introduction to this section, see (4.6), we can consider
Pearson’s χ2-statistic which corresponds to the weighted square loss function

X2(y, μ) = (y − μ)2
V (μ)

, (4.12)

where μ �→ V (μ) is the variance function of the chosen EDF. Similarly, to
the deviance loss function (4.9), we can aggregate these Pearson’s χ2-statistics
X2(Yi, μ) over all observations Yi in Y n to receive a second overall measure of
discrepancy. In the Gaussian case the deviance loss and Pearson’s χ2-statistic
coincide and have a χ2-distribution, for other distributions asymptotic results are
available.

In the non-Gaussian case, (4.12) is not always robust. For instance, if we
work in the Poisson model, we have variance function V (μ) = μ. Our examples
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below will have low claim frequencies which implies that μ will be small. The
appearance of a small μ in the denominator of (4.12) will imply that Pearson’s
χ2-statistic is not very robust in small frequency applications, in particular, if we
need to estimate this μ from Y n. Therefore, we refrain from using (4.12).

Naturally, in analogy to Theorem 4.1 and derivation (4.6), the above consider-
ations motivate us to consider expected GLs under unit deviances within the EDF.
We use the decision rule μ̂MLE(Y n) ∈ A = M to predict a new observation Y .

The expected deviance GL is defined and given by

Eθ

[
d
(
Y, μ̂MLE(Y n)

)]

= Eθ [d (Y,μ)] + 2Eθ
[
Yh(μ)− κ (h(μ))− Yh(μ̂MLE(Y n))+ κ

(
h(μ̂MLE(Y n))

)]

= Eθ [d (Y,μ)] + E
(
μ, μ̂MLE(Y n)

)
, (4.13)

the last identity uses independence between Y n and Y , and with estimation
risk function

E
(
μ, μ̂MLE(Y n)

)
= Eθ

[
d
(
μ, μ̂MLE(Y n)

)]
> 0, (4.14)

we use steepness of the cumulant function, C = conv(T) = M, and Lemma 2.22
for the strict positivity of the estimation risk function. Thus, for the estimation risk
function E we replace Y by μ in the unit deviance and the expectation Eθ is only
over the observations Y n. This looks like a very convincing generalization of the
MSEP, however, one needs to ensure that all terms in (4.13) exist.

Theorem 4.7 (Expected Deviance Generalization Loss) Assume that Y n
and Y are independent and belong to the same linear EDF having the same
canonical parameter θ ∈ �̊ and having strictly convex and steep cumulant
function κ . Choose a predictor A : Y → A = M, Y n �→ A(Y n) and assume
that all expectations in the following formula exist. The expected deviance GL
of predictor A to predict Y is given by

Eθ [d (Y,A(Y n))] = Eθ [d (Y, μ)] + E (μ,A(Y n)) ≥ Eθ [d (Y, μ)] .
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Remarks 4.8

• Eθ [d(Y, μ)] plays the role of the pure process variance (irreducible risk) of
Theorem 4.1. This term does not involve any parameter estimation bias and
uncertainty because it is based on the true parameter θ and μ = κ ′(θ),
respectively. In Sect. 4.1.3, below, we are going to justify the appropriateness
of this object as a tool for forecast evaluation. In particular, because the unit
deviance is strictly consistent for the mean functional, the true mean μ = μ(θ)

minimizes Eθ [d(Y, μ)], see (4.28), below.
• The second term E (μ,A(Y n)) measures parameter estimation bias and uncer-

tainty of decision rule A(Y n) versus the true parameter μ = κ ′(θ). The first
remark is that we can do this for any decision rule A, i.e., we do not necessarily
need to consider the MLE. The second remark is that we can no longer get a clear
cut differentiation between a bias term and a parameter estimation uncertainty
term for deviance loss functions not coming from the Gaussian distribution. We
come back to this in Remarks 7.17, below, where we give more characterization
to the individual terms of the expected deviance GL.

• An issue in applying Theorem 4.7 to the MLE decision ruleA(Y n) = μ̂MLE(Y n)

is that, in general, it does not lead to a finite estimation risk function. For instance,
in the Poisson case we have with positive probability μ̂MLE(Y n) = 0, which
results in an infinite estimation risk. In order to avoid this, we need to bound
away the decision rule form the boundary of M and �, respectively. In the
Poisson case this can be achieved by considering a decision rule A(Y n) =
max{μ̂MLE(Y n), ε} for a fixed given ε ∈ (0, μ = κ ′(θ)). This decision rule
has a bias which asymptotically vanishes as n→ ∞. Moreover, consistency and
asymptotic normality tells us that this lower bound does not affect prediction for
large sample sizes n (with large probability).

• Similar to (4.3), we can also consider the deviance GL, given Y n. Under
independence of Y n and Y we have deviance GL

Eθ [d (Y,A(Y n))|Y n] = Eθ [d (Y, μ)|Y n] + d(μ,A(Y n)) (4.15)

≥ Eθ [d (Y, μ)] .

Thus, here we directly compare A(Y n) to the true parameter μ.

Example 4.9 (Estimation Risk Function in the Gaussian Case) We consider the
Gaussian case with cumulant function κ(θ) = θ2/2 and canonical link h(μ) = μ.
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The estimation risk function is in the Gaussian case for a square integrable predictor
A(Y n) given by

E (μ,A(Y n)) = Eθ [d (μ,A(Y n))]

= 2
(
μh(μ)− κ (h(μ))− μEθ [h(A(Y n))] + Eθ [κ (h(A(Y n)))]

)

= μ2 − 2μEθ [A(Y n)] + Eθ

[
(A(Y n))

2
]

= (μ− Eθ [A(Y n)])2 + Varθ (A(Y n)).

These are exactly the squared bias and the estimation variance, see (4.1). Thus, in the
Gaussian case, the MSEP and the expected deviance GL coincide. Moreover, adding
a deterministic bias c ∈ R to A(Y n) increases the estimation risk function, supposed
that A(Y n) is unbiased for μ. We emphasize the latter as this is an important
property to have, and we refer to the next Example 4.10 for an example where this
property fails to hold. �

Example 4.10 (Estimation Risk Function in the Poisson Case) We consider the
Poisson case with cumulant function κ(θ) = eθ and canonical link h(μ) = logμ.
The estimation risk function is given by (subject to existence)

E (μ,A(Y n)) = 2
(
μlog(μ)− μ− μEθ

[
log(A(Y n))

]+ Eθ [A(Y n)]
)
. (4.16)

Assume that decision rule A(Y n) is non-deterministic and unbiased for μ. Using
Jensen’s inequality these assumptions imply for the estimation risk function

E (μ,A(Y n)) = 2μ
(

log(μ)− Eθ

[
log(A(Y n))

] )
> 0.

We now add a small deterministic bias c ∈ R to the unbiased estimator A(Y n) for
μ. This gives us estimation risk function, see (4.16) and subject to existence,

E (μ,A(Y n)+ c) = 2
(
μlog(μ)− μEθ

[
log(A(Y n)+ c)

]+ c
)
.

Consider the derivative w.r.t. bias c in 0, we use Jensen’s inequality on the last line,

∂

∂c
E (μ,A(Y n)+ c)

∣
∣
∣
∣
c=0

= 2

(
− μEθ

[
1

A(Y n)+ c
]

+ 1

)∣∣
∣
∣
c=0

= −2μEθ

[
1

A(Y n)

]
+ 2

< −2μ
1

Eθ [A(Y n)]
+ 2 = 0. (4.17)
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Thus, the estimation risk becomes smaller if we add a small bias to the (non-
deterministic) unbiased predictor A(Y n). This issue has been raised in Denuit et
al. [97]. Of course, this is a very unfavorable property, and it is rather different from
the Gaussian case in Example 4.9. It is essentially driven by the fact that parameter
estimation is based on a finite sample, which implies a strict inequality in (4.17)
for the finite sample estimate A(Y n). A conclusion of this example is that if we use
expected deviance GLs for forecast evaluation we need to insist on having unbiased
predictors. This will become especially important for more complex regression
models, see Sect. 7.4.2, below.

More generally, one can prove this result of a smaller estimation risk function for
a small positive bias for any EDF member with power variance functionV (μ) = μp
with p ≥ 1, see also (4.18) below. The proof uses the Fortuin–Kasteleyn–Ginibre
(FKG) inequality [133] providing Eθ [A(Yn)1−p] < Eθ [A(Yn)]Eθ [A(Y n)−p] =
μEθ [A(Y n)−p] to receive (4.17) for power variance parameters p ≥ 1. �

Remarks 4.11 (Conclusion from Examples 4.9 and 4.10 and a Further Remark)

• Working with expected deviance GLs for evaluating forecasts requires some care
because a bigger bias in the (finite sample) estimateA(Y n)may provide a smaller
estimation risk function E(μ,A(Y n)). For this reason, we typically insist on
having unbiased predictors/forecasts. The latter is also an important requirement
in financial applications to guarantee that the overall price is set to the right level,
we refer to the balance property in Corollary 3.19 and to Sect. 7.4.2, below.

• In Theorems 4.1 and 4.7 we use independence between the predictor A(Y n)
and the random variable Y to receive the split of the expected deviance GL
into irreducible risk and estimation risk function. In regression models, this
independence between the predictor A(Y n) and the random variable Y may
no longer hold. In that case we will still work with the expected deviance GL
Eθ [d(Y,A(Y n))], but a clear split between estimation and forecasting will no
longer be possible, see Sect. 4.2, below.

The next example gives the most important unit deviances in actuarial modeling.

Example 4.12 (Unit Deviances) We give the most prominent examples of unit
deviances within the single-parameter linear EDF. We recall unit deviance (2.25)

d(y, μ) = 2
(
yh(y)− κ (h(y))− yh(μ)+ κ (h(μ))

)
≥ 0.

In Sect. 2.2 we have met the examples given in Table 4.1.
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Table 4.1 Unit deviances of selected distributions commonly used in actuarial science

Distribution Cumulant function κ(θ) Unit deviance d(y, μ)

Gaussian θ2/2 (y − μ)2
Gamma −log(−θ) 2 ((y − μ)/μ+ log(μ/y))

Inverse Gaussian −√−2θ (y − μ)2/(μ2y)

Poisson eθ 2 (μ− y − ylog(μ/y))

Negative-binomial −log(1 − eθ ) 2
(
ylog

(
y
μ

)
− (y + 1)log

(
y+1
μ+1

))

Tweedie’s CP ((1−p)θ)
2−p
1−p

2−p , p ∈ (1, 2) 2
(
y
y1−p−μ1−p

1−p − y2−p−μ2−p
2−p

)

Bernoulli log(1 + eθ ) 2 (−ylogμ− (1 − y)log(1 − μ))

If we focus on Tweedie’s distributions having power variance functions V (μ) =
μp, see Table 2.1, we get a unified expression for the unit deviances for p ∈ {0} ∪
(1, 2) ∪ (2,∞)

d(y, μ) = 2

(
y
y1−p − μ1−p

1 − p − y2−p − μ2−p

2 − p
)

(4.18)

= 2

(
y2−p

(1 − p)(2 − p) − yμ1−p

1 − p + μ2−p

2 − p
)
.

For the remaining power variance cases we have: p = 1 corresponds to the Poisson
case, p = 2 gives the gamma case, the cases p < 0 do not have a steep cumulant
function, and, moreover, there are no EDF models for p ∈ (0, 1), see Theorem 2.18.

The unit deviance in the Bernoulli case is also called binary cross-entropy.
This binary cross-entropy has a categorical generalization, called multi-class cross-
entropy. Assume we have a categorical EF with levels {1, . . . , k + 1} and corre-
sponding probabilities p1, . . . , pk+1 ∈ (0, 1) summing up to 1, see Sect. 2.1.4.
We denote by Y = (1{Y=1}, . . . ,1{Y=k+1})� ∈ R

k+1 the indicator variable that
shows which level the categorical random variable Y takes; Y is called one-hot
encoding of the categorical random variable Y . Assume y is a realization of Y and
set μ = p = (p1, . . . , pk+1)

�. The categorical (multi-class) cross-entropy loss
function is given by

d(y, μ) = d(y,p) = −2
k+1∑

j=1

yj logpj ≥ 0. (4.19)

This cross-entropy is closely related to the KL divergence between two categorical
distributions p and q on {1, . . . , k+1}. The KL divergence from p to q is given by

DKL(q||p) =
k+1∑

j=1

qj log

(
qj

pj

)
=
k+1∑

j=1

qj logqj −
k+1∑

j=1

qj logpj .
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If we replace the true (but unknown) distribution q by observation Y = y we receive
unit deviance (4.19) (scaled by 2), and the MLE is obtained by minimizing this KL
divergence, see also Example 3.10. �

Outlook 4.13 In the regression modeling, below, each response Yi will have its own
mean parameterμi = μ(β, xi ) which will be a function of its covariate information
xi , and β denotes a regression parameter to be estimated with MLE. In that case,
we modify the deviance loss function (4.9) to

β �→ D(Y n,β) = 1

n

n∑

i=1

vi

ϕ
d (Yi , μi) = 1

n

n∑

i=1

vi

ϕ
d (Yi , μ(β, xi )) , (4.20)

and the MLE of β can be found by solving

β̂
MLE = arg min

β

D(Y n,β). (4.21)

If Y is a new response with covariate information x and following the same EDF as
Y n, we will evaluate the corresponding expected scaled deviance GL given by

Eβ

[
v

ϕ
d
(
Y,μ(β̂

MLE
, x)
)]
, (4.22)

where Eβ is the expectation under the true regression parameter β for Y n and Y .
This will be discussed in Sect. 5.1.7, below. If we interpret (Y, x, v) as a random
vector describing a randomly selected insurance policy from our portfolio, and being
independent of Y n (and the corresponding covariate information xi , 1 ≤ i ≤ n),

then β̂
MLE

will be independent of (Y, x, v). Nevertheless, the predictorμ(β̂
MLE

, x)

will introduce dependence between the chosen decision rule and Y through x, and
we no longer receive the split of the expected deviance GL as stated in Theorem 4.7,
for a related discussion we also refer to Remarks 7.17, below.

If we interpret (Y, x, v) as a randomly selected insurance policy, then the
expected GL (4.22) is evaluated under the joint (portfolio) distribution of (Y, x, v),

and the deviance loss D(Y n, β̂
MLE

) is an (in-sample) empirical version of (4.22). �

4.1.3 A Decision-Theoretic Approach to Forecast Evaluation

We present an excursion to a decision-theoretic approach to forecast evaluation.
This excursion gives the theoretical foundation to the unit deviance considerations
from above. This section follows Gneiting [162], Krüger–Ziegel [227] and Denuit
et al. [97], and we refrain from giving complete proofs in this section. Forecast
evaluation should involve consistent loss/scoring functions and proper scoring rules
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to encourage the forecaster to make careful assessments and honest forecasts.
Consistent loss functions are also a necessary tool to receive consistency of M-
estimators, we refer to Remarks 3.26.

Consistency and Proper Scoring Rules

Denote by C ⊆ R the convex closure of the support of a real-valued random variable
Y , and let the action space be A = C, see also (3.1). Predictions are evaluated in
terms of a loss/scoring function

L : C ×A → R+, (y, a) �→ L(y, a) ≥ 0. (4.23)

Remark 4.14 In (4.23) we assume that the loss function L is bounded below by
zero. This can be an advantage in applications because it gives a calibration to the
loss function. In general, this lower bound is not a necessary condition for forecast
evaluation. If we drop this lower bound property, we rather call L (only) a scoring
function. For instance, the log-likelihood log(f (y, a)) in (3.27) plays the role of a
scoring function.

The forecaster can take the position of minimizing the expected loss to choose
her/his action rule. That is, subject to existence, an optimal action w.r.t.L is received
by

â = â(F ) = arg min
a∈A

EF [L(Y, a)] = arg min
a∈A

∫

C
L(y, a)dF (y). (4.24)

In this setup the scoring functionL(y, a) describes the loss that the forecaster suffers
if she/he uses action a ∈ A and observation y ∈ C materializes. Since we do not
want to insist on uniqueness in (4.24) we rather think of set-valued functionals in
this section, which may provide solutions to problems like (4.24).1

We now reverse the line of arguments, and we start from a general set-valued
functional. Denote by F the family of distribution functions of interest supported
on C. Consider the set-valued functional

A : F → P(A), F �→ A(F ) ⊂ A, (4.25)

that maps each distribution F ∈ F to a subset A(F ) of the action space A = C,
that is, an element of the power set P(A). The main question that we want to study
in this section is the following: can we find a loss function L so that the set-valued

1 In fact, also for the MLE in Definition 3.4 we should consider a set-valued functional. We have
decided to skip this distinction to avoid any kind of complication and to not disturb the flow of
reading.
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functionalA is obtained by a loss minimization (4.24)? This motivates the following
definition.

Definition 4.15 (Strict Consistency) The loss function L : C × A → R+ is
consistent for the functional A : F → P(A) relative to the class F if

EF [L(Y, â)] ≤ EF [L(Y, a)] , (4.26)

for all F ∈ F , â ∈ A(F ) and a ∈ A. It is strictly consistent if it is consistent and
equality in (4.26) implies that a ∈ A(F ).

As stated in Theorem 1 of Gneiting [162], a loss function L is consistent for the
functional A relative to the class F if and only if, given any F ∈ F , every â ∈ A(F )
is an optimal action under L in the sense of (4.24).

We give an example. Assume we start from the functional F �→ A(F ) = EF [Y ]
that maps each distribution F to its expected value. In this case we do not need
to consider a set-valued functional because the expected value is a singleton (we
assume that F only contains distributions with a finite first moment). The question
then is whether we can find a loss function L such that this mean can be received by
a minimization (4.24). This question is answered in Theorem 4.19, below.

Next we relate a consistent loss function L to a proper scoring rule. A proper
scoring rule is a function R : C ×F → R such that

EF [R(Y, F )] ≤ EF [R(Y,G)] , (4.27)

for all F,G ∈ F , supposed that the expectations are well-defined. A scoring rule
R analyzes the penalty R(y,G) if the forecaster works with a distribution G and
an observation y of Y ∼ F materializes. Proper scoring rules have been promoted
in Gneiting–Raftery [163] and Gneiting [162]. They are important because they
encourage the forecaster to make honest forecasts, i.e., it gives the forecaster the
incentive to minimize the expected score by following his true belief about the true
distribution, because only this minimizes the expected penalty in (4.27).

Theorem 4.16 (Gneiting [162, Theorem 3]) Assume that L is a consistent loss
function for the functionalA relative to the classF . For eachF ∈ F , let aF ∈ A(F ).
The scoring rule

R : C × F → R, (y, F ) �→ R(y, F ) = L(y, aF ),
is a proper scoring rule.

Example 4.17 Consider the unit deviance d (·, ·) : C × M → R+ for a given EDF
F = {F(·; θ, v/ϕ); θ ∈ �̊} with cumulant function κ . Lemma 2.22 says that under
suitable assumptions this unit deviance d (y, μ) is zero if and only if y = μ. We
consider the mean functional on F

A : F → A = M, Fθ = F(·; θ, v/ϕ) �→ A(Fθ ) = μ(θ),
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whereμ = μ(θ) = κ ′(θ) is the mean of the chosen EDF. Choosing the unit deviance
as loss function we receive for any action a ∈ A, see (4.13),

Eθ [d (Y, a)] = Eθ [d (Y, μ)] + 2Eθ [Yh(μ)− κ (h(μ))− Yh(a)+ κ (h(a))]
= Eθ [d (Y, μ)] + 2 (μh(μ)− κ (h(μ))− μh(a)+ κ (h(a)))
= Eθ [d (Y, μ)] + d (μ, a) .

This is minimized for a = μ and it proves that the unit deviance is strictly consistent
for the mean functional A : Fθ �→ A(Fθ ) = μ(θ) relative to the chosen EDF
F = {F(·; θ, v/ϕ); θ ∈ �̊}. Using Theorem 4.16, the scoring rule

R : C ×F → R, (y, Fθ ) �→ R(y, Fθ ) = d(y, μ(θ)),

is a strictly proper scoring rule, that is,

Eθ [R(Y, Fθ )] = Eθ [d(Y, μ(θ))] < Eθ

[
d(Y, μ(θ̃ ))

] = Eθ

[
R(Y, Fθ̃ )

]
,

for any θ̃ �= θ . We conclude from this small example that the unit deviance is a
strictly consistent loss function for the mean functional on the chosen EDF, and this
provides us with a strictly proper scoring rule. �

In the above Example 4.17 we have chosen the mean functional

A : F → A = M, Fθ = F(·; θ, v/ϕ) �→ A(Fθ ) = μ(θ),

within a given EDF F = {F(·; θ, v/ϕ); θ ∈ �̊}. We have seen that

• the unit deviance d(·, ·) is a strictly consistent loss function for the mean
functional A relative to the EDF F ;

• the function (y, Fθ ) �→ R(y, Fθ ) = d(y, μ(θ)) is a strictly proper scoring
rule for the EDF F , i.e.,

Eθ [d(Y, μ(θ))] < Eθ

[
d(Y, μ(θ̃ ))

]
,

for any θ̃ �= θ .

The consideration of the mean functional F �→ A(F ) = EF [Y ] in Example 4.17
is motivated by the fact that we typically forecast random variables by their means.
However, more generally, we may ask the question for which functionals A : F →
P(A), relative to a given set of distributions F , there exists a loss function L that is
strictly consistent.
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Definition 4.18 (Elicitable) The functional A is elicitable relative to a given set of
distributions F if there exists a loss function L that is strictly consistent for A and
F .

Above we have seen that the mean functional is elicitable relative to the EDF
using the unit deviance loss; expected values relative to F with finite second
moments are also elicitable using the square loss function. Savage [327] more
generally identifies the Bregman divergences as being the only consistent scoring
functions for the mean functional; recall that the unit deviance is a special case of a
Bregman divergence, see (2.29). We are going to state the corresponding result.

For a general loss function L we make the following (standard) assumptions:

(L0) L(y, a) ≥ 0 and we have an equality if and only if y = a;
(L1) L(y, a) is measurable in y and continuous in a;
(L2) the partial derivative ∂L(y, a)/∂a exists and is continuous in a whenever
a �= y.

This then allows us to cite the following theorem.

Theorem 4.19 (Gneiting [162, Theorem 7]) Let F be the class of distributions on
an interval C ⊆ R having finite first moments.

• Assume the loss functionL : C×A → R satisfies (L0)–(L2) for interval C = A ⊆
R. L is consistent for the mean functional relative to the class F of compactly
supported distributions on C if and only if the loss function L is of Bregman
divergence form

Dψ(y, a) = ψ(y)− ψ(a)− ψ ′(a)(y − a),

for a convex function ψ with (sub-)gradientψ ′ on C.
• Ifψ is strictly convex on C, then the Bregman divergenceDψ is strictly consistent

for the mean functional relative to the class F on C for which both EF [Y ] and
EF [ψ(Y )] exist and are finite.
Theorem 4.19 tells us that Bregman divergences are the only consistent loss

functions for the mean functional (under some additional assumptions). Consider
the specific choiceψ(a) = a2/2 which is a strictly convex function. For this choice,
the Bregman divergence is the square loss functionDψ(y, a) = (y − a)2/2, which
is strictly consistent for the mean functional relative to the class F ⊂ L2(P). We
remark that also quantiles are elicitable, the corresponding result is going to be
stated in Theorem 5.33, below.

The second bullet point of Theorem 4.19 immediately implies that the unit
deviance d(·, ·) is a strictly consistent loss function for the mean functional within
the chosen EDF, see also (2.29) and Example 4.17. In particular, for θ ∈ �̊

μ = μ(θ) = arg min
a∈M

Eθ [d(Y, a)] . (4.28)
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Explicit evaluation of (4.28) requires that the true distribution Fθ of Y is known.
Since, typically, this is not the case, we need to evaluate it empirically. Assume
that the random variables Yi are independent and Fθ distributed, with Fθ belonging
to the fixed EDF providing the corresponding unit deviance d. Then, the objective
function in (4.28) is approximated by, a.s.,

D(Y n, a) = 1

n

n∑

i=1

vi

ϕ
d(Yi , a) → Eθ

[
v

ϕ
d(Y, a)

]
as n→ ∞. (4.29)

The convergence statement follows from the strong law of large numbers applied
to the i.i.d. random variables (Yi , vi), i ≥ 1, and supposed that the right-hand side
of (4.29) exists. Thus, the deviance loss function (4.9) is an empirical version of the
expected deviance loss function, and this approach is successful if we can exchange
the ‘argmin’ operator of (4.28) and the limit n→ ∞ in (4.29). This closes the circle
and brings us back to the M-estimator considered in Remarks 3.26 and 3.29, and
which also links forecast evaluation and M-estimation.

Forecast Dominance

A consequence of Theorem 4.19 is that there are infinitely many strictly consistent
loss functions for the mean functional, and, in principle, we could choose any
of these for forecast evaluation. Choosing the unit deviance d that matches the
distribution Fθ of the observations Y n and Y , respectively, gives us the MLE μ̂MLE,
and we have seen that the MLE μ̂MLE is not only unbiased for μ = κ ′(θ), but it
also meets the Cramér–Rao information bound. That is, it is UMVU within the data
generating model reflected by the true unit deviance d. This provides us (in the finite
sample case) with a natural candidate for d in (4.29) and, thus, a canonical proper
scoring rule for (out-of-sample) forecast evaluation.

The previous statements have all been done under the assumption that there is
no uncertainty about the underlying family of distribution functions that generates
Y and Y n, respectively. Uncertainty was limited to the true canonical parameter θ
and the true mean μ(θ). This situation changes under model uncertainty. Krüger–
Ziegel [227] study the question of having multiple strictly consistent loss functions
in the situation where there is no natural candidate choice. Different choices may
give different rankings to different (finite sample) predictors. Assume we have
two predictors μ̂1 and μ̂2 for a random variable Y . Similarly to the definition of
the expected deviance GL, we understand these predictors μ̂1 and μ̂2 as random
variables, and we assume that all considered random variables have a finite first
moment. Importantly, we do not assume independence between μ̂1, μ̂2 and Y ,
and in regression models we typically receive dependence between predictors μ̂
and random variables Y through the features (covariates) x, see also Outlook 4.13.
Following Krüger–Ziegel [227] and Ehm et al. [119] we define forecast dominance
as follows.
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Definition 4.20 (Forecast Dominance) Predictor μ̂1 dominates predictor μ̂2 if

E
[
Dψ(Y, μ̂1)

] ≤ E
[
Dψ(Y, μ̂2)

]
,

for all Bregman divergences Dψ with (convex) ψ supported on C, the latter being
the convex closure of the supports of Y , μ̂1 and μ̂2.

If we work with a fixed member of the EDF, e.g., the gamma distribution, then
we typically study the corresponding expected deviance GL for forecast evaluation
in one single model, see Theorem 4.7 and (4.29). This evaluation may involve
model risk in the decision making process, and forecast dominance provides a robust
selection criterion.

Krüger–Ziegel [227] build on Theorem 1b and Corollary 1b of Ehm et al. [119] to
prove the following theorem (which prevents from considering all convex functions
ψ).

Theorem 4.21 (Theorem 2.1 of Krüger–Ziegel [227]) Predictor μ̂1 dominates
predictor μ̂2 if and only if for all τ ∈ C

E
[
(Y − τ )1{μ̂1>τ }

] ≥ E
[
(Y − τ )1{μ̂2>τ }

]
. (4.30)

Denuit et al. [97] argue that in insurance one typically works with Tweedie’s
distributions having power variances V (μ) = μp with power variance parameters
p ≥ 1. This motivates the following weaker form of forecast dominance.

Definition 4.22 (Tweedie’s Forecast Dominance) Predictor μ̂1 Tweedie-
dominates predictor μ̂2 if

E
[
dp(Y, μ̂1)

] ≤ E
[
dp(Y, μ̂2)

]
,

for all Tweedie’s unit deviances dp with power variance parameters p ≥ 1, we
refer to (4.18) for p ∈ (1,∞) \ {2} and Table 4.1 for the Poisson and gamma cases
p ∈ {1, 2}.

Recall that Tweedie’s unit deviances dp are a subclass of Bregman divergences,
see (2.29). Define the following function for power variance parameters p ≥ 1

Υp(μ) =
{

logμ for p = 2,
μ2−p
2−p otherwise.

Denuit et al. [97] prove the following proposition.

Proposition 4.23 (Proposition 4.1 of Denuit et al. [97]) Predictor μ̂1 Tweedie-
dominates predictor μ̂2 if

E
[
Υp(μ̂1)

] ≤ E
[
Υp(μ̂2)

]
for all p ≥ 1,



4.2 Cross-Validation 95

and

E
[
Y1{μ̂1>τ }

] ≥ E
[
Y1{μ̂2>τ }

]
for all τ ∈ C.

Theorem 4.21 gives necessary and sufficient conditions to have forecast dom-
inance, Proposition 4.23 gives sufficient conditions to have the weaker Tweedie’s
forecast dominance. In Theorem 7.15, below, we give another characterization of
forecast dominance in terms of convex orders, under the additional assumption that
the predictors are so-called auto-calibrated.

4.2 Cross-Validation

This section focuses on estimating the expected deviance GL (4.13) in cases where
the canonical parameter θ is not known. Of course, the same concepts apply to the
MSEP. In the remainder of this section we scale the unit deviances with v/ϕ, to
bring them in line with the deviance loss (4.9).

4.2.1 In-Sample and Out-of-Sample Losses

The general aim in predictive modeling is to predict an unobserved random variable
Y as good as possible based on past information Y n. Within the EDF, the predictive
performance is then evaluated under an empirical version of the expected deviance
GL

Eθ

[
v

ϕ
d (Y,A(Y n))

]
= 2Eθ

[
v

ϕ

(
Yh(Y )− κ (h(Y ))− Yh(A(Y n))+ κ (h(A(Y n)))

)]
.

(4.31)

Here, we no longer assume that Y and A(Y n) are independent, and in the dependent
case Theorem 4.7 does not apply. The reason for dropping the independence
assumption is that below we consider regression models of a similar type as in
Outlook 4.13. The expected deviance GL (4.31) as such is not directly useful
because it cannot be calculated if the true canonical parameter θ is not known.
Therefore, we are going to explain how it can be estimated empirically.

We start from the expected deviance GL in the EDF applied to the MLE decision
rule μ̂MLE(Y n). It can be rewritten as

Eθ

[
v

ϕ
d
(
Y, μ̂MLE(Y n)

)]
=
∫

Eθ

[
v

ϕ
d
(
Y, μ̂MLE(Y n)

)∣∣∣∣Y n = yn

]
dP (yn; θ),

(4.32)
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where we use the tower property for conditional expectations. In view of (4.32),
there are two things to be done:

(1) For given observations Y n = yn, we need to estimate the deviance GL, see
also (4.15),

Eθ

[
v

ϕ
d
(
Y, μ̂MLE(Y n)

)∣∣
∣
∣Y n = yn

]
= Eθ

[
v

ϕ
d
(
Y, μ̂MLE(yn)

)∣∣
∣
∣Y n = yn

]
.

(4.33)

This is the part that we are going to solve empirically in the this section.
Typically, we assume that Y and Y n are independent, nevertheless, Y and
its MLE predictor may still be dependent because we may have a predictor
μ̂MLE(Y n) = μ̂MLE(Y n, x). That is, this predictor often depends on covariate
information x that describes Y , an example is provided in (4.22) of Outlook 4.13
and this is different from (4.15). In that case, the decision rule A : Y×X → A

is extended by an additional covariate component x ∈ X , we refer to Sect. 5.1.1,
where X is introduced and discussed.

(2) We have to find a way to generate more observations Y n from P(yn; θ) in
order to evaluate the outer integral in (4.32) empirically. One way to do so is
the bootstrap method that is going to be discussed in Sect. 4.3, below.

We address the first problem of estimating the deviance GL given in (4.33).
We do this under the assumption that Y n and Y are independent. In order to
estimate (4.33) we need observations for Y . However, typically, there are no
observations available for this random variable because it is only going to be
observed in the future. For this reason, one uses past observations for both, model
fitting and the GL analysis. In order to perform this analysis in a proper way, the
general paradigm is to partition the entire data into two disjoint data sets, a so-
called learning data set L = {Y1, . . . , Yn} and a test data set T = {Y †

1 , . . . , Y
†
T }.

If we assume that all observations in L ∪ T are independent, then we receive a
suitable observation Y n from the learning data set L that can be used for model
fitting. The test sample T can then play the role of the unobserved random variable
Y (by assumption being independent of Y n). Note that L is only used for model
fitting and T is only used for the deviance GL evaluation, see Fig. 4.1.

This setup motivates to estimate the mean parameter μ with MLE μ̂MLE
L =

μ̂MLE(Y n) from the learning data L and Y n, respectively, by minimizing the
deviance loss function μ �→ D(Y n, μ) on the learning data L, according to Corol-
lary 4.5. Then we use this predictor μ̂MLE

L to empirically evaluate the conditional
expectation in (4.33) on T . The perception used is that we (in-sample) learn a
model on L and we out-of-sample test this model on T to see how it generalizes
to unobserved variables Y †

t , 1 ≤ t ≤ T , that are of a similar nature as Y .
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Fig. 4.1 Partition of entire
data into learning data set L
and test data set T

Definition 4.24 (In-Sample and Out-of-Sample Losses) The in-sample
deviance loss on the learning data L = {Y1, . . . , Yn} is given by

D(L, μ̂MLE
L ) = 2

n

n∑

i=1

vi

ϕ

(
Yih (Yi)− κ (h (Yi))− Yih(μ̂MLE

L )+ κ
(
h(μ̂MLE

L )
))
,

with MLE μ̂MLE
L = μ̂MLE(Y n) on L.

The out-of-sample deviance loss on the test data T = {Y †
1 , . . . , Y

†
T } of

predictor μ̂MLE
L is

D(T , μ̂MLE
L ) = 2

T

T∑

t=1

v
†
t

ϕ

(
Y

†
t h
(
Y

†
t

)
−κ
(
h
(
Y

†
t

))
−Y †
t h(μ̂

MLE
L )+κ

(
h(μ̂MLE

L )
) )
,

where the sum runs over the test sample T having exposures v†
1 , . . . , v

†
T > 0.

For MLE we minimize the objective function (4.9), therefore, the in-sample
deviance loss D(L, μ̂MLE

L ) = D(Y n, μ̂
MLE(Y n)) exactly corresponds to the

minimal deviance loss (4.9) achieved on the learning data L, i.e., when using
MLE μ̂MLE

L = μ̂MLE(Y n). We call this in-sample because the same data L is
used for parameter estimation and deviance loss calculation. Typically, this loss is
biased because it uses the optimal (in-sample) parameter estimate, we also refer to
Sect. 4.2.3, below.

The out-of-sample loss D(T , μ̂MLE
L ) then empirically estimates the inner expec-

tation in (4.32). This is a proper out-of-sample analysis because the test data T
is disjoint from the learning data L on which the decision rule μ̂MLE

L has been
trained. Note that this out-of-sample figure reflects (4.33) in the following sense.
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We have a portfolio of risks (Y †
t , v

†
t ), 1 ≤ t ≤ T , and (4.33) does not only reflect

the calculation of the deviance GL of a given risk, but also the random selection of
a risk from the portfolio. In this sense, (4.33) is an average over a given portfolio
whose description is also included in the probability Pθ .

Summary 4.25 Definition 4.24 gives the general principle in predictive
modeling according to which model learning and the generalization analysis
are done. Namely, based on two disjoint and independent data sets L and T ,
we perform model calibration on L, and we analyze (conditional) GLs (using
out-of-sample losses) on T , respectively. For this concept to be useful, the
learning data L and the test data T have to be sufficiently similar, i.e., ideally
coming from the same model.

This approach does not estimate the outer expectation in the expected
deviance GL (4.32), i.e., it is only an estimate for the deviance GL, given
Y n, see (4.33).

4.2.2 Cross-Validation Techniques

In many applications one is not in the comfortable situation of having two
sufficiently large data sets L and T available to support model learning and an
out-of-sample generalization analysis. That is, we are usually equipped with only
one data set of average size, let us call it D. In order to calculate the objects in
Definition 4.24 we could partition this data set (at random) into two data sets and
then calculate in-sample and out-of-sample deviance losses on this partition. The
disadvantage of this approach is that it is an inefficient use of information if only
little data is available. In that case we require (almost) all data for learning. However,
we still need a sufficiently large share of data for testing, to receive reliable deviance
GL estimates for (4.33). The classical approach in this situation is to use cross-
validation for estimating out-of-sample losses. The concept works as follows:

1. Perform model learning and in-sample loss calculation D(L, μ̂MLE
L ) on all

available data L = D, i.e., this part is not affected by selecting test data T
and it is not touched by cross-validation.

2. For out-of-sample deviance loss calculation use the data D iteratively in an
efficient way such that part of the data is used for model learning and the
other part for the out-of-sample generalization analysis. This second step

(continued)
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is (only) done for estimating the deviance GL of the model learned on all
data. I.e. for prediction we work with MLE μ̂MLE

L=D, but the out-of-sample
deviance loss is estimated using this data in a different way.

The three most commonly used methods are leave-one-out,K-fold and stratified
K-fold cross-validation. We briefly describe these three cross-validation methods.

Leave-One-Out Cross-Validation

Denote all available data by D = {Y1, . . . , Yn}, and assume independence between
the components. For leave-one-out (loo) cross-validation we select 1 ≤ i ≤ n and
define the partition L(−i) = D \ {Yi} for the learning data and Ti = {Yi} for the test
data. Based on the learning data L(−i) we calculate the MLE

μ̂(−i) def.= μ̂MLE
L(−i) ,

which is based on all data except observation Yi . This observation is now used to
do an out-of-sample analysis, and averaging this over all 1 ≤ i ≤ n we receive the
leave-one-out cross-validation loss

D̂loo = 1

n

n∑

i=1

vi

ϕ
d
(
Yi, μ̂

(−i)) = 1

n

n∑

i=1

D
(
Ti , μ̂(−i)

)
(4.34)

= 2

n

n∑

i=1

vi

ϕ

(
Yih (Yi)− κ (h (Yi))− Yih

(
μ̂(−i)

)
+ κ

(
h
(
μ̂(−i)

)) )
,

where D(Ti , μ̂(−i)) is the (out-of-sample) cross-validation loss on Ti = {Yi} using
the predictor μ̂(−i). This leave-one-out cross-validation loss D̂loo is now used as
estimate for the out-of-sample deviance loss D(T , μ̂MLE

L ). Leave-one-out cross-
validation uses all data D for learning and testing, namely, the data D is partitioned
into a learning set L(−i) for (partial) learning and a test set Ti = {Yi} for an out-
of-sample generalization analysis. This is done for all instances 1 ≤ i ≤ n, and the
out-of-sample loss is estimated by the resulting average cross-validation loss. This
averaging allows us to not only understand (4.34) as a conditional out-of-sample loss
in the spirit of Definition 4.24. The outer empirical average in (4.34) also makes it
suitable for an expected deviance GL estimate according to (4.32).

The variance of this empirical deviance GL is given by (subject to existence)

Varθ
(
D̂loo

)
= 1

n2

n∑

i=1

n∑

j=1

Covθ

(
vi

ϕ
d
(
Yi, μ̂

(−i)) ,
vj

ϕ
d
(
Yj , μ̂

(−j))
)
.
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Fig. 4.2 Partitions of K-fold cross-validation for K = 5

These covariances use exactly the same observations on D \ {Yi, Yj }, therefore,
there are strong correlations between the estimators μ̂(−i) and μ̂(−j). In addition,
the leave-one-out cross-validation is often computationally not feasible because it
requires fitting the model n times, which in the situation of complex models and of
large insurance portfolios can be too demanding. We come back to this in Sect. 5.6
where we provide the generalized cross-validation (GCV) loss approximation within
generalized linear models (GLMs).

K-Fold Cross-Validation

Choose a fixed integer K ≥ 2 and partition the entire data D at random into K
disjoint subsets (called folds) L1, . . . ,LK of approximately the same size. The
learning data for fixed 1 ≤ k ≤ K is then defined by L[−k] = D \ Lk and the
test data by Tk = Lk , see Fig. 4.2. Based on learning data L[−k] we calculate the
MLE

μ̂[−k] def.= μ̂MLE
L[−k],

which is based on all data except Tk .
These observations are now used to do an (out-of-sample) cross-validation

analysis, and averaging this over all 1 ≤ k ≤ K we receive the K-fold cross-
validation (CV) loss.
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D̂CV = 1

K

K∑

k=1

D
(
Tk, μ̂[−k])

= 1

K

K∑

k=1

1

|Tk|
∑

Yi∈Tk

vi

ϕ
d
(
Yi, μ̂

[−k]) (4.35)

≈ 1

n

K∑

k=1

∑

Yi∈Tk

vi

ϕ
d
(
Yi, μ̂

[−k]) .

The last step is an approximation because not all Tk may have exactly the same
sample size if n is not a multiple of K . We can understand (4.35) not only as a
conditional out-of-sample loss estimate in the spirit of Definition 4.24. The outer
empirical average in (4.35) also makes it suitable for an expected deviance GL
estimate according to (4.32). The variance of this empirical deviance GL is given by
(subject to existence)

Varθ
(
D̂CV

)
≈ 1

n2

K∑

k,l=1

∑

Yi∈Tk

∑

Yj∈Tl
Covθ

(
vi

ϕ
d
(
Yi, μ̂

[−k]) ,
vj

ϕ
d
(
Yj , μ̂

[−l])
)
.

Typically, in applications, one uses K-fold cross-validation with K = 10.

Stratified K-Fold Cross-Validation

A disadvantage of the aboveK-fold cross-validation is that it may happen that there
are two outliers in the data, and there is a positive probability that these two outliers
belong to the same subset Lk . This may substantially distortK-fold cross-validation
because in that case the subsets Lk , 1 ≤ k ≤ K , are of different quality. StratifiedK-
fold cross-validation aims at distributing outliers more equally across the partition.
Order the observations Yi , 1 ≤ i ≤ n, as follows

Y(1) ≥ Y(2) ≥ . . . ≥ Y(n).

For stratified K-fold cross-validation, we randomly distribute (partition) the K
biggest claims Y(1), . . . , Y(K) to the subsets Lk , 1 ≤ k ≤ K , then we randomly
partition the nextK biggest claims Y(K+1), . . . , Y(2K) to the subsets Lk , 1 ≤ k ≤ K ,
and so forth. This implies, e.g., that the two biggest claims cannot fall into the same
set Lk . This stratified partition Lk , 1 ≤ k ≤ K , is then used for K-fold cross-
validation.
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Summary 4.26 (Cross-Validation)

• A model is calibrated on the learning data set L by minimizing the in-
sample deviance loss D(L, μ) in μ. This provides MLE μ̂MLE

L .
• The quality of this model is assessed on test data T being disjoint of L

considering the corresponding out-of-sample deviance loss D(T , μ̂MLE
L ).

• If there is no test data set T available we perform (stratified) K-fold
cross-validation. This provides the (stratified)K-fold cross-validation loss
D̂CV which is an estimate for the out-of-sample deviance loss and for the
expected deviance GL (4.32).

Example 4.27 (Out-of-Sample Deviance Loss Estimation) We consider a claim
counts example using the Poisson EDF model. The claim counts Ni and exposures
vi > 0 used come from the French motor insurance data given in Listing 13.2
of Chap. 13.1. We model the claim frequencies Yi = Ni/vi with the Poisson EDF
model having cumulant function κ(θ) = exp{θ} and dispersion parameter ϕ = 1 for
all 1 ≤ i ≤ n. The expected frequency is given by μ = Eθ [Yi ] = κ ′(θ). Moreover,
we assume that all claim counts Ni , 1 ≤ i ≤ n, are independent. This provides us
with the Poisson deviance loss function for observations Y n = (Y1, . . . , Yn)

�, see
Example 4.12,

D(Y n, μ) = 1

n

n∑

i=1

vid(Yi , μ) = 1

n

n∑

i=1

2vi

(
μ− Yi − Yi log

(
μ

Yi

))

= 1

n

n∑

i=1

2

(
viμ− Ni −Ni log

(
viμ

Ni

))
≥ 0,

where, for Yi = 0, we set d(Yi = 0, μ) = 2μ. Minimizing the Poisson deviance
loss function D(Y n, μ) in μ gives us the MLE for μ and θ = h(μ), respectively. It
is given by, see (3.24),

μ̂MLE = μ̂MLE
L =

∑n
i=1Ni∑n
i=1 vi

= 7.36%,

for learning data set L = {Y1, . . . , Yn}. This provides us with an in-sample Poisson
deviance loss of D(Y n, μ̂MLE

L ) = D(L, μ̂MLE
L ) = 25.213 · 10−2.

Since we do not have test data T , we explore tenfold cross-validation. We
therefore partition the entire data at random into K = 10 disjoint sets L1, . . . ,L10,
and compute the tenfold cross-validation loss as described in (4.35). This gives us
D̂CV = 25.213 · 10−2, thus, we receive the same value as for the in-sample loss
which says that we do not have in-sample over-fitting, here. This is not surprising
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in the homogeneous model λ = Eθ [Yi]. We can also quantify the uncertainty in this
estimate by the corresponding empirical standard deviation for Tk = Lk

√√
√
√ 1

K − 1

K∑

k=1

(
D
(
Tk, μ̂[−k])− D̂CV

)2 = 0.234 · 10−2. (4.36)

This says that there is quite some fluctuation in the data because uncertainty in
estimate D̂CV = 25.213 · 10−2 is roughly 1%. This finishes this example, and we
will come back to it in Sect. 5.2.4, below. �

4.2.3 Akaike’s Information Criterion

The out-of-sample analysis in terms of GLs and cross-validation evaluates the
predictive performance on unseen data. Another way of model selection is to study
in-sample losses instead, but penalize model complexity. Akaike’s information
criterion (AIC), see Akaike [5], is the most popular tool that follows such a model
selection methodology. AIC is based on a set of assumptions which should be
fulfilled to apply, this is going to be discussed in this section; we therefore follow
the lecture notes of Künsch [229].

Assume we have independent random variables Yi from some (unknown) density
f . Assume we have two candidate models with densities hθ and gϑ from which we
would like to select the preferred one for the given data Y n = (Y1, . . . , Yn). The two
unknown parameters in these densities hθ and gϑ are called θ and ϑ , respectively.
We neither assume that one of the two models hθ and gϑ contains the true model f ,
nor that the two models are nested. That is, f , hθ and gϑ are quite general densities
w.r.t. a given σ -finite measure ν.

Assume that both models under consideration have a unique MLE θ̂MLE =
θ̂MLE(Y n) and ϑ̂MLE = ϑ̂MLE(Y n) which is based on the same observations Y n.
AIC [5] says that model hθ̂MLE should be preferred over model gϑ̂MLE if

− 2
n∑

i=1

log
(
hθ̂MLE(Yi)

)+ 2 dim(θ) < − 2
n∑

i=1

log
(
gϑ̂MLE(Yi)

)+ 2 dim(ϑ),

(4.37)

where dim(·) denotes the dimension of the corresponding parameter. Thus, we
compute the log-likelihoods of the data Y n in the corresponding MLEs θ̂MLE and
ϑ̂MLE, and we penalize the resulting values with the number of parameters to correct
for model complexity. We give some remarks.
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Remarks 4.28

• AIC is neither an in-sample loss nor an out-of-sample loss to measure gen-
eralization accuracy, but it considers penalized log-likelihoods. Under certain
assumptions one can prove that asymptotically minimizing AICs is equivalent
to minimizing leave-one-out cross-validation mean squared errors.

• The two penalized log-likelihoods have to be evaluated on the same data Y n
and they need to consider the MLEs θ̂MLE and ϑ̂MLE because the justification
of AIC is based on the asymptotic normality of MLEs, otherwise there is no
mathematical justification why (4.37) should be a reasonable model selection
tool.

• AIC does not require (but allows for) nested models hθ and gϑ nor need they be
Gaussian, it is only based on asymptotic normality. We give a heuristic argument
below.

• Evaluation of (4.37) involves all terms of the log-likelihoods, also those that do
not depend on the parameters θ and ϑ .

• Both models should consider the data Y n in the same units, i.e., AIC does not
apply if hθ is a density for Yi and gϑ is a density for cYi . In that case, one has
to perform a transformation of variables to ensure that both densities consider
the data in the same units. We briefly highlight this by considering a Gaussian
example. We choose i.i.d. observations Yi ∼ N (θ, σ 2) for known variance σ 2 >

0. Choose c > 0, we have cYi ∼ N (ϑ = cθ, c2σ 2). We obtain MLE θ̂MLE =∑n
i=1 Yi/n and log-likelihood in MLE θ̂MLE

n∑

i=1

log
(
hθ̂MLE (Yi)

) = −n
2

log(2πσ 2)−
n∑

i=1

1

2σ 2

(
Yi − θ̂MLE

)2
.

On the transformed scale we have MLE ϑ̂MLE = ∑n
i=1 cYi/n = cθ̂MLE and

log-likelihood in MLE ϑ̂MLE

n∑

i=1

log
(
gϑ̂MLE (cYi)

) = −n
2

log(2πc2σ 2)−
n∑

i=1

1

2c2σ 2

(
cYi − cθ̂MLE

)2
.

Thus, find that the two log-likelihoods differ by −nlog(c), but we consider the
same model only under different measurement units of the data. The same applies
when we work, e.g., with a log-normal model or logged data in a Gaussian model.

We give a heuristic justification of AIC. In Example 3.10 we have seen that
the MLE is obtained by minimizing the KL divergence from hθ to the empirical
distribution f̂n of Y n. This motivates to use the KL divergence also for comparing
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the MLE estimated models to the true model, i.e., we consider the difference
(supposed the densities are defined on the same domain)

DKL
(
f
∥
∥hθ̂MLE(·))−DKL

(
f
∥
∥gϑ̂MLE (·))

=
∫

log

(
f (y)

hθ̂MLE (y)

)
f (y)dν(y)−

∫
log

(
f (y)

gϑ̂MLE(y)

)
f (y)dν(y)

=
∫

log
(
gϑ̂MLE (y)

)
f (y)dν(y)−

∫
log
(
hθ̂MLE(y)

)
f (y)dν(y). (4.38)

If this difference is negative, model hθ̂MLE should be preferred over model gϑ̂MLE

because it is closer to the true model f w.r.t. the KL divergence. Thus, we need to
calculate the two integrals in (4.38). Since the true density f is not known, these
two integrals need to be estimated.

As a first idea we estimate the integrals on the right-hand side empirically using
the observations Y n, say, the first integral is estimated by

1

n

n∑

i=1

log
(
gϑ̂MLE(Yi)

)
.

However, this will lead to a biased estimate because the MLE ϑ̂MLE exactly
maximizes this empirical estimate (as a function of ϑ). The integrals in (4.38),
on the other hand, can be interpreted as an out-of-sample calculation between
independent random variables Y n (used for MLE) and Y ∼ f dν used in the integral.
The bias results from the fact that in the empirical estimate the independence
gets lost. Therefore, we need to correct this estimate for the bias in order to
obtain a reasonable estimate for the difference of the KL divergences. Under the
following assumptions this bias correction is asymptotically given by −dim(ϑ)/n:
(1)

√
n(ϑ̂MLE(Y n) − ϑ0) is asymptotically normally distributed N (0,�(ϑ0)

−1) as
n → ∞, where ϑ0 is the parameter that minimizes the KL divergence from gϑ to
f ; we also refer to Remarks 3.26. (2) The true f is sufficiently close to gϑ0 such
that the Ef -covariance matrix of the score ∇ϑ loggϑ0 is close to the negative Ef -
expected Hessian ∇2

ϑ loggϑ0 ; see also (3.36) and Sect. 11.1.4, below. In that case,
�(ϑ0) approximately corresponds to Fisher’s information matrix I1(ϑ0) and AIC is
justified.

This shows that AIC applies if both models are evaluated under the same
observations Y n, the models need to use the MLEs, and asymptotic normality needs
to hold with limits such that the true model is close to a member of the selected
model classes {hθ ; θ} and {gϑ ;ϑ}. We remark that this is not the only set-up under
which AIC can be justified, but other set-ups do not essentially differ.

The Bayesian information criterion (BIC) is similar to AIC but in a Bayesian
context. The BIC says that model hθ̂MLE should be preferred over model gϑ̂MLE if

−2
n∑

i=1

log
(
hθ̂MLE(Yi)

)+log(n)dim(θ) < −2
n∑

i=1

log
(
gϑ̂MLE(Yi)

)+log(n)dim(ϑ),
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where n is the sample size of Y n used for model fitting. The BIC has been derived
by Schwarz [331]. Therefore, it is also called Schwarz’ information criterion (SIC).

4.3 Bootstrap

The bootstrap method has been invented by Efron [115] and Efron–Tibshirani [118].
The bootstrap is used to simulate new data from either the empirical distribution F̂n
or from an estimated model F(·; θ̂ ). This allows, for instance, to evaluate the outer
expectation in the expected deviance GL (4.32) which requires a data model for Y n.
The presentation in this section is based on the lecture notes of Bühlmann–Mächler
[59, Chapter 5].

4.3.1 Non-parametric Bootstrap Simulation

Assume we have i.i.d. observations Y1, . . . , Yn from an unknown distribution
function F(·; θ). Based on these observations Y = (Y1, . . . , Yn) we choose a
decision rule A : Y → A = � ⊆ R which provides us with an estimator for θ

Y �→ θ̂ = A(Y ). (4.39)

Typically, the decision ruleA(·) is a known function and we would like to determine
the distributional properties of parameter estimator (4.39) as a function of the
(random) observations Y . E.g., for any measurable set C, we might want to compute

Pθ

[
θ̂ ∈ C] = Pθ [A(Y ) ∈ C] =

∫
1{A(y)∈C} dP(y; θ). (4.40)

Since, typically, the true data generating distribution Yi ∼ F(·; θ) is not known, the
distributional properties of θ̂ cannot be determined, also not by Monte Carlo simula-
tion. The idea behind bootstrap is to approximate F(·; θ). Choose as approximation
to F(·; θ) the empirical distribution of the i.i.d. observations Y given by, see (3.9),

F̂n(y) = 1

n

n∑

i=1

1{Yi≤y} for y ∈ R.

The Glivenko–Cantelli theorem [64, 159] tells us that the empirical distribution
F̂n converges uniformly to F(·; θ), a.s., for n → ∞, so it should be a good
approximation to F(·; θ) for large n. The idea now is to simulate from the empirical
distribution F̂n.
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(Non-parametric) bootstrap algorithm

(1) Repeat for m = 1, . . . ,M

(a) simulate i.i.d. observations Y ∗
1 , . . . , Y

∗
n from F̂n (these are obtained by

random drawings with replacements from the observations Y1, . . . , Yn; we
denote this resampling distribution of Y ∗ = (Y ∗

1 , . . . , Y
∗
n ) by P

∗ = P
∗
Y );

(b) calculate the estimator θ̂ (m∗) = A(Y ∗).

(2) Return θ̂ (1∗), . . . , θ̂ (M∗) and the resulting empirical bootstrap distribution

F̂ ∗
M(ϑ) = 1

M

M∑

m=1

1{θ̂ (m∗)≤ϑ},

for the estimated distribution of θ̂ .

We can use the empirical bootstrap distribution F̂ ∗
M as an estimate of the true

distribution of θ̂ , that is, we estimate and approximate

Pθ

[
θ̂ ∈ C] ≈ P̂θ

[
θ̂ ∈ C] def.= P

∗
Y

[
θ̂∗ ∈ C] ≈ 1

M

M∑

m=1

1{θ̂ (m∗)∈C}, (4.41)

where P
∗
Y corresponds to the bootstrap distribution of Step (1a) of the above

algorithm, and where we set θ̂∗ = A(Y ∗). This bootstrap distribution P
∗
Y is

empirically approximated by the empirical bootstrap distribution F̂ ∗
M for studying

θ̂∗.

Remarks 4.29

• The quality of the approximations in (4.41) depend on the richness of the
observation Y = (Y1, . . . , Yn), because the bootstrap distribution

P
∗
Y

[
θ̂∗ ∈ C] = P

∗
Y=y

[
θ̂∗ ∈ C] ,

depends on the realization y of the data Y from which we generate the bootstrap
sample Y ∗. It also depends onM and the explicit random drawings Y ∗

i providing
the empirical bootstrap distribution F̂ ∗

M . The latter uncertainty can be controlled
since the bootstrap distribution P

∗
Y corresponds to a multinomial distribution, and

the Glivenko–Cantelli theorem [64, 159] applies to F̂ ∗
M and P

∗
Y forM → ∞. The

former uncertainty inherited from the realization Y = y cannot be diminished
because we cannot enrich the observation Y .
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• The empirical bootstrap distribution F̂ ∗
M can be used to estimate the mean of the

estimator θ̂ given in (4.39)

Êθ

[
θ̂
] = E

∗
Y

[
θ̂∗
] ≈ 1

M

M∑

m=1

θ̂ (m∗),

and its variance

V̂arθ
(
θ̂
) = VarP∗

Y

(
θ̂∗
) ≈ 1

M − 1

M∑

m=1

(

θ̂ (m∗) − 1

M

M∑

k=1

θ̂ (k∗)
)2

.

• The previous item discusses the approximation of the bootstrap mean and
variance, respectively. Bootstrap intervals for coverage ratios need some care,
and there are different versions. The naive way of just calculating quantiles from
F̂ ∗
M often does not work well, and methods like a double bootstrap may need to

be considered.
• In (4.39) we have assumed that the quantity of interest is the parameter θ , but

similar considerations also apply to general decision rules estimating γ (θ).
• The bootstrap as defined above directly acts on the observations Y1, . . . , Yn, and

the basic assumption is that these observations are i.i.d. If this is not the case,
one may first need to transform the observations, for instance, one can calculate
residuals and assume that these residuals are i.i.d. In more complicated cases, one
even drops the i.i.d. assumption and replaces it by an identical mean and variance
assumption, that is, that all residuals are assumed to be independent, centered and
with unit variance. This is sometimes also called residual bootstrap and it may
be suitable in regression models as will be introduced below. Thus, in this latter
case we estimate for each observation Yi its mean μ̂i and its standard deviation
σ̂i , for instance, using the variance function of the chosen EDF. This then allows
for calculating the residuals ε̂i = (Yi − μ̂i)/σ̂i . For the residual bootstrap we
resample the residuals ε̂∗i from ε̂1, . . . , ε̂n. This provides bootstrap observations

Y ∗
i = μ̂i + σ̂îε∗i .

The wild bootstrap proposed by Wu [386] additionally uses a centered and
normalized i.i.d. random variable Vi (also being independent of ε̂∗i ) to modify
the residual bootstrap observations to

Y ∗
i = μ̂i + σ̂iVi ε̂∗i .
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The bootstrap is called consistent for θ̂ if we have for all z ∈ R the following
convergence in probability as n→ ∞

Pθ

[√
n
(
θ̂ − θ) ≤ z]− P

∗
Y

[√
n
(
θ̂∗ − θ̂) ≤ z] prob.→ 0,

the quantities θ̂ = θ̂n and θ̂∗ = θ̂∗n depend on (the size n of) the observation Y =
Y n; the convergence in probability is needed because Y = Y n are random vectors.
Assume that θ̂MLE = θ̂ is the MLE of θ satisfying the assumptions of Theorem 3.28.
Then we have asymptotic normality, see (3.30),

√
n
(
θ̂ − θ) �⇒ N

(
0,I1(θ)

−1
)

as n→ ∞,

with Fisher’s information I1(θ). Bootstrap consistency then requires

√
n
(
θ̂∗ − θ̂) P

∗
Y�⇒ N

(
0,I1(θ)

−1
)

in probability as n→ ∞.

Bootstrap consistency typically holds if θ̂ is asymptotically normal (as n→ ∞) and
if the underlying data Yi is i.i.d. Moreover, bootstrap consistency usually implies
consistent variance and bias estimation

VarP∗
Y

(
θ̂∗
)

Varθ
(
θ̂
)

prob.→ 1 and
E

∗
Y

[
θ̂∗
]− θ̂

Eθ

[
θ̂
]− θ

prob.→ 1 as n→ ∞.

For more information and bootstrap confidence intervals we refer to Chapter 5 in
the lecture notes of Bühlmann–Mächler [59].

4.3.2 Parametric Bootstrap Simulation

For the parametric bootstrap we assume to know the parametric family F =
{F(·; θ); θ ∈ �} from which the i.i.d. observations Y1, . . . , Yn ∼ F(·; θ) have
been generated from, and only the explicit choice of the parameter θ ∈ � is not
known. Based on these observations we construct an estimator θ̂ = A(Y ), for the
unknown parameter θ ∈ �.

(Parametric) bootstrap algorithm

(1) Repeat for m = 1, . . . ,M

(a) simulate i.i.d. observations Y ∗
1 , . . . , Y

∗
n from F(·; θ̂ ) (we denote the resam-

pling distribution of Y ∗ = (Y ∗
1 , . . . , Y

∗
n ) by P

∗ = P
∗
Y );

(b) calculate the estimator θ̂ (m∗) = A(Y ∗).
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(2) Return θ̂ (1∗), . . . , θ̂ (M∗) and the resulting empirical bootstrap distribution

F̂ ∗
M(ϑ) = 1

M

M∑

m=1

1{θ̂ (m∗)≤ϑ}.

We then estimate and approximate the distribution of θ̂ analogously to (4.41),
and the same remarks apply as for the non-parametric bootstrap. The parametric
bootstrap has the advantage that it can enrich the data by sampling new observations
from the distribution F(·; θ̂ ). A shortfall of the parametric bootstrap will occur if the
family F is misspecified, then the bootstrap sample Y ∗ will only poorly describe the
true data Y , e.g., if the data shows over-dispersion but the select family F does not
allow to model such over-dispersion.
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Chapter 5
Generalized Linear Models

Most of the theory in the previous chapters has been based on the assumption of
having similarity (or homogeneity) between the different observations. This was
expressed by making an i.i.d. assumption on the observations, see, e.g., Sect. 3.3.2.
In many practical applications such a homogeneity assumption is not reasonable,
one may for example think of car insurance pricing where different car drivers have
different driving experience and they drive different cars, or of health insurance
where policyholders may have different genders and ages. Figure 5.1 shows a
health insurance example where the claim sizes depend on the gender and the
age of the policyholders. The most popular statistical models that are able to
cope with such heterogeneous data are the generalized linear models (GLMs). The
notion of GLMs has been introduced in the seminal work of Nelder–Wedderburn
[283] in 1972. Their work has introduced a unified procedure for modeling and
fitting distributions within the EDF to data having systematic differences (effects)
that can be described by explanatory variables. Today, GLMs are the state-of-the-
art statistical models in many applied fields including statistics, actuarial science
and economics. However, the specific use of GLMs in the different fields may
substantially differ. In fields like actuarial science these models are mainly used for
predictive modeling, in other fields like economics or social sciences GLMs have
become the main tool in exploring and explaining (hopefully) causal relations. For
a discussion on “predicting” versus “explaining” we refer to Shmueli [338].

It is difficult to give a good list of references for GLMs, since GLMs and their
offsprings are present in almost every statistical modeling publication and in every
lecture on statistics. Classical statistical references are the books of McCullagh–
Nelder [265], Fahrmeir–Tutz [123] and Dobson [107], in the actuarial literature we
mention the textbooks (in alphabetical order) of Charpentier [67], De Jong–Heller
[89], Denuit et al. [99–101], Frees [134] and Ohlsson–Johansson [290], but this list
is far from being complete.

© The Author(s) 2023
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Applications, Springer Actuarial, https://doi.org/10.1007/978-3-031-12409-9_5
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Fig. 5.1 Claim sizes in
health insurance as a function
of the age of the policyholder,
and split by gender
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In this chapter we introduce and discuss GLMs in the context of actuarial
modeling. We do this in such a way that GLMs can be seen as a building block of
network regression models which will be the main topic of Chap. 7 on deep learning.

5.1 Generalized Linear Models and Log-Likelihoods

5.1.1 Regression Modeling

We start by assuming of having independent random variables Y1, . . . , Yn which
are described by a fixed member of the EDF. That is, we assume that all Yi are
independent and have densities w.r.t. a σ -finite measure ν on R given by

Yi ∼ f (yi; θi, vi/ϕ) = exp

{
yiθi − κ(θi)
ϕ/vi

+ a(yi; vi/ϕ)
}

for 1 ≤ i ≤ n,
(5.1)

with canonical parameters θi ∈ �̊, exposures vi > 0 and dispersion parameter ϕ >
0. Throughout, we assume that the effective domain � has a non-empty interior.
There is a fundamental difference between (5.1) and Example 3.5. We now allow
every random variable Yi to have its own canonical parameter θi ∈ �̊. We call
this a heterogeneous situation because the observations are allowed to differ in a
systematic way expressed by different canonical parameters. This is highlighted by
the lines in the health insurance example of Fig. 5.1 where (expected) claim sizes
differ by gender and age of policyholder.

In Sect. 4.1.2 we have introduced the saturated model where every observation Yi
has its own parameter θi . In general, if we have n observations Y = (Y1, . . . , Yn)

�
we can estimate at most n parameters. The other extreme case is the homogeneous
one, meaning that θi = θ ∈ �̊ for all 1 ≤ i ≤ n. In this latter case we have exactly
one parameter to estimate, and we call this model null model, intercept model
or homogeneous model, because all components of Y are assumed to follow the
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same law expressed in a single common parameter θ . Both the saturated model and
the null model may behave very poorly in predicting new observations. Typically,
the saturated model fully reflects the data Y including the noisy part (random
component, irreducible risk, see Remarks 4.2) and, therefore, it is not useful for
prediction. We also say that this model (in-sample) over-fits to the data Y and
does not generalize (out-of-sample) to new data. The null model often has a poor
predictive performance because if the data has systematic effects these cannot be
captured by a null model. GLMs try to find a good balance between these two
extreme cases, by trying to extract (only) the systematic effects from noisy data
Y . We therefore model the canonical parameters θi as a low-dimensional function
of explanatory variables which capture the systematic effects in the data. In Fig. 5.1
gender and age of policyholder play the role of such explanatory variables.

Assume that each observationYi is equipped with a feature (explanatory variable,
covariate) xi that belongs to a fixed given feature space X . These features xi
are assumed to describe the systematic effects in the observations Yi , i.e., these
features are assumed to be appropriate descriptions of the heterogeneity between the
observations. In a nutshell, we then assume of having a suitable regression function

θ : X → �̊, x �→ θ(x),

such that we can appropriately describe the observations by

Yi
ind.∼ f (yi; θi = θ(xi ), vi/ϕ) = exp

{
yiθ(xi )− κ(θ(xi ))

ϕ/vi
+ a(yi; vi/ϕ)

}
,

(5.2)

for 1 ≤ i ≤ n. As a result we receive for the first moment of Yi , see Corollary 2.14,

μi = μ(xi ) = Eθ(xi ) [Yi] = κ ′(θ(xi )). (5.3)

Thus, the regression function θ : X → �̊ is assumed to describe the systematic
differences (effects) between the random variables Y1, . . . , Yn being expressed by
the means μ(xi ) for features x1, . . . , xn. In GLMs this regression function takes a
linear form after a suitable transformation, which exactly motivates the terminology
generalized linear model.

5.1.2 Definition of Generalized Linear Models

We start with the discussion of the features x ∈ X . Features are also called
explanatory variables, covariates, independent variables or regressors. Throughout,
we assume that the features x = (x0, x1, . . . , xq)

� include a first component x0 = 1,
and we choose feature space X ⊂ {1} × R

q . The inclusion of this first component
x0 = 1 is useful in what follows. We call this first component intercept or bias
component because it will be modeling an intercept of a regression model. The
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null model (homogeneous model) has features that only consist of this intercept
component. For later purposes it will be useful to introduce the design matrix X
which collects the features x1, . . . , xn ∈ X of all responses Y1, . . . , Yn. The design
matrix is defined by

X = (x1, . . . , xn)
� =

⎛

⎜
⎝

1 x1,1 · · · x1,q
...
...
. . .

...

1 xn,1 · · · xn,q

⎞

⎟
⎠ ∈ R

n×(q+1). (5.4)

Based on these choices we assume existence of a regression parameter β ∈ R
q+1

and of a strictly monotone and smooth link function g : M → R such that we can
express (5.3) by the following function (we drop index i)

x �→ g(μ(x)) = g (Eθ(x) [Y ]
) = η(x) = 〈β, x〉 = β0 +

q∑

j=1

βjxj . (5.5)

Here, 〈·, ·〉 describes the scalar product in the Euclidean space R
q+1, θ(x) =

h(μ(x)) is the resulting canonical parameter (using canonical link h = (κ ′)−1),
and η(x) is the so-called linear predictor. After applying a suitable link function g,
the systematic effects of the random variable Y with features x can be described by
a linear predictor η(x) = 〈β, x〉, linear in the components of x ∈ X . This gives
a particular functional form to (5.3), and the random variables Y1, . . . , Yn share
a common regression parameter β ∈ R

q+1. Remark that the link function g used
in (5.5) can be different from the canonical link h used to calculate θ(x) = h(μ(x)).
We come back to this distinction below.

Summary of (5.5)

1. The independent random variables Yi follow a fixed member of the
EDF (5.1) with individual canonical parameters θi ∈ �̊, for all 1 ≤ i ≤ n.

2. The canonical parameters θi and the corresponding mean parameters μi
are related by the canonical link h = (κ ′)−1 as follows h(μi) = θi , where
κ is the cumulant function of the chosen EDF, see Corollary 2.14.

3. We assume that the systematic effects in the random variables Yi can
be described by linear predictors ηi = η(xi ) = 〈β, xi〉 and a strictly
monotone and smooth link function g such that we have g(μi) = ηi =
〈β, xi〉, for all 1 ≤ i ≤ n, with common regression parameter β ∈ R

q+1.

We can either express this GLM regression structure in the dual (mean) parameter
space M or in the effective domain �̊, see Remarks 2.9,
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x �→ μ(x) = g−1(η(x)) = g−1〈β, x〉 ∈ M or

x �→ θ(x) = (h ◦ g−1)(η(x)) = (h ◦ g−1)〈β, x〉 ∈ �̊,

where (h ◦ g−1) is the composition of the inverse link g−1 and the canonical link h.
For the moment, the link function g is quite general. In practice, the explicit choice
needs some care. The right-hand side of (5.5) is defined on the whole real line if at
least one component of x is both-sided unbounded. On the other hand, M and �̊

may be bounded sets. Therefore, the link function g may require some restrictions
such that the domain and the range fulfill the necessary constraints. The dimension
of β should satisfy 1 ≤ 1 + q ≤ n, the lower bound will provide a null model and
the upper bound a saturated model.

5.1.3 Link Functions and Feature Engineering

As link function we choose a strictly monotone and smooth function g : M → R

such that we do not have any conflicts in domains and ranges. Beside these
requirements, we may want further properties for the link function g and the features
x. From (5.5) we have

μ(x) = Eθ(x) [Y ] = g−1〈β, x〉. (5.6)

Of course, a basic requirement is that the selected features x can appropriately
describe the mean of Y by the function in (5.6), see also Fig. 5.1. This may
require so-called feature engineering of x, for instance, we may want to replace
the first component x1 of the raw features x by, say, x2

1 in the pre-processed
features. For example, if this first component describes the age of the insurance
policyholder, then, in some regression problems, it might be more appropriate to
consider age2 instead of age to bring the predictive problem into structure (5.6). It
may also be that we would like to enforce a certain type of interaction between the
components of the raw features. For instance, we may include in a pre-processed
feature a component x1/x

2
2 which might correspond to weight/height2 if the

policyholder has body weight x1 and body height x2. In fact, this pre-processed
feature is exactly the body mass index of the policyholder. We will come back to
feature engineering in Sect. 5.2.2, below.
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Another important requirement is the ability of model interpretation. In insurance
pricing problems, one often prefers additive and multiplicative effects in feature
components. Choosing the identity link g(m) = m we receive a model with additive
effects

μ(x) = Eθ(x) [Y ] = 〈β, x〉 = β0 +
q∑

j=1

βjxj ,

and choosing the log-link g(m) = log(m) we receive a model with multiplicative
effects

μ(x) = Eθ(x) [Y ] = exp〈β, x〉 = eβ0

q∏

j=1

eβj xj .

The latter is probably the most commonly used GLM in insurance pricing because
it leads to explainable tariffs where feature values directly relate to price de- and
increases in percentages of a base premium exp{β0}.

Another very popular choice is the canonical (natural) link, i.e., g = h = (κ ′)−1.
The canonical link substantially simplifies the analysis and it has very favorable
statistical properties (as we will see below). However, in some applications practical
needs overrule good statistical properties. Under the canonical link g = h we have
in the dual mean parameter space M and in the effective domain �, respectively,

x �→ μ(x) = κ ′(η(x)) = κ ′〈β, x〉 and x �→ θ(x) = η(x) = 〈β, x〉.

Thus, the linear predictor η and the canonical parameter θ coincide under the
canonical link choice g = h = (κ ′)−1.

5.1.4 Log-Likelihood Function and Maximum Likelihood
Estimation

After having a fully specified GLM within the EDF, there remains estimation of the
regression parameter β ∈ R

q+1. This is done within the framework of MLE.

The log-likelihood function of Y = (Y1, . . . , Yn)
� for regression parameter

β ∈ R
q+1 is given by, see (5.2) and we use the independence between the

Yi ’s,

(continued)
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β �→ �Y (β) =
n∑

i=1

vi

ϕ

[
Yih(μ(xi ))−κ (h(μ(xi )))

]
+a(Yi; vi/ϕ), (5.7)

where we set μ(xi ) = g−1〈β, xi〉. For the canonical link g = h = (κ ′)−1

this simplifies to

β �→ �Y (β) =
n∑

i=1

vi

ϕ

[
Yi〈β, xi〉 − κ〈β, x i〉

]
+ a(Yi; vi/ϕ). (5.8)

MLE of β needs maximization of log-likelihoods (5.7) and (5.8), respectively;
these are the GLM counterparts to the homogeneous case treated in Section 3.3.2.
We calculate the score, we set ηi = 〈β, x i〉 and μi = μ(xi ) = g−1〈β, xi〉,

s(β,Y ) = ∇β�Y (β) =
n∑

i=1

vi

ϕ
[Yi − μi] ∇βh(μ(xi ))

=
n∑

i=1

vi

ϕ
[Yi − μi] ∂h(μi)

∂μi

∂μi

∂ηi
∇βη(xi ) (5.9)

=
n∑

i=1

vi

ϕ

Yi − μi
V (μi)

(
∂g(μi)

∂μi

)−1

xi ,

where we use the definition of the variance function V (μ) = (κ ′′ ◦ h)(μ), see
Corollary 2.14. We define the diagonal working weight matrix, which in general
depends on β through the means μi = g−1〈β, xi〉,

W(β) = diag

((
∂g(μi)

∂μi

)−2
vi

ϕ

1

V (μi)

)

1≤i≤n
∈ R

n×n,

and the working residuals

R = R(Y ,β) =
(
∂g(μi)

∂μi
(Yi − μi)

)�

1≤i≤n
∈ R

n.

This allows us to write the score equations in a compact form, which provides the
following proposition.
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Proposition 5.1 The MLE for β is found by solving the score equations

s(β,Y ) = ∇β�Y (β) = X�W(β)R(Y ,β) = 0.

For the canonical link g = h = (κ ′)−1 the score equations simplify to

s(β,Y ) = ∇β�Y (β) = X�diag

(
vi

ϕ

)

1≤i≤n

(
Y − κ ′(Xβ)

) = 0,

where κ ′(Xβ) ∈ R
n is understood element-wise.

Remarks 5.2

• In general, the MLE of β is not calculated by maximizing the log-likelihood
function �Y (β), but rather by solving the score equations s(β,Y ) = 0; we also
refer to Remarks 3.29 on M- and Z-estimators. The score equations provide
the critical points for β, from which the global maximum of the log-likelihood
function can be determined, supposed it exists.

• Existence of a MLE of β is not always given, similarly to Example 3.5, we may
face the problem that the solution lies at the boundary of the parameter space
(which itself may be an open set).

• If the log-likelihood function β �→ �Y (β) is strictly concave, then the critical
point of the score equations s(β,Y ) = 0 is unique, supposed it exists, and,

henceforth, we have a unique MLE β̂
MLE

for β. Below, we give cases where
the strict concavity of the log-likelihood holds.

• In general, there is no closed from solution for the MLE of β, except in the
Gaussian case with canonical link, thus, we need to solve the score equations
numerically.

Similarly to Remarks 3.17 we can calculate Fisher’s information matrix w.r.t. β

through the negative expected Hessian of �Y (β).

We get Fisher’s information matrix w.r.t. β

I(β) = Eβ

[
∇β�Y (β)

(∇β�Y (β)
)�] = −Eβ

[
∇2

β�Y (β)
]

= X�W(β)X.
(5.10)

If the design matrix X ∈ R
n×(q+1) has full rank q + 1 ≤ n, Fisher’s

information matrix I(β) is positive definite.
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Dispersion parameter ϕ > 0 has been treated as a nuisance parameter above.
Its explicit specification does not influence the MLE of β because it cancels in the
score equations. If necessary, we can also estimate this dispersion parameter with
MLE. This requires solving the additional score equation

∂

∂ϕ
�Y (β, ϕ) =

n∑

i=1

− vi
ϕ2

[
Yih(μ(xi ))− κ (h(μ(xi )))

]
+ ∂

∂ϕ
a(Yi; vi/ϕ) = 0,

(5.11)

and we can plug in the MLE of β (which can be estimated independently of ϕ).
Fisher’s information matrix is in this extended framework given by

I(β, ϕ) = −Eβ

[
∇2
(β,ϕ)�Y (β, ϕ)

]
=
(
X�W(β)X 0

0 −Eβ

[
∂2�Y (β, ϕ)/∂ϕ

2
]
)
,

that is, the off-diagonal terms between β and ϕ are zero.

In view of Proposition 5.1 we need a root search algorithm to obtain the MLE
of β. Typically, one uses Fisher’s scoring method or the iterative re-weighted
least squares (IRLS) algorithm to solve this root search problem. This is a main
result derived in the seminal work of Nelder–Wedderburn [283] and it explains the
popularity of GLMs, namely, GLMs can be solved efficiently by this algorithm.
Fisher’s scoring method/IRLS algorithm explore the updates for t ≥ 0 until
convergence

β̂
(t) �→ β̂

(t+1) =
(
X�W(β̂(t))X

)−1
X�W(β̂(t))

(
Xβ̂

(t) + R(Y , β̂
(t)
)
)
,

(5.12)

where all terms on the right-hand side are evaluated at algorithmic time t . If we
have n observations Y = (Y1, . . . , Yn)

� we can estimate at most n parameters.
Therefore, in our GLM we assume to have a regression parameter β ∈ R

q+1 of
dimension q + 1 ≤ n. Moreover, we require that the design matrix X has full rank
q + 1 ≤ n. Otherwise the regression parameter is not uniquely identifiable since
linear dependence in the columns of X allows us to reduce the dimension of the
parameter space to a smaller representation. This is also needed to calculate the
inverse matrix in (5.12). This motivates the following assumption.



120 5 Generalized Linear Models

Assumption 5.3 Throughout, we assume that the design matrix X ∈
R
n×(q+1) has full rank q + 1 ≤ n.

Remarks 5.4 (Justification of Fisher’s Scoring Method/IRLS Algorithm)

• We give a short justification of Fisher’s scoring method/IRLS algorithm, for a
more detailed treatment we refer to Section 2.5 in McCullagh–Nelder [265] and
Section 2.2 in Fahrmeir–Tutz [123].

The Newton–Raphson algorithm provides a numerical scheme to find solu-
tions to the score equations. It requires to iterate for t ≥ 0

β̂
(t) �→ β̂

(t+1) = β̂
(t) + Î(β̂(t))−1 s(β̂

(t)
,Y ),

where Î(β) = −∇2
β�Y (β) denotes the observed information matrix in β ∈ R

q+1.

The calculation of the inverse of the observed information matrix (Î(β̂(t)))−1 can
be time consuming and unstable because we need to calculate second derivatives
and the eigenvalues of the observed information matrix can be close to zero. A
stable scheme is obtained by replacing the observed information matrix Î(β)
by Fisher’s information matrix I(β) = Eβ [Î(β)] being positive definite under
Assumption 5.3; this provides a quasi-Newton method. Thus, for Fisher’s scoring
method we iterate for t ≥ 0

β̂
(t) �→ β̂

(t+1) = β̂
(t) + I(β̂(t))−1 s(β̂

(t)
,Y ), (5.13)

and rewriting this provides us exactly with (5.12). The latter can also be
interpreted as an IRLS scheme where the response g(Yi) is replaced by an
adjusted linearized version Zi = g(μi) + ∂g(μi)

∂μi
(Yi − μi). This corresponds

to the last bracket in (5.12), and with corresponding weights.
• Under the canonical link choice, Fisher’s information matrix and the observed

information matrix coincide, i.e. I(β) = Î(β), and the Newton–Raphson
algorithm, Fisher’s scoring method and the IRLS algorithm are identical. This
can easily be seen from Proposition 5.1. We receive under the canonical link
choice

∇2
β�Y (β) = − Î(β) = −X�diag

(
vi

ϕ
V (μi)

)

1≤i≤n
X (5.14)

= −X�W(β)X = − I(β).
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The full rank assumption q + 1 ≤ n on the design matrix X implies that
Fisher’s information matrix I(β) is positive definite. This in turn implies that
the log-likelihood function �Y (β) is strictly concave, providing uniqueness of a
critical point (supposed it exists). This indicates that the canonical link has very
favorable properties for MLE. Examples 5.5 and 5.6 give two examples not using
the canonical link, the first one is a concave maximization problem, the second
one is not for p > 2.

Example 5.5 (Gamma Model with Log-Link) We study the gamma distribution as a
single-parameter EDF model, choosing the shape parameter α = 1/ϕ as the inverse
of the dispersion parameter, see Sect. 2.2.2. Cumulant function κ(θ) = − log(−θ)
gives us the canonical link θ = h(μ) = −1/μ. Moreover, we choose the log-link
η = g(μ) = log(μ) for the GLM. This gives a canonical parameter θ = − exp{−η}.
We receive the score

s(β,Y ) = ∇β�Y (β) =
n∑

i=1

vi

ϕ

[
Yi

μi
− 1

]
xi = X�diag

(
vi

ϕ

)

1≤i≤n
R(Y ,β).

Unlike in other examples with non-canonical links, we receive a favorable expres-
sion here because only one term in the square bracket depends on the regression
parameter β, or equivalently, the working weight matrix W does not dependent on
β. We calculate the negative Hessian (observed information matrix)

Î(β) = − ∇2
β�Y (β) = X�diag

(
vi

ϕ

Yi

μi

)

1≤i≤n
X.

In the gamma model all observations Yi are strictly positive, a.s., and under the
full rank assumption q + 1 ≤ n, the observed information matrix Î(β) is positive
definite, thus, we have a strictly concave log-likelihood function in the gamma case
with log-link. �

Example 5.6 (Tweedie’s Models with Log-Link) We study Tweedie’s models for
power variance parameters p > 1 as a single-parameter EDF model, see Sect. 2.2.3.
The cumulant function κp is given in Table 4.1. This gives us the canonical link θ =
hp(μ) = μ1−p/(1 − p) < 0 for μ > 0 and p > 1. Moreover, we choose the log-
link η = g(μ) = log(μ) for the GLM. This implies θ = exp{(1−p)η}/(1−p) < 0
for p > 1. We receive the score

s(β,Y ) = ∇β�Y (β) =
n∑

i=1

vi

ϕ

Yi − μi
μ
p−1
i

xi = X�diag

(
vi

ϕ

1

μ
p−2
i

)

1≤i≤n
R(Y ,β).
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We calculate the negative Hessian (observed information matrix) for μi > 0

Î(β) = − ∇2
β�Y (β) = X�diag

(
vi

ϕ

(p − 1)Yi − (p − 2)μi

μ
p−1
i

)

1≤i≤n
X.

This matrix is positive definite for p ∈ [1, 2], and for p > 2 it is not positive definite
because (p−1)Yi−(p−2)μi may have positive or negative values if we varyμi > 0
over its domain M. Thus, we do not have concavity of the optimization problem
under the log-link choice in Tweedie’s GLMs for power variance parameters p > 2.
This in particular applies to the inverse Gaussian GLM with log-link. �

5.1.5 Balance Property Under the Canonical Link Choice

Throughout this section we work under the canonical link choice g = h = (κ ′)−1.
This choice has very favorable statistical properties. We have already seen in
Remarks 5.4 that the derivation of the MLE of β becomes particularly easy under
the canonical link choice and the observed information matrix Î(β) coincides with
Fisher’s information matrix I(β) in this case, see (5.14).

For insurance pricing, canonical links have another very remarkable property,
namely, that the estimated model automatically fulfills the balance property and,
henceforth, is unbiased. This is particularly important in insurance pricing because
it tells us that the insurance prices (over the entire portfolio) are on the right level.
We have already met the balance property in Corollary 3.19.

Corollary 5.7 (Balance Property) Assume that Y has independent compo-
nents being modeled by a GLM under the canonical link choice g = h =
(κ ′)−1. Assume that the MLE of regression parameter β ∈ R

q+1 exists and

denote it by β̂
MLE

. We have balance property on portfolio level (for constant
dispersion ϕ)

n∑

i=1

E
β̂

MLE [viYi ] =
n∑

i=1

viκ
′〈β̂MLE

, xi〉 =
n∑

i=1

viYi .

Proof The first column of the design matrix X is identically equal to 1 representing
the intercept, see (5.4). The second part of Proposition 5.1 then provides for this first
column of X, we cancel the (constant) dispersion ϕ,

(1, . . . , 1) diag(v1, . . . , vn) κ
′(Xβ̂

MLE
) = (1, . . . , 1) diag(v1, . . . , vn)Y .

This proves the claim. �
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Remark 5.8 We mention once more that this balance property is very strong and
useful, see also Remarks 3.20. In particular, the balance property holds, even though
the chosen GLM might be completely misspecified. Misspecification may include
an incorrect distributional model, not the right link function choice, or if we have
not pre-processed features appropriately, etc. Such misspecification will imply that
we have a poor model on an insurance policy level (observation level). However,
the total premium charged over the entire portfolio will be on the right level
(supposed that the structure of the portfolio does not change) because it matches
the observations, and henceforth, we have unbiasedness for the portfolio mean.

From the log-likelihood function (5.8) we see that under the canonical link choice
we consider the statistics S(Y ) = X�diag(vi/ϕ)1≤i≤nY ∈ R

q+1, and to prove the
balance property we have used the first component of this statistics. Considering all
components, S(Y ) is an unbiased estimator (decision rule) for

Eβ [S(Y )] = X�diag(vi/ϕ)1≤i≤nκ ′(Xβ) =
(
n∑

i=1

vi

ϕ
κ ′〈β, x i〉xi,j

)�

0≤j≤q
.

(5.15)

This unbiased estimator S(Y ) meets the Cramér–Rao information bound, hence
it is UMVU: taking the partial derivatives of the previous expression gives
∇βEβ [S(Y )] = I(β), the latter also being the multivariate Cramér–Rao
information bound for the unbiased decision rule S(Y ) for (5.15). Focusing on
the first component we have

Varβ

(
n∑

i=1

E
β̂

MLE [viYi]

)

= Varβ

(
n∑

i=1

viYi

)

=
n∑

i=1

ϕviV (μi) = ϕ2 (I(β))0,0,

(5.16)

where the component (0, 0) in the last expression is the top-left entry of Fisher’s
information matrix I(β) under the canonical link choice.

5.1.6 Asymptotic Normality

Formula (5.16) quantifies the uncertainty in the premium calculation of the insur-
ance policies if we use the MLE estimated model (under the canonical link
choice). That is, this quantifies the uncertainty in the dual mean parametrization

in terms of the resulting variance. We could also focus on the MLE β̂
MLE

itself
(for general link function g). In general, this MLE is not unbiased but we have
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consistency and asymptotic normality similar to Theorem 3.28. Under “certain
regularity conditions”1 we have for n large

β̂
MLE
n

(d)≈ N
(
β,In(β)−1

)
, (5.17)

where β̂
MLE
n is the MLE based on the observations Y n = (Y1, . . . , Yn)

�, and In(β)
is Fisher’s information matrix of Y n, which scales linearly in n in the homogeneous
EF case, see Remarks 3.14, and in the homogeneous EDF case it scales as

∑n
i=1 vi ,

see (3.25).

5.1.7 Maximum Likelihood Estimation and Unit Deviances

From formula (5.7) we conclude that the MLE β̂
MLE

of β ∈ R
q+1 is found by the

solution of (subject to existence)

β̂
MLE = arg max

β

�Y (β) = arg max
β

n∑

i=1

vi

ϕ

[
Yih(μ(xi ))− κ (h(μ(xi )))

]
,

with μi = μ(xi ) = Eθ(xi ) [Y ] = g−1〈β, x i〉 under the link choice g. If we prefer
to work with an objective function that reflects the notion of a loss function, we
can work under the unit deviances d(Yi , μi) studied in Sect. 4.1.2. The MLE is then
obtained by, see (4.20)–(4.21),

β̂
MLE = arg max

β

�Y (β) = arg min
β

n∑

i=1

vi

ϕ
d(Yi, μi), (5.18)

the latter satisfying d(Yi , μi) ≥ 0 for all 1 ≤ i ≤ n, and being zero if and
only if Yi = μi , see Lemma 2.22. Thus, using the unit deviances we have a loss
function that is bounded below by zero, and we determine the regression parameter
β such that this loss is (in-sample) minimized. This can also be interpreted in a more
geometric way. Consider the (q + 1)-dimensional manifold M ⊂ R

n spanned by
the GLM function

β �→ μ(β) = g−1(Xβ) = (g−1〈β, x1〉, . . . , g−1〈β, xn〉)� ∈ R
n. (5.19)

1 The regularity conditions for asymptotic normality results will depend on the particular
regression problem studied, we refer to pages 43–44 in Fahrmeir–Tutz [123].
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Fig. 5.2 2-dimensional
manifold M ⊂ R

3 for
observation
Y = (Y1, Y2, Y3)

� ∈ R
3, the

straight line illustrates the
projection (w.r.t. the unit
deviance distances d) of Y

onto M which gives MLE

β̂
MLE

satisfying

μ(β̂
MLE

) ∈ M

i=1
i=2

i=3

Y

Minimization (5.18) then tries to find the point μ(β) in this manifold M ⊂ R
n

that minimizes simultaneously all unit deviances d(Yi , ·) w.r.t. the observation Y =
(Y1, . . . , Yn)

� ∈ R
n. Or in other words, the optimal parameter β is obtained by

“projecting” observation Y onto this manifold M, where “projection” is understood
as a simultaneous minimization of loss function

∑n
i=1

vi
ϕ
d(Yi , μi), see Fig. 5.2. In

the un-weighted Gaussian case, this corresponds to the usual orthogonal projection
as the next example shows, and in the non-Gaussian case it is understood in the KL
divergence minimization sense as displayed in formula (4.11).

Example 5.9 (Gaussian Case) Assume we have the Gaussian EDF case κ(θ) =
θ2/2 with canonical link g(μ) = h(μ) = μ. In this case, the manifold (5.19) is the
linear space spanned by the columns of the design matrix X

β �→ μ(β) = Xβ = (〈β, x1〉, . . . , 〈β, xn〉)� ∈ R
n.

If additionally we assume vi/ϕ = c > 0 for all 1 ≤ i ≤ n, the minimization
problem (5.18) reads as

β̂
MLE = arg min

β

n∑

i=1

vi

ϕ
d(Yi , μi) = arg min

β

‖Y − Xβ‖2
2,

where we have used that the unit deviances in the Gaussian case are given by the

square loss function, see Example 4.12. As a consequence, the MLE β̂
MLE

is found
by orthogonally projecting Y onto M = {Xβ|β ∈ R

q+1} ⊂ R
n, and this orthogonal

projection is given by Xβ̂
MLE ∈ M. �
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5.2 Actuarial Applications of Generalized Linear Models

The purpose of this section is to illustrate how the concept of GLMs is used in
actuarial modeling. We therefore explore the typical actuarial examples of claim
counts and claim size modeling.

5.2.1 Selection of a Generalized Linear Model

The selection of a predictive model within GLMs for solving an applied actuarial
problem requires the following choices.

Choice of the Member of the EDF Select a member of the EDF that fits the
modeling problem. In a first step, we should try to understand the properties of
the data Y before doing this selection, for instance, do we have count data, do we
have a classification problem, do we have continuous observations?

All members of the EDF are light-tailed because the moment generating function
exists around the origin, see Corollary 2.14, and the EDF is not suited to model
heavy-tailed data, for instance, having a regularly varying tail. Therefore, a datum
Y is sometimes first transformed before being modeled by a member of the EDF.
A popular transformation is the logarithm for positive observations. After this
transformation a member of the EDF can be chosen to model log(Y ). For instance,
if we choose the Gaussian distribution for log(Y ), then Y will be log-normally
distributed, or if we choose the exponential distribution for log(Y ), then Y will
be Pareto distributed, see Sect. 2.2.5. One can then model the transformed datum
with a GLM. Often this provides very accurate models, say, on the log scale for the
log-transformed data. There is one issue with this approach, namely, if a model
is unbiased on the transformed scale then it is typically biased on the original
observation scale; if the transformation is concave this easily follows from Jensen’s
inequality. The problematic part now is that the bias correction itself often has
systematic effects which means that the transformation (or the involved nuisance
parameters) should be modeled with a regression model, too, see Sect. 5.3.9. In
many cases this will not easily work, unfortunately. Therefore, if possible, clear
preference should be given to modeling the data on the original observation scale (if
unbiasedness is a central requirement).

Choice of Link Function From a statistical point of view we should choose the
canonical link g = h to connect the mean μ of the model to the linear predictor
η because this implies many favorable mathematical properties. However, as seen,
sometimes we have different needs. Practical reasons may require that we have a
model with additive or multiplicative effects, which favors the identity or the log-
link, respectively. Another requirement is that the resulting canonical parameter θ =
(h ◦ g−1)(η) needs to be within the effective domain �. If this effective domain is
bounded, for instance, if it covers the negative real line as for the gamma model,
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a (transformation of the) log-link might be more suitable than the canonical link
because g−1(·) = − exp(·) has a strictly negative range, see Example 5.5.

Choice of Features and Feature Engineering Assume we have selected the
member of the EDF and the link function g. This gives us the relationship between
the mean μ and the linear predictor η, see (5.5),

μ(x) = Eθ(x) [Y ] = g−1(η(x)) = g−1〈β, x〉. (5.20)

Thus, the features x ∈ X ⊂ R
q+1 need to be in the right functional form so that

they can appropriately describe the systematic effect via the function (5.20). We
distinguish the following feature types:

• Continuous real-valued feature components, examples are age of policyholder,
weight of car, body mass index, etc.

• Ordinal categorical feature components, examples are ratings like good-
medium-bad or A-B-C-D-E.

• Nominal categorical feature components, examples are vehicle brands, occupa-
tion of policyholders, provinces of living places of policyholders, etc. The values
that the categorical feature components can take are called levels.

• Binary feature components are special categorical features that only have two
levels, e.g. female-male, open-closed. Because binary variables often play a
distinguished role in modeling they are separated from categorical variables
which are typically assumed to have more than two levels.

All these components need to be brought into a suitable form so that they can be
used in a linear predictor η(x) = 〈β, x〉, see (5.20). This requires the consideration
of the following points (1) transformation of continuous components so that they can
describe the systematic effects in a linear form, (2) transformation of categorical
components to real-valued components, (3) interaction of components beyond an
additive structure in the linear predictor, and (4) the resulting design matrixX should
have full rank q + 1 ≤ n. We are going to describe these points (1)–(4) in the next
section.

5.2.2 Feature Engineering

Categorical Feature Components: Dummy Coding

Categorical variables need to be embedded into a Euclidean space. This embedding
needs to be done such that the resulting design matrix X has full rank q + 1 ≤ n.
There are many different ways to do so, and the particular choice depends on
the modeling purpose. The most popular way is dummy coding. We only describe
dummy coding here because it is sufficient for our purposes, but we mention that
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Table 5.1 Dummy coding
example that maps the
K = 11 levels (colors) to the
unit vectors of the
10-dimensional Euclidean
space R

10 selecting the last
level a11 (brown color) as
reference level, and showing
the resulting dummy vectors
x�
j as row vectors

a1 = white 1 0 0 0 0 0 0 0 0 0

a2 = yellow 0 1 0 0 0 0 0 0 0 0

a3 = orange 0 0 1 0 0 0 0 0 0 0

a4 = red 0 0 0 1 0 0 0 0 0 0

a5 = magenta 0 0 0 0 1 0 0 0 0 0

a6 = violet 0 0 0 0 0 1 0 0 0 0

a7 = blue 0 0 0 0 0 0 1 0 0 0

a8 = cyan 0 0 0 0 0 0 0 1 0 0

a9 = green 0 0 0 0 0 0 0 0 1 0

a10 = beige 0 0 0 0 0 0 0 0 0 1

a11 = brown 0 0 0 0 0 0 0 0 0 0

there are also other codings like effects coding or Helmert’s contrast coding.2 The
choice of the coding will not influence the predictive model (if we work with
a full rank design matrix), but it may influence parameter selection, parameter
reduction and model interpretation. For instance, the choice of the coding is (more)
important in medical studies where one tries to understand the effects between
certain therapies.

Assume that the raw feature component x̃j is a categorical variable taking K
different levels {a1, . . . , aK }. For dummy coding we declare one level, say aK , to
be the reference level and all other levels are described relative to that reference
level. Formally, this can be described by an embedding map

x̃j �→ xj = (1{̃xj=a1}, . . . ,1{̃xj=aK−1})� ∈ R
K−1. (5.21)

This is closely related to the categorical distribution in Sect. 2.1.4. An explicit
example is given in Table 5.1.

Example 5.10 (Multiplicative Model) If we choose the log-link function η =
g(μ) = log(μ), we receive the regression function for the categorical example of
Table 5.1

x̃j �→ exp〈β, xj 〉 = exp{β0}
K−1∏

k=1

exp
{
βk1{̃xj=ak}

}
, (5.22)

including an intercept component. Thus, the base value exp{β0} is determined
by the reference level a11 = brown, and any color different from brown has
a deviation from the base value described by the multiplicative correction term
exp{βk1{̃xj=ak}}. �

2 There is an example of Helmert’s contrast coding in Remarks 2.7 of lecture notes [392], and for
more examples we refer to the UCLA statistical consulting website: https://stats.idre.ucla.edu/r/
library/r-library-contrast-coding-systems-for-categorical-variables/.
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Remarks 5.11

• Importantly, dummy coding leads to full rank design matrices X and, henceforth,
Assumption 5.3 is fulfilled.

• Dummy coding is different from one-hot encoding which is going to be
introduced in Sect. 7.3.1, below.

• Dummy coding needs some care if we have categorical feature components with
many levels, for instance, considering car brands and car models we can get
hundreds of levels. In that case we will have sparsity in the resulting design
matrix. This may cause computational issues, and, as the following example
will show, it may lead to high uncertainty in parameter estimation. In particular,
the columns of the design matrix X of very rare levels will be almost collinear
which implies that we do not receive very well-conditioned matrices in Fisher’s
scoring method (5.12). For this reason, it is recommended to merge levels
to bigger classes. In Sect. 7.3.1, below, we are going to present a different
treatment. Categorical variables are embedded into low-dimensional spaces, so
that proximity in these spaces has a reasonable meaning for the regression task
at hand.

Example 5.12 (Balance Property and Dummy Coding) A main argument for the
use of the canonical link function has been the fulfillment of the balance property,
see Corollary 5.7. If we have categorical feature components and if we apply dummy
coding to those, then the balance property is projected down to the individual levels
of that categorical variable. Assume that columns 2 to K of design matrix X are
used to model a raw categorical feature x̃1 withK levels according to (5.21). In that
case, columns 2 ≤ k ≤ K will indicate all observations Yi which belong to levels
ak−1. Analogously to the proof of Corollary 5.7, we receive (summation i runs over
the different instances/policies)

∑

i: x̃i,1=ak−1

E
β̂

MLE [viYi ] =
n∑

i=1

xi,kEβ̂
MLE [viYi] =

n∑

i=1

xi,kviYi =
∑

i: x̃i,1=ak−1

viYi .

(5.23)

Thus, we receive the balance property for all policies 1 ≤ i ≤ n that belong to level
ak−1.

If we have many levels, then it will happen that some levels have only very few
observations, and the above summation (5.23) only runs over very few insurance
policies with x̃i,1 = ak−1. Suppose additionally the volumes vi are small. This can
lead to considerable estimation uncertainty, because the estimated prices on the left-
hand side of (5.23) will be based too much on individual observations Yi having the
corresponding level, and we are not in the regime of a law of large numbers that
balances these observations.

Thus, this balance property from dummy coding is a natural property under the
canonical link choice. Actuarial pricing is very familiar with such a property. Early
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distribution-free approaches have postulated this property resulting in the method of
the total marginal sums, see Bailey and Jung [22, 206], where the balance property
is enforced for marginal sums of all categorical levels in parameter estimation.
However, if we have scarce levels in categorical variables, this approach needs
careful consideration. �

Binary Feature Components

Binary feature components do not need a treatment different from the categorical
ones, they are Bernoulli variables which can be encoded as 0 or 1. This is exactly
dummy coding for K = 2 levels.

Continuous Feature Components

Continuous feature components are already real-valued. Therefore, from the view-
point of ‘variable types’, the continuous feature components do not need any
pre-processing because they are already in the right format to be included in scalar
products.

Nevertheless, in many cases, also continuous feature components need feature
engineering because only in rare cases they directly fit the functional form (5.20).
We give an example. Consider car drivers that have different driving experience and
different driving skills. To explain experience and skills we typically choose the age
of driver as explanatory variable. Modeling the claim frequency as a function of the
age of driver, we often observe a U-shaped function, thus, a function that is non-
monotone in the age of driver variable. Since the link function g needs to be strictly
monotone, this regression problem cannot be modeled by (5.20), directly including
the age of driver as a feature because this leads to monotonicity of the regression
function in the age of driver variable.

Typically, in such situations, the continuous variable is discretized to categorical
classes. In the driver’s age example, we build age classes. These age classes
are then treated as categorical variables using dummy coding (5.21). We will
give examples below. These age classes should fulfill the requirement of being
sufficiently homogeneous in the sense that insurance policies that fall into the
same class should have a similar propensity to claims. This implies that we would
like to have many small homogeneous classes. However, the classes should be
sufficiently large, otherwise parameter estimation involves high uncertainty, see
also Example 5.12. Thus, there is a trade-off to sufficiently meet both of these two
requirements.

A disadvantage of this discretization approach is that neighboring age classes
will not be recognized by the regression function because, per se, dummy coding
is based on nominal variables not having any topology. This is also illustrated by
the fact, that all categorical levels (excluding the reference level) have, in view
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of embedding (5.21), the same mutual Euclidean distance. Therefore, in some
applications, one prefers a different approach by rather trying to find an appropriate
functional form. For instance, we can pre-process a strictly positive raw feature
component x̃l to a higher-dimensional functional form

x̃l �→ β1x̃l + β2x̃
2
l + β3x̃

3
l + β4 log(̃xl), (5.24)

with regression parameter (β1, . . . , β4)
�, i.e., we have a polynomial function of

degree 3 plus a logarithmic term in this choice. If one does not want to choose
a specific functional form, one often chooses natural cubic splines. This, together
with regularization, leads to the framework of generalized additive models (GAMs),
which is popular family of regression models besides GLMs; for literature on GAMs
we refer to Hastie–Tibshirani [182], Wood [384], Ohlsson–Johansson [290], Denuit
et al. [99] and Wüthrich–Buser [392]. In these notes we will not further pursue
GAMs.

Example 5.13 (Multiplicative Model) If we choose the log-link function η =
g(μ) = log(μ) we receive a multiplicative regression function

x �→ μ(x) = exp〈β, x〉 = exp{β0}
q∏

j=1

exp
{
βjxj

}
.

That is, all feature components xj enter the regression function in an exponential
form. In general insurance, one may have specific variables for which it is explicitly
known that they should enter the regression function as a power function. Having a
raw feature x̃l we can pre-process it as x̃l �→ xl = log(̃xl). This implies

μ(x) = exp〈β, x〉 = exp{β0} x̃βll
q∏

j=1,j �=l
exp

{
βjxj

}
,

which gives a power term of order βl . The GLM estimates in this case the power
parameter that should be used for x̃l . If the power parameter is known, then one
can even include this component as an offset; offsets are discussed in Sect. 5.2.3,
below. �

Interactions

Naturally, GLMs only allow for an additive structure in the linear predictor. Similar
to continuous feature components, such an additive structure may not always be
suitable and one wants to model more complex interaction terms. Such interactions
need to be added manually by the modeler, for instance, if we have two raw feature
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components x̃l and x̃k, we may want to consider a functional form

(̃xl, x̃k) �→ β1x̃l + β2x̃k + β3x̃l x̃k + β4x̃
2
l x̃k,

with regression parameter (β1, . . . , β4)
�.

More generally, this manual feature engineering of adding interactions and of
specifying functional forms (5.24) can be understood as a new representation of raw
features. Representation learning in relation to deep learning is going to be discussed
in Sect. 7.1, and this discussion is also related to Mercer’s kernels.

5.2.3 Offsets

In many heterogeneous portfolio problems with observations Y = (Y1, . . . , Yn)
�,

there are known prior differences between the individual risks Yi , for instance, the
time exposure varies between the different policies i. Such known prior differences
can be integrated into the predictors, and this integration typically does not involve
any additional model parameters. A simple way is to use an offset (constant) in
the linear predictor of a GLM. Assume that each observation Yi is equipped with a
feature xi ∈ X and a known offset oi ∈ R such that the linear predictor ηi takes the
form

(xi , oi) �→ g(μi) = ηi = η(xi , oi) = oi + 〈β, xi〉, (5.25)

for all 1 ≤ i ≤ n. An offset oi does not change anything from a structural viewpoint,
in fact, it could be integrated into the feature xi with a regression parameter that is
identically equal to 1.

Offsets are frequently used in Poisson models with the (canonical) log-link
choice to model multiplicative time exposures in claim frequency modeling. Under
the log-link choice we receive from (5.25) the following mean function

(xi , oi) �→ μ(xi , oi ) = exp{η(xi , oi)} = exp{oi + 〈β, xi〉} = exp{oi} exp〈β, xi〉.

In this version, the offset oi provides us with an exposure exp{oi} that acts
multiplicatively on the regression function. If wi = exp{oi} measures time, then
wi is a so-called pro-rata temporis (proportional in time) exposure.

Remark 5.14 (Boosting) A popular machine learning technique in statistical mod-
eling is boosting. Boosting tries to step-wise adaptively improve a regression
model. Offsets (5.25) are a simple way of constructing boosted models. Assume
we have constructed a predictive model using any statistical model, and denote the
resulting estimated means of Yi by μ̂i (0). The idea of boosting is that we select
another statistical model and we try to see whether this second model can still find
systematic structure in the data which has not been found by the first model. In view
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of (5.25), we include the first model into the offset and we build a second model
around this offset, that is, we may explore a GLM

μ̂i
(1) = g−1

(
g(μ̂i

(0))+ 〈β, x i〉
)
.

If the first model is perfect we come up with a regression parameter β = 0,
otherwise the linear predictor 〈β, x i〉 of the second model starts to compensate
for weaknesses in μ̂i (0). Of course, this boosting procedure can then be iterated
and one should stop boosting before the resulting model starts to over-fit to the
data. Typically, this approach is applied to regression trees instead of GLMs, see
Ferrario–Hämmerli [125], Section 7.4 in Wüthrich–Buser [392], Lee–Lin [241] and
Denuit et al. [100].

5.2.4 Lab: Poisson GLM for Car Insurance Frequencies

We present a first GLM example. This example is based on French motor third
party liability (MTPL) insurance claim counts data. The data is described in detail
in Chap. 13.1; an excerpt of the available MTPL data is given in Listing 13.2. For the
moment we only consider claim frequency modeling. We use the following data:Ni
describes the number of claims, vi ∈ (0, 1] describes the duration of the insurance
policy, and x̃i describes the available raw feature information of insurance policy i,
see Listing 13.2.

We are going to model the claim counts Ni with a Poisson GLM using the
canonical link function of the Poisson model. In the Poisson approach there are two
different ways to account for the duration of the insurance policy. Either we model
Yi = Ni/vi with the Poisson model of the EDF, see Sect. 2.2.2 and Remarks 2.13
(reproductive form), or we directly model Ni with the Poisson distribution from the
EF and treat the log-duration as an offset variable oi = log vi . In the first approach
we have for the log-link choice g(·) = h(·) = log(·) and dispersion ϕ = 1

Yi = Ni/vi ∼ f (yi; θi, vi) = exp

{
yi〈β, xi〉 − e〈β,xi 〉

1/vi
+ a(yi; vi)

}

, (5.26)

where xi ∈ X is the suitably pre-processed feature information of insurance policy
i, and with canonical parameter θi = η(xi ) = 〈β, xi〉. In the second approach we
include the log-duration as offset into the regression function and model Ni with
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the Poisson distribution from the EF. Using notation (2.2) this gives us

Ni ∼ f (ni; θi) = exp
{
ni (log vi + 〈β, xi〉)− elog vi+〈β,xi 〉 + a(ni)

}
(5.27)

= exp

{
ni
vi

〈β, xi〉 − e〈β,xi〉
1/vi

+ a(ni)+ ni log vi

}

,

with canonical parameter θi = η(xi , oi) = oi + 〈β, xi〉 = log vi + 〈β, xi〉 for
observation ni = viyi . That is, we receive the same model in both cases (5.26)
and (5.27) under the canonical log-link choice for the Poisson GLM.

Finally, we make the assumption that all observationsNi are independent. There
remains the pre-processing of the raw features x̃i to features xi so that they can be
used in a sensible way in the linear predictors ηi = η(xi , oi) = oi + 〈β, xi〉.

Feature Engineering

Categorical and Binary Variables: Dummy Coding

For categorical and binary variables we use dummy coding as described in
Sect. 5.2.2. We have two categorical variables VehBrand and Region, as well
as a binary variable VehGas, see Listing 13.2. We choose the first level as
reference level, and the remaining levels are characterized by (K − 1)-dimensional
embeddings (5.21). This provides us with K − 1 = 10 parameters for VehBrand,
K − 1 = 21 parameters for Region andK − 1 = 1 parameter for VehGas.

Figure 5.3 shows the empirical marginal frequencies λ = ∑
Ni/

∑
vi on all

levels of the categorical feature components VehBrand, Region and VehGas.
Moreover, the blue areas (in the colored version) give confidence bounds of

±2
√
λ/
∑
vi (under a Poisson assumption), see Example 3.22. The more narrow

these confidence bounds, the bigger the volumes
∑
vi behind these empirical

marginal estimates.
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VehBrand, (middle) Region, and (rhs) VehGas
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Continuous Variables

We consider feature engineering of the continuous variables Area, VehPower,
VehAge, DrivAge, BonusMalus and log-Density (Density on the log
scale); note that we map the Area codes (A, . . . , F ) �→ (1, . . . , 6). Some of these
variables do not show any monotonicity nor log-linearity in the empirical marginal
frequency plots, see Fig. 5.4.

These non-monotonicity and non-log-linearity suggest in a first step to build
homogeneous classes for these feature components and use dummy coding for the
resulting classes. We make the following choices here (motivated by the marginal
graphs of Fig. 5.4):

• Area: continuous log-linear feature component for {A, . . . ,F} �→ {1, . . . , 6};
• VehPower: discretize into categorical classes where we merge vehicle power

groups bigger and equal to 9 (totallyK = 6 levels);
• VehAge: we build categorical classes [0, 6), [6, 13), [13,∞) (totally K = 3

levels);
• DrivAge: we build categorical classes [18, 21), [21, 26), [26, 31), [31, 41),

[41, 51), [51, 71), [71,∞) (totallyK = 7 levels);
• BonusMalus: continuous log-linear feature component (we censor at 150);
• Density: log-density is chosen as continuous log-linear feature component.

This encoding is slightly different from Noll et al. [287] because of different data
cleaning. The discretization has been chosen quite ad-hoc by just looking at the
empirical plots; as illustrated in Section 6.1.6 of Wüthrich–Buser [392] regression
trees may provide an algorithmic way of choosing homogeneous classes of sufficient
volume. This provides us with a feature space (the initial component stands for the
intercept xi,0 = 1 and the order of the terms is the same as in Listing 13.2)

X ⊂ {1} × R × {0, 1}5 × {0, 1}2 × {0, 1}6 × R × {0, 1}10 × {0, 1} ×R × {0, 1}21,

of dimension q+1 = 1+1+5+2+6+1+10+1+1+21 = 49. The R code [307]
for this pre-processing of continuous variables is shown in Listing 5.1, categorical
variables do not need any special treatment because variables of factor type are
consider internally in R by dummy coding; we call this model Poisson GLM1.

Choice of Learning and Test Samples

To measure predictive performance we follow the generalization approach as
proposed in Chap. 4. This requires that we partition our entire data into learning
sample L and test sample T , see Fig. 4.1. Model selection and model fitting will
be done on the learning sample L, only, and the test sample T is used to analyze
the generalization of the fitted models to unseen data. We partition the data at
random (non-stratified) in a ratio of 9 : 1, and we are going to hold on to the same
partitioning throughout this monograph whenever we study this example. The R
code used is given in Listing 5.2.
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Listing 5.1 Pre-processing of features for model Poisson GLM1 in R

1 dat$AreaGLM <- as.integer(dat$Area)
2 dat$VehPowerGLM <- as.factor(pmin(dat$VehPower, 9))
3 dat$VehAgeGLM <- as.factor(cut(dat$VehAge, c(0,5,12,101),
4 labels = c("0-5","6-12","12+"),
5 include.lowest = TRUE))
6 dat$DrivAgeGLM <- as.factor(cut(dat$DrivAge, c(18,20,25,30,40,50,70,101),
7 labels = c("18-20","21-25","26-30","31-40","41-50",
8 "51-70","71+"), include.lowest = TRUE))
9 dat$BonusMalusGLM <- pmin(dat$BonusMalus, 150)

10 dat$DensityGLM <- log(dat$Density)

Table 5.2 shows the summary of the chosen partition into learning and test
samples

L = {(Yi = Ni/vi, xi , vi ) : i = 1, . . . , n = 610′206
}
,

and

T =
{
(Y

†
t = N†

t /v
†
t , x

†
t , v

†
t ) : t = 1, . . . , T = 67′801

}
.

In contrast to Sect. 4.2 we also include feature information and exposure information
to L and T .

Listing 5.2 Partition of the data to learning sample L and test sample T

1 RNGversion("3.5.0") # we use R version 3.5.0 for this partition
2 set.seed(500)
3 ll <- sample(c(1:nrow(dat)), round(0.9*nrow(dat)), replace = FALSE)
4 learn <- dat[ll,]
5 test <- dat[-ll,]

Table 5.2 Choice of learning data set L and test data set T ; the empirical frequency on both
data sets is similar (last column), and the split of the policies w.r.t. the numbers of claims is also
rather similar

Numbers of observed claims Empirical

0 1 2 3 4 5 frequency

Learning sample L 96.32% 3.47% 0.19% 0.01% 0.0006% 0.0002% 7.36%

Test sample T 96.31% 3.50% 0.18% 0.01% 0.0015% 0.0015% 7.35%
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Maximum-Likelihood Estimation and Results

The remaining step is to perform MLE to estimate regression parameter β ∈ R
q+1.

This can be done either by maximizing the Poisson log-likelihood function or by
minimizing the Poisson deviance loss. In view of (4.9) and Example 4.27, the
Poisson deviance loss on the learning data L is given by

β �→ D(L,β) = 2

n

n∑

i=1

vi

(
μ(xi )− Yi − Yi log

(
μ(xi )

Yi

))
≥ 0, (5.28)

where the terms under the summation are set equal to viμ(xi ) for Yi = 0, see (4.8),
and we have GLM regression function

x �→ μ(x) = μβ(x) = exp〈β, x〉.

That is, we work under the canonical link with the canonical parameter being equal
to the linear predictor. The MLE of β is found by minimizing (5.28). This is done
with Fisher’s scoring method. In order to receive a non-degenerate solution we need
to ensure that we have sufficiently many claims Yi > 0, otherwise it might happen
that the MLE provides a (degenerate) solution at the boundary of the effective

domain �. We denote the MLE by β̂
MLE
L = β̂

MLE
, because it has been estimated

on the learning data L, only. This gives us estimated regression function

x �→ μ̂(x) = μ
β̂

MLE
L
(x) = exp〈β̂MLE

L , x〉.

We emphasize that we only use the learning data L for this model fitting. In view of
Definition 4.24 we receive in-sample and out-of-sample Poisson deviance losses

D(L, β̂MLE
L ) = 2

n

n∑

i=1

vi

(
μ̂(xi )− Yi − Yi log

(
μ̂(xi )

Yi

))
≥ 0,

D(T , β̂MLE
L ) = 2

T

T∑

t=1

v
†
t

(

μ̂(x
†
t )− Y †

t − Y †
t log

(
μ̂(x

†
t )

Y
†
t

))

≥ 0.

We implement this GLM on the data of Listing 5.1 (and including the categorical
features) in R using the function glm [307], a short overview of the results is
presented in Listing 5.3. This overview presents the regression model implemented,

an excerpt of the parameter estimates β̂
MLE
L , standard errors which are received

from the square-rooted diagonal entries of the inverse of the estimated Fisher’s

information matrix In(β̂
MLE
L ), see (5.17); the remaining columns will be described

in Sect. 5.3.2 on the Wald test (5.33). The bottom line of the output says that Fisher’s
scoring algorithm has converged in 6 iterations, it gives the in-sample deviance loss

nD(L, β̂MLE
L ) called Residual deviance (not being scaled by the number of
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Listing 5.3 Results in model Poisson GLM1 using the R command glm

1 Call:
2 glm(formula = ClaimNb ~ VehPowerGLM + VehAgeGLM + DrivAgeGLM +
3 BonusMalusGLM + VehBrand + VehGas + DensityGLM + Region +
4 AreaGLM, family = poisson(), data = learn, offset = log(Exposure))
5
6 Deviance Residuals:
7 Min 1Q Median 3Q Max
8 -1.4728 -0.3256 -0.2456 -0.1383 7.7971
9

10 Coefficients:
11 Estimate Std. Error z value Pr(>!z!)
12 (Intercept) -4.8175439 0.0579296 -83.162 < 2e-16 ***
13 VehPowerGLM5 0.0604293 0.0229841 2.629 0.008559 **
14 VehPowerGLM6 0.0868252 0.0225509 3.850 0.000118 ***
15 . . .
16 . . .
17 RegionR93 0.1388160 0.0294901 4.707 2.51e-06 ***
18 RegionR94 0.1918538 0.0938250 2.045 0.040874 *
19 AreaGLM 0.0407973 0.0200818 2.032 0.042199 *
20 ---
21 Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
22
23 (Dispersion parameter for poisson family taken to be 1)
24
25 Null deviance: 153852 on 610205 degrees of freedom
26 Residual deviance: 147069 on 610157 degrees of freedom
27 AIC: 192818
28
29 Number of Fisher Scoring iterations: 6

Table 5.3 Run times, number of parameters, AICs, in-sample and out-of-sample deviance losses,
tenfold cross-validation losses with empirical standard deviation in brackets, see also (4.36), (units
are in 10−2) and the in-sample average frequency of the null model (Poisson intercept model, see
Example 4.27) and of model Poisson GLM1

Run # AIC In-sample Out-of-sample Tenfold CV Aver.

time Param. loss on L loss on T loss D̂CV freq.

Poisson null – 1 199’506 25.213 25.445 25.213(0.234) 7.36%

Poisson GLM1 16 s 49 192’818 24.101 24.146 24.121(0.245) 7.36%

observations), as well as Akaike’s Information Criterion (AIC), see Sect. 4.2.3 for
AIC. Note that we have implemented Poisson version (5.27) with the exposures
entering the offset, see lines 2–4 of Listing 5.3; this is important for understanding
AIC being calculated on the (unscaled) claim countsNi .

Table 5.3 summarizes the results of model Poisson GLM1 and it compares the
figures to the null model (only having an intercept β0); the null model has already
been introduced in Example 4.27. We present the run time needed to fit the model,3

the number of regression parameters q + 1 in β ∈ R
q+1, AIC, in-sample and

out-of-sample deviance losses, as well as tenfold cross-validation losses on the

3 All run times are measured on a personal laptop Intel(R) Core(TM) i7-8550U CPU @ 1.80 GHz
1.99 GHz with 16 GB RAM, and they only correspond to fitting the model (or the corresponding
step) once, i.e., they do not account for multiple runs, for instance, for K-fold cross-validation.
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learning data L. For tenfold cross-validation we always use the same (non-stratified)
partition of L (in all examples in this monograph), and in bracket we show the
empirical standard deviation received by (4.36). Tenfold cross-validation would not
be necessary in this case because we have test data T on which we can evaluate the
out-of-sample deviance GL. We present both figures to back-test whether tenfold
cross-validation works properly in our example. We observe that the out-of-sample

deviance losses D(T , β̂MLE
L ) are within one empirical standard deviation of the

tenfold cross-validation losses D̂CV, which supports this methodology of model
comparison.

From Table 5.3 we conclude that we should prefer model Poisson GLM1 over
the null model, this decision is supported by a smaller AIC, a smaller out-of-sample

deviance loss D(T , β̂MLE
L ) as well as a smaller cross-validation loss D̂CV. The last

column of Table 5.3 confirms that the estimated model meets the balance property
(we work with the canonical link here). Note that this balance property should be
fulfilled for two reasons. Firstly, we would like to have the overall portfolio price on
the right level, and secondly, deviance losses should only be compared on the same
overall frequency, see Example 4.10.

Before we continue to introduce more models to challenge model Poisson
GLM1, we are going to discuss statistical tools for model evaluation. Of course,
we would like to know whether model Poisson GLM1 is a good model for this data
or whether it is just the better model of two bad options.

Remark 5.15 (Prior and Posterior Information) Pricing literature distinguishes
between prior feature information and posterior feature information, see Verschuren
[372]. Prior feature information is available at the inception of the (new) insurance
contract before having any claims history. This includes, for instance, age of driver,
vehicle brand, etc. For policy renewals, past claims history is available and prices
of policy renewals can also be based on such posterior information. Past claims
history has led to the development of so-called bonus-malus systems (BMS) which
often are in the form of multiplicative factors to the base premium to reward and
punish good and bad past experience, respectively. One stream of literature studies
optimal designs of BMS, we refer to Loimaranta [255], De Pril [91], Lemaire [245],
Denuit et al. [102], Brouhns et al. [57] Pinquet [304], Pinquet et al. [305], Tzougas
et al. [360] or Ágoston–Gyetvai [4]. Another stream of literature studies how one
can optimally extract predictive information from an existing BMS, see Boucher–
Inoussa [46], Boucher–Pigeon [47] and Verschuren [372].

The latter is basically what we also do in the above example: note that we include
the variable BonusMalus into the feature information and, thus, we use past
claims information to predict future claims. For new policies, the bonus-malus level
is at 100%, and our information does not allow to clearly distinguish between new
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policies and policy renewals for drivers that have posterior information reflected by
a bonus-malus level of 100%. Since young drivers are more likely new customers we
expect interactions between the driver’s age variable and the bonus-malus level, this
intuition is supported by Fig. 13.12 (lhs). In order to improve our model, we would
require more detailed information about past claims history. Remark that we do
not strictly distinguish between prior and posterior information, here. If we go over
to a time-series consideration, where more and more claims experience becomes
available of an individual driver, we should clearly distinguish the different sets of
information, because otherwise it may happen that in prior and posterior pricing
factors we correct twice for the same factor; an interesting paper is Corradin et
al. [82].

We also mention that a new source of posterior information is emerging through
the collection of telematics car driving data. Telematics car driving data leads to a
completely new way of posterior information rate making (experience rating), we
refer to Ayuso et al. [17–19], Boucher et al. [42], Lemaire et al. [246] and Denuit
et al. [98]. We mention the papers of Gao et al. [152, 154] and Meng et al. [271]
who directly extract posterior feature information from telematics car driving data
in order to improve rate making. This approach combines a Poisson GLM with a
network extractor for the telematics car driving data.

5.3 Model Validation

One of the purposes of Chap. 4 has been to describe measures to analyze how well
a fitted model generalizes to unseen data. In a proper generalization analysis this
requires learning data L for in-sample model fitting and a test sample T for an
out-of-sample generalization analysis. In many cases, one is not in the comfortable
situation of having a test sample. In such situations one can use AIC that tries to
correct the in-sample figure for model complexity or, alternatively, K-fold cross-
validation as used in Table 5.3.

The purpose of this section is to introduce diagnostic tools for fitted models; these
are often based on unit deviances d(Yi , μi), which play the role of squared residuals
in classical linear regression. Moreover, we discuss parameter and model selection,
for instance, by step-wise backward elimination or forward selection using the
analysis of variance (ANOVA) or the likelihood ratio test (LRT).

5.3.1 Residuals and Dispersion

Within the EDF we distinguish two different types of residuals. The first type of
residuals are based on the unit deviances d(Yi , μi) studied in (4.7). The deviance
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residuals are given by

rD
i = sign(Yi − μi)

√
vi

ϕ
d (Yi, μi).

Secondly, Pearson’s residuals are given by, see also (4.12),

rP
i =

√
vi

ϕ

Yi − μi√
V (μi)

.

In the Gaussian case the two residuals coincide. This indicates that Pearson’s
residuals are most appropriate in the Gaussian case because they respect the
distributional properties in that case. For other distributions, Pearson’s residuals
can be markedly skewed, as stated in Section 2.4.2 of McCullagh–Nelder [265],
and therefore may fail to have properties similar to Gaussian residuals. An other
issue occurs in Pearson’s residuals when the denominator involves an estimated
standard deviation

√
V (μ̂i), for instance, if we work in a small frequency Poisson

problem. Estimation uncertainty in small denominators of Pearson’s residuals may
substantially distort the estimated residuals. For this reason, we typically work with
(the more robust) deviance residuals; this is related to the discussion in Chap. 4 on
MSEPs versus expected deviance GLs, see Remarks 4.6.

The squared residuals provide unit deviance and weighted square loss, respec-
tively,

(rD
i )

2 = vi

ϕ
d (Yi , μi) and (rP

i )
2 = vi

ϕ

(Yi − μi)2
V (μi)

,

the latter corresponds to Pearson’s χ2-statistic, see (4.12).

Example 5.16 (Residuals in the Poisson Case) In the Poisson case, Pearson’s χ2-
statistic is for vi = ϕ = 1 given by

(rP
i )

2 = (Yi − μi)2
μi

,

because we have variance function V (μ) = μ. A second order Taylor expansion
around Yi on the scale μ1/3

i (for μi) provides approximation to the unit deviances in
the Poisson case, see formula (6.4) and Figure 6.2 in McCullagh–Nelder [265],

d (Yi , μi) ≈ 9Y 1/3
i

(
Y

1/3
i − μ1/3

i

)2
. (5.29)

This emphasizes the different behaviors around the observation Yi of the two types
of residuals in the Poisson case. The scale μ1/3

i has been motivated in McCullagh–
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Fig. 5.5 Log-likelihoods �Y (μ) in Y = 1 as a function of μ plotted against (lhs) μ1/3 in the
Poisson case, (middle) μ−1/3 in the gamma case with shape parameter α = 1, and (rhs) μ−1 in the
inverse Gaussian case with α = 1

Nelder [265] by providing a symmetric behavior around the mode in Yi = 1 of the
resulting log-likelihood function, see Fig. 5.5 (lhs).

�

The explicit calculation of the residuals requires knowledge of the dispersion
parameter ϕ > 0. In the Poisson Example 5.16 this dispersion parameter has been
set equal to 1 because the Poisson model does neither allow for under- nor for
over-dispersion. Typically, this is not the case for other models, and this requires
determination of the dispersion parameter if we want to simulate from these other
models. So far, this dispersion parameter has been treated as a nuisance parameter
and, in fact, it canceled in MLE (because it was assumed to be constant), see
Proposition 5.1.

If we need to estimate the dispersion parameter, we can either do this within
MLE, see Remarks 5.2, or we can use Pearson’s or the deviance estimates,
respectively,

ϕ̂P = 1

n− (q + 1)

n∑

i=1

(Yi − μ̂i)2
V (μ̂i)/vi

and ϕ̂D = 1

n− (q + 1)

n∑

i=1

vid (Yi, μ̂i ) ,

(5.30)

where μ̂i = μ̂(xi ) are the MLE estimated means involving q + 1 estimated

parameters β̂
MLE ∈ R

q+1. We briefly motivate these choices. Firstly, Pearson’s
estimate ϕ̂P is consistent for ϕ. Note that in the Gaussian case this is just the standard
estimate for the variance parameter. Justification of the deviance dispersion estimate
is more challenging. Consider the unscaled deviance with μ̂n = (μ̂1, . . . , μ̂n)

�,
see (4.9),

nϕD(Y n, μ̂n) =
n∑

i=1

vid (Yi , μ̂i) .
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Fig. 5.6 Expected unit deviance vEμ[d(Y, μ)] in the Poisson case as a function of E[N] =
E[vY ] = vμ; the two plots only differ in the scale on the x-axis

This statistic is under certain assumptions asymptotically ϕχ2
n−(q+1)-distributed,

where χ2
n−(q+1) denotes a χ2-distribution with n−(q+1) degrees of freedom. Thus,

this approximation gives us an expected value of ϕ(n−(q+1)). This exactly justifies
the deviance dispersion estimate (5.30) in these cases. However, as stated in the last
paragraph of Section 2.3 of McCullagh–Nelder [265], often a χ2-approximation is
not suitable even as n→ ∞. We give an example.

Example 5.17 (Poisson Unit Deviances) The deviance statistics in the Poisson
model with means μn = (μ1, . . . , μn)

� is given by

D(Y n,μn) =
1

n

n∑

i=1

vid (Yi , μi) = 1

n

n∑

i=1

2vi

(
μi − Yi − Yi log

(
μi

Yi

))
,

note that in the Poisson model we have (by definition) ϕ = 1. We evaluate the
expected value of this deviance statistics. It is given by

Eμn

[
D(Y n,μn)

] = 1

n

n∑

i=1

2viEμi

[
μi − Yi − Yi log

(
μi

Yi

)]
= 1

n

n∑

i=1

2Eμi

[
Ni log

(
Ni

viμi

)]
,

with Ni
ind.∼ Poi(viμi).

In Fig. 5.6 we plot the expected unit deviance vμ �→ vEμ[d(Y, μ)] in the Poisson
model. In our example of Table 5.3, we have Eμ[vY ] = vμ ≈ 3.89%, which results
in an expected unit deviance of vEμ[d(Y, μ)] ≈ 25.52·10−2 < 1. This is in line with
the losses in Table 5.3. Thus, the expected deviance nEμn

[
D(Y n,μn)

] ≈ n/4 < n.
Therefore it is substantially smaller than n. But this implies that nD(Y n,μn) cannot
be asymptotically χ2

n−(q+1)-distributed because the latter has an expected of value
n−(q+1) ≈ n for n→ ∞. In fact, the deviance dispersion estimate is not consistent
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in this example, and for a consistent estimate one should rely on Pearson’s deviance
estimate.

In order to have an asymptotic χ2-distribution we need to have large volumes
v because then a saddlepoint approximation holds that allows to approximate the
(scaled) unit deviances by χ2-distributions, see Sect. 5.5.2, below. �

5.3.2 Hypothesis Testing

Consider a sub-vector βr ∈ R
r of the GLM parameter β ∈ R

q+1, for r < q + 1.
We would like to understand if we can set this sub-vector βr = 0, and at the same
time we do not lose any generalization power. Thus, we investigate whether there is
a simpler nested GLM that provides a similar prediction accuracy. If this is the case,
preference should be given to the simpler model because the bigger model seems
over-parametrized (has redundancy, is not parsimonious). This section is based on
Section 2.2.2 of Fahrmeir–Tutz [123].

Geometric Interpretation We begin by giving a geometric interpretation. We start
from the full model being expressed by the design matrixX ∈ R

n×(q+1). This design
matrix together with the link function g generates a (q + 1)-dimensional manifold
M ⊂ R

n given by, see (5.19) and Fig. 5.2,

M =
{
μ = g−1(Xβ) = (g−1〈β, x1〉, . . . , g−1〈β, xn〉)� ∈ R

n
∣∣
∣ β ∈ R

q+1
}

⊂ R
n.

The MLE β̂
MLE

is determined by the point in M that minimizes the distance to Y ,
where distance between Y and M is measured component-wise by vi

ϕ
d(Yi , μi) with

μ ∈ M, i.e., w.r.t. the KL divergence.
Assume, now, that we want to drop the components βr in β, i.e., we want to drop

these columns from the design matrix resulting in a smaller design matrix Xr ∈
R
n×(q+1−r). This generates a (q + 1 − r)-dimensional nested manifold Mr ⊂ M

described by

Mr =
{
μ = g−1(Xrβ) ∈ R

n
∣
∣
∣ β ∈ R

q+1−r} ⊂ M.

If the distance of Y to Mr and M is roughly the same, we should go for
the smaller model. In the Gaussian case of Example 5.9 this can be explained
by the Pythagorean theorem applied to successive orthogonal projections. In the
general unit deviance case, this has to be studied in terms of information geometry
considering the KL divergence, see Sect. 2.3.
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Likelihood Ratio Test (LRT) We consider the testing problem of the null hypoth-
esis H0 against the alternative hypothesisH1

H0 : βr = 0 against H1 : βr �= 0. (5.31)

Denote by β̂
MLE

the MLE under the full model and by β̂
MLE
(−r) the MLE under the

null hypothesis model. Define the (log-)likelihood ratio test (LRT) statistics

 = −2
(
�Y (β̂

MLE
(−r) )− �Y (β̂MLE

)
)

≥ 0.

The inequality holds because the null hypothesis model is nested in the full model,
henceforth, the latter needs to have a bigger log-likelihood value in the MLE. If
the LRT statistics  is large, the null hypothesis should be rejected because the
reduced model is not competitive compared to the full model. More mathematically,
under similar conditions as for the asymptotic normality results of the MLE of
β in (5.17), we have that under the null hypothesis H0 the LRT statistics  is
asymptotically χ2-distributed with r degrees of freedom. Therefore, we should
reject the null hypothesis in favor of the full model if the resulting p-value of  
under the χ2

r -distribution is too small. These results remain true if the unknown
dispersion parameter ϕ is replaced by a consistent estimator ϕ̂, e.g., Pearson’s
dispersion estimate ϕ̂P (from the bigger model).

The LRT statistics  may not be properly defined in over-dispersed situations
where the distributional assumptions are not fully specified, for instance, in an over-
dispersed Poisson model. In such situations, one usually divides the log-likelihood
(of the Poisson model) by the estimated over-dispersion and then uses the resulting
scaled LRT statistics  as an approximation to the unspecified model.

Wald Test Alternatively, we can use the Wald statistics. The Wald statistics uses
a second order approximation to the log-likelihood and, therefore, is only based
on the first two moments (and not on the entire distribution). Define the matrix
Ir ∈ R

r×(q+1) such that βr = Irβ, i.e., matrix Ir selects exactly the components of
β that are included in βr (and which are set to 0 under the null hypothesisH0 given
in (5.31)).

Asymptotic normality (5.17) motivates consideration of the Wald statistics

W = (Ir β̂MLE − 0)�
(
IrI(β̂

MLE
)−1I�r

)−1
(Ir β̂

MLE − 0). (5.32)

The Wald statistics measures the distance between the MLE in the full model
Ir β̂

MLE
restricted to the components of βr and the null hypothesis H0 (being

βr = 0). The estimated Fisher’s information matrix I(β̂MLE
) is used to bring

all components onto the same unit scale (and to account for collinearity). The
Wald statistics W is asymptotically χ2

r -distributed under the same assumptions as
for (5.17) to hold. Thus, the null hypothesisH0 should be rejected if the resulting p-
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value ofW under the χ2
r -distribution is too small. Note that this test does not require

calculation of the MLE in the null hypothesis model, i.e., this test is computationally
more attractive than the LRT because we only need to fit one model. Again, an
unknown dispersion parameter ϕ in Fisher’s information matrix I(β) is replaced by
a consistent estimator ϕ̂ (from the bigger model).

In the special case of considering only one component of β, i.e., if βr = βk with
r = 1 and for one selected component 0 ≤ k ≤ q , the Wald statistics reduces to

Wk = (β̂MLE
k )2

σ̂ 2
k

or Tk = W 1/2
k = β̂MLE

k

σ̂k
, (5.33)

with diagonal entries of the inverse of the estimated Fisher’s information matrix

given by σ̂ 2
k = (I(β̂MLE

)−1)k,k , 0 ≤ k ≤ q . The square-roots of these estimates are
provided in column Std. Error of the R output in Listing 5.3.

In this case the Wald statistics Wk is equal to the square of the t-statistics Tk;
this t-statistics is provided in column z value of the R output of Listing 5.3.
Remark that Fisher’s information matrix involves the dispersion parameter ϕ. If
this dispersion parameter is estimated with a consistent estimator ϕ̂ we have a t-
statistics. For known dispersion parameter the t-statistics reduces to a z-statistics,
i.e., the correspondingp-values can be calculated from a normal distribution instead
of a t-distribution. In the Poisson case, the dispersion ϕ = 1 is known, and for this
reason, we perform a z-test (and not a t-test) in the last column of Listing 5.3; and
we call Tk a z-statistics in that case.

5.3.3 Analysis of Variance

In the previous section, we have presented tests that allow for model selection in
the case of nested models. More generally, if we have a full model, say, based
on regression parameter β ∈ R

q+1 we would like to select the “best” sub-
model according to some selection criterion. In most cases, it is computationally
not feasible to fit all sub-models if q is large, therefore, this is not a practical
solution. For large models and data sets step-wise procedures are a feasible tool.
Backward elimination starts from the full model, and then recursively drops feature
components which have high p-values in the corresponding Wald statistics (5.32)
and (5.33). Performing this recursively will provide us with hierarchy of nested
models. Forward selection works just in the opposite direction, that is, we start with
the null model and we include feature components one after the other that have a
low p-value in the corresponding Wald statistics.



148 5 Generalized Linear Models

Remarks 5.18

• The order of the inclusion/exclusion of the feature components matters in this
selection algorithms because we do not have additivity in this selection process.
For this reason, often backward elimination and forward selection is combined
in an alternating way.

• This process as well as the tests from Sect. 5.3.2 are based on a fixed pre-
processing of features. If the feature pre-processing is done differently, all
analysis needs to be repeated for this new model. Moreover, between two dif-
ferent models we need to apply different tools for model selection (if they are not
nested), for instance, AIC, cross-validation or an out-of-sample generalization
analysis.

• For categorical variables with dummy coding we should apply the forward
selection or the backward elimination simultaneously on the entire dummy coded
vector of a categorical variable. This will include or exclude this variable; if we
only apply the Wald test to one component of the dummy vector, then we test
whether this level should be merged with the reference level.

Typically, in practice, a so-called analysis of variance (ANOVA) table is studied.
The ANOVA table is mainly motivated by the Gaussian model with orthogonal
data. The Gaussian assumption implies that the deviance loss is equal to the
square loss and the orthogonality implies that the square loss decouples in an
additive way w.r.t. the feature components. This implies that one can explicitly
study the contribution of each feature component to the decrease in square loss;
an example is given in Section 2.3.2 of McCullagh–Nelder [265]. In non-Gaussian
and non-orthogonal situations one loses this additivity property and, as mentioned
in Remarks 5.18, the order of inclusion matters. Therefore, for the ANOVA table
we pre-specify the order in which the components are included and then we analyze
the decrease of deviance loss by the inclusion of additional components.

Example 5.19 (Poisson GLM1, Revisited) We revisit the MTPL claim frequency
example of Sect. 5.2.4 to illustrate the variable selection procedures. Based on the
model presented in Listing 5.3 we run an ANOVA analysis using the R command
anova, the results are presented in Listing 5.4.

Listing 5.4 shows the hierarchy of models starting from the null model by
sequentially including feature components one by one. The column Df gives the
number of regression parameters involved and the column Deviance the decrease
of deviance loss by the inclusion of this feature component. The biggest model
improvements are provided by the bonus-malus level and driver’s age, this is not
surprising in view of the empirical analysis in Figs. 5.3 and 5.4, and in Chap. 13.1.
At the other end we have the Area code which only seems to improve the model
marginally. However, this does not imply, yet, that this variable should be dropped.
There are two points that need to be considered: (1) maybe feature pre-processing
of Area has not been done in an appropriate way and the variable is not in the
right functional form for the chosen link function; and (2) Area is the last variable
included in the model in Listing 5.4 and, maybe, there are already other variables
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Listing 5.4 ANOVA table of model Poisson GLM1

1 Analysis of Deviance Table
2
3 Model: poisson, link: log
4
5 Response: ClaimNb
6
7 Terms added sequentially (first to last)
8
9

10 Df Deviance Resid. Df Resid. Dev
11 NULL 610205 153852
12 VehPowerGLM 5 73.7 610200 153779
13 VehAgeGLM 2 179.7 610198 153599
14 DrivAgeGLM 6 1199.4 610192 152400
15 BonusMalusGLM 1 4300.6 610191 148099
16 VehBrand 10 240.3 610181 147859
17 VehGas 1 82.4 610180 147776
18 DensityGLM 1 512.1 610179 147264
19 Region 21 191.3 610158 147073
20 AreaGLM 1 4.1 610157 147069

that take over the role of Area in smaller models which is possible if we have
correlations between the feature components. In our data, Area and Density are
highly correlated. For this reason, we exchange the order of these two components
and run the same analysis again, we call this model Poisson GLM1B (which of
course provides the same predictive model as Poisson GLM1).

Listing 5.5 ANOVA table of model Poisson GLM1B

1 Analysis of Deviance Table
2
3 Model: poisson, link: log
4
5 Response: ClaimNb
6
7 Terms added sequentially (first to last)
8
9

10 Df Deviance Resid. Df Resid. Dev
11 NULL 610205 153852
12 VehPowerGLM 5 73.7 610200 153779
13 VehAgeGLM 2 179.7 610198 153599
14 DrivAgeGLM 6 1199.4 610192 152400
15 BonusMalusGLM 1 4300.6 610191 148099
16 VehBrand 10 240.3 610181 147859
17 VehGas 1 82.4 610180 147776
18 AreaGLM 1 505.0 610179 147271
19 Region 21 192.4 610158 147079
20 DensityGLM 1 10.1 610157 147069

Listing 5.5 shows the ANOVA table if we exchange the order of these two
variables. We observe that the magnitudes of the decrease of the deviance loss
has switched between the two variables. Overall, Density seems slightly more
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predictive, and we may consider dropping Area from the model, also because the
correlation between Density and Area is very high.

If we want to perform backward elimination (sequentially drop one variable after
the other) we can use the R command drop1. For small models this is doable, for
larger models it is computationally demanding.

Listing 5.6 drop1 analysis of model Poisson GLM1

1 Single term deletions
2
3 Model:
4 ClaimNb ~ VehPowerGLM + VehAgeGLM + DrivAgeGLM + BonusMalusGLM +
5 VehBrand + VehGas + DensityGLM + Region + AreaGLM
6 Df Deviance AIC LRT Pr(>Chi)
7 <none> 147069 192818
8 VehPowerGLM 5 147152 192892 83.4 < 2.2e-16 ***
9 VehAgeGLM 2 147283 193028 214.1 < 2.2e-16 ***

10 DrivAgeGLM 6 147603 193341 534.5 < 2.2e-16 ***
11 BonusMalusGLM 1 150970 196718 3901.5 < 2.2e-16 ***
12 VehBrand 10 147298 193027 228.9 < 2.2e-16 ***
13 VehGas 1 147213 192961 144.5 < 2.2e-16 ***
14 DensityGLM 1 147079 192826 10.1 0.001459 **
15 Region 21 147259 192967 190.7 < 2.2e-16 ***
16 AreaGLM 1 147073 192820 4.1 0.042180 *
17 ---
18 Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

In Listing 5.6 we present the results of this drop1 analysis. Both, according to
AIC and according to the LRT, we should keep all variables in the model. Again,
Area and Density provide the smallest LRT statistics  which illustrates the
high collinearity between these two variables (note that the values in Listing 5.6 are
identical to the ones in Listings 5.4 and 5.5, respectively).

We conclude that in model Poisson GLM1 we should keep all feature com-
ponents, and a model improvement can only be obtained by a different feature
pre-processing, by a different regression function or by a different distributional
model. �

5.3.4 Lab: Poisson GLM for Car Insurance Frequencies,
Revisited

Continuous Coding of Non-monotone Feature Components

We revisit model Poisson GLM1 studied in Sect. 5.2.4 for MTPL claim frequency
modeling, and we consider additional competing models by using different feature
pre-processing. From Example 5.19, above, we conclude that we should keep all
variables in the model if we work with model Poisson GLM1.
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Table 5.4 Contingency table of observed number of policies against predicted number of
policies with given claim counts ClaimNb

Numbers of claims ClaimNb

0 1 2 3 4 5

Observed number of policies 587’772 21’198 1’174 57 4 1

Predicted number of policies 587’325 22’064 779 34 3 0.3

We calculate Pearson’s dispersion estimate which provides ϕ̂P = 1.6697 > 1.
This indicates that the model is not fully suitable for our data because in a Poisson
model the dispersion parameter should be equal to 1. There may be two reasons
for this over-dispersion: (1) the Poisson assumption is not appropriate because,
for instance, the tail of the observations is more heavy-tailed, or (2) the Poisson
assumption is appropriate but the regression function has not been chosen in a fully
suitable way (maybe also due to missing feature information).

We believe that in our example the observed over-dispersion is a mixture of
the two reasons (1) and (2). Surely, the regression structure can be improved since
our feature pre-processing is non-optimal and since the chosen regression function
only considers multiplicative interactions between the feature components (we have
chosen the log-link regression function without adding interaction terms to the
regression function).

Table 5.4 gives a contingency table. We observe that we have much more policies
with more than 1 claim compared to what is predicted by the fitted model. As a
result, a χ2-test rejects this Poisson model because the resulting p-value is close
to 0.

In our data, we have a rather large number of policies with short exposures vi ,
and further analysis suggests that these short exposures are not suitably modeled.
We will not invest more time into improving the exposure modeling. As mentioned
in the appendix, there seem to be a couple of issues how the exposures are displayed
and how policy renewals are accounted for in this data. However, it is difficult
(almost impossible) to clean the data for better exposure measures without more
detailed information about the data collection process.

Our next aim is to model continuous feature components differently, if their raw
form does not match the linear predictor assumption. In Poisson GLM1 we have
categorized such components and then used dummy coding for the resulting classes,
see Sect. 5.2.4. Alternatively, we can use different functional forms, for instance, we
can use for DrivAge the following pre-processing

DrivAge �→ βl DrivAge+ βl+1 log(DrivAge)+
4∑

j=2

βl+j (DrivAge)j .

(5.34)
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Table 5.5 Run times, number of parameters, AICs, in-sample and out-of-sample deviance losses,
tenfold cross-validation losses (units are in 10−2) and in-sample average frequency of the null
model (intercept model) and of different Poisson GLMs

Run # In-sample Out-of-sample Tenfold CV Aver.

time Param. AIC loss on L loss on T loss D̂CV freq.

Poisson null – 1 199’506 25.213 25.445 25.213 7.36%

Poisson GLM1 16s 49 192’818 24.101 24.146 24.121 7.36%

Poisson GLM2 15s 48 192’753 24.091 24.113 24.110 7.36%

Poisson GLM3 15s 50 192’716 24.084 24.102 24.104 7.36%

This replaces the K = 7 categorical age classes of model Poisson GLM1 by
5 continuous functions of the variable DrivAge, and the number of regression
parameters is reduced from K − 1 = 6 to 5. We call this model Poisson GLM2.

Besides improving the modeling of the feature components we can also start
to add interactions beyond the multiplicative ones. For instance, Fig. 13.12 in
Chap. 13 may indicate that there is an interaction term between BonusMalus
and DrivAge. New young drivers enter the bonus-malus system at level 100,
and it takes some years free of accidents to reach the lowest bonus-malus level
of 50. Whereas for senior drivers a bonus-malus level of 100 may indicate that they
have had a bad claim experience because otherwise they would be on the lowest
bonus-malus level, see also Remark 5.15. We are adding the following interaction
to Poisson GLM2 and we call the resulting model Poisson GLM3

βl′ BonusMalus · DrivAge+ βl′+1BonusMalus · (DrivAge)2. (5.35)

From Table 5.5 we observe that this leads to a further small model improvement.
We mention that this model improvement can also be observed in a decrease of
Pearson’s dispersion estimate to ϕ̂P = 1.6644. Noteworthy, all model selection
criteria AIC, out-of-sample generalization loss and cross-validation come to the
same conclusion in this example.

The tedious task of the modeler now is to find all these systematic effects and
bring them in an appropriate form into the model. Here, this is still possible because
we have a comparably small model. However, if we have hundreds of feature
components, such a manual analysis becomes intractable. Other regression models
such as network regression models should be preferred, or at least should be used
to find systematic effects. But, one should also keep in mind that the (final) chosen
model should be as simple as possible (parsimonious).

Remarks 5.20

• An advantage of GLMs is that these regression models can deal with collinearity
in feature components. Nevertheless, the results should be carefully checked if
the collinearity in feature components is very high. If we have a high collinearity
between two feature components then we may observe large values with opposite
signs in the corresponding regression parameters compensating each other. The
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Listing 5.7 drop1 analysis of model Poisson GLM2

1 Single term deletions
2
3 Model:
4 ClaimNb ~ VehPowerGLM + VehAgeGLM + DrivAge + log(DrivAge) +
5 I(DrivAge^2) + I(DrivAge^3) + I(DrivAge^4) + BonusMalusGLM +
6 VehBrand + VehGas + DensityGLM + Region + AreaGLM
7 Df Deviance AIC LRT Pr(>Chi)
8 <none> 147005 192753
9 VehPowerGLM 5 147087 192825 82.4 2.671e-16 ***

10 VehAgeGLM 2 147225 192969 220.3 < 2.2e-16 ***
11 DrivAge 1 147157 192902 151.9 < 2.2e-16 ***
12 log(DrivAge) 1 147190 192935 184.8 < 2.2e-16 ***
13 I(DrivAge^2) 1 147123 192869 118.1 < 2.2e-16 ***
14 I(DrivAge^3) 1 147094 192840 89.0 < 2.2e-16 ***
15 I(DrivAge^4) 1 147071 192816 65.5 5.687e-16 ***
16 BonusMalusGLM 1 150907 196653 3902.0 < 2.2e-16 ***
17 VehBrand 10 147232 192959 226.5 < 2.2e-16 ***
18 VehGas 1 147148 192893 142.8 < 2.2e-16 ***
19 DensityGLM 1 147015 192761 10.1 0.001498 **
20 Region 21 147193 192899 188.0 < 2.2e-16 ***
21 AreaGLM 1 147009 192755 4.1 0.043123 *
22 ---
23 Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

resulting GLM will not be very robust, and a slight change in the observations
may change these regression parameters completely. In this case one should drop
one of the two highly collinear feature components. This problem may also occur
if we include too many terms in functional forms like in (5.34).

• A tool to find suitable functional forms of regression functions in continuous
feature components are the partial residual plots of Cook–Croos-Dabrera [80]. If
we want to analyze the first feature component x1 of x, we can fit a GLM to the
data using the entire feature vector x. The partial residuals for component x1 are
defined by, see formula (8) in Cook–Croos-Dabrera [80],

r
partial
i = (Yi − μ(xi ))g′(μ(xi ))+ β1xi,1 for 1 ≤ i ≤ n,

where g is the chosen link function and g(μ(xi )) = 〈β, x i〉. These partial
residuals offset the effect of feature component x1. The partial residual plot shows
r

partial
i against xi,1. If this plot shows a linear structure then including x1 linearly

is justified, and any other functional form may be detected from that plot.

Under-Sampling and Over-Sampling

Often run times are an issue in model fitting, in particular, if we want to exper-
iment with different models, different feature codings, etc. Under-sampling is an
interesting approach that can be applied in imbalanced situations (like in our claim
frequency data situation) to speed up calculations, and still receiving accurate
approximations. We briefly describe under-sampling in this subsection.
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Under-sampling is based on the idea that we do not need to consider all n =
610′206 insurance policies for model fitting, and we can still receive accurate
results. For this we select all insurance policies that have at least 1 claim; in our
data these are 22’434 insurance policies, we call this data set L∗≥1. The motivation
for selecting these insurance policies is that these are exactly the policies that have
information about the drivers causing claims. These selected insurance policies need
to be complemented with policies that do not cause any claims. We select at random
(under-sample) 22’434 insurance policies of drivers without claims, we call this
data set L∗

0. Merging the two sets we receive data L∗ = L∗
0 ∪ L∗≥1 comprising

44’868 insurance policies. This data is balanced from the viewpoint of claim causing
policies because exactly half of the policies in L∗ suffers a claim and the other half
does not. The idea now is to fit a GLM only on this learning data L∗, and because
we only consider 44’868 insurance policies the fitting should be fast.

There is still one point to be considered, namely, in the new learning data L∗
policies with claims are over-represented (because we work in a low frequency
problem). This motivates that we adjust the time exposures vi in L∗

0 accordingly
by multiplying as follows

vi �→ v∗i = vi
∑n
j=1 vj1{Nj=0}
∑
vj∈L∗

0
vj

.

Thus, we stretch the exposures of the policies without claims in L∗; for our data this
factor is 26.17. This then provides us with an empirical frequency on L∗ of 7.36%
which is identical to the observed frequency on the entire learning data L.

We fit model Poisson GLM3 on this reduced (and exposure adjusted) learning
data L∗, the results are presented on the last line of Table 5.6. This model can be
fitted in 1s, and by construction it fulfills the balance property. The resulting in-
sample and out-of-sample losses (evaluated on the entire data L and T ) are very
close to model Poisson GLM3 which verifies that the model fitted only on the
learning data L∗ gives a good approximation. We do not provide AIC because the
data used is not identical to the data used to fit the other models. The tenfold cross-

Table 5.6 Run times, number of parameters, AICs, in-sample and out-of-sample deviance losses,
tenfold cross-validation losses (units are in 10−2) and in-sample average frequency of the null
model (intercept model) and of different Poisson GLMs, the last row uses under-sampling in model
Poisson GLM3

Run # In-sample Out-of-sample Tenfold CV Aver.

time param. AIC loss on L loss on T loss D̂CV freq.

Poisson null – 1 199’506 25.213 25.445 25.213 7.36%

Poisson GLM1 16 s 49 192’818 24.101 24.146 24.121 7.36%

Poisson GLM2 15 s 48 192’753 24.091 24.113 24.110 7.36%

Poisson GLM3 15 s 50 192’716 24.084 24.102 24.104 7.36%

under-sampling 1 s 50 – 24.098 24.108 24.120 7.36%
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validation loss is a little bit bigger which seems to be a consequence of applying
the non-stratified version to only 44’868 insurance policies, i.e., this higher cross-
validation loss shows that we fit the model on less data which provides higher
uncertainty in model fitting. This finishes this example.

The presented method is called under-sampling because we under-sample from
the insurance policies without claims to make both classes (policies with claims and
policies without claims) equally large. Alternatively, to achieve a class balance we
could also over-sample from the minority class by duplicating policies. This has a
similar effect, but it increases run times. Importantly, if we under- or over-sample we
have to adjust the exposures correspondingly. Otherwise we obtain a biased model
that is not useful for pricing, the same applies to methods such as the synthetic
minority oversampling technique (SMOTE) and similar techniques.

Alternatively, to under-sampling we could also fit a so-called zero-truncated
Poisson (ZTP) model to the data by only fitting a model on the insurance policies
that suffer at least one claim, and adjusting the distribution to the observations
Ni |{Ni≥1}. This is rather similar to a hurdle Poisson model and we come back to
this in Example 6.19, below.

5.3.5 Over-Dispersion in Claim Counts Modeling

Mixed Poisson Distribution

In the previous example we have seen that the considered Poisson GLMs do not fully
fit our data, at least not with the chosen feature engineering, because there is over-
dispersion in the data (relative to the chosen models). This may give rise to consider
models that allow for over-dispersion. Typically, such over-dispersed models are
constructed starting from the Poisson model, because the Poisson model enjoys
many nice properties as we have seen above. A natural extension is to introduce the
family of mixed Poisson models, where the frequency is not modeled with a single
parameter but rather with a whole family of parameters described by an underlying
mixing distribution.

In the dual mean parametrization the Poisson distribution for Y = N/v reads as

Y ∼ f (y; λ, v) = e−vλ (vλ)
vy

(vy)! for y ∈ N0/v,

where the mean parameter is given by λ = κ ′(θ) = exp{θ}, and θ denotes the
canonical parameter; on purpose we use for the mean notation λ instead of μ, here,
the reason will become clear below. This model satisfies for the first two moments
of N = vY

Eλ [N] = vκ ′(θ) = vλ and Varλ (N) = vκ ′′(θ) = vλ = Eλ [N] ,

with dispersion parameter ϕ = 1. A mixed Poisson distribution is obtained
by mixing/integrating over different frequency parameters λ > 0. We choose a
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distribution π on R+ (strictly positively supported), and define the new distribution

Y = N/v ∼ fπ (y; v) =
∫

R+
f (y; λ, v) dπ(λ) =

∫

R+
e−vλ (vλ)

vy

(vy)! dπ(λ).
(5.36)

If π is not concentrated in a single point, the tower property immediately implies

Eπ [N] < Varπ (N) , (5.37)

supposed that the moments exist, we refer to Lemma 2.18 in Wüthrich [387]. Hence,
mixing over different frequency parameters allows us to receive over-dispersion. Of
course, this concept can also be applied to mixing over the canonical parameter θ in
the EF (instead of the mean parameter).

This leads to the framework of Bayesian credibility models which are widely
used and studied in actuarial science, we refer to the textbook of Bühlmann–Gisler
[58]. We have already met this idea in the Bayesian decision rule of Example 3.3
which has led to the Bayesian estimator in Definition 3.6.

Negative-Binomial Model

In the case of the Poisson model, the gamma distribution is a particularly attractive
mixing distribution for λ because it allows for a closed-form solution in (5.36),
and fπ=(y; v) will be a negative-binomial distribution.4 One can choose differ-
ent parametrizations of this mixing distribution, and they will provide different
scalings in the resulting negative-binomial distribution. We choose the following

parametrization π(λ)
(d)= (vα, vα/μ) for mean parameter μ > 0 and shape

parameter vα > 0. This implies, see (5.36),

fNB(y;μ, v, α) =
∫

R+
e−vλ (vλ)

vy

(vy)!
(vα/μ)vα

(vα)
λvα−1e−vαλ/μdλ

= (vy + vα)
(vy)!(vα)

vvy(vα/μ)vα

(v + vα/μ)vy+vα

=
(
vy + vα − 1

vy

)
(
eθ
)vy (

1 − eθ )vα ,

4 The gamma distribution is the conjugate prior to the Poisson distribution. As a result, the posterior
distribution, given observations, will again be a gamma distribution with posterior parameters, see
Section 8.1 of Wüthrich [387]. This Bayesian model has been introduced to the actuarial literature
by Bichsel [32].
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setting for canonical parameter θ = log(μ/(μ + α)) < 0. This is the negative-
binomial distribution we have already met in (2.5). A single-parameter linear EDF
representation is given by, we set unit dispersion parameter ϕ = 1,

Y ∼ fNB(y; θ, v, α) = exp

{
yθ + α log(1 − eθ )

1/v
+ log

(
vy + vα − 1

vy

)}
,

(5.38)

where this is a density w.r.t. the counting measure on N0/v. The cumulant function
and the canonical link, respectively, are given by

κ(θ) = −α log(1 − eθ) and θ = h(μ) = log

(
μ

μ+ α
)

∈ � = (−∞, 0).

Note that α > 0 is treated as nuisance parameter (which is a fixed part of the
cumulant function, here). The first two moments of the claim count N = vY are
given by

vμ = Eθ [N] = vα
eθ

1 − eθ , (5.39)

Varθ (N) = Eθ [N]
(

1 + eθ

1 − eθ
)

= Eθ [N]
(

1 + μ

α

)
> Eθ [N]. (5.40)

This shows that we receive a fixed over-dispersion of size μ/α, which (in this
parametrization) does not depend on the exposure v; this is the reason for choosing

a mixing distribution π(λ)
(d)= (vα, vα/μ). This parametrization is called NB2

parametrization.

Remarks 5.21

• We emphasize that the effective domain � = (−∞, 0) is one-sided bounded.
Therefore, the canonical link for the linear predictor will not work in general
because the linear predictor x �→ η(x) can be both-sided unbounded in a GLM
setting. Instead, we use the log-link for g(·) in our example below, with the
downside that one loses the balance property.

• The unit deviance in this negative-binomial EDF model is given by

(y, μ) �→ d(y, μ) = 2

[
y log

(
y

μ

)
− (y + α) log

(
y + α
μ+ α

)]
,

we also refer to Table 4.1 for α = 1. We emphasize that this is the unit deviance
in a single-parameter linear EDF, and we only aim at estimating canonical
parameter θ ∈ � and mean parameter μ ∈ M, respectively, whereas α > 0 is
treated as a given nuisance parameter. This is important because the unit deviance
relies on the saturated model which, in general, estimates a one-dimensional
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parameter θ and μ, respectively, from the one-dimensional observation Y . The
nuisance parameter is not affected by the consideration of the saturated model,
and it is treated as a fixed part of the cumulant function, which is not estimated
at this stage. An important consequence of this is that model comparison using
deviance residuals only works for identical nuisance parameters.

• We mention that we receive over-dispersion in (5.40) though we have dispersion
parameter ϕ = 1 in (5.38). Alternatively, we could do the duality transformation
y �→ ỹ = y/α for nuisance parameter α > 0; this gives the reproductive form of
the negative-binomial model NB2, see also Remarks 2.13. This provides us with
a density on N0/(vα), set ϕ̃ = 1/α,

Ỹ ∼ fNB(ỹ; θ, v/ϕ̃) = exp

{
ỹθ + log(1 − eθ )

1/(vα)
+ log

(
vαỹ + vα − 1

vαỹ

)}
.

The cumulant function and the canonical link, respectively, are now given by

κ(θ) = − log(1 − eθ) and θ = h(μ̃) = log

(
μ̃

μ̃+ 1

)
∈ � = (−∞, 0).

The first two moments are for θ ∈ � given by

μ̃ = Eθ [Ỹ ] = eθ

1 − eθ ,

Varθ (Ỹ ) = ϕ̃

v
κ ′′(θ) = 1

vα
μ̃ (1 + μ̃) .

Thus, we receive the reproductive EDF representation with dispersion parameter
ϕ̃ = 1/α and variance function V (μ̃) = μ̃(1 + μ̃). Moreover,N = vY = vαỸ .

• The negative-binomial model with the NB1 parametrization uses the mixing

distribution π(λ)
(d)= (μv/α, v/α). This leads to mean Eθ [N] = vμ and

variance Varθ (N) = Eθ [N](1 + α). In this parametrization,μ enters the gamma
function as (μv/α) in the gamma density which does not allow for an EDF
representation. This parametrization has been called NB1 by Cameron–Trivedi
[63] because both terms in the variance Varθ (N) = vμ+ vμα are linear in μ. In
contrast, in the NB2 parametrization the second term has a square vμ2/α in μ,
see (5.40). Further discussion is provided in Greene [171].

Nuisance Parameter Estimation

All previous statements have been based on the assumption that α > 0 is a
given nuisance parameter. If α needs to be estimated too, then, we drop out
of the EF. In this case, an iterative estimation procedure is applied to the EDF
representation (5.38). One starts with a fixed nuisance parameter α(0) and fits the
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negative-binomial GLM with MLE which provides a first set of MLE β̂
(1) =

β̂
(1)
(α(0)). Based on this estimate the nuisance parameter is updated α(0) �→ α(1) by

maximizing the log-likelihood in α for given β̂
(1)

. Iteration of this procedure then
leads to a joint estimation of regression parameter β and nuisance parameter α. Both
MLE steps in this algorithm increase the joint log-likelihood.

Remark 5.22 (Implementation of the Negative-Binomial GLM in R) Implementa-
tion of the negative-binomial model needs some care. There are two R procedures
glm and glm.nb that can be used to fit negative-binomial GLMs, the latter being
built on the former. The procedure glm is just the classical R procedure [307] that
is usually used to fit GLMs within the EDF, it requires to set

family=negative.binomial(theta, link="log").

This parametrization considers the single-parameter linear EF on N (for mean μ ∈
M)

fNB(n;μ,theta) =
(
n+ theta− 1

n

)(
μ

μ+ theta

)n (
1 − μ

μ+ theta

)theta
,

where theta > 0 denotes the nuisance parameter. The tricky part now is that we
have to bring in the different exposures vi of all policies 1 ≤ i ≤ n. That is, we
would like to have for claim counts ni = viyi , see (5.38),

fNB(yi;μi, vi , α) =
(
viyi + viα − 1

viyi

)(
viμi

viμi + viα
)viyi (

1 − viμi

viμi + viα
)viα

=
(
viyi + viα − 1

viyi

)[(
μi

μi + α
)yi (

1 − μi

μi + α
)α]vi

.

The square bracket can be implemented in glm as a scaled and weighted regression
problem, see Listing 5.8 with theta = α. This approach provides the correct GLM

parameter estimates β̂
MLE

for given α, however, the outputted AIC values cannot
be compared to the Poisson case. Note that the Poisson case of Table 5.5 considers
observations Ni whereas Listing 5.8 uses Yi = Ni/vi . For this reason we calculate
the log-likelihood and AIC by an own implementation.

The same remark applies to glm.nb, and also nuisance parameter estimation
cannot be performed by that routine under different exposures vi . Therefore, we
have implemented an iterative estimation algorithm ourselves, alternating glm of
Listing 5.8 for given α and a maximization routine optimize to find the optimal
α for given β using (5.38). We have applied this iteration in Example 5.23, below,
and it has converged in 5 iterations.

Example 5.23 (Negative-Binomial Distribution for Claim Counts) We revisit the
MTPL claim frequency GLM example of Sect. 5.3.4, but we replace the Poisson
distribution by the negative-binomial one. We start with the negative-binomial (NB)



160 5 Generalized Linear Models

Listing 5.8 Implementation of model NB GLM3

1 d.glmnb <- glm(ClaimNb/Exposure ~ VehPowerGLM + VehAgeGLM
2 + log(DrivAge) + I(DrivAge^3) + I(DrivAge^4)
3 + BonusMalusGLM*DrivAge + BonusMalusGLM*I(DrivAge^2)
4 + VehBrand + VehGas + DensityGLM + Region + AreaGLM,
5 data=learn, weights=Exposure,
6 family=negative.binomial(alpha, link="log"))

Table 5.7 Run times, number of parameters, AICs, in-sample and out-of-sample deviance losses
(units are in 10−2) and in-sample average frequency of the null models (Poisson and negative-
binomial) and the Poisson and negative-binomial GLMs. The optimal model is highlighted in
boldface

Run # In-sample Out-of-sample Aver.

time Param. AIC loss on L loss on T freq.

Poisson null – 1 199’506 25.213 25.445 7.36%

Poisson GLM3 15 s 50 192’716 24.084 24.102 7.36%

NB null α̂MLE
null = 1.059 – 2 198’466 20.357 20.489 7.36%

NB null α̂MLE
NB = 1.810 – 1 198’564 21.796 21.948 7.36%

NB GLM3 α̂MLE
NB = 1.810 85s 51 192’113 20.722 20.674 7.38%

null model. The NB null model has two parameters, the homogeneous (overall)
frequency and the nuisance parameter. MLE of the homogeneous overall frequency
is identical to the one in the Poisson null model, and MLE of the nuisance parameter
provides α̂MLE

null = 1.059. This is substantially smaller than infinity and suggests
over-dispersion. The results are presented on the third line of Table 5.7. We observe
a smaller AIC of the NB null model against the Poisson null model which says that
we should allow for over-dispersion.

We now focus on the NB GLM. The feature pre-processing is done exactly as
in model Poisson GLM3, and we choose the log-link for g. We call this model
NB GLM3. The iterative estimation procedure outlined above provides a nuisance
parameter estimate α̂MLE

NB = 1.810. This is bigger than in the NB null model because
the regression structure explains some part of the over-dispersion, however, it is
still substantially smaller than infinity which justifies the inclusion of this over-
dispersion parameter.

The last line of Table 5.7 gives the result of model NB GLM3. From AIC we
conclude that we favor the negative-binomial GLM over the Poisson GLM since
AIC decreases from 192’716 to 192’113. The in-sample and out-of-sample deviance
losses can only be compared within the same models, i.e., the models that have the
same cumulant function. This also applies to the negative-binomial models which
have cumulant function κ(θ) = −α log(1 − eθ). Thus, to compare the NB null
model and model NB GLM3, we need to choose the same nuisance parameter α.
For this reason we added this second NB null model to Table 5.7. This second NB
null model no longer uses the MLE α̂MLE

null , therefore, the corresponding AIC only
includes one estimated parameter.
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Fig. 5.7 Poisson logged
predictors
vs. negative-binomial logged
predictors

Table 5.8 Out-of-sample deviance losses: forecast dominance. The optimal model is highlighted
in boldface

Poisson NB deviance NB deviance

Model deviance α̂MLE
null = 1.059 α̂MLE

NB = 1.810

Null model 25.445 20.489 21.948

Poisson GLM3 24.102 19.266 20.678

NB GLM3 α̂MLE
NB = 1.810 24.100 19.262 20.674

As mentioned above, deviance losses can only be compared under exactly the
same cumulant function (including the same nuisance parameters). If we want to
have a more robust model selection, we can consider forecast dominance according
to Definition 4.20. Being less ambitious, here, we consider forecast dominance
only for the three considered cumulant functions Poisson, negative-binomial with
α̂MLE

null = 1.059 and negative-binomial with α̂MLE
NB = 1.810. The out-of-sample

deviance losses are given in Table 5.8 in the different columns. According to this
forecast dominance analysis we also give preference to model NB GLM3, but model
Poisson GLM3 is pretty close.

Figure 5.7 compares the logged predictors log(μ̂i ), 1 ≤ i ≤ n, of the models
Poisson GLM3 and NB GLM3. We see a huge similarity in these predictors, only
high frequency policies are judged slightly differently by the NB model compared
to the Poisson model.

Table 5.9 gives the predicted number of claims against the observed ones. We
observe that model NB GLM3 predicts more accurately the number of policies with
2 or less claims, but it over-estimates the number of policies with more than 2 claims.
This may also be related to the fact that the estimated in-sample frequency has a
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Table 5.9 Contingency table of observed number of policies against predicted number of policies
with given claim counts ClaimNb

Numbers of claims ClaimNb

0 1 2 3 4 5

Observed number of policies 587’772 21’198 1’174 57 4 1

Poisson predicted number of policies 587’325 22’064 779 34 3 0.3

NB predicted number of policies 587’902 20’982 1’200 100 15 4

positive bias in model NB GLM3, see Table 5.7. That is, since we do not work with
the canonical link, we do not have the balance property.

Listing 5.9 drop1 analysis of model NB GLM3

1 Single term deletions
2
3 Model:
4 ClaimNb/Exposure ~ VehPowerGLM + VehAgeGLM + DrivAge + log(DrivAge) +
5 I(DrivAge^2) + I(DrivAge^3) + I(DrivAge^4) + BonusMalusGLM *
6 DrivAge + BonusMalusGLM * I(DrivAge^2) + BonusMalusGLM +
7 VehBrand + VehGas + DensityGLM + Region + AreaGLM
8 Df Deviance AIC scaled dev. Pr(>Chi)
9 <none> 126446 171064

10 VehPowerGLM 5 126524 171102 48.266 3.134e-09 ***
11 VehAgeGLM 2 126655 171190 130.070 < 2.2e-16 ***
12 log(DrivAge) 1 126592 171153 91.057 < 2.2e-16 ***
13 I(DrivAge^3) 1 126527 171112 50.483 1.202e-12 ***
14 I(DrivAge^4) 1 126508 171100 38.381 5.820e-10 ***
15 VehBrand 10 126658 171176 132.098 < 2.2e-16 ***
16 VehGas 1 126583 171147 85.232 < 2.2e-16 ***
17 DensityGLM 1 126456 171068 6.137 0.01324 *
18 Region 21 126622 171132 109.838 5.042e-14 ***
19 AreaGLM 1 126450 171064 2.411 0.12049
20 DrivAge:BonusMalusGLM 1 126484 171085 23.481 1.262e-06 ***
21 I(DrivAge^2):BonusMalusGLM 1 126490 171089 27.199 1.836e-07 ***
22 ---
23 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

We close this example by providing the drop1 analysis in Listing 5.9. From
this analysis we conclude that the feature component Area should be dropped.
Of course, this confirms the high collinearity between Density and Area which
implies that we do not need both variables in the model. We remark that the AIC
values in Listing 5.9 are not on our scale, as stated in Remark 5.22. �

5.3.6 Zero-Inflated Poisson Model

In many applications it is the case that the Poisson distribution does not fully fit
the claim counts data because there are too many policies with zero claims, i.e.,
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policies with Y = 0, compared to a Poisson assumption. This topic has attracted
some attention in the recent actuarial literature, see, e.g., Boucher et al. [43–45],
Frees et al. [137], Calderín-Ojeda et al. [62] and Lee [239]. An obvious solution to
this problem is to ‘artificially’ increase the probability of a zero claim compared to
a Poisson model, this is the proposal introduced by Lambert [232]. Y has a zero-
inflated Poisson (ZIP) distribution if the probability weights of Y are given by (set
v = 1)

fZIP(y; θ, π0) =
{
π0 + (1 − π0)e

−μ for y = 0,
(1 − π0)e

−μ μy
y! for y ∈ N,

for π0 ∈ (0, 1), μ = eθ > 0, and for the Poisson probability weights we refer
to (2.4). For π0 > 0 the weight of a zero claim Y = 0 is increased (inflated)
compared to the original Poisson distribution.

Remarks 5.24

• The ZIP distribution has different interpretations. It can be interpreted as a
hierarchical model where we have a latent variable Z which indicates with
probability π0 that we have an excess zero, and with probability 1 − π0 we have
an ordinary Poisson distribution, i.e. for y ∈ N0

Pθ [Y = y|Z = z] =
{
1{y=0} for z = 0,
e−μ μ

y

y! for z = 1,
(5.41)

with P[Z = 0] = 1 − P[Z = 1] = π0.
The latter shows that we can also understand it as a mixture of two distribu-

tions, namely, of the Poisson distribution and of a single point measure in y = 0
with mixing probability π0. Mixture distributions are going to be discussed in
Sect. 6.3.1, below. In this sense, we can also interpret the model as a mixed
Poisson model with mixing distribution π(λ) being a Bernoulli distribution
taking values 0 and μ with probability π0 and 1 − π0, respectively, see (5.36),
and the former parameter λ = 0 leads to a degenerate Poisson model.

• We have introduced the ZIP model, but this approach is neither limited to the
Poisson model nor the zeros. For instance, we could also consider an inflated
negative-binomial model where both the zeros and the ones are inflated with
probabilities π0, π1 > 0 such that π0 + π1 < 1.

• Hurdle models are an alternative way to model excess zeros. Hurdle models
have been introduced by Cragg [83], and they also allow for too little zeros.
A hurdle (Poisson) model mixes a lower-truncated (Poisson) count distribution
with a point mass in zero

fhurdle Poisson(y; θ, π0) =
{
π0 for y = 0,

(1 − π0)
e−μ μ

y

y!
1−e−μ for y ∈ N,

(5.42)
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for π0 ∈ (0, 1) and μ > 0. For π0 > e
−μ the weight of a zero claim is increased

and for π0 < e
−μ it is decreased. This distribution is called a hurdle distribution,

because we first need to overcome the hurdle at zero to come to the Poisson
model. Lower-truncated distributions are studied in Sect. 6.4, below, and mixture
distributions are discussed in Sect. 6.3.1. In general, fitting lower-truncated
distributions is challenging because the density and the distribution function
should both have tractable forms to perform MLE for truncated distributions.
The Expectation-Maximization (EM) algorithm is a useful tool to perform
model fitting under truncation. We come back to the hurdle Poisson model in
Example 6.19, below, and it is also closely related to the zero-truncated Poisson
(ZTP) model discussed in Remarks 6.20.

The first two moments of a ZIP random variable Y ∼ fZIP(·; θ, π0) are given by

Eθ,π0 [Y ] = (1 − π0)μ,

Varθ,π0(Y ) = (1 − π0)μ+ (π0 − π2
0 )μ

2 = Eθ,π0 [Y ] (1 + π0μ) ,

these calculations easily follow with the latent variableZ interpretation from above.
As a consequence, we receive an over-dispersed model with over-dispersion π0μ

(the latter also follows from the fact that we consider a mixed Poisson distribution
with a Bernoulli mixing distribution having weights π0 in 0 and 1 − π0 in μ > 0,
see (5.37)).

Unfortunately, MLE does not allow for explicit solutions in this model. The score

equations of Yi
i.i.d.∼ fZIP(·; θ, π0) are given by

∇(π0,μ)�Y (π0, μ) = ∇(π0,μ)

n∑

i=1

log
(
π0 + (1 − π0)e

−μ)1{Yi=0}

+ ∇(π0,μ)

n∑

i=1

log

(
(1 − π0)e

−μμy

y!
)
1{Yi>0} = 0.

The R package pscl [401] has a function called zeroinflwhich uses the general
purpose optimizer optim to find the MLEs in the ZIP model. Alternatively, we
could explore the EM algorithm for mixture distributions presented in Sect. 6.3,
below.

In insurance applications, the ZIP application can be problematic if we have
different exposures vi > 0 for different insurance policies i. In the Poisson GLM
case with canonical link choice we typically integrate the different exposures into
the offset, see (5.27). However, it is not clear whether and how we should integrate
the different exposures into the zero-inflation probability π0. It seems natural to
believe that shorter exposures should increase π0, but the explicit functional form of
this increase can be debated, some options are discussed in Section 5 of Lee [239].
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Listing 5.10 Implementation of model ZIP GLM3

1 d.ZIP <- zeroinfl(ClaimNb ~ VehPowerGLM + VehAgeGLM
2 + log(DrivAge) + I(DrivAge^3) + I(DrivAge^4)
3 + BonusMalusGLM*DrivAge + BonusMalusGLM*I(DrivAge^2)
4 + VehBrand + VehGas + DensityGLM + Region
5 + AreaGLM | 1,
6 data=learn, offset=log(Exposure), dist=’poisson’, link=’logit’,
7 start=list(count=glm3$coefficients, zero=c(-0.4153)) )

Table 5.10 Run times, number of parameters, AICs, in-sample and out-of-sample deviance
losses (units are in 10−2) and in-sample average frequency of the null models (Poisson, negative-
binomial and ZIP) and the Poisson, negative-binomial and ZIP GLMs. The optimal model is
highlighted in boldface

Run # AIC In-sample Out-of-sample Aver.

time Param. loss on L loss on T freq.

Poisson null – 1 199’506 25.213 25.445 7.36%

Poisson GLM3 15 s 50 192’716 24.084 24.102 7.36%

NB null α̂MLE
null = 1.059 – 2 198’466 20.357 20.489 7.36%

NB null α̂MLE
NB = 1.810 – 1 198’564 21.796 21.948 7.36%

NB GLM3 α̂MLE
NB = 1.810 85 s 51 192’113 20.722 20.674 7.38%

ZIP null 20 s 2 198’638 – – 7.43%

ZIP GLM3 (null π0) 270 s 51 192’393 – – 7.37%

In the following application, we simply choose π0 independent of the exposures, but
certainly this is not the best modeling choice.

Example 5.25 (ZIPModel for Claim Counts) We revisit the MTPL claim frequency
example of Sect. 5.3.4, but this time we fit a ZIP model. For the Poisson part we
use exactly the same GLM regression function as in model Poisson GLM3 and,
in particular, we use for the different exposures vi of the insurance policies the
offset term oi = log vi , see line 6 of Listing 5.10. This offset only acts on the
Poisson part of the ZIP GLM. The zero-inflating probability π0 is modeled with a
logistic Bernoulli model, see Sect. 2.1.2. For computational reasons, we choose the
null model for the Bernoulli part modeling the zero-inflation π0. This is indicated
by the “1” on line 5 of Listing 5.10. This 1 should be expanded if we also want to
consider a regression model for the zero-inflating probability π0 and, in particular,
if we want to integrate an offset term for the exposure. We can set this term to
offset(f), where f is a suitable transformation of the exposure. Furthermore,
successful calibration requires meaningful starting values, otherwise zeroinfl
will not find the MLEs. We start the algorithm in the parameters of model Poisson
GLM3, see line 7 of Listing 5.10. The results are presented in Table 5.10.

Firstly, we see that the run times are not fully competitive in this implementation,
even if we choose the null model for the zero-inflating probability π0, i.e., only
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Table 5.11 Out-of-sample deviance losses: forecast dominance. The optimal model is highlighted
in boldface

Poisson NB deviance NB deviance

Model deviance α̂MLE
null = 1.059 α̂MLE

NB = 1.810

Null model 25.445 20.489 21.948

Poisson GLM3 24.102 19.266 20.678

NB GLM3 α̂MLE
NB = 1.810 24.100 19.262 20.674

ZIP null model 25.446 20.490 21.949

ZIP GLM3 24.103 19.267 20.679

Table 5.12 Contingency table of observed numbers of policies against predicted numbers of
policies with given claim counts ClaimNb

Numbers of claims ClaimNb

0 1 2 3 4 5

Observed number of policies 587’772 21’198 1’174 57 4 1

Poisson predicted number of policies 587’325 22’064 779 34 3 0.3

NB predicted number of policies 587’902 20’982 1’200 100 15 4

ZIP predicted number of policies 587’829 21’094 1’191 79 9 4

one intercept parameter is involved for determining π0. Secondly, in this model we
cannot calculate deviance losses because the saturated model has two parameters for
each observation. Thirdly, the model does not satisfy the balance property though we
work with the canonical links for the Poisson part and the Bernoulli part, however,
this property gets lost under the combination of these two model parts.

Most interesting are the AIC values. We observe that the ZIP GLM improves the
Poisson GLM, but it has a bigger AIC value than the negative-binomial GLM. From
this we conclude that we give preference to the negative-binomial model in our case.

Considering forecast dominance according to Definition 4.20, but restricted to
the three deviance losses studied in Example 5.23, we receive Table 5.11. Also this
table gives preference to the negative-binomial GLM. However, if we consider the
table of the observed numbers of policies against the predicted numbers of claims,
see Table 5.12, we give preference to the ZIP GLM because it has the lowest χ2-
value, i.e., it reflects best (in-sample) our observations.

Figure 5.8 compares the resulting predictors on the log-scale. From this plot we
conclude that in our example the predictors of the ZIP GLM are closer to the Poisson
ones than the NB GLM predictors. In a next step, one could refine the zero-inflating
probabilityπ0 modeling by integrating the exposure and further feature information.
This would lead to a further model improvement. We refrain here from doing so and
close this example; in Example 6.19, below, we study the hurdle Poisson model. �



5.3 Model Validation 167

Fig. 5.8 Comparison linear
predictors of the NB and ZIP
GLMs against the ones of the
Poisson GLM

5.3.7 Lab: Gamma GLM for Claim Sizes

As a second example we consider claim size modeling within GLMs. For this
example we do not use the French MTPL claims data because the empirical
density plot in Fig. 13.15 indicates that a GLM will not fit to that data. The French
MTPL data seems to have three distinct modes, which suggests to use a mixture
distribution. Moreover, the log-log plot indicates a regularly varying tail, which
cannot be captured by the EDF on the original observation scale; we are going
to study this data in Example 6.14, below. Here, we use the Swedish motorcycle
data, previously used in the textbook of Ohlsson–Johansson [290] and described in
Chap. 13.2. From Fig. 5.9 we see that the empirical density has one mode, and the
log-log plot supports light tails, i.e., the gamma model might be a suitable choice for
this data. Therefore, we choose a gamma GLM with log-link g. As described above,
the log-link is not the canonical link for the gamma EDF distribution but it ensures
the right sign w.r.t. the linear predictor ηi = 〈β, xi〉. Working with the log-link in
the gamma model will imply that the balance property is not fulfilled.
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Fig. 5.9 (lhs) Empirical density, (middle) empirical distribution and (rhs) log-log plot of claim
amounts of the Swedish motorcycle data presented in Chap. 13.2
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Feature Engineering

We have 4 continuous feature componentsOwnerAge, RiskClass, VehAge and
BonusClass, one binary feature component Gender and a categorical compo-
nent Area, see Listing 13.4. We have decided for a minimal feature engineering; we
refer to Figs. 13.19 (rhs) and 13.20 (rhs) for descriptive plots. We use the continuous
variables directly in a log-linear fashion, we add quadratic terms for OwnerAge and
VehAge, we merge RiskClass 6 and 7, and we censor VehAge at 20. Area
is categorical, but we may interpret the Zone levels as ordinal categorical, and
mapping them to integers allows us to use them in a continuous fashion; Fig. 13.19
(middle row, rhs) shows that this is a reasonable choice. Moreover, we merge Zone
5, 6 and 7 due to small volumes and their similar behavior.

Gamma Generalized Linear Model

The Swedish motorcycle claim amount data poses the special difficulty that we
do not have individual claim observations Zi,j , but we only know the total claim

amounts Si = ∑Ni
j=1 Zi,j and the number of claims Ni on each insurance policy;

Fig. 5.9 shows average claims Si/Ni of insurance policies i withNi > 0. In general,
this poses a problem in statistical modeling, but in the gamma model this problem
can be handled because the gamma distribution is closed under aggregation of
i.i.d. gamma claims Zi,j . In all what follows in this section, we only study insurance
policies with Ni > 0, and we label these insurance policies i accordingly.

Assume that Zi,j are i.i.d. gamma distributed with shape parameter αi and scale
parameter ci , we refer to (2.6). The mean, the variance and the moment generating
function of Zi,j are given by

E[Zi,j ] = αi

ci
, Var(Zi,j ) = αi

c2
i

and MZi,j (r) =
(

ci

ci − r
)αi

,

(5.43)

where the moment generating function requires r < ci to be finite. Assuming that
the number of claims Ni is a known positive integer ni ∈ N, we see from the
moment generating function that Si = ∑ni

j=1 Zi,j is again gamma distributed with
shape parameter niαi and scale parameter ci . We change the notation from Ni to
ni to emphasize that the number of claims is treated as a known constant (and
also to avoid using the notation of conditional probabilities, here). Finally, we scale
Yi = Si/(niαi) ∼ (niαi, niαici). This random variable Yi has a single-parameter
EDF gamma distribution with weight vi = ni , dispersion ϕi = 1/αi and cumulant
function κ(θi) = − log(−θi), for θi ∈ � = (−∞, 0),

Yi ∼ f (y; θi, vi/ϕi) = exp

{
yθi − κ(θi)
ϕi/vi

+ a(y; vi/ϕi)
}

(5.44)

= (−θiαivi)viαi
(viαi)

yviαi−1 exp {−(−θiαivi)y} ,
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and the canonical parameter is θi = −ci . For our GLM analysis we treat the shape
parameter αi ≡ α > 0 as a nuisance parameter that does not depend on the specific
policy i, i.e., we set constant dispersion ϕ = 1/α, and only the scale parameter ci is
chosen policy dependent through θi = −ci .

Random variable Yi = Si/(niα) ∼ (niα, niαci) gives the reproductive form
of the gamma EDF, see Remarks 2.13. In applications, this form is not directly
useful because under unknown shape parameter α, we cannot calculate observations
Yi = Si/(niα). For this reason, we parametrize the model differently, here. We
consider instead

Yi = Si/ni ∼ (niα, nici). (5.45)

This (new) random variable has the same gamma EDF (5.44), we only need to
reinterpret the canonical parameter as θi = −ci/α. Then, we choose the log-link
for g which implies

μi = Eθi [Yi] = κ ′(θi) = − 1

θi
= exp{ηi} = exp〈β, xi〉,

if xi ∈ X ⊂ R
q+1 describes the pre-processed features of policy i. The gamma

GLM is now fully specified and can be fitted to the data; from Example 5.5 we
know that we have a concave maximization problem. We call this model Gamma
GLM1 (with the feature pre-processing as described above). Note that the (constant)
dispersion parameter ϕ cancels in the score equations, thus, we do not need to
explicitly specify the nuisance parameter α to estimate regression parameter β ∈
R
q+1.

Maximum Likelihood Estimation and Model Selection

Because we have only few claims data in this Swedish motorcycle example (only
m = 656 insurance policies suffer claims), we do not perform a generalization
analysis with learning and test samples. In this situation we need all data for
model fitting, and model performance is analyzed with AIC and with tenfold cross-
validation.

The in-sample deviance loss in the gamma GLM is given by

D(L, μ̂(·)) = 2

m

m∑

i=1

ni

ϕ

(
Yi − μ̂(xi )
μ̂(xi )

− log

(
Yi

μ̂(xi )

))
, (5.46)

where i runs over the policies i = 1, . . . ,m with positive claims Yi = Si/ni > 0,

and μ̂(xi ) = exp〈β̂MLE
, xi〉 is the MLE estimated regression function. Similar to

the Poisson case (5.29), McCullagh–Nelder [265] derive the following behavior
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Fig. 5.10 (lhs) Empirical density of Yi and (rhs) empirical density of Y 1/3
i

for the gamma unit deviance around its mode, see Section 7.2 and Figure 7.2 in
McCullagh–Nelder [265],

d (Yi , μi) ≈ 9Y 2/3
i

(
Y

−1/3
i − μ−1/3

i

)2
, (5.47)

this uses that the log-likelihood is symmetric around its mode for scale μ−1/3
i , see

Fig. 5.5 (middle). This shows that the gamma deviance scales differently around Yi
compared to the square loss function. From this we receive an approximation to the
deviance residuals (for v/ϕ = 1)

rD
i = sign(Yi − μi)

√
d (Yi , μi) ≈ 3

((
Yi

μi

)1/3

− 1

)

= 3
Y

1/3
i − μ1/3

i

μ
1/3
i

.

(5.48)

This is the cube-root transformation derived by Wilson–Hilferty [383]. This sug-
gests that if the empirical distribution of Y 1/3

i looks roughly Gaussian we can use a
gamma distribution. Figure 5.10 gives the empirical densities of Yi on the left-hand
side and of Y 1/3

i on the right-hand side. The latter looks roughly Gaussian (except
of the second mode close to 4), this supports the use of a gamma model.

Listing 5.11 provides the summary statistics of the fitted model Gamma GLM1;
note that we integrate the number of claims ni through scaling into the weights.
We have q + 1 = 9 regression parameters, and from this summary statistics we
observe that not all variables should be kept in the model. If we perform backward
elimination using drop1 in each step, see Sect. 5.3.3, we first drop BonusClass
and then Gender, resulting in a reduced model with 7 parameters. We call this
reduced model Gamma GLM2.
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Listing 5.11 Results in model Gamma GLM1 using the R command glm

1 Call:
2 glm(formula = ClaimAmount/ClaimNb ~ OwnerAge + I(OwnerAge^2) +
3 AreaGLM + RiskClass + VehAge + I(VehAge^2) + Gender + BonusClass,
4 family = Gamma(link = "log"), data = mcdata0, weights = ClaimNb)
5
6 Deviance Residuals:
7 Min 1Q Median 3Q Max
8 -3.3683 -1.4585 -0.5979 0.4354 3.4763
9

10 Coefficients:
11 Estimate Std. Error t value Pr(>!t!)
12 (Intercept) 8.9737854 0.5532821 16.219 < 2e-16 ***
13 OwnerAge 0.1072781 0.0280862 3.820 0.000147 ***
14 I(OwnerAge^2) -0.0014508 0.0003489 -4.158 3.65e-05 ***
15 AreaGLM -0.0768512 0.0368284 -2.087 0.037303 *
16 RiskClass 0.0615575 0.0327553 1.879 0.060651 .
17 VehAge -0.2051148 0.0296184 -6.925 1.05e-11 ***
18 I(VehAge^2) 0.0062649 0.0015946 3.929 9.45e-05 ***
19 GenderMale 0.1085538 0.1673443 0.649 0.516772
20 BonusClass 0.0089004 0.0225371 0.395 0.693029
21 ---
22 Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
23
24 (Dispersion parameter for Gamma family taken to be 1.536577)
25
26 Null deviance: 1368.0 on 655 degrees of freedom
27 Residual deviance: 1126.5 on 647 degrees of freedom
28 AIC: 14922
29
30 Number of Fisher Scoring iterations: 11

Table 5.13 Run times, number of parameters, AICs, Pearson’s dispersion estimate, in-sample
losses, tenfold cross-validation losses and the in-sample average claim amounts of the null model
(gamma intercept model) and the gamma GLMs

Run # AIC Dispersion In-sample Tenfold CV Average

time Param. est. ϕ̂P loss on L loss D̂CV amount

Gamma null – 1 + 1 14’416 2.057 2.085 2.091 24’641

Gamma GLM1 1s 9 + 1 14’277 1.537 1.717 1.752 25’105

Gamma GLM2 1s 7 + 1 14’274 1.544 1.719 1.747 25’130

The results of models Gamma GLM1 and Gamma GLM2 are presented in
Table 5.13. We show AICs, Pearson’s dispersion estimate, the in-sample deviance
losses on all available data, the corresponding tenfold cross-validation losses, and
the average claim amounts.

Firstly, we observe that the GLMs do not meet the balance property. This is
implied by the fact that we do not use the canonical link to avoid any sort of difficulty
of dealing with the one-sided bounded effective domain � = (−∞, 0). For pricing,
the intercept parameter β̂MLE

0 should be shifted to eliminate this bias, i.e, we need to
shift this parameter under the log-link by − log(25′130/24′641) for model Gamma
GLM2.

Secondly, the in-sample and tenfold cross-validation losses are not directly
comparable to AIC. Observe that we need to know the dispersion parameter ϕ in
order to calculate both of these statistics. For the in-sample and cross-validation
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losses we have set ϕ = 1, thus, all these figures are directly comparable. For AIC
we have estimated the dispersion parameter ϕ with MLE. This is the reason for
increasing the number of parameters in Table 5.13 by +1. Moreover, the resulting
AICs differ from the ones received from the R command glm, see, for instance,
Listing 5.11. The AIC value in Listing 5.11 does not consider all terms appropriately
due to the inclusion of weights, this is similar to Remark 5.22, it uses the
deviance dispersion estimate ϕ̂D, i.e., not the MLE and (still) increases the number
of parameters by 1 because the dispersion is estimated. For these reasons, we have
implemented our own code for calculating AIC. Both AIC and the tenfold cross-
validation losses say that we should give preference to model Gamma GLM2.

The dispersion estimate in Listing 5.11 corresponds to Pearson’s estimate

ϕ̂P = 1

m− (q + 1)

m∑

i=1

ni
(Yi − μ̂i)2

μ̂2
i

. (5.49)

We observe that the dispersion estimate is roughly 1.5 which gives an estimate of
the shape parameter α = 1/ϕ of 2/3. A shape parameter less than 1 implies that the
density of the gamma distribution is strictly decreasing, see Fig. 2.1. Often this is a
sign that the model does not fully fit the data, and if we use this model for simulation
we may receive too many observations close to zero compared to the true data.
A shape parameter less than 1 may be implied by more heterogeneity in the data
compared to what the chosen gamma GLM allows for or by large claims that cannot
be explained by the present gamma density structure. Thus, there is some sign here
that the data is more heavy-tailed than our model choice suggests. Alternatively,
there might be some need to also model the shape parameter with a regression
model; this could be done using the vector-valued parameter EF representation of
the gamma model, see Sect. 2.1.3. In view of Fig. 5.10 (rhs) it may also be that
the feature information is not sufficient to describe the second mode in 4, thus, we
probably need more explanatory information to reduce dispersion.

In Fig. 5.11 we give the Tukey–Anscombe plot and a QQ plot. Note that the
observations for ni = 1 follow a gamma distribution with shape parameter α
and scale parameter ci = α/μi = −αθi . Thus, if we scale Yi/μi , we receive
i.i.d. gamma random variables with shape and scale parameters equal to α. This
then allows us for ni = 1 to plot the empirical distribution of Yi/μ̂i against (α, α)
in a QQ plot where we estimate 1/α by Pearson’s dispersion estimate. The Tukey–
Anscombe plot looks reasonable, but the QQ plot shows that the gamma model
does not entirely fit the data. From this plot we cannot conclude whether the gamma
distribution is causing the problem or whether it is a missing term in the regression
structure. We only see that the data is over-dispersed, resulting in more heavy-tailed
observations than the theoretical gamma model can explain, and a compensation
by too many small observations (which is induced by over-dispersion, i.e., a shape
parameter smaller than one). In the network chapter we will refine the regression
function, keeping the gamma assumption, to understand which modeling part is
causing the difficulty.

Remark 5.26 For the calculation of AIC in Table 5.13 we have used the MLE of the
dispersion parameter ϕ. This is obtained by solving the score equation (5.11) for the
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Fig. 5.11 (lhs) Tukey–Anscombe plot of the fitted model Gamma GLM2, and (rhs) QQ plot of
the fitted model Gamma GLM2

gamma case. It is given by, we set α = 1/ϕ and we calculate the MLE of α instead,

∂

∂α
�Y (β, α) =

n∑

i=1

vi

[
Yih(μ(xi ))− κ (h(μ(xi )))+ logYi + log(αvi )+ 1 − �(αvi)

]
= 0,

where �(α) = ′(α)/(α) is the digamma function. We calculate the second
derivative w.r.t. α, see also (2.30),

∂2

∂α2 �Y (β, α) =
n∑

i=1

vi

[
1

α
− vi� ′(αvi)

]
=

n∑

i=1

v2
i

[
1

αvi
−� ′(αvi)

]
< 0 for α > 0,

the negativity follows from Theorem 1 in Alzner [9]. In fact, the function logα −
�(α) is strictly completely monotonic for α > 0. This says that the log-likelihood
�Y (β, α) is a concave function in α > 0 and the solution to the score equation is
unique, giving the MLE of α and ϕ, respectively.

5.3.8 Lab: Inverse Gaussian GLM for Claim Sizes

We present the inverse Gaussian GLM in this section as a competing model to the
gamma GLM studied in the previous section.

Infinite Divisibility

In the gamma model above we have used that the total claim amount S =∑n
j=1 Zj

has a gamma distribution for given claim counts N = n > 0 and i.i.d. gamma
claim sizes Zj . This property is closely related to divisibility. A random variable S
is called divisible by n ∈ N if there exist i.i.d. random variables Z1, . . . , Zn such
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that

S
(d)=

n∑

j=1

Zj ,

and S is called infinitely divisible if S is divisible by n for all n ∈ N. The EDF
is based on parameters (θ, ω) ∈ � × W . Jørgensen [203] gives the following
interesting result.

Theorem 5.27 (Theorem 3.7 in Jørgensen [203], Without Proof) Choose a
member of the EDF with parameter set � × W . Then

• the index set W is an additive semi-group and N ⊆ W ⊆ R+, and
• the members of the chosen EDF are infinitely divisible if and only if W = R+.

This theorem tells us how to aggregate and disaggregate within EDFs, e.g.,
the Poisson, gamma and inverse Gaussian models are infinitely divisible, and the
binomial distribution is divisible by n with the disaggregated random variables
belonging to the same EDF and the same canonical parameter, see Sect. 2.2.2. In
particular, we also refer to Corollary 2.15 on the convolution property.

Inverse Gaussian Generalized Linear Model

Alternatively to the gamma GLM one often explores an inverse Gaussian GLM
which has a cubic variance function V (μ) = μ3. We bring this inverse Gaussian
model into the same form as the gamma model of Sect. 5.3.7, so that we can
aggregate claims within insurance policies. The mean, the variance and the moment
generating function of an inverse Gaussian random variable Zi,j with parameters
αi, ci > 0 are given by

E[Zi,j ] = αi

ci
, Var(Zi,j ) = αi

c3
i

and MZi,j (r) = exp

{
αi

[
ci −

√
c2
i − 2r

]}
,

where the moment generating function requires r < c2
i /2 to be finite. From the

moment generating function we see that Si = ∑ni
j=1 Zi,j is inverse Gaussian

distributed with parameters niαi and ci . Finally, we scale Yi = Si/(niαi) which
provides us with an inverse Gaussian distribution with parameters n1/2

i α
1/2
i and

n
1/2
i α

1/2
i ci . This random variable Yi has a single-parameter EDF inverse Gaussian

distribution in its reproductive form, namely,

Yi ∼ f (y; θi, vi/ϕi) = exp

{
yθi − κ(θi)
ϕi/vi

+ a(y; vi/ϕi)
}

(5.50)

= α
1/2
i√

2π
vi
y3

exp

{
− αi

2y/vi

(
1 −√−2θiy

)2
}
,
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with cumulant function κ(θ) = −√−2θ for θ ∈ � = (−∞, 0], weight vi = ni ,
dispersion parameter ϕi = 1/αi and canonical parameter θi = −c2

i /2.
Similarly to the gamma case, this representation is not directly useful if the

parameter αi is not known. Therefore, we parametrize this model differently.
Namely, we consider

Yi = Si/ni ∼ InvGauss
(
n

1/2
i αi , n

1/2
i ci

)
. (5.51)

This re-scaled random variable has that same inverse Gaussian EDF (5.50), but
we need to re-interpret the parameters. We have dispersion parameter ϕi = 1/α2

i

and canonical parameter θi = −c2
i /(2α

2
i ). For our GLM analysis we will treat

the parameter αi ≡ α > 0 as a nuisance parameter that does not depend on the
specific policy i. Thus, we have constant dispersion ϕ = 1/α2 and only the scale
parameter ci is assumed to be policy dependent through the canonical parameter
θi = −c2

i /(2α
2).

We are now in the same situation as in the gamma case in Sect. 5.3.7. We choose
the log-link for g which implies

μi = Eθi [Yi ] = κ ′(θi) = 1√−2θi
= exp{ηi} = exp〈β, x i〉,

for xi ∈ X ⊂ R
q+1 describing the pre-processed features of policy i. We use the

same feature pre-processing as in model Gamma GLM2, and we call this resulting
model IG GLM2. Again the constant dispersion parameter ϕ = 1/α2 cancels in the
score equations, thus, we do not need to explicitly specify the nuisance parameter
α to estimate the regression parameter β ∈ R

q+1. However, there is an important
difference to the gamma GLM, namely, as stated in Example 5.6, we do not have a
concave maximization problem and Fisher’s scoring method needs a suitable initial
value. We start the fitting algorithm in the parameters of model Gamma GLM2.

The in-sample deviance loss in the inverse Gaussian GLM is given by

D(L, μ̂(·)) = 1

m

m∑

i=1

ni

ϕ

(Yi − μ̂(xi ))2
μ̂(xi )2 Yi

, (5.52)

where i runs over the policies i = 1, . . . ,m with positive claims Yi = Si/ni > 0,

and μ̂(xi ) = exp〈β̂MLE
, x i〉 is the MLE estimated regression function. The unit

deviances behave as

d (Yi, μi) = Yi
(
Y−1
i − μ−1

i

)2
, (5.53)
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Table 5.14 Run times, number of parameters, AICs, in-sample losses, tenfold cross-validation
losses and the in-sample average claim amounts of the null gamma model, model Gamma GLM2,
the null inverse Gaussian model, and model inverse Gaussian GLM2; the deviance losses use unit
dispersion ϕ = 1

Run # In-sample Tenfold CV Average

time Param. AIC loss on L loss D̂CV amount

Gamma null – 1 + 1 14’416 2.085 2.091 24’641

Gamma GLM2 1 s 7 + 1 14’274 1.719 1.747 25’130

IG null – 1 + 1 14’715 5.012 · 10−4 5.016 · 10−4 24’641

IG GLM2 1 s 7 + 1 14’686 4.793 · 10−4 4.820 · 10−4 32’268

note that the log-likelihood is symmetric around its mode for scale μ−1
i , see Fig. 5.5

(rhs). From this we receive deviance residuals (for v/ϕ = 1)

rD
i = sign(Yi − μi)

√
d (Yi , μi) = Y 1/2

i

(
μ−1
i − Y−1

i

)
.

Thus, these residuals behave as Y 1/2
i for Yi → ∞ (and fixed μ−1

i ), which is

more heavy-tailed than the cube-root behavior Y 1/3
i in the gamma case, see (5.48).

Another difference to the gamma case is that the deviance loss (5.52) is not scale-
invariant, see also (11.4), below.

We revisit the example of Table 5.13, but we replace the gamma distribution
by the inverse Gaussian distribution. The results in Table 5.14 show that the inverse
Gaussian model is not fully competitive on this data set. In view of (5.43) we observe
that the coefficient of variation (standard deviation divided by mean) is in the gamma
model given by 1/

√
α, thus, in the gamma model this coefficient of variation is

independent of the expected claim size μi and only depends on the shape parameter
α. In the inverse Gaussian model the coefficient of variation is given by

Vco(Zi,j ) =
√

Var(Zi,j )

E[Zi,j ] =
√
μi

α
,

thus, it monotonically increases in the expected claim size μi . It seems that this
structure is not fully suitable for this data set, i.e., there is no indication that the
coefficient of variation increases in the expected claim size. We come back to a
comparison of the gamma and the inverse Gaussian model in Sect. 11.1, below.

5.3.9 Log-Normal Model for Claim Sizes: A Short Discussion

Another way to improve the gamma model of Sect. 5.3.7 could be to use a log-
normal distribution instead. In the above situation this does not work because the
observations are not in the right format. If the claim observations Zi,j are log-
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normally distributed, then log(Zi,j ) are normally distributed. Unfortunately, in our
Swedish motorcycle data set we do not have individual claim observations Zi,j ,
but the provided information is aggregated over all claims per insurance policy, i.e.,
Si = ∑Ni

j=1 Zi,j . Therefore, there is no possibility here to challenge the gamma
framework of Sect. 5.3.7 with a corresponding log-normal framework, because
the log-normal framework is not closed under summation of i.i.d. log-normally
distributed random variables.

We would like to give some remarks that concern calculations on the log-scale (or
any other strictly increasing and concave transformation of the original data). For the
log-normal distribution, as well as in similar cases like the log-gamma distribution,
one works with logged observations Yi = log(Zi). This is a strictly monotone
transformation and the MLEs in the log-normal model based on observations Zi
and in the normal model based on observations Yi = log(Zi) coincide. This can be
seen from the following calculation. We start from the log-normal density on R+,
and we do a transformation of variable z > 0 �→ y = log(z) ∈ R with dy = dz/z

fLN(z;μ, σ 2)dz = 1√
2πσ 2

1

z
exp

{
− 1

2σ 2 (log(z)− μ)2
}
dz

= 1√
2πσ 2

exp

{
− 1

2σ 2 (y − μ)2
}
dy = f!(y;μ, σ 2)dy.

From this we see that the MLEs will coincide.
In many situations, one assumes that σ 2 > 0 is a given nuisance parameter,

and one models x �→ μ(x) with a GLM within the single-parameter EDF. In the
log-normal/Gaussian case one typically chooses the canonical link on the log-scale
which is the identity function. This then allows one to perform a classical linear
regression for μ(x) = 〈β, x〉 using the logged observations Y = (Y1, . . . , Yn)

� =
(log(Z1), . . . , log(Zn))�, and the corresponding MLE is given by

β̂
MLE = (X�X)−1X�Y , (5.54)

for full rank q + 1 ≤ n design matrix X. Note that in this case we have a closed-
form solution for the MLE of β. This is called the homoskedastic case because
all observations Yi are assumed to have the same variance σ 2, otherwise, in the
heteroskedastic case, we would still have to include the covariance matrix.

Since we work with the canonical link on the log-scale we have the balance
property on the log-scale, see Corollary 5.7. Thus, we receive unbiasedness

n∑

i=1

Eβ

[
E

β̂
MLE [Yi]

]
=

n∑

i=1

Eβ

[
〈β̂MLE

, xi〉
]

=
n∑

i=1

Eβ [Yi ] =
n∑

i=1

μ(xi ).

(5.55)
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Fig. 5.12 (lhs) Tukey–Anscombe plot of the fitted Gaussian model μ̂(xi ) on the logged claim
sizes Yi = log(Zi ), and (rhs) estimated means μ̂Zi as a function of μ̂(xi ) considering
heteroskedasticity σ̂ (xi )

If we move back to the original scale of the observations Zi we receive from the
log-normal assumption

E
(β̂

MLE
,σ 2)

[Zi] = exp
{
〈β̂MLE

, xi〉 + σ 2/2
}
.

Therefore, we need to adjust with the nuisance parameter σ 2 for the back-
transformation to the original observation scale. At this point, typically, the dif-
ficulties start. Often, a good back-transformation involves a feature dependent
variance parameter σ 2(xi ), thus, in many practical applications the homoskedas-
ticity assumption is not fulfilled, and a constant variance parameter choice leads to
a poor model on the original observation scale.

A suitable estimation of σ 2(xi ) may turn out to be rather difficult. This is
illustrated in Fig. 5.12. The left-hand side of this figure shows the Tukey–Anscombe
plot of the homoskedastic case providing unscaled (σ 2 ≡ 1) (Pearson’s) residuals
on the log-scale

rP
i = log(Zi)− μ̂(xi ) = Yi − μ̂(xi ).

The light-blue color shows an insurance policy dependent standard deviation
estimate σ̂ (xi ). In our case this estimate is non-monotone in μ̂(xi ) (which is quite
common on real data). Using this estimate we can estimate the means of the log-
normal random variables by

μ̂Zi = Ê[Zi] = exp
{
μ̂(xi )+ σ̂ (xi )2/2

}
.
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The right-hand side of Fig. 5.12 plots these estimated means μ̂Zi against the
estimated means μ̂(xi ) on the log-scale. We observe a graph that is non-monotone,
implied by the non-monotonicity of the standard deviation estimate σ̂ (xi ) as a
function of μ̂(xi ). This non-monotonicity is not bad per se, as we still have a
proper statistical model, however, it might be rather counter-intuitive and difficult to
explain. For this reason it is advisable to directly model the expected value by one
single function, and not to decompose it into different regression functions.

Another important point to be considered is that for model selection using AIC
we have to work on the same scale for all models. Thus, if we use a gamma model to
model Zi , then for an AIC selection we need to evaluate also the log-normal model
on that scale. This can be seen from the justification in Sect. 4.2.3.

Finally, we focus on unbiasedness. Note that on the log-scale we have unbiased-
ness (5.55) through the balance property. Unfortunately, this does not carry over to
the original scale. We give a small example, where we assume that there is neither
any uncertainty about the distributional model nor about the nuisance parameter.
That is, we assume that Zi are i.i.d. log-normally distributed with parameters μ and
σ 2, where only μ is unknown. The MLE of μ is given by

μ̂MLE = 1

n

n∑

i=1

log(Zi) ∼ N (μ, σ 2/n).

In this case we have

1

n

n∑

i=1

E(μ,σ 2)

[
E(μ̂MLE,σ 2)[Zi]

] = 1

n

n∑

i=1

E(μ,σ 2)

[
exp{μ̂MLE}

]
exp{σ 2/2}

= exp
{
μ+ (1 + n−1)σ 2/2

}

> exp
{
μ+ σ 2/2

}
= 1

n

n∑

i=1

E(μ,σ 2) [Zi] .

Volatility in parameter estimation μ̂MLE leads to a positive bias in this case. Note
that we have assumed full knowledge of the distributional model (i.i.d. log-normal)
and the nuisance parameter σ 2 in this calculation. If, for instance, we do not know
the true nuisance parameter and we work with (deterministic) σ̃ 2 " σ 2 and n > 1,
we can get a negative bias

1

n

n∑

i=1

E(μ,σ 2)

[
E(μ̂MLE ,̃σ 2)[Zi]

] = 1

n

n∑

i=1

E(μ,σ 2)

[
exp{μ̂MLE}

]
exp{̃σ 2/2}

= exp
{
μ+ σ 2/(2n)+ σ̃ 2/2

}

< exp
{
μ+ σ 2/2

}
= 1

n

n∑

i=1

E(μ,σ 2) [Zi] .
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This shows that working on the log-scale is rather difficult because the back-
transformation is far from being trivial, and for unknown nuisance parameter not
even the sign of the bias is clear. Similar considerations apply to the frequently used
Box–Cox transformation [48] for χ �= 1

Zi �→ Yi = Z
χ
i − 1

χ
.

For this reason, if unbiasedness is a central requirement (like in insurance pricing)
non-linear transformations should only be used with great care (and only if
necessary).

5.4 Quasi-Likelihoods

Above we have been mentioning the notion of over-dispersed Poisson models.
This naturally leads to so-called quasi-Poisson models and quasi-likelihoods. The
framework of quasi-likelihoods has been introduced by Wedderburn [376]. In this
section we give the main idea behind quasi-likelihoods, and for a more detailed
treatment and mathematical results we refer to Chapter 8 of McCullagh–Nelder
[265].

In Sect. 5.1.4 we have discussed the estimation of GLMs. This has been based
on the explicit knowledge of the full log-likelihood function �Y (β) for given data
Y . This has allowed us to calculate the score equations s(β,Y ) = ∇β�Y (β) = 0
whose solutions (Z-estimators) contain the MLE for β. The solutions of the score
equations themselves, using Fisher’s scoring method, no longer need the explicit
functional form of the log-likelihood, but they are only based on the first and
second moments, see (5.9) and Remarks 5.4. Thus, all models where these first
two moments coincide will provide the same MLE for the regression parameter
β; this is also the explanation behind the IRLS algorithm. Moreover, the first two
moments are sufficient for prediction and uncertainty quantification based on mean
squared errors, and they are also sufficient to quantify asymptotic normality. This is
exactly what motivates the quasi-likelihood considerations, and these considerations
are also related to the quasi-generalized pseudo maximum likelihood estimator
(QPMLE) that we are going to discuss in Theorem 11.8, below.

Assume that Y is a random vector having first moment μ ∈ R
n, positive

definite variance function V (μ) ∈ R
n×n and dispersion parameter ϕ. The quasi-

(log-)likelihood function �Y (μ) assumes that its gradient is given by

∇μ�Y (μ) = 1

ϕ
V (μ)−1 (Y − μ) .

In case of a diagonal variance function V (μ) this relates to the score (5.9). The
remaining step is to model the mean parameter μ = μ(β) ∈ R

n as a function of a
lower dimensional regression parameter β ∈ R

q+1, we also refer to Fig. 5.2. For
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this last step we assume that the Jacobian B ∈ R
n×(q+1) of dμ/dβ has full rank

q + 1. The score equations for β and given observations Y then read as

1

ϕ
B�V (μ(β))−1 (Y − μ(β)) = 0.

This is of exactly the same structure as the score equations in Proposition 5.1, and
the roots are found by using the IRLS algorithm for t ≥ 0, see (5.12),

β̂
(t) �→ β̂

(t+1) =
(
B�V (μ̂(t))−1B

)−1
B�V (μ̂(t))−1

(
Bβ̂

(t) + Y − μ̂(t)
)
,

where μ̂(t) = μ(β̂
(t)
).

We conclude with the following points about quasi-likelihoods:

• For regression parameter estimation within the quasi-likelihood framework it
is sufficient to know the structure of the first two moments μ(β) ∈ R

n and
V (μ) ∈ R

n×n as well as the score equations. Thus, we do not need to explicitly
specify a distributional family for the observations Y . This structure of the first
two moments is then sufficient for their estimation using the IRLS algorithm, i.e.,
we receive the predictors within this framework.

• Since we do not specify the full distribution of Y we can neither simulate from
this model nor can we calculate quantities where the full log-likelihood of the
model needs to be known. For example, we cannot calculate AIC in a quasi-
likelihood model.

• The quasi-likelihood model is characterized by the functional forms of μ(β) and
V (μ). The former plays the role of the link function and the linear predictor in the
GLM, and the latter plays the role of the variance function within the EDF which
is characterized through the cumulant function κ . For instance, if we assume to
have a diagonal matrix

V (μ) = diag(V (μ1), . . . , V (μn)),

then, the choice of the variance function μ �→ V (μ) describes the explicit
selection of the quasi-likelihood model. If we choose the power variance function
V (μ) = μp, p �∈ (0, 1), we have a quasi-Tweedie’s model.

• For prediction uncertainty evaluation we also need an estimate of the dispersion
parameter ϕ > 0. Since we do not know the full likelihood in this approach,
Pearson’s estimate ϕ̂P is the only option we have to estimate ϕ.

• For asymptotic normality results and hypothesis testing within the quasi-
likelihood framework we refer to Section 8.4 of McCullagh–Nelder [265].
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5.5 Double Generalized Linear Model

In the derivations above we have treated the dispersion parameter ϕ in the GLM as
a nuisance parameter. In the case of a homogeneous dispersion parameter it can be
canceled in the score equations for MLE, see (5.9). Therefore, it does not influence
MLE, and in a subsequent step this nuisance parameter can still be estimated
using, e.g., Pearson’s or deviance residuals, see Sect. 5.3.1 and Remark 5.26. In
some examples we may have systematic effects in the dispersion parameter, too.
In this case the above approach will not work because a heterogeneous dispersion
parameter no longer cancels in the score equations. This has been considered in
Smyth [341] and Smyth–Verbyla [343]. The heterogeneous dispersion situation is
of general interest for GLMs, and it is of particular interest for Tweedie’s CP GLM
if we interpret Tweedie’s distribution [358] as a CP model with i.i.d. gamma claim
sizes, see Proposition 2.17; we also refer to Jørgensen–de Souza [204], Smyth–
Jørgensen [342] and Delong et al. [94].

5.5.1 The Dispersion Submodel

We extend model assumption (5.1) by assuming that also the dispersion parameter
ϕi is policy i dependent. Assume that all random variables Yi are independent and
have densities w.r.t. a σ -finite measure ν on R given by

Yi ∼ f (yi; θi, vi/ϕi) = exp

{
yiθi − κ(θi)
ϕi/vi

+ a(yi; vi/ϕi)
}
,

for 1 ≤ i ≤ n, with canonical parameters θi ∈ �̊, exposures vi > 0 and dispersion
parameters ϕi > 0. As in (5.5) we assume that every policy i is equipped with
feature information xi ∈ X such that for a given link function g : M → R we can
model its mean as

xi �→ g(μi) = g(μ(xi )) = g
(
Eθ(xi ) [Yi ]

) = ηi = η(xi ) = 〈β, xi〉. (5.56)

This provides us with log-likelihood function for observation Y = (Y1, . . . , Yn)
�

β �→ �Y (β) =
n∑

i=1

vi

ϕi

[
Yih(μ(xi ))− κ (h(μ(xi )))

]
+ a(Yi; vi/ϕi),

with canonical link h = (κ ′)−1. The difference to (5.7) is that the dispersion
parameter ϕi now depends on the insurance policy which requires additional
modeling. We choose a second strictly monotone and smooth link function gϕ :
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R+ → R, and we express the dispersion of policy 1 ≤ i ≤ n by

gϕ(ϕi) = gϕ(ϕ(zi )) = 〈γ , zi〉, (5.57)

where zi is the feature of policy i, which may potentially differ from xi . The
rationale behind this different feature is that different information might be relevant
for modeling the dispersion parameter, or feature information might be differently
pre-processed compared to the response Yi . We now need to estimate two regression
parameters β and γ in this approach on possibly differently pre-processed feature
information xi and zi of policy i. In general, this is not easily doable because the
term a(Yi; vi/ϕi) of the log-likelihood of Yi may have a complicated structure (or
may not be available in closed form like in Tweedie’s CP model).

5.5.2 Saddlepoint Approximation

We reformulate the EDF density using the unit deviance d(Y, μ) defined in (2.25);
we drop the lower index i for the moment. Set θ = h(μ) ∈ �̊ for the canonical link
h, then

f (y; θ, v/ϕ) = exp

{
v

ϕ
[yh(μ)− κ(h(μ))] + a(y; v/ϕ)

}

= exp

{
v

ϕ
[yh(y)− κ(h(y))] + a(y; v/ϕ)

}
exp

{
− 1

2ϕ/v
d(y, μ)

}

def.= a∗(y;ω) exp
{
−ω

2
d(y, μ)

}
, (5.58)

with ω = v/ϕ ∈ W . This corresponds to (2.27), and it brings the EDF density into
a Gaussian-looking form. A general difficulty is that the term a∗(y;ω) may have a
complicated structure or may not be given in closed form. Therefore, we consider
its saddlepoint approximation; this is based on Section 3.5 of Jørgensen [203].

Suppose that we are in the absolutely continuous EDF case and that κ is steep.
In that case Y ∈ M, a.s., and the variance function y �→ V (y) is well-defined for
all observations Y = y, a.s. Based on Daniels [87], Barndorff-Nielsen–Cox [24]
proved the following statement, see Theorem 3.10 in Jørgensen [203]: assume there
exists ω0 ∈ W such that for all ω > ω0 the density (5.58) is bounded. Then, the
following saddlepoint approximation is uniform on compact subsets of the support
T of Y

f (y; θ, v/ϕ) =
(

2πϕ

v
V (y)

)−1/2

exp

{
− 1

2ϕ/v
d(y, μ)

}
(1 +O(ϕ/v)) ,

(5.59)
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as ϕ/v → 0. What makes this saddlepoint approximation attractive is that we can
get rid of a complicated function a∗(y;ω) by a neat approximation ( 2πϕ

v
V (y))−1/2

for sufficiently large volumes v, and at the same time, this does not affect the unit
deviance d(y, μ), preserving the estimation properties ofμ. The discrete counterpart
is given in Theorem 3.11 of Jørgensen [203].

Using saddlepoint approximation (5.59) we receive an approximate log-
likelihood function

�Y (μ, ϕ) ≈ 1

2

[
−ϕ−1vd(Y, μ) − log (ϕ)

]
− 1

2
log

(
2π

v
V (Y )

)
.

This approximation has an attractive form for dispersion estimation because it gives

an approximate EDF for observation d
def.= vd(Y, μ), for given μ. Namely, for

canonical parameter φ = −ϕ−1 < 0 we have approximation

�Y (μ, φ) ≈ dφ − (− log (−φ))
2

− 1

2
log

(
2π

v
V (Y )

)
. (5.60)

The right-hand side has the structure of a gamma EDF for observation d with
canonical parameter φ < 0, cumulant function κϕ(φ) = − log(−φ) and dispersion
parameter 2. Thus, we have the structure of an approximate gamma model on the
right-hand side of (5.60) with, for given μ,

Eφ [d|μ] ≈ κ ′
ϕ(φ) = − 1

φ
= ϕ, (5.61)

Varφ(d|μ) ≈ 2κ ′′
ϕ(φ) = 2

1

φ2 = 2ϕ2. (5.62)

These statements say that for given μ and assuming that the saddlepoint approx-
imation is sufficiently accurate, d is approximately gamma distributed with shape
parameter 1/2 and canonical parameter φ (which relates to the dispersion ϕ in the
mean parametrization). Thus, we can estimate φ and ϕ, respectively, with a (second)
GLM from (5.60), for given mean parameter μ.

Remarks 5.28

• The accuracy of the saddlepoint approximation is discussed in Section 3.2 of
Smyth–Verbyla [343]. The saddlepoint approximation is exact in the Gaussian
and the inverse Gaussian case. In the Gaussian case, we have log-likelihood

�Y (μ, φ) = dφ − (− log (−φ))
2

− 1

2
log

(
2π

v

)
,
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with variance function V (Y ) = 1. In the inverse Gaussian case, we have log-
likelihood

�Y (μ, φ) = dφ − (− log (−φ))
2

− 1

2
log

(
2π

v
Y 3
)
,

with variance function V (Y ) = Y 3. Thus, in the Gaussian case and in the inverse
Gaussian case we have a gamma model for d with mean ϕ and shape parameter
1/2, for givenμ; for a related result we also refer to Theorem 3 of Blæsild–Jensen
[38]. For Tweedie’s models with p ≥ 1, one can show that the relative error of the
saddlepoint approximation is a non-increasing function of the squared coefficient
of variation τ = ϕ

v
V (y)/y2 = ϕ

v
yp−2, leading to small approximation errors if

ϕ/v is sufficiently small; typically one requires τ < 1/3, see Section 3.2 of
Smyth–Verbyla [343].

• The saddlepoint approximation itself does not provide a density because in gen-
eral the termO(ϕ/v) in (5.59) is non-zero. Nelder–Pregibon [282] renormalized
the saddlepoint approximation to a proper density and studied its properties.

• In the gamma EDF case, the saddlepoint approximation would not be necessary
because this case can still be solved in closed form. In fact, in the gamma EDF
case we have log-likelihood, set φ = −v/ϕ < 0,

�Y (μ, φ) = φd(Y, μ)− χ(φ)
2

− logY, (5.63)

with χ(φ) = 2(log(−φ) + φ log(−φ) − φ). For given μ, this is an EDF
for d(Y, μ) with cumulant function χ on the effective domain (−∞, 0). This
provides us with expected value and variance

Eφ [d(Y, μ)|μ] = χ ′(φ) = 2 (−�(−φ)+ log(−φ)) ≈ − 1

φ
,

Varφ(d(Y, μ)|μ) = 2χ ′′(φ) = 4

(
� ′(−φ)− 1

−φ
)
,

with digamma function � and the approximation exactly refers to the sad-
dlepoint approximation; for the variance statement we also refer to Fisher’s
information (2.30). For receiving more accurate mean approximations one can
consider higher order terms, e.g., the second order approximation is χ ′(φ) ≈
−1/φ + 1/(6φ2). In fact, from the saddlepoint approximation (5.60) and from
the exact formula (5.63) we receive in the gamma case Stirling’s formula

(γ ) ≈ √
2πγ γ−1/2e−γ .

In the subsequent examples we will just use the saddlepoint approximation also
in the gamma EDF case.
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5.5.3 Residual Maximum Likelihood Estimation

The saddlepoint approximation (5.60) proposes to alternate MLE of β for the mean
model (5.56) and of γ for the dispersion model (5.57). Fisher’s information matrix
of the saddlepoint approximation (5.60) w.r.t. the canonical parameters θ and φ is
given by

I(θ, φ) = −Eθ,φ

(
φvκ ′′(θ) −v (Y − κ ′(θ)

)

−v (Y − κ ′(θ)
) − 1

2
1
φ2

)

=
(

v
ϕ(φ)

V (μ(θ)) 0

0 1
2Vϕ(ϕ(φ))

)

,

with variance function Vϕ(ϕ) = ϕ2, and emphasizing that we work in the canonical
parametrization (θ, φ). This is a positive definite diagonal matrix which suggests
that the algorithm alternating the β and γ estimations will have a fast convergence.
For fixed estimate γ̂ we calculate estimated dispersion parameters ϕ̂i = g−1

ϕ 〈γ̂ , zi〉
of policies 1 ≤ i ≤ n, see (5.57). These then allow us to calculate diagonal working
weight matrix

W(β) = diag

((
∂g(μi)

∂μi

)−2
vi

ϕ̂i

1

V (μi)

)

1≤i≤n
∈ R

n×n,

which is used in Fisher’s scoring method/IRLS algorithm (5.12) to receive MLE β̂,
given the estimates (ϕ̂i)i . These MLEs allow us to estimate the mean parameters
μ̂i = g−1〈β̂, xi〉, and to calculate the deviances

di = vid (Yi, μ̂i ) = 2vi
(
Yih (Yi)− κ (h (Yi))− Yih (μ̂i )+ κ (h (μ̂i))

)
≥ 0.

Using (5.60) we know that these deviances can be approximated by gamma
distributions (1/2, 1/(2ϕi)). This is a single-parameter EDF with dispersion
parameter 2 (as nuisance parameter) and mean parameter ϕi . This motivates the
definition of the working weight matrix (based on the gamma EDF model)

Wϕ(γ ) = diag

((
∂gϕ(ϕi)

∂ϕi

)−2 1

2

1

Vϕ(ϕi)

)

1≤i≤n
∈ R

n×n,

and the working residuals

Rϕ(d, γ ) =
(
∂gϕ(ϕi)

∂ϕi
(di − ϕi)

)�

1≤i≤n
∈ R

n.
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Fisher’s scoring method (5.12) iterates for s ≥ 0 the following recursion to receive
γ̂

γ̂ (s) �→ γ̂ (s+1) =
(
Z�Wϕ(γ̂ (s))Z

)−1
Z�Wϕ(γ̂ (s))

(
Zγ̂ (s) + Rϕ(d, γ̂

(s))
)
,

(5.64)
where Z = (z1, . . . , zn)

� is the design matrix used to estimate the dispersion
parameters.

5.5.4 Lab: Double GLM Algorithm for Gamma Claim Sizes

We revisit the Swedish motorcycle claim size data studied in Sect. 5.3.7. We expand
the gamma claim size GLM to a double GLM also modeling the systematic effects
in the dispersion parameter. In a first step we need to change the parametrization of
the gamma model of Sect. 5.3.7. In the former section we have modeled the average
claim size Si/ni ∼ (niαi, nici), but for applying the saddlepoint approximation
we should use the reproductive form (5.44) of the gamma model. We therefore set

Yi = Si/(niαi) ∼ (niαi , niαici ). (5.65)

The reason for the different parametrization in Sect. 5.3.7 has been that (5.65) is not
directly useful if αi is unknown because in that case the observations Yi cannot be
calculated. In this section we estimate ϕi = 1/αi which allows us to model (5.65);
a different treatment within Tweedie’s family is presented in Sect. 11.1.3. The only
difficulty is to initialize the double GLM algorithm. We proceed as follows.

(0) In an initial step we assume constant dispersion ϕi = 1/αi ≡ 1/α = 1. This
gives us exactly the mean estimates of Sect. 5.3.7 for Si/ni ∼ (niα, nici);
note that for constant shape parameter α the mean of Si/ni can be estimated
without explicit knowledge of α (because it cancels in the score equations).
Using these mean estimates we calculate the MLE α̂(0) of the (constant) shape
parameter α, see Remark 5.26. This then allows us to determine the (scaled)
observations Y (1)i = Si/(ni α̂(0)) and we initialize ϕ̂(0)i = 1/α̂(0).

(1) Iterate for t ≥ 1:

– estimate the mean μi of Yi using the mean GLM (5.56) based on the
observations Y (t)i and the dispersion estimates ϕ̂(t−1)

i . This provides us with

μ̂
(t)
i ;

– based on the deviances d(t)i = vid(Y
(t)
i , μ̂

(t)
i ), calculate the updated dis-

persion estimates ϕ̂(t)i using the dispersion GLM (5.57) and the residual
MLE iteration (5.64) with the saddlepoint approximation. Set for the updated
observations Y (t+1)

i = Si ϕ̂(t)i /ni .
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Table 5.15 Number of parameters, AICs, Pearson’s dispersion estimate, in-sample losses, tenfold
cross-validation losses and the in-sample average claim amounts of the null model (gamma
intercept model) and the (double) gamma GLM

# Dispersion In-sample Tenfold CV Average

Param. AIC est. ϕ̂P loss on L loss D̂CV amount

Gamma null 1 + 1 14’416 2.057 2.085 2.091 24’641

Gamma GLM2 7 + 1 14’274 1.544 1.719 1.747 25’130

Double gamma GLM 7 + 6 14’258 – (1.721) – 26’413

In an initial double GLM analysis we use the feature information zi = xi for the
dispersion ϕi modeling (5.57). We choose for both GLMs the log-link which leads to
concave maximization problems, see Example 5.5. Running the above double GLM
algorithm converges in 4 iterations, and analyzing the resulting model we observe
that we should drop the variable RiskClass from the feature zi . We then run the
same double GLM algorithm with the feature information xi and the new zi again,
and the results are presented in Table 5.15.

The considered double GLM has parameter dimensions β ∈ R
7 and γ ∈ R

6. To
have comparability with AIC of Sect. 5.3.7, we evaluate AIC of the double GLM
in the observations Si/ni (and not in Yi ; i.e., similar to the gamma GLM). We
observe that it has an improved AIC value compared to model Gamma GLM2.
Thus, indeed, dispersion modeling seems necessary in this example (under the
GLM2 regression structure). We do not calculate in-sample and cross-validation
losses in the double GLM because in the other two models of Table 5.15 we have
set ϕ = 1 in these statistics. However, the in-sample loss of model Gamma GLM2
with ϕ = 1 corresponds to the (homogeneous) deviance dispersion estimate (up to
scaling n/(n− (q + 1))), and this in-sample loss of 1.719 can directly be compared
to the average estimated dispersion m−1∑m

i=1 ϕ̂i = 1.721 (in round brackets in
Table 5.15). On the downside, the double GLM has a bigger bias which needs an
adjustment.

In Fig. 5.13 (lhs) we give the normal plots of model Gamma GLM2 and the
double gamma GLM model. This plot is received by transforming the observations
to normal quantiles using the corresponding estimated gamma models. We see
quite some similarity between the two estimated gamma models. Both models
seem to have similar deficiencies, i.e., dispersion modeling improves explanation
of observations, however, either the regression function or the gamma distributional
assumption does not fully fit the data, especially for small claims. Finally, in
Fig. 5.13 (rhs) we plot the estimated dispersion parameters ϕ̂i against the logged
estimated means log(μ̂i ) (linear predictors). We observe that the estimated disper-
sion has a (weak) U-shape as a function of the expected claim sizes which indicates
that the tails cannot fully be captured by our model. This closes this example.

Remark 5.29 For the dispersion estimation ϕ̂i we use as observations the deviances
di = vid (Yi , μ̂i ), 1 ≤ i ≤ n. On a finite sample, these deviances are typically
biased due to the use of the estimated means μ̂i . Smyth–Verbyla [343] propose the
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Fig. 5.13 (lhs) Normal plot of the fitted models Gamma GLM2 and double GLM, (rhs) estimated
dispersion parameters ϕ̂i against the logged estimated means log(μ̂i ) (the orange line gives the
in-sample loss in model Gamma GLM2)

following bias correction. Consider the estimated hat matrix defined by

H = W(β̂, γ̂ )1/2X
(
X�W(β̂, γ̂ )X

)−1
X�W(β̂, γ̂ )1/2,

with the diagonal work weight matrix W(β̂, γ̂ ) depending on the estimated
regression parameters β̂ and γ̂ through μ and ϕ. Denote the diagonal entries of
the hat matrix by (hi,i )1≤i≤n. A bias corrected version of the deviances is received
by considering observations (1 − hi,i )−1di = (1 − hi,i )−1vid (Yi, μ̂i ), 1 ≤ i ≤ n.
We will come back to the hat matrix H in Sect. 5.6.1, below.

5.5.5 Tweedie’s Compound Poisson GLM

A popular situation for applying the double GLM framework is Tweedie’s CP
model introduced in Sect. 2.2.3, in particular, we refer to Proposition 2.17 for the
corresponding parametrization. Having claim frequency and claim sizes involved,
such a model can hardly be calibrated with one single regression function and a
constant dispersion parameter. An obvious choice is a double GLM, this is the
proposal presented in Smyth–Jørgensen [342]. In most of the cases one chooses for
both link functions g and gϕ the log-links because positivity needs to be guaranteed.
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This implies for the two working weight matrices of the double GLM

W(β) = diag

(
μ2
i

vi

ϕi

1

V (μi)

)

1≤i≤n
= diag

(
μ

2−p
i

vi

ϕi

)

1≤i≤n
,

Wϕ(γ ) = diag

(
ϕ2
i

1

2

1

Vϕ(ϕi)

)

1≤i≤n
= diag(1/2, . . . , 1/2).

The deviances in Tweedie’s CP model are given by, see (4.18),

di = vid (Yi, μ̂i ) = 2vi

(

Yi
Y

1−p
i − μ̂i1−p

1 − p − Y
2−p
i − μ̂i2−p

2 − p

)

≥ 0,

and these deviances could still be de-biased, see Remark 5.29. The working
responses for the two GLMs are

R = (Yi/μi − 1)�1≤i≤n and Rϕ = (di/ϕi − 1)�1≤i≤n .

The drawback of this approach is that it only considers the (scaled) total claim
amounts Yi = Siϕi/vi as observations, see Proposition 2.17. These total claim
amounts consist of the number of claims Ni and i.i.d. individual claim sizes
Zi,j ∼ (α, ci ), supposed Ni ≥ 1. Having observations of both claim amounts
Si and claim counts Ni allows one to build a Poisson GLM for claim counts and
a gamma GLM for claim sizes which can be estimated separately. This has also
been the reason of Smyth–Jørgensen [342] to enhance Tweedie’s model estimation
for known claim counts in their Section 4. Moreover, in Theorem 4 of Delong et
al. [94] it is proved that the two GLM approaches can be identified under log-link
choices.

5.6 Diagnostic Tools

In our examples we have studied several figures like AIC, cross-validation losses,
etc., for model and parameter selection. Moreover, we have plotted the results, for
instance, using the Tukey–Anscombe plot or the QQ plot. Of course, there are
numerous other plots and tools that can help us to analyze the results and to improve
the resulting models. We present some of these in this section.

5.6.1 The Hat Matrix

The MLE β̂
MLE

satisfies at convergence of the IRLS algorithm, see (5.12),

β̂
MLE =

(
X�W(β̂MLE

)X
)−1

X�W(β̂MLE
)
(
Xβ̂

MLE + R(Y , β̂
MLE

)
)
,
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with working residuals for β ∈ R
q+1

R(Y ,β) =
(
∂g(μi)

∂μi

∣
∣
∣
∣
μi=μi(β)

(Yi − μi(β))
)�

1≤i≤n
∈ R

n.

Following Section 4.2.2 of Fahrmeir–Tutz [123], this allows us to define the so-
called hat matrix, see also Remark 5.29,

H = H(β̂MLE
) = W(β̂MLE

)1/2X
(
X�W(β̂MLE

)X
)−1

X�W(β̂MLE
)1/2 ∈ R

n×n,
(5.66)

recall that the working weight matrix W(β) is diagonal. The hat matrix H is
symmetric and idempotent, i.e. H 2 = H , with trace(H) = rank(H) = q + 1.
Therefore,H acts as a projection, mapping the observations Ỹ to the fitted values

Ỹ
def.= W(β̂

MLE
)1/2

(
Xβ̂

MLE + R(Y , β̂
MLE

)
)

�→ H Ỹ = W(β̂MLE
)1/2Xβ̂

MLE

= W(β̂MLE
)1/2η̂,

the latter being the fitted linear predictors. The diagonal elements hi,i of this hat
matrix H satisfy 0 ≤ hi,i ≤ 1, and values close to 1 correspond to extreme data
points i, in particular, for hi,i = 1 only observation Ỹi influences η̂i , whereas for
hi,i = 0 observation Ỹi has no influence on η̂i .

Figure 5.14 gives the resulting hat matrices of the double gamma GLM of
Sect. 5.5.4. On the left-hand side we show the diagonal entries hi,i of the claim
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Fig. 5.14 Diagonal entries hi,i of the two hat matrices of the example in Sect. 5.5.4: (lhs) for
means μ̂i and responses Yi , and (rhs) for dispersions ϕ̂i and responses di
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amount responses Yi (for the estimation of μi), and on the right-hand side the
corresponding plots for the deviance responses di (for the estimation of ϕi). These
diagonal elements hi,i are ordered on the x-axis w.r.t. the linear predictors η̂i . From
this figure we conclude that the diagonal entries of the hat matrices are bigger for
very small responses in our example, and the dispersion plot has a couple of more
special observations that may require further analysis.

5.6.2 Case Deletion and Generalized Cross-Validation

As a continuation of the previous subsection we can analyze the influence of
an individual observation Yi on the estimation of regression parameter β. This
influence is naturally measured by fitting the regression parameter based on the
full data D and based only on the observations L(−i) = D \ {Yi}, we also refer
to leave-one-out cross-validation in Sect. 4.2.2. The influence of observation Yi is
then obtained by comparing β̂

MLE
and β̂

MLE
(−i) . Since fitting n different models by

individually leaving out each observation Yi is too costly, one only explores a one-

step Fisher’s scoring update starting from β̂
MLE

that provides an approximation to

β̂
MLE
(−i) , that is,

β̂
(1)
(−i) =

(
X�
(−i)W(−i)(β̂

MLE
)X(−i)

)−1
X�
(−i)W(−i)(β̂

MLE
)
(
Xβ̂

MLE + R(Y , β̂
MLE

)
)

(−i)

=
(
X�
(−i)W(−i)(β̂

MLE
)X(−i)

)−1
X�
(−i)W(−i)(β̂

MLE
)1/2 Ỹ (−i),

where all lower indices (−i) indicate that we drop the corresponding row or/and
column from the matrices and vectors, and where Ỹ has been defined in the previous

subsection. This allows us to compare β̂
MLE

and β̂
(1)
(−i) to analyze the influence of

observation Yi .
To reformulate this approximation, we come back to the hat matrix H =

H(β̂
MLE

) = (hi,j )1≤i,j≤n defined in (5.66). It fulfills

W(β̂
MLE

)1/2Xβ̂
MLE = H Ỹ =

⎛

⎝
n∑

j=1

h1,j Ỹj , . . . ,

n∑

j=1

hn,j Ỹj

⎞

⎠

�
∈ R

n.

Thus, for predicting Yi we can consider the linear predictor (for the chosen link g)

η̂i = g(μ̂i ) = 〈β̂MLE
, xi〉 = (Xβ̂

MLE
)i = Wi,i (β̂MLE

)−1/2
n∑

j=1

hi,j Ỹj .
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A computation of the linear predictor of Yi using the leave-one-out approximation

β̂
(1)
(−i) gives

η̂
(−i,1)
i = 〈β̂(1)(−i), xi〉 = 1

1 − hi,i η̂i −Wi,i (β̂
MLE

)−1/2 hi,i

1 − hi,i Ỹi .

This allows one to efficiently calculate a leave-one-out prediction using the hat
matrix H . This also motivates to study the generalized cross-validation (GCV) loss
which is an approximation to leave-one-out cross-validation, see Sect. 4.2.2,

D̂GCV = 1

n

n∑

i=1

vi

ϕ
d
(
Yi, g

−1(η̂
(−i,1)
i )

)
(5.67)

= 2

n

n∑

i=1

vi

ϕ

[
Yih (Yi )− κ (h (Yi))− Yih

(
g−1(η̂

(−i,1)
i )

)
+ κ

(
h
(
g−1(η̂

(−i,1)
i )

)) ]
.

Example 5.30 (Generalized Cross-Validation Loss in the Gaussian Case) We study
the generalized cross-validation loss D̂GCV in the homoskedastic Gaussian case
vi/ϕ ≡ 1/σ 2 with cumulant function κ(θ) = θ2/2 and canonical link g(μ) =
h(μ) = μ. The generalized cross-validation loss in the Gaussian case is given by

D̂GCV = 1

n

n∑

i=1

1

σ 2

(
Yi − η̂(−i,1)i

)2
,

with (linear) leave-one-out predictor

η̂
(−i,1)
i = 〈β̂(1)(−i), xi〉 =

n∑

j=1,j �=i

hi,j

1 − hi,i Yj = 1

1 − hi,i η̂i −
hi,i

1 − hi,i Yi .

This gives us generalized cross-validation loss in the Gaussian case

D̂GCV = 1

n

n∑

i=1

1

σ 2

(
Yi − η̂i
1 − hi,i

)2

,

with β independent hat matrix

H = X
(
X�X

)−1
X�.
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The generalized cross-validation loss is used, for instance, for generalized addi-
tive model (GAM) fitting where an efficient and fast cross-validation method is
required to select regularization parameters. Generalized cross-validation has been
introduced by Craven–Wahba [84] but these authors replaced hi,i by

∑n
j=1 hj,j /n.

It holds that
∑n
j=1 hj,j = trace(H) = q + 1, thus, using this approximation we

receive

D̂GCV ≈ 1

n

n∑

i=1

1

σ 2

(
Yi − η̂i

1 −∑n
j=1 hj,j /n

)2

= n

(n− (q + 1))2

n∑

i=1

(Yi − η̂i)2
σ 2

= n

n− (q + 1)

ϕ̂P

σ 2 ,

with ϕ̂P being Pearson’s dispersion estimate in the Gaussian model, see (5.30). �

We give a numerical example based on the gamma GLM for the claim sizes
studied in Sect. 5.3.7.

Example 5.31 (Leave-One-Out Cross-Validation) The aim of this example is to
compare the generalized cross-validation loss D̂GCV to the leave-one-out cross-
validation loss D̂loo, see (4.34), the former being an approximation to the latter.
We do this for the gamma claim size model studied in Sect. 5.3.7. In this example
it is feasible to exactly calculate the leave-one-out cross-validation loss because we
have only 656 claims.

The results are presented in Table 5.16. Firstly, the different cross-validation
losses confirm that the model slightly (in-sample) over-fits to the data, which is
not a surprise when estimating 7 regression parameters based on 656 observations.
Secondly, the cross-validation losses provide similar numbers with leave-one-out
being slightly bigger than tenfold cross-validation, here. Thirdly, the generalized
cross-validation loss D̂GCV manages to approximate the leave-one-out cross-
validation loss D̂loo very well in this example.

Table 5.17 gives the corresponding results for model Poisson GLM1 of
Sect. 5.2.4. Firstly, in this example with 610’206 observations it is not feasible
to calculate the leave-one-out cross-validation loss (for computational reasons).
Therefore, we rely on the generalized cross-validation loss as an approximation.
From the results of Table 5.17 it seems that this approximation (rather) under-
estimates the loss (compared to tenfold cross-validation). Indeed, this is an
observation that we have made also in other examples. �

Table 5.16 Comparison of
different cross-validation
losses for model Gamma
GLM2

Gamma GLM2

In-sample loss D(L, μ̂MLE
L ) 1.719

Tenfold CV loss D̂CV 1.747

Leave-one-out CV loss D̂loo 1.756

Generalized CV loss D̂GCV 1.758
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Table 5.17 Comparison of
different cross-validation
losses for model Poisson
GLM1

Poisson GLM1

In-sample loss D(L, μ̂MLE
L ) 24.101

Tenfold CV loss D̂CV 24.121

Leave-one-out CV loss D̂loo N/A

Generalized CV loss D̂GCV 24.105

5.7 Generalized Linear Models with Categorical Responses

The reader will have noticed that the discussion of GLMs in this chapter has
been focusing on the single-parameter linear EDF case (5.1). In many actuarial
applications we also want to study examples of the vector-valued parameter
EF (2.2). We briefly discuss the categorical case since this case is frequently used.

5.7.1 Logistic Categorical Generalized Linear Model

We recall the EF representation of the categorical distribution studied in Sect. 2.1.4.
We choose as ν the counting measure on the finite set Y = {1, . . . , k+1}. A random
variable Y taking values in Y is called categorical, and the levels y ∈ Y can either
be ordinal or nominal. This motivates dummy coding of the categorical random
variable Y providing

T (Y ) = (1{Y=1}, . . . ,1{Y=k})� ∈ {0, 1}k, (5.68)

thus, k + 1 has been chosen as reference level. For the canonical parameter
θ = (θ1, . . . , θk)

� ∈ � = R
k we have cumulant function and mean functional,

respectively,

κ(θ) = log

⎛

⎝1 +
k∑

j=1

eθj

⎞

⎠ , p = Eθ [T (Y )] = ∇θκ(θ) = eθ

1 +∑k
j=1 e

θj
.

With these choices we receive the EF representation of the categorical distribution
(set θk+1 = 0)

dF (y; θ ) = exp

⎧
⎨

⎩
θ�T (y) − log

⎛

⎝1 +
k∑

j=1

eθj

⎞

⎠

⎫
⎬

⎭
dν(y) =

k+1∏

l=1

(
eθl

∑k+1
j=1 e

θj

)1{y=l}
dν(y).

The covariance matrix of T (Y ) is given by

�(θ ) = Varθ (T (Y )) = ∇2
θ κ(θ) = diag (p)− pp� ∈ R

k×k.
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Assume that we have feature information x ∈ X ⊂ {1} × R
q for response variable

Y . This allows us to lift this categorical model to a GLM. The logistic GLM assumes
for p = (p1, . . . , pk)

� ∈ (0, 1)k a regression function, 1 ≤ l ≤ k,

x �→ pl = pl(x) = Pβ[Y = l] = exp〈β l , x〉
1 +∑k

j=1 exp〈βj , x〉 , (5.69)

for regression parameter β = (β�
1 , . . . ,β

�
k )

� ∈ R
k(q+1). Equivalently, we can

rewrite these regression probabilities relative to the reference level, that is, we
consider linear predictors for 1 ≤ l ≤ k

ηl(x) = log

(
Pβ[Y = l]

Pβ[Y = k + 1]
)

= 〈β l, x〉. (5.70)

Note that this naturally gives us the canonical link h which we have already derived
in Sect. 2.1.4. Define the matrix for feature x ∈ X ⊂ {1} ×R

q

X =

⎛

⎜⎜
⎜
⎜
⎜
⎝

x� 0 0 · · · 0
0 x� 0 · · · 0
0 0 x� · · · 0
...
...
...
. . .

...

0 0 0 · · · x�

⎞

⎟⎟
⎟
⎟
⎟
⎠

∈ R
k×k(q+1). (5.71)

This gives linear predictor and canonical parameter, respectively, under the canoni-
cal link h

θ = h(p(x)) = η(x) = Xβ = (〈β1, x〉, . . . , 〈βk, x〉)� ∈ � = R
k. (5.72)

5.7.2 Maximum Likelihood Estimation in Categorical Models

Assume we have n independent observations Yi following the logistic categorical
GLM (5.69) with features xi ∈ R

q+1 and Xi ∈ R
k×k(q+1), respectively, for 1 ≤

i ≤ n. The joint log-likelihood function is given by, we use (5.72),

β �→ �Y (β) =
n∑

i=1

(Xiβ)
�T (Yi)− κ(Xiβ).

This provides us with score equations

s(β,Y ) = ∇β�Y (β) =
n∑

i=1

X�
i

[
T (Yi)− ∇θκ(Xiβ)

] =
n∑

i=1

X�
i [T (Yi)− p(xi )] = 0,
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with logistic regression function (5.69) for p(x). For the score equations with
canonical link we also refer to the second case in Proposition 5.1. Next, we calculate
Fisher’s information matrix, we also refer to (3.16),

In(β) = −Eβ

[
∇2

β�Y (β)
]

=
n∑

i=1

X�
i �i(β)Xi ,

with covariance matrix of T (Yi)

�i(β) = ∇2
θ κ(Xiβ) = diag (p(xi ))− p(xi )p(xi )

�.

We rewrite the score in a similar way as in Sect. 5.1.4. This requires for general link
g(p) = η and inverse link p = g−1(η), respectively, the following block diagonal
matrix

W(β) = diag

((
∇ηg

−1(η)

∣∣
∣
η=Xiβ

)
�i(β)

−1
(

∇ηg
−1(η)

∣∣
∣
η=Xiβ

)�)

1≤i≤n

= diag

((
∇pg(p)

∣∣
p=g−1(Xiβ)

)�
�i(β)

(
∇pg(p)

∣∣
p=g−1(Xiβ)

))−1

1≤i≤n
, (5.73)

and the working residuals

R(Y ,β) =
((

∇pg(p)
∣
∣
p=g−1(Xiβ)

)�
(T (Yi)− p(xi ))

)

1≤i≤n
. (5.74)

Because we work with the canonical link g = h and g−1 = ∇θκ , we can use the
simplified block diagonal matrix

W(β) = diag (�1(β), . . . , �n(β)) ∈ R
kn×kn,

and the working residuals

R(Y ,β) =
(
�i(β)

−1 (T (Yi)− p(xi ))
)

1≤i≤n ∈ R
kn.

Finally, we define the design matrix

X =

⎛

⎜
⎜
⎜
⎝

X1

X2
...

Xn

⎞

⎟
⎟
⎟
⎠

∈ R
kn×k(q+1).
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Putting everything together we receive the score equations

s(β,Y ) = ∇β�Y (β) = X�W(β)R(Y ,β) = 0. (5.75)

This is now exactly in the same form as in Proposition 5.1. Fisher’s scoring
method/IRLS algorithm then allows us to recursively calculate the MLE of β ∈
R
k(q+1) by

β̂
(t) �→ β̂

(t+1) =
(
X�W(β̂(t))X

)−1
X�W(β̂(t))

(
Xβ̂

(t) + R(Y , β̂
(t)
)
)
.

We have asymptotic normality of the MLE (under suitable regularity conditions)

β̂
MLE
n

(d)≈ N (β,In(β)−1),

for large sample sizes n. This allows us to apply the Wald test (5.32) for back-
ward parameter elimination. Moreover, in-sample and out-of-sample losses can
be analyzed with unit deviances coming from the categorical cross-entropy loss
function (4.19).

Remarks 5.32 The above derivations have been done for the categorical distribution
under the canonical link choice. However, these considerations hold true for more
general links g within the vector-valued parameter EF. That is, the block diagonal
matrix W(β) in (5.73) and the working residuals R(Y ,β) in (5.74) provide score
equations (5.75) for general vector-valued parameter EF examples, and where we
replace the categorical probability p by the mean μ = Eβ [T (Y )].

5.8 Further Topics of Regression Modeling

There are several special topics and tools in regression modeling that we have not
discussed, yet. Some of them will be considered in selected chapters below, and
some points are mentioned here, without going into detail.

5.8.1 Longitudinal Data and Random Effects

The GLMs studied above have been considering cross-sectional data, meaning that
we have fixed one time period t and studied this time period in an isolated fashion.
Time-dependent extensions are called longitudinal or panel data. Consider a time
series of data (Yi,t , x i,t ) for policies 1 ≤ i ≤ n and time points t ≥ 1. For the
prediction of response variable Yi,t we may then regress on the individual past



5.8 Further Topics of Regression Modeling 199

history of policy i, given by the data

Di,t = {Yi,1, . . . , Yi,t−1, xi,1, . . . , xi,t
}
.

In particular, we may explore the distribution of Yi,t , conditionally given Di,t ,

Yi,t |Di,t ∼ F(·|Di,t ; θ),

for canonical parameter θ ∈ � and F(·|Di,t ; θ) being a member of the EDF. For a
GLM we choose a link function g and make the assumption

g
(
Eβ [Yi,t |Di,t ]

) = 〈β, zi,t 〉, (5.76)

where zi,t ∈ R
q+1 is a (q + 1)-dimensional and σ(Di,t )-measurable feature vector,

and regression parameter β ∈ R
q+1 describes the common systematic effects across

all policies 1 ≤ i ≤ n. This gives a generalized auto-regressive model, and if we
have the Markov property

F(·|Di,t ; θ) (d)= F(·|Yi,t−1, xi,t ; θ) for all t ≥ 2 and θ ∈ �,

we obtain a generalized auto-regressive model of order 1. These longitudinal models
allow one to model experience rating, for instance, in car insurance where the
past claims history directly influences the future insurance prices, we refer to
Remark 5.15 on bonus-malus systems (BMS).

The next level of complexity is obtained by extending regression structure (5.76)
by policy i specific random effects Bi such that we may postulate

g
(
Eβ [Yi,t |Di,t ,B i]

) = 〈β, zi,t 〉 + 〈B i ,wi,t 〉, (5.77)

with σ(Di,t )-measurable feature vector wi,t . Regression parameter β then describes
the fixed systematic effects that are common over the entire portfolio 1 ≤ i ≤ n

and B i describes the policy dependent random effects (assumed to be normalized
E[Bi ] = 0). Typically one assumes that B1, . . . ,Bn are centered and i.i.d. Such
effects are called static random effects because they are not time-dependent, and
they may also be interpreted in a Bayesian sense.

Finally, extending these static random effects to dynamic random effects B i,t ,
t ≥ 1, leads to so-called state-space models, the linear state-space model being the
most popular example and being fitted using the Kalman filter [207].

5.8.2 Regression Models Beyond the GLM Framework

There are several ways in which the GLM framework can be modified.
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Siblings of Generalized Linear Regression Functions

The most common modification of GLMs concerns the regression structure, namely,
that the scalar product in the linear predictor

x �→ g(μ) = η = 〈β, x〉,

is replaced by another regression function. A popular alternative is the framework
of generalized additive models (GAMs). GAMs go back to Hastie–Tibshirani
[181, 182] and the standard reference is Wood [384]. GAMs consider the regression
functions

x �→ g(μ) = η = β0 +
∑

j

βj sj (xj ), (5.78)

where sj : R → R are natural cubic splines. Natural cubic splines sj are obtained
by concatenating cubic functions in so-called nodes. A GAM can have as many
nodes in each cubic spline sj as there are different levels xi,j in the data 1 ≤ i ≤ n.
In general, this leads to very flexible regression models, and to control in-sample
over-fitting regularization is applied, for regularization we also refer to Sect. 6.2.
Regularization requires setting a tuning parameter, and an efficient determination of
this tuning parameter uses generalized cross-validation, see Sect. 5.6. Nevertheless,
fitting GAMs can be very computational, already for portfolios with 1 million
policies and involving 20 feature components the calibration can be very slow.
Moreover, regression function (5.78) does not (directly) allow for a data driven
method of finding interactions between feature components. For these reasons, we
do not further study GAMs in this monograph.

A modification in the regression function that is able to consider interactions
between feature components is the framework of classification and regression trees
(CARTs). CARTs have been introduced by Breiman et al. [54] in 1984, and they
are still used in its original form today. Regression trees aim to partition the feature
space X into a finite number of disjoint subsets Xt , 1 ≤ t ≤ T , such that all policies
(Yi, x i ) in the same subset xi ∈ Xt satisfy a certain homogeneity property w.r.t. the
regression task (and the chosen loss function). The CART regression function is
then defined by

x �→ μ(x) =
T∑

t=1

μ̂t 1{x∈Xt },

where μ̂t is the homogeneous mean estimator on Xt . These CARTs are popular
building blocks for ensemble methods where different regression functions are
combined, we mention random forests and boosting algorithms that mainly rely
on CARTs. Random forests have been introduced by Breiman [52], and boosting
has been popularized by Valiant [362], Kearns–Valiant [209, 210], Schapire [328],
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Freund [139] and Freund–Schapire [140]. Today boosting belongs to the most
powerful predictive regression methods, we mention the XGBoost algorithm of
Chen–Guestrin [71] that has won many competitions. We will not further study
CARTs and boosting in these notes because these methods also have some
drawbacks. For instance, resulting regression functions are not continuous nor do
they easily allow to extrapolate data beyond the (observed) feature space, e.g., if we
have a time component. Moreover, they are more difficult in the use of unstructured
data such as text data. For more on CARTs and boosting in actuarial science we
refer to Denuit et al. [100] and Ferrario–Hämmerli [125].

Other Distributional Models

The theory above has been relying on the EDF, but, of course, we could also study
any other family of distribution functions. A clear drawback of the EDF is that
it only considers light-tailed distribution functions, i.e., distribution functions for
which the moment generating function exists around the origin. If the data is more
heavy-tailed, one may need to transform this data and then use the EDF on the
transformed data (with the drawback that one loses the balance property) or one
chooses another family of distribution functions. Transformations have already been
discussed in Remarks 2.11 and Sect. 5.3.9. Another two families of distributions that
have been studied in the actuarial literature are the generalized beta of the second
kind (GB2) distribution, see Venter [369], Frees et al. [137] and Chan et al. [66], and
inhomogeneous phase type (IHP) distributions, see Albrecher et al. [8] and Bladt
[37]. The GB2 family is a 4-parameter family, and it nests several examples such
as the gamma, the Weibull, the Pareto and the Lomax distributions, see Table B1 in
Chan et al. [66]. The density of the GB2 distribution is for y > 0 given by

f (y; a, b, α1, α2) =
|a|
b

( y
b

)aα1−1

B(α1, α2)
(
1 + ( y

b

)a)α1+α2
(5.79)

=
|a|
y

B(α1, α2)

( ( y
b

)a

1 + ( y
b

)a

)α1
(

1

1 + ( y
b

)a

)α2

,

with scale parameter b > 0, shape parameters a ∈ R and α1, α2 > 0, and beta
function

B(α1, α2) = (α1)(α2)

(α1 + α2)
.

Consider a modified logistic transformation of variable y �→ z = (y/b)a/(1 +
(y/b)a) ∈ (0, 1). This gives us the beta density

f (z; α1, α2) = zα1−1(1 − z)α2−1

B(α1, α2)
.
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Thus, the GB2 distribution can be obtained by a transformation of the beta
distribution. The latter provides that a GB2 distributed random variable Y can be

simulated from Y
(d)= b(Z/(1 − Z))1/a with Z ∼ Beta(α1, α2).

A GB2 distributed random variable Y has first moment

Ea,b,α1,α2[Y ] = B(α1 + 1/a, α2 − 1/a)

B(α1, α2)
b,

for −α1a < 1 < α2a. Observe that for a > 0 we have that the survival function of
Y is regularly varying with tail index α2a > 0. Thus, we can model Pareto-like tails
with the GB2 family; for regular variation we refer to (1.3).

As proposed in Frees et al. [137], one can introduce a regression structure for
b > 0 by choosing a log-link and setting

log
(
Ea,b,α1,α2[Y ]) = log

(
B(α1 + 1/a, α2 − 1/a)

B(α1, α2)

)
+ 〈β, x〉.

MLE of β may pose some challenge because it depends on nuisance parameters
a, α1, α2. In a recent paper Li et al. [251], there is a proposal to extend this GB2
regression to a composite regression model; composite models are discussed in
Sect. 6.4.4, below. This closes this short section, and for more examples we refer
to the literature.

5.8.3 Quantile Regression

Pinball Loss Function

The GLMs introduced above aim at estimating the means μ(x) = Eθ(x)[Y ] of
random variables Y being explained by features x. Since mean estimation can
be rather sensitive in situations where we have large claims, the more robust
quantile regression has attracted some attention, recently. Quantile regression has
been introduced by Koenker–Bassett [220]. The idea is that instead of estimating
the mean μ of a random variable Y , we rather try to estimate its τ -quantile for
given τ ∈ (0, 1). The τ -quantile is given by the generalized inverse F−1(τ ) of the
distribution function F of Y , that is,

F−1(τ ) = inf {y ∈ R; F(y) ≥ τ } . (5.80)

Consider the pinball loss function for y ∈ C (convex closure of the support of Y )
and actions a ∈ A = R

(y, a) �→ Lτ (y, a) = (y − a) (τ − 1{y−a<0}
) ≥ 0. (5.81)



5.8 Further Topics of Regression Modeling 203

This provides us with the expected loss for Y ∼ F and action a ∈ A

EF [Lτ (Y, a)] = EF

[
(Y − a) (τ − 1{Y<a}

)]

= (τ − 1)EF
[
(Y − a)1{Y<a}

]+ τEF
[
(Y − a)1{Y≥a}

]

= (τ − 1)
∫ a

−∞
(y − a)dF (y)+ τ

∫ ∞

a

(y − a)dF (y).

The aim is to find an optimal action â(F ) that minimizes this expected loss,
see (4.24),

â(F ) ∈ A(F ) = arg min
a∈A

EF [Lτ (Y, a)] .

Note that for the time being we do not know whether the solution to this
minimization problem is a singleton. For this reason, we state the solution (subject
to existence) as a set-valued functional A, see (4.25).

We calculate the score equation of the expected loss using the Leibniz rule

∂

∂a
EF [Lτ (Y, a)] = −(τ − 1)

∫ a

−∞
dF(y)− τ

∫ ∞

a

dF (y)

= −(τ − 1)F (a)− τ (1 − F(a)) = F(a)− τ != 0.

Assume the distributionF is continuous. This impliesF(F−1(τ )) = τ , and we have

F−1(τ ) ∈ A(F ) = arg min
a∈A

EF [Lτ (Y, a)] .

In fact, using the pinball loss, we have just seen that the τ -quantile is elicitable
within the class of continuous distributions, see Definition 4.18.

For a more general result we need a more general definition of a (set-valued)
τ -quantile

Qτ (F) =
{
y ∈ R; lim

z↑y F (z) ≤ τ ≤ F(y)
}
. (5.82)

This defines a closed interval and its lower endpoint corresponds to the generalized
inverse F−1(τ ) given in (5.80). In complete analogy to Theorem 4.19 on the
elicitability of the mean functional, we have the following statement for the τ -
quantile; this result goes back to Thomson [351] and Saerens [326].

Theorem 5.33 (Gneiting [162, Theorem 9], Without Proof) Let F be the class of
distribution functions on an interval C ⊆ R and choose quantile level τ ∈ (0, 1).
• The τ -quantile (5.82) is elicitable relative to F .
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• Assume the loss function L : C × A → R+ satisfies (L0)-(L2) on page 92 for
interval C = A ⊆ R. L is consistent for the τ -quantile (5.82) relative to the class
F of compactly supported distributions on C if and only if L is of the form

L(y, a) = (G(y)−G(a)) (τ − 1{y−a<0}
)
,

for a non-decreasing functionG on C.
• If G is strictly increasing on C and if EF [G(Y)] exists and is finite for all F ∈

F , then the above loss function L is strictly consistent for the τ -quantile (5.82)
relative to the class F .

Theorem 5.33 characterizes the strictly consistent loss functions for quantile
estimation, the pinball loss being the special case G(y) = y.

Quantile Regression

The idea behind quantile regression is that we build a regression model for the τ -
quantile. Assume we have a datum (Y, x) whose conditional τ -quantile, given x ∈
{1} × R

q , can be described by the regression function

x �→ g
(
F−1
Y |x(τ )

)
= 〈βτ , x〉,

for a strictly monotone and smooth link function g : C → R, and for a regression
parameter βτ ∈ R

q+1. The aim now is to estimate this regression parameter from
independent data (Yi, x i ), 1 ≤ i ≤ n. The pinball loss Lτ , given in (5.81), provides
us with the following optimization problem

β̂τ = arg min
β∈Rq+1

n∑

i=1

Lτ

(
Yi, g

−1〈β, xi〉
)
.

This then allows us to estimate the corresponding τ -quantile as a function of the
feature information x. For τ = 1/2 we estimate the median by

F̂−1
Y |x(1/2) = g−1 〈̂β1/2, x

〉
.

We conclude from this short section that we can regress any quantity a(F ) that is
elicitable, i.e., for which a loss function exists that is strictly consistent for a(F )
on F ∈ F . For more on quantile regression we refer to the monograph of Uribe–
Guillén [361], and an interesting paper is Dimitriades et al. [106]. We will study
quantile regression within deep networks in Chap. 11.2, below.
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Chapter 6
Bayesian Methods, Regularization
and Expectation-Maximization

The previous chapter has been focusing on MLE of regression parameters within
GLMs. Alternatively, we could address the parameter estimation problem within a
Bayesian setting. The purpose of this chapter is to discuss the Bayesian estimation
approach. This leads us to the notion of regularization within GLMs. Bayesian
methods are also used in the Expectation-Maximization (EM) algorithm for MLE
in the case of incomplete data. For literature on Bayesian theory we recommend
Gelman et al. [157], Congdon [79], Robert [319], Bühlmann–Gisler [58] and Gilks
et al. [158]. A nice historical (non-mathematical) review of Bayesian methods is
presented in McGrayne [266]. Regularization is discussed in the book of Hastie et
al. [184], and a good reference for the EM algorithm is McLachlan–Krishnan [267].

6.1 Bayesian Parameter Estimation

The Bayesian estimator has been introduced in Definition 3.6. Assume that the
observation Y has independent components Yi that can be described by a GLM
with link function g and regression parameter β ∈ R

q+1, i.e., the random variables
Yi have densities

Yi
ind.∼ f (y;β,x i , vi/ϕ) = exp

{
y(h ◦ g−1)〈β,xi〉 − (κ ◦ h ◦ g−1)〈β,xi〉

ϕ/vi
+ a(y; vi/ϕ)

}
,

with canonical link h = (κ ′)−1. In a Bayesian approach one models the regression
parameter β with a prior distribution1 π(β) on the parameter space R

q+1, and the
independence assumption between the components of Y needs to be understood

1 Often, in Bayesian arguing, distribution and density is used in an interchangeable (and not fully
precise) way, and it is left to the reader to give the right meaning to π .
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M. V. Wüthrich, M. Merz, Statistical Foundations of Actuarial Learning and its
Applications, Springer Actuarial, https://doi.org/10.1007/978-3-031-12409-9_6

207

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12409-9_6&domain=pdf

 799 4612 a 799 4612 a
 
https://doi.org/10.1007/978-3-031-12409-9_6


208 6 Bayesian Methods, Regularization and Expectation-Maximization

conditionally, given the regression parameter β. In other words, all observations
Yi share the same regression parameter β , which itself is modeled by a prior
distribution π .

The joint density of Y and β is given by

p(y,β) =
(
n∏

i=1

f (yi;β, xi , vi/ϕ)

)

π(β) = exp
{
�Y=y(β)+ logπ(β)

}
.

(6.1)

For the given observation Y , this allows us to calculate the posterior density of β

using Bayes’ rule

π(β|Y ) = p(Y ,β)
∫
p(Y , β̃)dβ̃

∝
(
n∏

i=1

f (Yi;β, xi , vi/ϕ)

)

π(β), (6.2)

where the proportionality sign ∝ indicates that we have dropped the terms that do
not depend on β. Thus, the functional form in β of the posterior density π(β|Y )
is fully determined by the joint density p(Y ,β), and the remaining term is a
normalization to obtain a proper probability distribution. In many situations, the
knowledge of the functional form of the posterior density in β is sufficient to
perform Bayesian parameter estimation, at least, numerically. We will give some
references, below.

The Bayesian estimator for β is given by the posterior mean (supposed it exists)

β̂
Bayes = Eπ [β|Y ] =

∫
β π(β|Y )dν(β).

If we want to calculate the expectation of a new random variable Yn+1 that is
conditionally, given β, independent of Y and follows the same GLM as Y , we can
directly calculate, using the tower property and conditional independence,2

Eπ [Yn+1|Y ] = Eπ [E [Yn+1|β,Y ]|Y ] = Eπ [E [Yn+1|β]|Y ]

= Eπ

[
g−1〈β, xn+1〉

∣
∣
∣Y
]

=
∫
g−1〈β, xn+1〉 π(β|Y )dν(β),

supposed that this first moment exists and that xn+1 is the feature of Yn+1. We see
that it all boils down to have sufficiently explicit knowledge about the posterior
density π(β|Y ) given in (6.2).

Remark 6.1 (Conditional MSEP) Based on the assumption that the posterior distri-
bution π(β|Y ) can be determined, we can analyze the GL. In a Bayesian setup one

2 Note that we identify probabilities Pβ [·] = P[·|β] for given β.
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usually does not calculate the MSEP as described in Theorem 4.1, but one rather
studies the conditional MSEP, conditioned exactly on the collected information Y .
That is,

Eπ

[
(Yn+1 − Eπ [Yn+1|Y ])2

∣
∣
∣Y
]

= Varπ (Yn+1|Y )
= Varπ (E [Yn+1|β,Y ]|Y )+ Eπ [Var (Yn+1|β,Y )|Y ]

= Varπ
(
g−1〈β, xn+1〉

∣
∣
∣ Y
)

+ ϕ

vn+1
Eπ

[
(κ ′′ ◦ h ◦ g−1)〈β, xn+1〉

∣
∣
∣ Y
]

= Varπ
(
g−1〈β, xn+1〉

∣
∣
∣ Y
)

+ ϕ

vn+1
Eπ

[
V (g−1〈β, xn+1〉)

∣
∣
∣Y
]
,

where we need to assume existence of second moments. Similar to Theorem 4.1,
the first term is the estimation variance (in a Bayesian setting) and the second term
is the average process variance (using the EDF variance function μ �→ V (μ)).

The remaining difficulty is the calculation of the posterior expectation of func-
tions of β, based on posterior density (6.2). In very well-designed experiments the
posterior density π(β|Y ) can be determined explicitly, for instance, in the homoge-
neous EDF case with so-called conjugate priors, see Chapter 2 in Bühlmann–Gisler
[58]. But in most cases, there is no closed from solution for the posterior distribution.
Major progress in Bayesian modeling has been made with the emergence of
computational methods like the Markov chain Monte Carlo (MCMC) method, Gibbs
sampling, the Metropolis–Hastings (MH) algorithm [185, 274], sequential Monte
Carlo (SMC) sampling, non-linear particle filters, and the Hamilton Monte Carlo
(HMC) algorithm. These methods help us to empirically approximate the posterior
density π(β|Y ) in different modeling setups. These methods have in common that
the explicit knowledge of the normalizing constant in (6.2) is not necessary, but it
suffices to know the functional form in β of the posterior density π(β|Y ).

For a detailed description of MCMC methods in general, which includes Gibbs
sampling and MH algorithms, we refer to Gilks et al. [158], Green [169, 170],
Johansen et al. [199]; SMC sampling and non-linear particle filters are explained
in Del Moral et al. [92, 93], Johansen–Evers [199], Doucet–Johansen [111], Creal
[85] and Wüthrich [389]; the HMC algorithm is described in Neal [281]. We do not
present these algorithms here, but for the description of the most popular algorithms
we refer to Section 4.4 in Wüthrich–Buser [392]. The reason for not presenting
these algorithms here is that they still face the curse of dimensionality, which makes
it difficult to use Bayesian methods for high-dimensional data sets in large models;
we provide another short discussion in Sect. 11.6.3, below.



210 6 Bayesian Methods, Regularization and Expectation-Maximization

6.2 Regularization

6.2.1 Maximal a Posterior Estimator

In the previous section we have proposed to approximate the posterior density
π(β|Y ) of the regression parameter β, given Y , using MCMC methods. The
posterior log-likelihood in the Bayesian GLM is given by, see (6.2),

logπ(β|Y ) ∝ �Y (β)+ logπ(β)

∝
n∑

i=1

Yi(h ◦ g−1)〈β, xi〉 − (κ ◦ h ◦ g−1)〈β, xi〉
ϕ/vi

+ logπ(β).

Compared to the classical log-likelihood function �Y (β) for MLE, there is an
additional log-density term logπ(β) that comes from the prior distribution of β.
Thus, the posterior log-likelihood is a balanced version of the log-likelihood �Y (β)
of the data Y and the prior log-density logπ(β) of the regression parameter β. We
interpret this as regularization because the prior π smooths extremes in the log-
likelihood of the observation Y . This gives rise to estimate the regression parameter
β by the so-called maximal a posterior (MAP) estimator

β̂
MAP = arg max

β∈Rq+1
logπ(β|Y ) = arg max

β∈Rq+1
�Y (β)+ logπ(β). (6.3)

This π-regularized (MAP) parameter estimation has gained much popularity
because it is a useful tool to prevent the model from over-fitting under suitable
prior choices. Moreover, under specific choices, it allows for parameter selection.
This is especially useful in high-dimensional problems; for a reference we refer to
Hastie et al. [184].

Popular choices for π are prior densities coming fromLp-norms for some p ≥ 1,
that is, π(β) ∝ exp{−λ‖β‖pp} for λ > 0. Optimization problem (6.3) then becomes

β̂
MAP = arg max

β∈Rq+1
�Y (β)− λ‖β‖pp,

for a fixed regularization parameter λ > 0 (also called tuning parameter). In
practical applications we should exclude the intercept parameter β0 ∈ R from
regularization: if we work with the canonical link within the GLM framework
we have the balance property which implies unbiasedness, see Corollary 5.7. This
property gets lost if β0 is included in the regularization term. For this reason, we set
β− = (β1, . . . , βq)

� ∈ R
q and we let regularization only act on these components
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β̂
MAP = β̂

MAP
(λ) = arg max

β∈Rq+1

1

n
�Y (β)− λ‖β−‖pp, (6.4)

we also scale with the sample size n to make the units of the tuning parameter λ
independent of the sample size n.

Remarks 6.2

• The regularization term λ‖β−‖pp keeps the components of the regression parame-
ter β− close to zero, thus, it prevents from over-fitting by letting parameters only
take moderate values. The magnitudes of the parameter values are controlled by
the regularization parameter λ > 0 which acts as a hyper-parameter. Optimal
hyper-parameters are determined by cross-validation.

• In (6.4) all components of β− are treated equally. This may not be appropriate
if the feature components of x live on different scales. This problem of different
scales can be solved by either scaling the components of x to a unit scale, or
by introducing a diagonal importance matrix T = diag(t1, . . . , tq) with tj > 0
that describes the scales of the components of x. This allows us to regularize
‖T −1β−‖pp instead of ‖β−‖pp . Thus, in this latter case we replace (6.4) by the
weighted version

β̂
MAP = arg max

β

1

n
�Y (β)− λ

q∑

j=1

t
−p
j |βj |p.

• Often, the features have a natural group structure x = (x0, x1, . . . , xK), for
instance, xk ∈ {0, 1}qk may represent dummy coding of a categorical feature
component with qk + 1 levels. In that case regularization should equally act on
all components of βk ∈ R

qk (that correspond to xk) because these components
describe the same systematic effect. Yuan–Lin [398] proposed for this problem
grouped penalties of the form

β̂
MAP = arg max

β

1

n
�Y (β)− λ

K∑

k=1

‖βk‖2. (6.5)

This proposal leads to sparsity, i.e., for large regularization parameters λ the
entire βk may be shrunk (exactly) to zero; this is discussed in Sect. 6.2.5, below.
We also refer to Section 4.3 in Hastie et al. [184], and Devriendt et al. [104]
proposed this approach in the actuarial literature.

• There are more versions of regularization, e.g., in the fused LASSO approach we
ensure that the first differences βj − βj−1 remain small.
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Our motivation for considering regularization has been inspired by Bayesian
theory, but we can also come from a completely different angle, namely, we can
consider a constraint optimization problem with a given budget constraint c > 0.
That is, we can consider

arg max
β∈Rq+1

1

n
�Y (β) subject to ‖β−‖pp ≤ c. (6.6)

This optimization problem can be tackled by the method of Karush, Kuhn and
Tucker (KKT) [208, 228]. Optimization problem (6.4) corresponds by Lagrangian
duality to the constraint optimization problem (6.6). For every c for which the
budget constraint in (6.6) is binding ‖β−‖pp = c, there is a corresponding
regularization parameter λ = λ(c), and, conversely, the solution of (6.4) solves (6.6)

with c = ‖β̂MAP
− (λ)‖pp .

6.2.2 Ridge vs. LASSO Regularization

We compare the two special cases of p = 1, 2 in this section, and in the subsequent
Sects. 6.2.3 and 6.2.4 we discuss how these two cases can be solved numerically.

Ridge Regularization p = 2 For p = 2, the prior distribution π in (6.4) is a
centered Gaussian distribution. This L2-regularization is called ridge regularization
or Tikhonov regularization [353], and we have

β̂
ridge = β̂

ridge
(λ) = arg max

β∈Rq+1

1

n
�Y (β)− λ

q∑

j=1

β2
j . (6.7)

LASSO Regularization p = 1 For p = 1, the prior distribution π in (6.4) is a
Laplace distribution. This L1-regularization is called LASSO regularization (least
absolute shrinkage and selection operator), see Tibshirani [352], and we have

β̂
LASSO = β̂

LASSO
(λ) = arg max

β∈Rq+1

1

n
�Y (β)− λ

q∑

j=1

|βj |. (6.8)



6.2 Regularization 213

LASSO regularization has the advantage that it shrinks (unimportant) regression
components to exactly zero, i.e., LASSO regularization can be used for parameter
elimination and model reduction. This is discussed in the next paragraphs.

Ridge vs. LASSO Regularization Ridge (p = 2) and LASSO (p = 1)
regularization behave rather differently. This can be understood best by using the
budget constraint (6.6) interpretation which gives us a nice geometric illustration.
The crucial part is that the side constraint gives us either a budget constraint
‖β−‖2

2 = ∑q

j=1 β
2
j ≤ c (squared Euclidean norm) or ‖β−‖1 = ∑q

j=1 |βj | ≤ c

(Manhattan norm). In Fig. 6.1 we illustrate these two cases, the left-hand side shows
the Euclidean ball in blue color (in two dimensions) and the right-hand side shows
the corresponding Manhattan square in blue color; this figure is similar to Figure 2.2
in Hastie et al. [184].

The (unconstraint) MLE β̂
MLE

is illustrated by the red dot in Fig. 6.1. If the
red dot would lie within the blue area, the budget constraint would not be binding.
In Fig. 6.1 the red dot (MLE) does not lie within the blue budget constraint,
and we need to compromise in the optimality of the MLE. Assume that the log-
likelihood β �→ �Y (β) is a concave function in β , then we receive convex level sets

{β; �Y (β) ≥ γ0} around the MLE β̂
MLE

. The critical constant γ0 for which this level
set is tangential to the blue budget constraint exactly gives us the solution to (6.6);
this solution corresponds to the yellow dots in Fig. 6.1. The crucial difference
between ridge and LASSO regularization is that in the latter case the yellow dot
will eventually be in the corner of the Manhattan square if we shrink the budget
constraint c to zero. Or in other words, some of the components of β are set
exactly equal to zero for small c or large λ, respectively; in Fig. 6.1 (rhs) this

happens to the first component of β̂
LASSO

(under the given budget constraint c). In
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Fig. 6.1 Illustration of optimization problem (6.6) under a budget constraint (lhs) for p = 2
(Euclidean norm) and (rhs) p = 1 (Manhattan norm)
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Fig. 6.2 Elastic net
regularization

−4 −2 0 2 4

−
4

−
2

0
2

4

elastic net

feature component x_1

fe
at

ur
e 

co
m

po
ne

nt
 x

_2

ridge
LASSO
elastic net

ridge regularization this is not the case, except for special situations concerning the
position of the red MLE. Thus, ridge regression makes components of parameter
estimates generally smaller, whereas LASSO shrinks some of these components
exactly to zero (this also explains the name LASSO).

Remark 6.3 (Elastic Net) LASSO regularization faces difficulties with collinearity
in feature components. In particular, if we have a group of highly correlated feature
components, LASSO fails to do a grouped selection, but it selects one component
and ignores the other ones. On the other hand, ridge regularization can deal with
this issue. For this reason, Zou–Hastie [409] proposed the elastic net regularization,
which uses a combined regularization term

β̂
elastic net = arg max

β∈Rq+1

1

n
�Y (β)− λ

[
(1 − α)‖β‖2

2 + α‖β‖1

]
,

for some α ∈ (0, 1). The L1-term gives sparsity and the quadratic term removes
the limitation on the number of selected variables, providing a grouped selection.
In Fig. 6.2 we compare the elastic net regularization (orange color) to ridge and
LASSO regularization (black and blue color). Ridge regularization provides a
smooth strictly convex boundary (black), whereas LASSO provides a boundary that
is non-differentiable in the corners (blue). The elastic net is still non-differentiable
in the corners, this is needed for variable selection, and at the same time it is strictly
convex between the corners which is needed for grouping.
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6.2.3 Ridge Regression

In this section we consider ridge regression (p = 2) in more detail and we provide an

example. The ridge estimator β̂
ridge

in (6.7) is found by solving the score equations

s̃(β,Y ) = ∇β

(
�Y (β)− nλ‖β−‖2

2

)
= X�W(β)R(Y ,β)− 2nλβ− = 0, (6.9)

note that we exclude the intercept β0 from regularization (we use a slight abuse of
notation, here), and we also refer to Proposition 5.1. The negative expected Hessian
of this optimization problem is given by

J (β) = −Eβ

[
∇2

β

(
�Y (β)− nλ‖β−‖2

2

)]
= I(β)+ 2nλdiag(0, 1, . . . , 1) ∈ R

(q+1)×(q+1),

where I(β) = X�W(β)X is Fisher’s information matrix of the unconstraint MLE
problem. This provides us with Fisher’s scoring updates for t ≥ 0, see (5.13),

β̂
(t) �→ β̂

(t+1) = β̂
(t) + J (β̂(t))−1 s̃(β̂

(t)
,Y ). (6.10)

Lemma 6.4 Fisher’s scoring update (6.10) can be rewritten as follows

β̂
(t) �→ β̂

(t+1) = J (β̂(t))−1X�W(β̂(t))
(
Xβ̂

(t) + R(Y , β̂
(t)
)
)
.

Proof A straightforward calculation shows

β̂
(t+1) = β̂

(t) + J (β̂(t))−1 s̃(β̂
(t)
,Y )

= J (β̂(t))−1
(
J (β̂(t))β̂(t) + X�W(β̂(t))R(Y , β̂(t))− 2nλβ̂

(t)

−
)

= J (β̂(t))−1
(
I(β̂(t))β̂(t) + X�W(β̂(t))R(Y , β̂(t))

)

= J (β̂(t))−1X�W(β̂(t))
(
Xβ̂

(t) + R(Y , β̂
(t)
)
)
.

This proves the claim. �
Lemma 6.4 allows us to fit a ridge regularized GLM. To determine an optimal

regularization parameter λ ≥ 0 one uses cross-validation, in particular, generalized
cross-validation is used to receive an efficient cross-validation method, see (5.67).

Example 6.5 (Ridge Regression) We revisit the gamma claim size example of
Sect. 5.3.7, and we choose model Gamma GLM1, see Listing 5.11. This example
does not consider any categorical features, but only continuous ones. We directly
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Fig. 6.3 Ridge regularized MLEs in model Gamma GLM1: (lhs) in-sample deviance losses as a
function of the regularization parameter λ > 0, (rhs) resulting β̂ridge

j (λ) for 1 ≤ j ≤ q = 8

apply Fisher’s scoring updates (6.10).3 For this analysis we center and normalize
(to unit variance) the columns of the design matrix (except for the initial column of
X encoding the intercept).

Figure 6.3 (lhs) shows the resulting in-sample deviance losses as a function of
λ > 0. Regularization parameter λ allows us to continuously connect the in-sample
deviance losses of the null model (2.085) and model Gamma GLM1 (1.717), see
Table 5.13. Figure 6.3 (rhs) shows the regression parameter estimates β̂ridge

j (λ), 1 ≤
j ≤ q = 8, as a function of λ > 0. Overall they decrease because the budget
constraint gets more tight for increasing λ, however, the individual parameters do
not need to be monotone, since one parameter may (better) compensate a decrease
of another (through correlations in feature components).

Finally, we need to choose the optimal regularization parameter λ > 0.
This is done by cross-validation. We exploit the generalized cross-validation loss,
see (5.67), and the hat matrix in this ridge regularized case is given by

Hλ = W(β̂ ridge
)1/2X J (β̂ridge

)−1 X�W(β̂ ridge
)1/2.

In contrast to (5.66), this hat matrix Hλ is not a projection but we would need to
work in an augmented model to receive the projection property (accounting for the
regularization part).

Figure 6.4 plots the generalized cross-validation loss as a function of λ > 0.
We observe the minimum in parameter λ = e−9.4. The resulting generalized cross-
validation loss is 1.76742. This is bigger than the one received in model Gamma

3 The R command glmnet [142] allows for regularized MLE, however, the current version does
not include the gamma distribution. Therefore, we have implemented our own routine.
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Fig. 6.4 Generalized
cross-validation loss
D̂GCV(λ) as a function of
λ > 0
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GLM2, see Table 5.16, thus, we still prefer model Gamma GLM2 over the optimally
ridge regularized model GLM1. Note that for model Gamma GLM2 we did variable
selection, whereas ridge regression just generally shrinks regression parameters.
For more interpretation we refer to Example 6.8, below, which considers LASSO
regularization. �

6.2.4 LASSO Regularization

In this section we consider LASSO regularization (p = 1). This is more chal-
lenging than ridge regularization because of the non-differentiability of the budget
constraint, see Fig. 6.1 (rhs). This section follows Chapters 2 and 5 of Hastie et
al. [184] and Parikh–Boyd [292].

Gaussian Case

We start with the homoskedastic Gaussian model having unit variance σ 2 = 1. In a
first step, the regression model only involves one feature component q = 1. Thus,
we aim at solving LASSO optimization

β̂
LASSO = arg max

β∈R2
− 1

2n

n∑

i=1

(Yi − β0 − β1xi)
2 − λ|β1|.

We standardize the observations and features (Yi, xi)1≤i≤n such that we have∑n
i=1 Yi = 0,

∑n
i=1 xi = 0 and n−1∑n

i=1 x
2
i = 1. This implies that we can omit

the intercept parameter β0, as the optimal intercept satisfies for this standardized
data (and any β1 ∈ R)

β̂0 = 1

n

n∑

i=1

Yi − β1xi = 0. (6.11)
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Thus, w.l.o.g., we assume to work with standardized data in this section, this gives
us the optimization problem (we drop the lower index in β1 because we only have
one component)

β̂LASSO = β̂LASSO(λ) = arg max
β∈R

− 1

2n

n∑

i=1

(Yi − βxi)2 − λ|β|. (6.12)

The difficulty is that the regularization term is not differentiable in zero. Since this
term is convex we can express its derivative in terms of a sub-gradient s. This
provides score

∂

∂β

⎛

⎝− 1

2n

n∑

i=1

(Yi − βxi)2 − λ|β|
⎞

⎠ = 1

n

n∑

i=1

(Yi − βxi ) xi − λs = 1

n
〈Y , x〉 − β − λs,

where we use standardization n−1∑n
i=1 x

2
i = 1 in the second step, 〈Y , x〉 is the

scalar product of Y , x = (x1, . . . , xn)
� ∈ R

n, and where we consider the sub-
gradient

s = s(β) =
⎧
⎨

⎩

+1 if β > 0,
−1 if β < 0,
∈ [−1, 1] otherwise.

Henceforth, we receive the score equation for β �= 0

n−1〈Y , x〉 − β − λs = n−1〈Y , x〉 − β − sign(β)λ
!= 0.

This score equation has a proper solution β̂ > 0 if n−1〈Y , x〉 > λ, and it has a
proper solution β̂ < 0 if n−1〈Y , x〉 < −λ. In any other case we have a boundary
solution β̂ = 0 for our maximization problem (6.12).

This solution can be written in terms of the following soft-thresholding
operator for λ ≥ 0

β̂LASSO = Sλ
(
n−1〈Y , x〉

)
with Sλ(x) = sign(x)(|x| − λ)+.

(6.13)

This soft-thresholding operator is illustrated in Fig. 6.5 for λ = 4.
This approach can be generalized to multiple feature components x ∈ R

q .
We standardize the observations and features

∑n
i=1 Yi = 0,

∑n
i=1 xi,j = 0 and



6.2 Regularization 219

Fig. 6.5 Soft-thresholding
operator x �→ Sλ(x) for
λ = 4 (red dotted lines)
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n−1∑n
i=1 x

2
i,j = 1 for all 1 ≤ j ≤ q . This allows us again to drop the intercept

term and to directly consider

β̂
LASSO = β̂

LASSO
(λ) = arg max

β∈Rq
− 1

2n

n∑

i=1

⎛

⎝Yi −
q∑

j=1

βjxi,j

⎞

⎠

2

− λ‖β‖1.

Since this is a concave (quadratic) maximization problem with a separable (convex)
penalty term, we can apply a cycle coordinate descent method that iterates a cyclic
coordinate-wise maximization until convergence. Thus, if we want to maximize
in the t-th iteration the j -th coordinate of the regression parameter we consider
recursively

β̂
(t)
j = arg max

βj∈R
− 1

2n

n∑

i=1

⎛

⎝Yi −
j−1∑

l=1

β
(t)
l xi,l −

q∑

l=j+1

β
(t−1)
l xi,l − βj xi,j

⎞

⎠

2

− λ|βj |.

Using the soft-thresholding operator (6.13) we find the optimal solution

β̂
(t)
j = Sλ

⎛

⎝n−1

〈

Y −
j−1∑

l=1

β
(t)
l xl −

q∑

l=j+1

β
(t−1)
l xl , xj

〉⎞

⎠ ,

with vectors xl = (x1,l, . . . , xn,l)
� ∈ R

n for 1 ≤ l ≤ q . Iteration until convergence

provides the LASSO regularized estimator β̂
LASSO

(λ) for given regularization
parameter λ > 0.
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Typically, we want to explore β̂
LASSO

(λ) for multiple λ’s. For this, one runs
a pathwise cyclic coordinate descent method. We start with a large value for λ,
namely, we define

λmax = max
1≤j≤q n

−1
∣
∣〈Y , xj 〉

∣
∣ .

For λ ≥ λmax, we have β̂
LASSO

(λ) = 0, i.e., we have the null model. Pathwise cycle
coordinate descent starts with this solution for λ0 = λmax. In a next step, one slightly
decreases λ0 and runs the cyclic coordinate descent algorithm until convergence for

this slightly smaller λ1 < λ0, and with starting value β̂
LASSO

(λ0). This is then
iterated for λt+1 < λt , t ≥ 0, which provides a sequence of LASSO regularized

estimators β̂
LASSO

(λt ) along the path (λt )t≥0.
For further remarks we refer to Section 2.6 in Hastie et al. [184]. This concerns

statements about uniqueness for general design matrices, also in the set-up where
q > n, i.e., where we have more parameters than observations. Moreover, references
to convergence results are given in Section 2.7 of Hastie et al. [184]. This closes the
Gaussian case.

Gradient Descent Algorithm for LASSO Regularization

In Sect. 7.2.3 we will discuss gradient descent methods for network fitting. In this
section we provide preliminary considerations on gradient descent methods because
these are also useful to fit LASSO regularized parameters within GLMs (different
from Gaussian GLMs). Remark that we do a sign switch in what follows, and we
aim at minimizing an objective function g.

Choose a convex and differentiable function g : R
q+1 → R. Assuming that

the global minimum of g is achieved, a necessary and sufficient condition for the
optimality of β∗ ∈ R

q+1 in this convex setting is ∇βg(β)|β=β∗ = 0. Gradient
descent algorithms find this optimal point by iterating for t ≥ 0

β(t) �→ β(t+1) = β(t) − �t+1∇βg(β
(t)), (6.14)

for tempered learning rates �t+1 > 0. This algorithm is motivated by a first order
Taylor expansion that determines the direction of the maximal local decrease of the
objective function g supposed we are in position β , i.e.,

g(β̃) = g(β)+ ∇βg(β)
� (β̃ − β

)+ o (‖β̃ − β‖2
)

as ‖β̃ − β‖2 → 0.

The gradient descent algorithm (6.14) leads to the (unconstraint) minimum of the
objective function g at convergence. A budget constraint like (6.6) leads to a convex
constraint β ∈ C ⊂ R

q+1. Consideration of such a convex constraint requires
that we reformulate the gradient descent algorithm (6.14). The gradient descent
step (6.14) can also be found, for given learning rate �t+1, by solving the following
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Fig. 6.6 Projected gradient
descent step, first, mapping
β(t) to the unconstraint
solution
β(t) − �t+1∇βg(β

(t))

of (6.15) and, second,
projecting this unconstraint
solution back to the convex
set C giving β(t+1); see also
Figure 5.5 in Hastie et
al. [184]
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linearized problem for g with the Euclidean square distance penalty term (ridge
regularization) for too big gradient descent steps

arg min
β∈Rq+1

{
g(β(t))+ ∇βg(β

(t))�
(
β − β(t)

)
+ 1

2�t+1
‖β − β(t)‖2

2

}
. (6.15)

The solution to this optimization problem exactly gives the gradient descent
step (6.14). This is now adapted to a constraint gradient descent update for convex
constraint C:

β(t+1) = arg min
β∈C

{
g(β(t))+ ∇βg(β

(t))�
(
β − β(t)

)
+ 1

2�t+1
‖β − β(t)‖2

2

}
.

(6.16)

The solution to this constraint convex optimization problem is obtained by, first,
taking an unconstraint gradient descent step β(t) �→ β(t) − �t+1∇βg(β

(t)), and,
second, if this step is not within the convex set C, it is projected back to C; this is
illustrated in Fig. 6.6, and it is called projected gradient descent step (justification
is given in Lemma 6.6 below). Thus, the only difficulty in applying this projected
gradient descent step is to find an efficient method of projecting the unconstraint
solution (6.14)–(6.15) back to the convex constraint set C.

Assume that the convex constraint set C is expressed by a convex function
h (not necessarily being differentiable). To solve (6.16) and to motivate the
projected gradient descent step, we use the proximal gradient method discussed in
Section 5.3.3 of Hastie et al. [184]. The proximal gradient method helps us to do
the projection in the projected gradient descent step. We introduce the generalized
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projection operator, for z ∈ R
q+1

proxh(z) = arg min
β∈Rq+1

{
1

2
‖z − β‖2

2 + h(β)
}
. (6.17)

This generalized projection operator should be interpreted as a square minimization
problem ‖z − β‖2

2 /2 on a convex set C being expressed by its dual Lagrangian
formulation described by the regularization term h(β). The following lemma shows
that the generalized projection operator solves the Lagrangian form of (6.16).

Lemma 6.6 Assume the convex constraint C is expressed by the convex function h.
The generalized projection operator solves

β(t+1) = prox�t+1h

(
β(t) − �t+1∇βg(β

(t))
)

(6.18)

= arg min
β∈Rq+1

{
g(β(t))+ ∇βg(β

(t))�
(
β − β(t)

)
+ 1

2�t+1
‖β − β(t)‖2

2 + h(β)
}
.

Proof of Lemma 6.6 It suffices to consider the following calculation

1

2

∥∥
∥β(t) − �t+1∇βg(β

(t))− β

∥∥
∥

2

2
+ �t+1h(β)

= 1

2
�2
t+1

∥∥∥∇βg(β
(t))

∥∥∥
2

2
− �t+1

〈
∇βg(β

(t)),β(t) − β
〉
+ 1

2

∥∥∥β(t) − β

∥∥∥
2

2
+ �t+1h(β)

= 1

2
�2
t+1

∥∥∥∇βg(β
(t))

∥∥∥
2

2
+ �t+1

(
∇βg(β

(t))�
(
β − β(t)

)
+ 1

2�t+1

∥∥∥β(t) − β

∥∥∥
2

2
+ h(β)

)
.

This is exactly the right objective function (in the round brackets) if we ignore all
terms that are independent of β. This proves the lemma. �

Thus, to solve the constraint optimization problem (6.16) we bring it into its dual
Lagrangian form (6.18). Then we apply the generalized projection operator to the
unconstraint solution to find the constraint solution, see Lemma 6.6. This approach
will be successful if we can explicitly compute the generalized projection operator
proxh(·).

Lemma 6.7 The generalized projection operator (6.17) satisfies for LASSO
constraint h(β) = λ‖β−‖1

proxh(z) = SLASSO
λ (z)

def.= (
z0, sign(z1)(|z1| − λ)+, . . . , sign(zq)(|zq | − λ)+

)�
,

for z ∈ R
q+1.



6.2 Regularization 223

Proof of Lemma 6.7 We need to solve for function β �→ h(β) = λ‖β−‖1

proxλ‖(·)−‖1
(z) = arg min

β∈Rq+1

{
1

2
‖z − β‖2

2 + λ‖β−‖1

}
= arg min

β∈Rq+1

⎧
⎨

⎩
1

2

q∑

j=0

(zj − βj )2 + λ
q∑

j=1

|βj |
⎫
⎬

⎭
.

This decouples into q + 1 independent optimization problems. The first one is
solved by β0 = z0 and the remaining ones are solved by the soft-thresholding
operator (6.13). This finishes the proof. �

We conclude that the constraint optimization problem (6.16) for the (convex)
LASSO constraint C = {β; ‖β−‖1 ≤ c} is brought into its dual Lagrangian
form (6.18) of Lemma 6.6 with h(β) = λ‖β−‖1 for suitable λ = λ(c). The LASSO
regularized parameter estimation is then solved by first performing an unconstraint
gradient descent step β(t) �→ β(t) − �t+1∇βg(β

(t)), and this updated parameter is
projected back to C using the generalized projection operator of Lemma 6.7 with
h(β) = �t+1λ‖β−‖1.

Proximal gradient descent algorithm for LASSO

1. Make the gradient descent step for a suitable learning rate �t+1 > 0

β(t) �→ β̃
(t+1) = β(t) − �t+1∇βg(β

(t)).

2. Perform soft-thresholding of the gradient descent solution

β̃
(t+1) �→ β(t+1) = SLASSO

�t+1λ

(
β̃
(t+1)

)
,

where the latter soft-thresholding function is defined in Lemma 6.7.
3. Iterate these two steps until a stopping criterion is met.

If the gradient ∇βg(·) is Lipschitz continuous with Lipschitz constant L > 0, the
proximal gradient descent algorithm will converge at rate O(1/t) for a fixed step
size 0 < � = �t+1 ≤ L, see Section 4.2 in Parikh–Boyd [292].

Example 6.8 (LASSO Regression) We revisit Example 6.5 which considers claim
size modeling using model Gamma GLM1. In order to apply the proximal gradient
descent algorithm for LASSO regularization we need to calculate the gradient of
the negative log-likelihood. In the gamma case with log-link, it is given by, see
Example 5.5,

−∇β�Y (β) = −X�W(β)R(Y ,β)

= −X�diag

(
n1

ϕ
, . . . ,

nm

ϕ

)(
Y1

μ1
− 1, . . . ,

Ym

μm
− 1

)�
,



224 6 Bayesian Methods, Regularization and Expectation-Maximization

−10 −9 −8 −7 −6

1.
8

1.
9

2.
0

2.
1

LASSO regularization: in−sample losses

log(lambda)

lo
ss

es

LASSO regularized
Gamma GLM1
gamma null

−10 −9 −8 −7 −6

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

LASSO regularization: regression parameters

log(lambda)
be

ta
_

j

beta_1
beta_2
beta_3
beta_4
beta_5
beta_6
beta_7
beta_8

Fig. 6.7 LASSO regularized MLEs in model Gamma GLM1: (lhs) in-sample losses as a function
of the regularization parameter λ > 0, (rhs) resulting β̂LASSO

j (λ) for 1 ≤ j ≤ q

where m ∈ N is the number of policies with claims, and μi = μi(β) = exp〈β, xi〉.
We set ϕ = 1 as this constant can be integrated into the learning rates �t+1.

We have implemented the proximal gradient descent algorithm ourselves using
an equidistant grid for the regularization parameter λ > 0, a fixed learning rate
�t+1 = 0.05 and normalized features. Since this has been done rather brute force,
the results presented in Fig. 6.7 look a bit wiggly. These results should be compared
to Fig. 6.3. We see that, in contrast to ridge regularization, less important regression
parameters are shrunk exactly to zero in LASSO regularization. We give the order
in which the parameters are shrunk to zero: β1 (OwnerAge), β4 (RiskClass),
β6 (VehAge2), β8 (BonusClass), β7 (GenderMale), β2 (OwnerAge2), β3
(AreaGLM) and β5 (VehAge). In view of Listing 5.11 this order seems a bit
surprising. The reason for this surprising order is that we have grouped features
here, and, obviously, these should be considered jointly. In particular, we first drop
OwnerAge because this can also be partially explained by OwnerAge2, therefore,
we should not treat these two variables individually. Having this weakness in mind
supports the conclusions drawn from the Wald tests in Listing 5.11, and we come
back to this in Example 6.10, below.

�
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Oracle Property

An interesting question is whether the chosen regularization fulfills the so-called
oracle property. For simplicity, we assume to work in the normalized Gaussian
case that allows us to exclude the intercept β0, see (6.11). Thus, we work with a
regression parameter β ∈ R

q . Assume that there is a true data model that can be
described by the (true) regression parameter β∗ ∈ R

q . Denote by A∗ = {j ∈
{1, . . . , q}; β∗

j �= 0} the set of feature components of x ∈ R
q that determine the

true regression function, and we assume |A∗| < q . Denote by β̂n(λ) the parameter
estimate that has been received by the regularized MAP estimation for a given
regularization parameter λ ≥ 0 and based on i.i.d. data of sample size n. We say
that (β̂n(λn))n∈N fulfills the oracle property if there exists a sequence (λn)n∈N of
regularization parameters λn ≥ 0 such that

lim
n→∞P[Ân = A∗] = 1, (6.19)

√
n
(
β̂n,A∗(λn)− β∗

A∗
) ⇒ N

(
0,I−1

A∗
)

as n→ ∞, (6.20)

where Ân = {j ∈ {1, . . . , q}; (β̂n(λn))j �= 0}, βA only considers the components
in A ⊂ {1, . . . , q}, and IA∗ is Fisher’s information matrix on the true feature
components. The first oracle property (6.19) tells us that asymptotically we choose
the right feature components, and the second oracle property (6.20) tells us that
we have asymptotic normality and, in particular, consistency on the right feature
components.

Zou [408] states that LASSO regularization, in general, does not satisfy the
oracle property. LASSO regularization can perform variable selection, however, as
Zou [408] argues, there are situations where consistency is violated and, therefore,
the oracle property cannot hold in general. Zou [408] therefore proposes an
adaptive LASSO regularization method. Alternatively, Fan–Li [124] introduced
smoothly clipped absolute deviation (SCAD) regularization which is a non-convex
regularization that possesses the oracle property. SCAD regularization of β is
obtained by penalizing

Jλ(β) =
q∑

j=1

λ|βj |1{|βj |≤λ} − |βj |2 − 2aλ|βj | + λ2

2(a − 1)
1{λ<|βj |≤aλ} + (a + 1)λ2

2
1{|βj |>aλ},

for a hyperparameter a > 2. This function is continuous and differentiable except
in βj = 0 with partial derivatives for β > 0

λ

(
1{β≤λ} + (aλ− β)+

λ(a − 1)
1{β>λ}

)
.
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Fig. 6.8 (lhs) LASSO soft-thresholding operator x �→ Sλ(x) for λ = 4 (red dotted lines), (rhs)
SCAD thresholding operator x �→ SSCAD

λ (x) for λ = 4 and a = 3

Thus, we have a constant LASSO-like slope λ > 0 for 0 < β ≤ λ, shrinking some
components exactly to zero. For β > aλ the slope is 0, removing regularization, and
it is concatenated between the two scenarios. The thresholding operator for SCAD
regularization is given by, see Fan–Li [124],

SSCAD
λ (x) =

⎧
⎪⎨

⎪⎩

sign(x)(|x| − λ)+ for |x| ≤ 2λ,
(a−1)x−sign(x)aλ

a−2 for 2λ < |x| ≤ aλ,
x for |x| > aλ.

Figure 6.8 compares the two thresholding operators of LASSO and SCAD.
Alternatively, we propose to do variable selection with LASSO regularization in

a first step. Since the resulting LASSO regularized estimator may not be consistent,
one should explore a second regression step where one uses an un-penalized
regression model on the LASSO selected components, we also refer to Lee et al.
[237].

6.2.5 Group LASSO Regularization

In Example 6.8 we have seen that if there are natural groups within the feature
components they should be treated simultaneously. Assume we have a group
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structure x = (x0, x1, . . . , xK) with groups xk ∈ R
qk that should be treated

simultaneously. This motivates the grouped penalties proposed by Yuan–Lin [398],
see (6.5),

β̂
group = β̂

group
(λ) = arg max

β=(β0,β1,...,βK)

1

n
�Y (β)− λ

K∑

k=1

‖βk‖2, (6.21)

where we assume a group structure in the linear predictor providing

x �→ η(x) = 〈β, x〉 = β0 +
K∑

k=1

〈βk, xk〉.

LASSO regularization is a special case of this grouped regularization, namely, if
all groups 1 ≤ k ≤ K only contain one single component, i.e., K = q , we have

β̂
group = β̂

LASSO
.

The side constraint in (6.21) is convex, and the optimization problem (6.21)
can again be solved by the proximal gradient descent algorithm. That is, in view
of Lemma 6.6, the only difficulty is the calculation of the generalized projection
operator for regularization term h(β) = λ∑K

k=1 ‖βk‖2. We therefore need to solve
for z = (z0, z1, . . . , zK), zk ∈ R

qk ,

proxh(z) = arg min
β=(β0,β1,...,βK)

{
1

2
‖z − β‖2

2 + λ
K∑

k=1

‖βk‖2

}

=
(

z0,

(

arg min
βk∈Rqk

{
1

2

∥
∥zk − βk

∥
∥2

2 + λ‖βk‖2

})

1≤k≤K

)

.

The latter highlights that the problem decouples intoK independent problems. Thus,
we need to solve for all 1 ≤ k ≤ K the optimization problems

arg min
βk∈Rqk

{
1

2

∥
∥zk − βk

∥
∥2

2 + λ‖βk‖2

}
.
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Lemma 6.9 The group LASSO generalized soft-thresholding operator satis-
fies for zk ∈ R

qk

Sqkλ (zk) = arg min
βk∈Rqk

{
1

2

∥
∥zk − βk

∥
∥2

2 + λ‖βk‖2

}
= zk

(
1 − λ

‖zk‖2

)

+
∈ R

qk ,

and for the generalized projection operator for h(β) = λ
∑K
k=1 ‖βk‖2 we

have

proxh(z) = Sgroup
λ (z)

def.= (
z0,Sq1

λ (z1), . . . ,SqKλ (zK)
)
,

for z = (z0, z1, . . . , zK) with zk ∈ R
qk .

Proof We prove this lemma. In a first step we have

arg min
βk

{
1

2

∥
∥zk − βk

∥
∥2

2 + λ‖βk‖2

}
= arg min

βk=�zk/‖zk‖2, �≥0

{
1

2
‖zk‖2

2

(
1 − �

‖zk‖2

)2

+ λ�
}

,

this follows because the square distance
∥
∥zk − βk

∥
∥2

2 = ‖zk‖2
2 − 2〈zk,βk〉 + ∥∥βk

∥
∥2

2
is minimized if zk and βk point into the same direction. Thus, there remains the
minimization of the objective function in � ≥ 0. The first derivative is given by

∂

∂�

(
1

2
‖zk‖2

2

(
1 − �

‖zk‖2

)2

+ λ�
)

= −‖zk‖2

(
1 − �

‖zk‖2

)
+λ = λ−‖zk‖2+�.

If ‖zk‖2 > λ we have � = ‖zk‖2 −λ > 0, and otherwise we need to set � = 0. This
implies

Sqkλ (zk) = (‖zk‖2 − λ)+ zk/‖zk‖2.

This completes the proof. �
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Fig. 6.9 Group LASSO regularized MLEs in model Gamma GLM1: (lhs) in-sample losses as a
function of the regularization parameter λ > 0, (rhs) resulting β̂group

j (λ) for 1 ≤ j ≤ q

Proximal gradient descent algorithm for group LASSO

1. Make the gradient descent step for a suitable learning rate �t+1 > 0

β(t) �→ β̃
(t+1) = β(t) − �t+1∇βg(β

(t)).

2. Perform soft-thresholding of the gradient descent solution

β̃
(t+1) �→ β(t+1) = Sgroup

�t+1λ

(
β̃
(t+1)

)
,

where the latter soft-thresholding function is defined in Lemma 6.9.
3. Iterate these two steps until a stopping criterion is met.

Example 6.10 (Group LASSO Regression) We revisit Example 6.8 which considers
claim size modeling using model Gamma GLM1. This time we group the variables
OwnerAge and OwnerAge2 (β1, β2) as well as VehAge and VehAge2 (β5, β6).
The results are shown in Fig. 6.9.

The order in which the parameters are regularized to zero is: β4 (RiskClass),
β8 (BonusClass), β7 (GenderMale), (β1, β2) (OwnerAge, OwnerAge2), β3
(AreaGLM) and (β5, β6) (VehAge, VehAge2). This order now reflects more the
variable importance as received from the Wald statistics of Listing 5.11, and it
shows that grouped features should be regularized jointly in order to determine their
importance. �
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6.3 Expectation-Maximization Algorithm

6.3.1 Mixture Distributions

In many applied problems there does not exist a simple off-the-shelf distribution
that is suitable to model the whole range of observations. We think of claim size
modeling which may range from small to very large claims; the main body of the
data may look like, say, gamma distributed, but the tail of the data being regularly
varying. Another related problem is that claims may come from different insurance
policy modules. For instance, in property insurance, one can insure water damage,
fire, glass and theft claims on the same insurance policy, and feature information
about the claim type may not always be available. In such cases, it looks attractive
to choose a mixture or a composition of different distributions. In this section we
focus on mixtures.

Choose a fixed integer K bigger than 1 and define the (K − 1)-unit simplex
excluding the edges by

�K =
{

p ∈ (0, 1)K;
K∑

k=1

pk = 1

}

. (6.22)

�K defines the family of categorical distributions with K levels (all levels having
a strictly positive probability). These distributions belong to the vector-valued
parameter EF which we have met in Sects. 2.1.4 and 5.7.

The idea behind mixture distributions is to mix K different distributions with a
mixture probability p ∈ �K . For instance, we can mix K different EDF densities
fk by considering

Y ∼
K∑

k=1

pkfk(y; θk, v/ϕk) =
K∑

k=1

pk exp

{
yθk − κk(θk)

ϕk/v
+ ak(y; v/ϕk)

}
,

(6.23)

with cumulant functions θk ∈ �k �→ κk(θk), exposure v > 0 and dispersion
parameters ϕk > 0, for 1 ≤ k ≤ K .

At the first sight, this does not look very spectacular and parameter estimation
seems straightforward. If we consider the log-likelihood of n independent random
variables Y = (Y1, . . . , Yn)

� following mixture density (6.23) we receive log-
likelihood function

(θ ,p) �→ �Y (θ,p) =
n∑

i=1

�Yi (θ ,p) =
n∑

i=1

log

(
K∑

k=1

pkfk(Yi; θk, vi/ϕk)
)

,

(6.24)
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for canonical parameter θ = (θ1, . . . , θK)
� ∈ � = �1 × · · · × �K and mixture

probability p ∈ �K . Unfortunately, MLE of (θ,p) in (6.24) is not that simple.
Note, the summation over 1 ≤ k ≤ K is inside of the logarithmic function, and
the use of the Newton–Raphson algorithm may be cumbersome. The Expectation-
Maximization (EM) algorithm presented in Sect. 6.3.3, below, makes parameter
estimation feasible. In a nutshell, the EM algorithm leads to a sequence of parameter
estimates for (θ ,p) that monotonically increases the log-likelihood in each iteration
of the algorithm. Thus, we can receive an approximation to the MLE of (θ ,p).

Nevertheless, model fitting may still be difficult for the following reasons. Firstly,
the log-likelihood function of a mixture distribution does not need to be bounded,
we highlight this in Example 6.13, below. In that case, MLE is not a well-defined
problem. Secondly, even in very simple situations, the log-likelihood function (6.24)
can have multiple local maximums. This usually happens if the data is clustered
and the clusters are well separated. In that case of multiple local maximums,
convergence of the EM algorithm does not guarantee that we have found the global
maximum. Thirdly, convergence of the log-likelihood function through the EM
algorithm does not guarantee that also the sequence of parameter estimates of (θ ,p)
converges. The latter needs additional examination and regularity conditions.

Figure 6.10 (lhs) shows a density of a mixture distribution mixingK = 3 gamma
densities with shape parametersαk = 1, 20, 40 (orange, green and blue) and mixture
probability p = (0.7, 0.1, 0.2)�; the mixture components are already multiplied
with p. The resulting mixture density in red color is continuous. Figure 6.10 (rhs)
replaces the blue gamma component of the plot on the left-hand side by a Pareto
component (in blue). As a result we observe that the resulting mixture density in
red is no longer continuous. This example is often used in practice, however, the
discontinuity may be a serious issue in applications and one may use a Lomax
(Pareto Type II) component instead, we refer to Sect. 2.2.5.
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Fig. 6.10 (lhs) Mixture distribution mixing three gamma densities, and (rhs) mixture distributions
mixing two gamma components and a Pareto component with mixture probabilities p =
(0.7, 0.1, 0.2)� for orange, green and blue components (the density components are already
multiplied with p)
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6.3.2 Incomplete and Complete Log-Likelihoods

A mixture distribution can be defined (brute force) by just defining a mixture
density as in (6.23). Alternatively, we could define a mixture distribution in a more
constructive way. In the following we discuss this constructive derivation which will
allow us to efficiently fit mixture distributions to data Y . For our outline we focus
on (6.23), but all results presented below hold true in much more generality.

Choose a categorical random variable Z with K ≥ 2 levels having probabilities
P[Z = k] = pk > 0 for 1 ≤ k ≤ K , that is, with p ∈ �K . The main idea is to
sample in a first step level Z = k ∈ {1, . . . ,K}, and in a second step Y |{Z=k} ∼
fk(y; θk, v/ϕk), based on the selected level Z = k. The random tuple (Y,Z) has
joint density

(Y,Z) ∼ fθ ,p(y, k) = pkfk(y; θk, v/ϕk),

and the marginal density of Y is exactly given by (6.23). In this interpretation we
have a hierarchical model (Y,Z). If only Y is available for parameter estimation,
then we are in the situation of incomplete information because information about
the first hierarchy Z is missing. If both Y and Z are available we say that we have
complete information.

For the subsequent derivations we use a different coding of the categorical
random variableZ, namely,Z can be represented in the following one-hot encoding
version

Z = (Z1, . . . , ZK)
� = (1{Z=1}, . . . ,1{Z=K})�, (6.25)

these are the K corners of the (K − 1)-unit simplex �K . One-hot encoding differs
from dummy coding (5.21). One-hot encoding does not lead to a full rank design
matrix because there is a redundancy, that is, we can drop one component of Z

and still have the same information. One-hot encoding Z of Z allows us to extend
the incomplete (data) log-likelihood �Y (θ ,p), see (6.23)–(6.24), under complete
information (Y,Z) as follows

�(Y,Z)(θ ,p) = log

(
K∏

k=1

(pkfk(Y ; θk, v/ϕk))Zk
)

= log

(
K∏

k=1

(
pk exp

{
Yθk − κk(θk)

ϕk/v
+ ak(Y ; v/ϕk)

})Zk
)

(6.26)

=
K∑

k=1

Zk

(
log(pk)+ Yθk − κk(θk)

ϕk/v
+ ak(Y ; v/ϕk)

)
.
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�(Y,Z)(θ ,p) is called complete (data) log-likelihood. As a consequence of this last
expression we observe that under complete information (Yi,Zi )1≤i≤n, the MLE
of θ and p can be determined completely analogously to above. Namely, θk is
estimated from all observations Yi for which Zi belongs to level k, and the level
indicators (Zi )1≤i≤n are used to estimate the mixture probability p. Thus, the
objective function nicely decouples under complete information into independent
parts for θk and p estimation. There remains the question of how to fit this model
under incomplete information Y . The next section will discuss this problem.

6.3.3 Expectation-Maximization Algorithm for Mixtures

The EM algorithm is a general purpose tool for parameter estimation under
incomplete information. The EM algorithm has been introduced within the EF by
Sundberg [348, 349]. Sundberg’s developments have been based on the vector-
valued parameter EF with statistics S(Y ) ∈ R

k , see (3.17), and he solved the
estimation problem under the assumption that S(Y ) is not fully known. These results
have been generalized to MLE under incomplete data in the celebrated work of
Dempster et al. [96] and Wu [385]. The monograph of McLachlan–Krishnan [267]
gives the theory behind the EM algorithm, and it also provides a historical review
in Section 1.8. In actuarial science the EM algorithm is increasingly used to solve
various kinds of problems of incomplete data. Mixture models of Erlang distribu-
tions are considered in Lee–Lin [240], Yin–Lin [396] and Fung et al. [146, 147];
general Erlang mixtures are universal approximators to positive distributions (in the
weak convergence sense), and regularized Erlang mixtures and mixtures of experts
models are determined using the EM algorithm to receive approximations to the
true underlying model. Miljkovic–Grün [278], Parodi [295] and Fung et al. [148]
consider the EM algorithm for mixtures of general distributions, in particular,
mixtures of small and large claims distributions. Verbelen et al. [371], Blostein–
Miljkovic [40], Grün–Miljkovic [173] and Fung et al. [147] use the EM algorithm
for censored and/or truncated observations, and dispersion modeling is performed
with the EM algorithm in Tzougas–Karlis [359]. (Inhomogeneous) phase-type and
matrix Mittag–Leffler distributions are fitted with the EM algorithm in Asmussen
et al. [14], Albrecher et al. [8] and Bladt [37], and the EM algorithm is used to
fit mixture density networks (MDNs) in Delong et al. [95]. Parameter uncertainty is
investigated in O’Hagan et al. [289] using the bootstrap method. The present section
is mainly based on McLachlan–Krishnan [267].

As mentioned above, the EM algorithm is a general purpose tool for parameter
estimation under incomplete data, and we describe the variant of the EM algorithm
which is useful for our mixture distribution setup given in (6.26). We give a
justification for its functioning below. The EM algorithm is an iterative algorithm
that performs a Bayesian expectation step (E-step) to infer the latent variable Z,
given the model parameters and Y . Next, it performs a maximization step (M-step)
for MLE of the parameters given the observation Y and the estimated latent variable
Ẑ. More specifically, the E-step and the M-step look as follows.
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• E-step. Calculate the posterior probability of the event that a given
observation Y has been generated from the k-th component of the mixture
distribution. Bayes’ rule allows us to infer this posterior probability (for
given θ and p) from (6.26)

Pθ,p[Zk = 1|Y ] = pkfk(Y ; θk, v/ϕk)
∑K
l=1 plfl(Y ; θl, v/ϕl)

.

The posterior (Bayesian) estimate for Zk after having observed Y is given
by

Ẑk(θ ,p|Y ) def.= Eθ ,p[Zk|Y ] = Pθ,p[Zk = 1|Y ] for 1 ≤ k ≤ K.
(6.27)

This posterior mean Ẑ = Ẑ(θ ,p|Y ) = (Ẑ1(θ ,p|Y ), . . . , ẐK(θ ,p|Y ))� ∈
�K is used as an estimate for the (unobserved) latent variable Z; note that
this posterior mean depends on the unknown parameters (θ,p).

• M-step. Based on Y and Ẑ the parameters θ and p are estimated with
MLE.

Alternation of these two steps provide the following recursive algorithm. We
assume to have independent responses (Yi,Zi ), 1 ≤ i ≤ n, following the mixture
distribution (6.26), where, for simplicity, we assume that only the volumes vi > 0
are dependent on i.

EM algorithm for mixture distributions

(0) Choose an initial parameter (̂θ
(0)
, p̂(0)) ∈ � ×�K .

(1) Repeat for t ≥ 1 until a stopping criterion is met:

• E-step. Given parameter (̂θ
(t−1)

, p̂(t−1)) ∈ � × �K estimate the latent
variables Zi , 1 ≤ i ≤ n, by their conditional expectations, see (6.27),

Ẑ
(t)
i = Ẑ

(
θ̂
(t−1)

, p̂(t−1)
∣
∣
∣ Yi
)

= E
θ̂
(t−1)

,p̂(t−1)[Zi |Yi ] ∈ �K. (6.28)

• M-step. Calculate the MLE (̂θ
(t)
, p̂(t)) ∈ � × �K based on (complete)

observations ((Y1, Ẑ
(t)
1 ), . . . , (Yn, Ẑ

(t)
n )), i.e., solve the score equations,
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see (6.26),

∇θ

(
n∑

i=1

K∑

k=1

Ẑ
(t)
i,k

Yiθk − κk(θk)
ϕk/vi

)

= 0, (6.29)

∇p−

(
n∑

i=1

K∑

k=1

Ẑ
(t)
i,k log(pk)

)

= 0, (6.30)

where p− = (p1, . . . , pK−1)
� and setting pK = 1 −∑K−1

k=1 pk ∈ (0, 1).

Remarks 6.11

• The E-step uses Bayes’ rule. This motivates to consider the EM algorithm in this
Bayesian chapter; alternatively, it also fits to the MLE chapters.

• We have formulated the M-step in (6.29)–(6.30) in a general way because the
canonical parameter θ and the mixture probability p could be modeled by
GLMs, and, henceforth, they may be feature xi dependent. Moreover, (6.29) is
formulated for a mixture of single-parameter EDF distributions, but, of course,
this holds in much more generality.

• Equations (6.29)–(6.30) are the score equations received from (6.26). There is
a subtle point here, namely, Zk ∈ {0, 1} in (6.26) are observations, whereas
Ẑ
(t)
i,k ∈ (0, 1) in (6.29)–(6.30) are their estimates. Thus, in the EM algorithm

the unknown latent variables are replaced by their estimates which, in our setup,
results in two different types of variables with disjoint ranges. This may matter
in software implementations, for instance, a categorical GLM may ask for a
categorical random variable Z ∈ {1, . . . ,K} (of factor type), whereas Ẑ is
in the interior of the unit simplex �K .

• For mixture distributions one can replace the latent variables Zi by their
conditionally expected values Ẑi , see (6.29)–(6.30). In general, this does not hold
true in EM algorithm applications: in our case we benefit from the fact that Zk
influences the complete log-likelihood linearly, see (6.26). In the general (non-
linear) case of the EM algorithm application, different from mixture distribution
problems, one needs to calculate the conditional expectation of the log-likelihood
function.
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• If we calculate the scores element-wise we receive

∂

∂θk

n∑

i=1

Yiθk − κk(θk)
ϕk/(vi Ẑ

(t)
i,k)

= 0,

∂

∂pk

n∑

i=1

(
Ẑ
(t)
i,k log(pk)+ Ẑ(t)i,K log(pK)

)
= 0,

recall normalization pK = 1 −∑K−1
k=1 pk ∈ (0, 1).

From the first score equation we see that we receive the classical MLE/GLM
framework, and all tools introduced above for parameter estimation can directly
be used. The only part that changes are the weights vi �→ viẐ

(t)
i,k . In the

homogeneous case, i.e., in the null model we have MLE after the t-th iteration of
the EM algorithm

θ̂
(t )
k = hk

(∑n
i=1 viẐ

(t)
i,kYi

∑n
i=1 viẐ

(t)
i,k

)

,

where hk is the canonical link that corresponds to cumulant function κk .
If we choose the null model for the mixture probabilities we receive MLEs

p̂
(t)
k = 1

n

n∑

i=1

Ẑ
(t)
i,k for 1 ≤ k ≤ K. (6.31)

In Sect. 6.3.4, below, we will present an example that uses the null model for
the mixture probabilities p, and we present an other example that uses a logistic
categorical GLM for these mixture probabilities.

Justification of the EM Algorithm So far, we have neither given any argument
why the EM algorithm is reasonable for parameter estimation nor have we said
anything about convergence. The purpose of this paragraph is to justify the above
EM algorithm. We aim at solving the incomplete log-likelihood maximization
problem, see (6.24),

(̂θ
MLE

, p̂MLE) = arg max
(θ,p)

�Y (θ ,p) = arg max
(θ ,p)

n∑

i=1

log

(
K∑

k=1

pkfk(Yi; θk, vi/ϕk)
)

,

subject to existence and uniqueness. We introduce some notation. Let f (y, z; θ,p)

= exp{�(y,z)(θ ,p)} be the joint density of (Y,Z) and let f (y; θ,p) =
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exp{�y(θ,p)} be the marginal density of Y . This allows us to rewrite the incomplete
log-likelihood as follows for any value of z

�Y (θ ,p) = log f (Y ; θ,p) = log

(
f (Y, z; θ,p)

f (z|Y ; θ,p)

)
,

thus, we bring in the complete log-likelihood by using Bayes’ rule. Choose an
arbitrary categorical distribution π ∈ �K withK levels. We have using the previous
step

�Y (θ ,p) = log f (Y ; θ ,p) =
∑

z

π(z) log f (Y ; θ,p)

=
∑

z

π(z) log

(
f (Y, z; θ,p)/π(z)

f (z|Y ; θ,p)/π(z)

)

=
∑

z

π(z) log

(
f (Y, z; θ,p)

π(z)

)
+
∑

z

π(z) log

(
π(z)

f (z|Y ; θ,p)

)

=
∑

z

π(z) log

(
f (Y, z; θ,p)

π(z)

)
+DKL (π ||f (·|Y ; θ,p)) (6.32)

≥
∑

z

π(z) log

(
f (Y, z; θ,p)

π(z)

)
,

the inequality follows because the KL divergence is always non-negative, see
Lemma 2.21. This provides us with a lower bound for the incomplete log-likelihood
�Y (θ ,p) for any categorical distribution π ∈ �K and any (θ ,p) ∈ � ×�K :

�Y (θ ,p) ≥
∑

z

π(z) log

(
f (Y, z; θ ,p)

π(z)

)
(6.33)

= EZ∼π
[
�(Y,Z)(θ ,p)

∣
∣Y
]−

∑

z

π(z) log(π(z))
def.= Q(θ ,p;π).

Thus, we have a lower boundQ(θ ,p;π) on the incomplete log-likelihood �Y (θ ,p).
This lower bound is based on the conditionally expected complete log-likelihood
�(Y,Z)(θ ,p), given Y , and under an arbitrary choice π for Z. The difference between
this arbitrary π and the true conditional posterior distribution is given by the KL
divergenceDKL (π ||f (·|Y ; θ,p)), see (6.32).
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The general idea of the EM algorithm is to make this lower bound Q(θ,p;π) as
large as possible in θ , p and π by iterating the following two alternating steps for
t ≥ 1:

π̂ (t) = arg max
π

Q
(
θ̂
(t−1)

, p̂(t−1);π
)
, (6.34)

(̂θ
(t)
, p̂(t)) = arg max

θ,p

Q
(
θ ,p; π̂ (t)

)
. (6.35)

The first step (6.34) can be solved explicitly and it results in the E-step. Namely,

from (6.32) we see that maximizing Q(̂θ (t−1)
, p̂(t−1);π) in π is equivalent to

minimizing the KL divergence DKL(π ||f (·|Y ; θ̂
(t−1)

, p̂(t−1))) in π because the
left-hand side of (6.32) is independent of π . Thus, we have to solve

π̂ (t) = arg max
π

Q
(
θ̂
(t−1)

, p̂(t−1);π
)

= arg min
π

DKL

(
π

∥∥∥f (·|Y ; θ̂
(t−1)

, p̂(t−1))
)
.

This optimization is solved by choosing the density π̂ (t) = f (·|Y ; θ̂
(t−1)

, p̂(t−1)),
see Lemma 2.21, and this gives us exactly (6.28) if we calculate the corresponding
conditional expectation of the latent variable Z. Moreover, importantly, this step
provides us with an identity in (6.33):

�Y (̂θ
(t−1)

, p̂(t−1)) = Q
(
θ̂
(t−1)

, p̂(t−1); π̂ (t)
)
. (6.36)

The second step (6.35) then increases the right-hand side of (6.36). This second
step is equivalent to

(̂θ
(t)
, p̂(t)) = arg max

θ,p

Q
(
θ ,p; π̂ (t)

)
= arg max

θ,p

EZ∼π̂ (t)
[
�(Y,Z)(θ ,p)

∣
∣ Y
]
,

(6.37)

and this maximization is solved by the solution of the score equations (6.29)–(6.30)
of the M-step. In this step we explicitly use the linearity in Z of the log-likelihood
�(Y,Z), which allows us to calculate the objective function in (6.37) explicitly

resulting in replacing Z by Ẑ
(t)

. For other incomplete data problems, where we
do not have this linearity, this step will be more complicated.

Summarizing, alternating optimizations (6.34) and (6.35) gives us a sequence of

parameters (̂θ
(t)
, p̂(t))t≥0 with monotonically increasing incomplete log-likelihoods

. . . ≤ �Y (̂θ
(t−1)

, p̂(t−1)) ≤ �Y (̂θ
(t)
, p̂(t)) ≤ �Y (̂θ

(t+1)
, p̂(t+1)) ≤ . . . .

(6.38)
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Therefore, the EM algorithm converges supposed that the incomplete log-likelihood
�Y (θ ,p) is a bounded function.

Remarks 6.12

• In general, the log-likelihood function (θ ,p) �→ �Y (θ ,p) does not need to be
bounded. In that case the EM algorithm may not converge (unless it converges
to a local maximum). An illustrative example is given in Example 6.13, below,
which shows what can go wrong in MLE of mixture distributions.

• Even if the log-likelihood function (θ ,p) �→ �Y (θ ,p) is bounded, one may
not expect a unique solution to the parameter estimation problem with the EM
algorithm. Firstly, a monotonically increasing sequence (6.38) only guarantees
that we have convergence of that sequence. But the sequence may not converge
to the global maximum and different starting points of the algorithm need to
be explored. Secondly, convergence of sequence (6.38) does not necessarily

imply that the parameters (̂θ
(t)
, p̂(t)) converge for t → ∞. On the one hand,

we may have an identifiability issue because the components fk of the mixture
distribution may be exchangeable, and secondly one needs stronger conditions
to ensure that not only the log-likelihoods converge but also their arguments

(parameters) (̂θ
(t)
, p̂(t)). This is the point studied in Wu [385].

• Even in very simple examples of mixture distributions we can have multiple local
maximums. In this case the role of the starting point plays a crucial role. It is
advantageous that in the starting configuration every component k shares roughly

the same number of observations for the initial estimates (̂θ
(0)
, p̂(0)) and Ẑ

(1)
,

otherwise one may start in a so-called spurious configuration where only a few
observations almost fully determine a component k of the mixture distribution.
This may result in similar singularities as in Example 6.13, below. Therefore,
there are three common ways to determine a starting configuration of the EM
algorithm, see Miljkovic–Grün [278]: (a) Euclidean distance-based initialization:
cluster centers are selected at random, and all observations are allocated to these
centers according to the shortest Euclidean distance; (b) K-means clustering
allocation; or (c) completely random allocation to K bins. Using one of these
three options, fk and p are initialized.

• We have formulated the EM algorithm in the homogeneous situation. However,
we can easily expand it to GLMs by, for instance, assuming that the canonical
parameters θk are modeled by linear predictors 〈βk, x〉 and/or likewise for
the mixture probabilities p. The E-step will not change in this setup. For
the M-step, we will solve a different maximization problem, however, this
maximization problem respects monotonicity (6.38), and therefore a modified
version of the above EM algorithm applies. We emphasize that the crucial point
is monotonicity (6.38) that makes the EM algorithm a valid procedure.
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6.3.4 Lab: Mixture Distribution Applications

In this section we are going to present different mixture distribution examples that
use the EM algorithm for parameter estimation. On the one hand this illustrates the
functioning of the EM algorithm, and on the other hand it also highlights pitfalls
that need to be avoided.

Example 6.13 (Gaussian Mixture) We directly fit a mixture model to the observa-
tion Y = (Y1, . . . , Yn)

�. Assume that the log-likelihood of Y is given by a mixture
of two Gaussian distributions

�Y (θ , σ ,p) =
n∑

i=1

log

(
2∑

k=1

pk
1√

2πσk
exp

{

− 1

2σ 2
k

(Yi − θk)2
})

,

with p ∈ �2, mean vector θ = (θ1, θ2)
� ∈ R

2 and standard deviations σ =
(σ1, σ2)

� ∈ R
2+. Choose estimate θ̂1 = Y1, then we have

lim
σ1→0

1√
2πσ1

exp

{

− 1

2σ 2
1

(Y1 − θ̂1)
2

}

= lim
σ1→0

1√
2πσ1

= ∞.

For any i �= 1 we have Yi �= θ̂1 (note that the Gaussian distribution is absolutely
continuous and observations are distinct, a.s.). Henceforth for i �= 1

lim
σ1→0

1√
2πσ1

exp

{

− 1

2σ 2
1

(Yi − θ̂1)
2

}

= lim
σ1→0

1√
2π

exp

{

− 1

2σ 2
1

(Yi − θ̂1)
2 − log σ1

}

= 0.

If we choose any θ̂2 ∈ R, p ∈ �2 and σ2 > 0, we receive for θ̂1 = Y1

lim
σ1→0

�Y (̂θ , σ ,p) = lim
σ1→0

log

(
2∑

k=1

pk
1√

2πσk
exp

{

− 1

2σ 2
k

(Y1 − θ̂k)2
})

+
n∑

i=2

log

(
p2√
2πσ2

)
− 1

2σ 2
2

(Yi − θ̂2)
2 = ∞.

Thus, we can make the log-likelihood of this mixture Gaussian model arbitrarily
large by fitting a degenerate Gaussian model to one observation in one mixture
component, and letting the remaining observations be described by the other mixture
component. This shows that the MLE problem may not be well-posed for mixture
distributions because the log-likelihood can be unbounded.

If the data has well separated clusters, the log-likelihood of a mixture Gaussian
distribution will have multiple local maximums. One can construct for any given



6.3 Expectation-Maximization Algorithm 241

number B ∈ N a data set Y such that the number of local maximums exceeds this
number B, see Theorem 3 in Améndola et al. [11]. �

Example 6.14 (Gamma Claim Size Modeling) In this example we consider claim
size modeling of the French MTPL example given in Chap. 13.1. In view of
Fig. 13.15 this seems quite difficult because we have three modes and heavy-
tailedness. We choose a mixture of 5 distribution functions, we choose four gamma
distributions and the Lomax distribution

Y ∼
4∑

k=1

(
pk

β
αk
k

(αk)
yαk−1 exp {−βky}

)
+ p5

β5

M

(
y +M
M

)−(β5+1)

, (6.39)

with shape parameters αk and scale parameters βk, 1 ≤ k ≤ 4, for the gamma
densities; scale parameter M and tail parameter β5 for the Lomax density; and
with mixture probability p ∈ �5. The idea behind this choice is that three gamma
distributions take care of the three modes of the empirical density, see Fig. 13.15,
the fourth gamma distribution models the remaining claims in the body of the
distribution, and the Lomax distribution takes care of the regularly varying tail of
the data. For the gamma distribution, we refer to Sect. 2.1.3, and for the Lomax
distribution, we refer to Sect. 2.2.5.

We choose the null model for both the mixture probabilities p ∈ �5 and the
densities fk , 1 ≤ k ≤ 5. This model can directly be fitted with the EM algorithm as
presented above, in particular, we can estimate the mixture probabilities by (6.31).
The remaining shape, scale and tail parameters are directly estimated by MLE. To
initialize the EM algorithm we use the interpretation of the components as explained
above. We partition the entire data into K = 5 bins according to their claim sizes
Yi being in (0, 300], (300, 1′000], (1′000, 1′200], (1′200, 5′000] or (5′000,∞).
The first three intervals will initialize the three modes of the empirical density,
see Fig. 13.15 (lhs). This will correspond to the categorical variable taking values
Z = 1, 2, 3; the fourth interval will correspond to Z = 4 and it will model the main
body of the claims; and the last interval will correspond to Z = 5, modeling the
Lomax tail of the claims. These choices provide the initialization given in Table 6.1
with upper indices (0). We remark that we choose a fixed threshold of M = 2′000
for the Lomax distribution, this choice will be further discussed below.

Based on these choices we run the EM algorithm for mixture distributions. We
observe convergence after roughly 80 iterations, and the resulting parameters after
100 iterations are presented in Table 6.1. We observe rather large shape parameters
α̂
(100)
k for the first three components k = 1, 2, 3. This indicates that these three

components model the three modes of the empirical density and these three modes
collect almost p̂(100)

1 + p̂(100)
2 + p̂(100)

3 ≈ 50% of all claims. The remaining claims
are modeled by the gamma density k = 4 having mean 1’304 and by the Lomax
distribution having tail parameter β̂(100)

5 = 1.416, thus, this tail has finite first

momentM/(β̂(100)
5 − 1) = 4′812 and infinite second moment.
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Table 6.1 Parameter choices in the mixture model (6.39)

k = 1 k = 2 k = 3 k = 4 k = 5

p̂
(0)
k 0.13 0.18 0.25 0.39 0.05

α̂
(0)
k 2.43 11.24 1’299.44 5.63 –

β̂
(0)
k 0.019 0.018 1.141 0.003 0.517

μ̂
(0)
k = α̂(0)k /β̂(0)k 125 623 1’138 1’763 –

p̂
(100)
k 0.04 0.03 0.42 0.25 0.26

α̂
(100)
k 93.05 650.94 1’040.37 1.34 –

β̂
(100)
k 1.207 1.108 0.888 0.001 1.416

μ̂
(100)
k = α̂(100)

k /β̂
(100)
k 77 588 1’172 1’304 –

Figure 6.11 shows the resulting estimated mixture distribution. It gives the
individual mixture components (top-lhs), the resulting mixture density (top-rhs),
the QQ plot (bottom-lhs) and the log-log plot (bottom-rhs). Overall we find a
rather good fit; maybe the first mode is a bit too spiky. However, this plot may
also be misleading because the empirical density plot relies on kernel smoothing
having a given bandwidth. Thus, the true observations may be more spiky than the
plot indicates. The third mode suggests that there are two different values in the
observations around 1’100, this is also visible in the QQ plot. Nevertheless, the
overall result seems satisfactory. These results (based on 13 estimated parameters)
are also summarized in Table 6.2.

We mention a couple of limitations of these results. Firstly, the log-likelihood
of this mixture model is unbounded, similarly to Example 6.13 we can precisely fit
one degenerate gamma mixture component to an individual observation Yi which
results in an infinite log-likelihood value. Thus, the found solution corresponds
to a local maximum of the log-likelihood function and we should not state AIC
values in Table 6.2, see also Remarks 4.28. Secondly, it is crucial to initialize three
components to the three modes, if we randomly allocate all claims to 5 bins as initial
configuration, the EM algorithm only finds mode Z = 3 but not necessarily the first
two modes, at least, in our specifically chosen random initialization this was the
case. In fact, the likelihood value of our latter solution was worse than in the first
calibration which shows that we ended up in a worse local maximum.

We may be tempted to also estimate the Lomax threshold M with MLE. In
Fig. 6.12 we plot the maximal log-likelihood as a function ofM (if we start the EM
algorithm always in the same configuration given in Table 6.1). From this figure a
threshold of M = 1′600 seems optimal. Choosing this threshold of M = 1′600
leads to a slightly bigger log-likelihood of −199’304 and a slightly smaller tail
parameter of β̂(100)

5 = 1.318. However, overall the model is very similar to the one
with M = 2′000. In general, we do not recommend to estimate M with MLE, but
this should be treated as a hyper-parameter selected by the modeler. The reason for
this recommendation is that this threshold is crucial in deciding for large claims
modeling and its estimation from data is, typically, not very robust; we also refer to
Remarks 6.15, below.
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Fig. 6.11 Mixture null model: (top-lhs) individual estimated gamma components
fk(·; α̂(100)

k , β̂
(100)
k ), 1 ≤ k ≤ K , and Lomax component f5(·; β̂(100)

5 ), (top-rhs) estimated

mixture density
∑4
k=1 p̂

(100)
k fk(·; α̂(100)

k , β̂
(100)
k ) + p̂

(100)
5 f5(·; β̂(100)

5 ), (bottom-lhs) QQ plot of
the estimated model, (bottom-rhs) log-log plot of the estimated model

Table 6.2 Mixture models for French MTPL claim size modeling

# Param. �Y (̂θ, p̂) AIC μ̂ = Eθ̂ ,p̂[Y ]
Empirical 2’266

Null model (M = 2000) 13 −199’306 398’637 2’381

Logistic GLM (M = 2000) 193 −198’404 397’193 2’176

In a next step we enhance the mixture modeling by including feature information
xi to explain the responses Yi . In view of Fig. 13.17 we have decided to only model
the mixture probabilities p = p(x) feature dependent because feature information
seems to mainly influence the heights of the peaks. We do not consider features
VehPower and VehGas because these features do not seem to contribute, and
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Fig. 6.12 Choice of Lomax
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we do not consider Density because of the high co-linearity with Area, see
Fig. 13.12 (rhs). Thus, we are left with the features Area, VehAge, DrivAge,
BonusMalus, VehBrand and Region. Pre-processing of these features is done
as in Listing 5.1, except that we keep Area categorical. Using these features
x ∈ X ⊂ {1} × R

q we choose a logistic categorical GLM for the mixture
probabilities

x �→ (p1(x), . . . , pK−1(x))
� = exp{Xγ }

1 +∑4
l=1 exp〈γ l , x〉 , (6.40)

that is, we chooseK = 5 as reference level, feature matrix X ∈ R
(K−1)×(K−1)(q+1)

is defined in (5.71), and with regression parameter γ = (γ �
1 , . . . , γ

�
K−1)

� ∈
R
(K−1)(q+1); this regression parameter γ should not be confused with the shape

parameters β1, . . . , β4 of the gamma components and the tail parameter β5 of the
Lomax component, see (6.39). Note that the notation in this section slightly differs
from Sect. 5.7 on the logistic categorical GLM. In this section we consider mixture
probabilities p(x) ∈ �K=5 (which corresponds to one-hot encoding), whereas
in Sect. 5.7 we model (p1(x), . . . , pK−1(x))

� with a categorical GLM (which
corresponds to dummy coding), and normalization provides us with pK(x) =
1 −∑K−1

l=1 pl(x) ∈ (0, 1).
This logistic categorical GLM requires that we replace in the M-step

the probability estimation (6.31) by Fisher’s scoring method for GLMs as
outlined in Sect. 5.7.2, but there is a small difference to that section. In the
working residuals (5.74) we use dummy coding T (Z) ∈ {0, 1}K−1 of a
categorical variable Z, this now needs to be replaced by the estimated vector
(Ẑ1(θ ,p|Y ), . . . , ẐK−1(θ ,p|Y ))� ∈ (0, 1)K−1 which is used as an estimate
for the latent variable T (Z). Apart from that everything is done as described in
Sect. 5.7.2; in R this can be done with the procedure multinom from the package
nnet [368]. We start the EM algorithm exactly in the final configuration of the
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Table 6.3 Parameter choices in the mixture models: upper part null model, lower part GLM for
estimated mixture probabilities p̂(xi )

k = 1 k = 2 k = 3 k = 4 k = 5

Null: p̂(100)
k 0.04 0.03 0.42 0.25 0.26

Null: α̂(100)
k 93.05 650.94 1’040.37 1.34 –

Null: β̂(100)
k 1.207 1.108 0.888 0.001 1.416

Null: μ̂(100)
k = α̂(100)

k /β̂
(100)
k 77 588 1’172 1’304 –

GLM: average mixture probabilities 0.04 0.03 0.42 0.25 0.26

GLM: α̂(100)
k 94.03 597.20 1’043.38 1.28 –

GLM: β̂(100)
k 1.223 1.019 0.891 0.001 1.365

GLM: μ̂(100)
k = α̂(100)

k /β̂
(100)
k 77 586 1’172 1’268 –

estimated mixture null model, and we run this algorithm for 20 iterations (which
provides convergences).

The resulting parameters are given in the lower part of Table 6.3. We observe that
the resulting parameters remain essentially the same, the second mode Z = 2 is a
bit less spiky, and the tail parameter is slightly smaller. The summary of this model
is given on the last line of Table 6.2. Regression modeling adds another 4 ·45 = 180
parameters to the model because we have q = 45 feature components in x (different
from the intercept component). In view of AIC we give preference to the logistic
mixture probability case (though AIC has to be interpreted with care, here, because
we do not consider the MLE but rather a local maximum).

Figure 6.13 plots the individual estimated mixture probabilities xi �→ p̂(xi ) ∈
�5 over the insurance policies 1 ≤ i ≤ n; these plots are inspired by the thesis of
Frei [138]. The upper plots consider these probabilities against the estimated claim
sizes μ̂(xi ) = ∑5

k=1 p̂k(xi )μ̂k and the lower plots against the ranks of μ̂(xi ), the
latter gives a different scaling on the x-axis because of the heavy-tailedness of the
claims. The plots on the left-hand side show all individual policies 1 ≤ i ≤ n, and
the plots on the right-hand side show a quadratic spline fit to these observations. Not
surprisingly, we observe that the claim size estimate μ̂(xi ) is mainly driven by the
large claims probability p̂5(xi ) describing the Lomax contribution.

In Fig. 6.14 we compare the QQ plots of the mixture null model and the one
where we model the mixture probabilities with the logistic categorical GLM. We
see that the latter (more complex) model clearly outperforms the more simple one,
in fact, this QQ plot looks quite convincing for the French MTPL claim size data.
Finally, we perform a Wald test (5.32). We simultaneously treat all parameters that
belong to the same feature variable (similar to the ANOVA analysis); for instance,
for the 22 Regions the corresponding part of the regression parameter γ contains
4 · 21 = 84 components. The resulting p-values of dropping such components are
all close to 0 which says that we should not eliminate one of the feature variables.
This closes the example. �
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Fig. 6.13 Mixture probabilities xi �→ p̂(xi ) on individual policies 1 ≤ i ≤ n: (top) against the
estimated means μ̂(xi ) and (bottom) against the ranks of the estimated means μ̂(xi ); (lhs) over
policies 1 ≤ i ≤ n and (rhs) quadratic spline fit

Remarks 6.15

• In Example 6.14 we have chosen a mixture distribution with four gamma
components and one Lomax component. The reason for choosing the Lomax
component has been two-fold. Firstly, we need a regularly varying tail to
model the heavy-tailed property of the data. Secondly, we have preferred the
Lomax distribution over the Pareto distribution because this provides us with a
continuous density in (6.39). The results in Example 6.14 have been satisfactory.
In most practical approaches, however, this approach will not work, even when
fixing the threshold M of the Lomax component. Often, the nature of the data
is such that the chosen gamma mixture distribution is not able to fully explain
the small data in the body of the distribution, and in that situation the Lomax tail
will assist in fitting the small claims. The typical result is that the Lomax part
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Fig. 6.14 QQ plots of the mixture models: (lhs) null model and (rhs) logistic categorical GLM for
mixture probabilities

then pays more attention to small claims (through the log-likelihood function of
numerous small claims) and the fitting of the tail turns out to be poor (because
a few large claims do not sufficiently contribute to the log-likelihood). There are
two ways to solve this dilemma. Either one works with composite distributions,
see (6.56) below, and one drops the continuity property of the density; this is the
approach taken in Fung et al. [148]. Or one fits the Lomax distribution solely
to large observations in a first step, and then fixes the parameters of the Lomax
distribution during the second step when fitting the full model to all data, this
is the approach taken in Frei [138]. Both of these two approaches have been
providing good results on real insurance data.

• There is an asymptotic theory for the optimal selection of the number of
mixture components, we refer to Khalili–Chen [214] and Khalili [213]. Fung et
al. [148] combine this asymptotic theory of mixture component selection with
feature selection within these mixture components using LASSO and SCAD
regularization.

• In Example 6.14 we have only modeled the mixture probabilities feature depen-
dent, but not the parameters of the gamma mixture components. Introducing
regressions for the gamma mixture components needs some care in fitting. For
policy independent shape parameters α1, . . . , α4, we can estimate the regression
functions for the means of the mixture components without explicitly specifying
αk because these shape parameters cancel in the score equations. However, these
shape parameters will be needed in the E-step, which requires also MLE of αk .
For more discussion on shape parameter estimation we refer to Sect. 5.3.7 (GLM
with constant shape parameter) and Sect. 5.5.4 (double GLM).



248 6 Bayesian Methods, Regularization and Expectation-Maximization

6.4 Truncated and Censored Data

6.4.1 Lower-Truncation and Right-Censoring

A common problem in insurance is that we often have truncated or censored
observations. Truncation naturally occurs if we sell insurance products that have
a deductible d > 0 because in that case only the insurance claim (Y − d)+ is
compensated, and claims below the deductible d are usually not reported to the
insurance company. This case is called lower-truncation, because claims below the
deductible are not observed. If we lower-truncate an original claim Y ∼ f (·; θ)with
lower-truncation point τ ∈ R we obtain the density

f(τ,∞)(y; θ) = f (y; θ)1{y>τ }
1 − F(τ, θ) , (6.41)

if F(·; θ) is the distribution function corresponding to the density f (·; θ). The
lower-truncated density f(τ,∞)(y; θ) only considers claims that fall into the interval
(τ,∞). Obviously, we can define upper-truncation completely analogously by
considering an interval (−∞, τ ] instead. Figure 6.15 (lhs) gives an example of a
lower-truncated density, and Fig. 6.15 (rhs) gives an example of a lower- and upper-
truncated density.

Censoring occurs by selling insurance products with a maximal cover M > 0
because in that case only the insurance claim Y ∧M = min{Y,M} is compensated,
and the exact claim size above the maximal coverM may not be available. This case
is called right-censoring because the exact claim amount above M is not known.
Right-censoring of an original claim Y ∼ F(·; θ) with censoring point M ∈ R
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Fig. 6.15 (lhs) Lower-truncated gamma density with τ = 2′000, and (rhs) lower- and upper-
truncated gamma density with truncation points 2′000 and 6′000
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Fig. 6.16 (lhs) Right-censored gamma distribution with M = 6′000, and (rhs) left- and right-
censored gamma distribution with censoring points 2′000 and 6′000

gives the distribution

FY∧M(y; θ) = F(y; θ)1{y<M} + 1{y≥M},

that is, we have a point mass in the censoring pointM . We can define left-censoring
analogously by considering the claim Y ∨M = max{Y,M}. Figure 6.16 (lhs) shows
a right-censored gamma distribution with censoring pointM = 6′000, and Fig. 6.16
(rhs) shows a left- and right-censored example with censoring points 2′000 and
6′000.

Often in re-insurance, deductibles (also called retention levels) and maximal
covers are combined, for instance, an excess-of-loss (XL) insurance cover of size
u > 0 above the retention level d > 0 covers the claim

(Y − d)+ ∧ u = (Y − d)1{d≤Y<d+u} + u1{Y≥d+u} = (Y − d)+ − (Y − (d + u))+.

Obviously, truncation and censoring pose some challenges in regression modeling
because at the same time we need to consider the density f (·; θ) and the distribution
function F(·; θ) to estimate a parameter θ . Both cases can be understood as
missing data problems, with censoring providing the number of claims but not
necessarily the exact claim size, and with truncation leaving also the number of
claims unknown. These two cases are studied in Fung et al. [147] within the mixture
of experts models using a variant of the EM algorithm. We use their techniques
within the EDF framework for right-censored or lower-truncated data. This is done
in the next sections.
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6.4.2 Parameter Estimation Under Right-Censoring

Assume we have a fixed censoring point M > 0 that applies to independent
observations Yi following EDF densities f (·; θi, vi/ϕ); for simplicity we assume
to work with an absolutely continuous EDF in this section. The (incomplete) log-
likelihood function of canonical parameters θ = (θi)1≤i≤n for observations Y ∧M
is given by

�Y∧M(θ) =
∑

i: Yi<M
log f (Yi; θi, vi/ϕ)+

∑

i: Yi∧M=M
log (1 − F(M; θi, vi/ϕ)) .

(6.42)

We interpret this as an incomplete data problem because the claim sizes Yi above
the censoring pointM are not known. The complete log-likelihood is given by

�Y (θ) =
n∑

i=1

log f (Yi; θi, vi/ϕ).

Similarly to (6.32) we calculate a lower bound to the incomplete log-likelihood.
We focus on one component of Y and drop the lower index i in Yi for this
consideration. Firstly, if Y ∧ M < M we are in the situation of full claim size
information and, obviously, we have log-likelihood in that case Y < M

�Y∧M(θ) = �Y (θ) = Yθ − κ(θ)
ϕ/v

+ a(Y ; v/ϕ). (6.43)

In the second case Y ∧M = M we do not have precise claim size information. In
that case we have conditional density of claim Y |{Y∧M=M} = Y |{Y≥M} aboveM

f(z|Y ≥M; θ, v/ϕ) = f (z; θ, v/ϕ)1{z≥M}
1 − F(M; θ, v/ϕ) = f (z; θ, v/ϕ)1{z≥M}

exp{�Y∧M(θ)} , (6.44)

the latter follows because Y∧M = M has the corresponding point mass in censoring
point M (we work with an absolutely continuous EDF here). Choose an arbitrary
density π having the same support as Y |{Y≥M}, and consider a random variable
Z ∼ π . Using (6.44) and the EDF structure on the last line, we have for Y ≥ M

�Y∧M(θ) =
∫
π(z) �Y∧M(θ) dν(z)

=
∫
π(z) log

(
f (z; θ, v/ϕ)/π(z)

f (z|Y ≥ M; θ, v/ϕ)/π(z)
)
dν(z)

=
∫
π(z) log

(
f (z; θ, v/ϕ)
π(z)

)
dν(z)+DKL (π ||f (·|Y ≥M; θ, v/ϕ))



6.4 Truncated and Censored Data 251

≥
∫
π(z) log

(
f (z; θ, v/ϕ)
π(z)

)
dν(z)

= Eπ [Z] θ − κ(θ)
ϕ/v

+ Eπ [a(Z; v/ϕ)] − Eπ

[
logπ(Z)

] def.= Q(θ;π).

This allows us to explore the E-step and the M-step similarly to (6.34) and (6.35).
The E-step in the case Y ≥ M for given canonical parameter estimate θ̂ (t−1)

reads as

π̂ (t) = arg max
π

Q
(
θ̂ (t−1);π

)
= arg min

π
DKL

(
π

∥
∥
∥f (·|Y ≥ M; θ̂ (t−1), v/ϕ)

)

= f (·|Y ≥ M; θ̂ (t−1), v/ϕ).

This allows us to calculate the estimation of the claim size aboveM , i.e., under π̂ (t)

Ŷ (t) = Eπ̂ (t) [Z] =
∫
z f (z|Y ≥M; θ̂ (t−1), v/ϕ) dν(z). (6.45)

Note that this is an estimate of the censored claim Y |{Y≥M}. This completes the
E-step.

The M-step considers in the EDF case for censored claim sizes Y ≥M

θ̂(t) = arg max
θ

Q
(
θ; π̂ (t)

)
= arg max

θ

Eπ̂ (t) [Z] θ − κ(θ)
ϕ/v

= arg max
θ

�Ŷ (t) (θ), (6.46)

the latter uses that the normalizing term a(·; v/ϕ) is not relevant for the MLE of
θ . That is, (6.46) describes the regular MLE step under the observation Ŷ (t) in the
case of a censored observation Y ≥ M; and if Y < M we simply use the log-
likelihood (6.43).

EM algorithm for right-censored data within the EDF

(0) Choose an initial parameter θ̂
(0) = (θ̂ (0)i )1≤i≤n.

(1) Repeat for t ≥ 1:

• E-step. Given parameter θ̂
(t−1) = (θ̂

(t−1)
i )1≤i≤n, estimate for the right-

censored claims Yi ≥ M their sizes by, see (6.45),

Ŷ
(t)
i =

∫
z f
(
z

∣
∣
∣Yi ≥M; θ̂ (t−1)

i , vi/ϕ
)
dν(z).
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This provides us with an estimated observation

Ŷ
(t) =

(
Yi1{Yi<M} + Ŷ (t)i 1{Yi≥M}

)�
1≤i≤n .

• M-step. Calculate the MLE θ̂
(t) = (θ̂

(t)
i )1≤i≤n based on observation Ŷ

(t)
,

i.e., solve

θ̂
(t) = arg max

θ

�
Ŷ
(t) (θ).

Note that the above EM algorithm uses that the log-likelihood �Y (θ) of the EDF
is linear in the observations that interact with parameter θ . We revisit the gamma
claim size example of Sect. 5.3.7.

Example 6.16 (Right-Censored Gamma Claim Sizes) We revisit the gamma claim
size GLM introduced in Sect. 5.3.7. The claim sizes are illustrated in Fig. 13.22. In
total we have n = 656 observations Yi , and they range from 16 SEK to 211’254
SEK. We right-censor this data at M = 50′000, this results in 545 uncensored
observations and 111 censored observations equal to M . Thus, for the 17% largest
claims we assume to not have any knowledge about the exact claim sizes. We use
the EM algorithm for right-censored data to fit a GLM to this problem.

In order to calculate the E-step we need to evaluate the conditional expecta-
tion (6.45) under the gamma model

Ŷ (t) =
∫
z f (z|Y ≥M; θ̂ (t−1), v/ϕ) dν(z) (6.47)

=
∫ ∞

M

z

βα

(α)
zα−1 exp{−βz}

1 − G(α, βM) dz = α

β

1 − G(α + 1, βM)

1 − G(α, βM) ,

with shape parameter α = v/ϕ, scale parameter β = −θ̂ (t−1)v/ϕ, see (5.45), and
scaled incomplete gamma function

G(α, y) = 1

(α)

∫ y

0
zα−1 exp{−z} dz ∈ (0, 1) for y ∈ (0,∞).

(6.48)

Thus, we receive a simple formula that allows us to efficiently calculate the E-
step, and the M-step is exactly the gamma GLM explained in Sect. 5.3.7 for the

(estimated) data Ŷ
(t)

.
For the modeling we choose exactly the features as used for model Gamma

GLM2, this gives q + 1 = 7 regression parameter components and additionally we
set for the dispersion parameter ϕ̂MLE = 1.427, this is the MLE in model Gamma
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Table 6.4 Comparison of the complete log-likelihood and the incomplete log-likelihood (right-
censoring M = 50′000) results

# Log-likelihood Dispersion Average Rel.

Param. �Y (θ̂
MLE, ϕ̂MLE) est. ϕ̂MLE amount change

Gamma GLM2 (complete data) 7 + 1 −7′129 1.427 25’130

Crude GLM2 (right-censored) 7 + 1 −7′158 18’068 −28%

EM est. GLM2 (right-censored) 7 + 1 −7′132 26’687 +6%

GLM2. This dispersion parameter we keep fixed in all our models studied in this
example. In a first step we simply fit a gamma GLM to the right-censored data
Yi ∧ M . We call this model ‘crude GLM2’, and it underestimates the empirical
claim sizes by 28% because it ignores the fact of having right-censored data.

To initialize the EM algorithm for right-censored data we use the model crude
GLM2. We then iterate the algorithm for 15 steps which provides convergence. The
results are presented in Table 6.4. We observe that the resulting log-likelihood of
the model fitted on the censored data and evaluated on the complete data �Y (which
is available here) is almost the same as for model Gamma GLM2, which has been
estimated on the complete data. Moreover, this right-censored EM algorithm fitted
model slightly over-estimates the average claim sizes.

Figure 6.17 shows the estimated means μ̂i on an individual claims level. The
x-axis always gives the estimates from the complete log-likelihood model Gamma
GLM2. The y-axis on the left-hand side shows the estimates from the crude GLM
and the right-hand side the estimates from the EM algorithm fitted counterpart (fitted
on the right-censored data). We observe that the crude model underestimates the
claims (being below the diagonal), and the largest estimate lies belowM = 50′000
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Fig. 6.17 Comparison of the estimated means μ̂i in model Gamma GLM2 against (lhs) the crude
GLM and (rhs) the EM fitted right-censored model; both axis are on the log-scale, the dotted lines
shows the censoring point log(M)



254 6 Bayesian Methods, Regularization and Expectation-Maximization

in our example (horizontal dotted line). The EM algorithm fitted model, considering
the fact that we have right-censored data, corrects for the censoring, and the resulting
estimates resemble the ones from the complete log-likelihood model quite well.
In fact, we probably slightly over-estimate under right-censoring, here. Note that
all these considerations have been done under an identical dispersion parameter
estimate ϕ̂MLE. For the complete log-likelihood case, this is not really needed for
mean estimation because it cancels in the score equations for mean estimation.
However, a reasonable dispersion parameter estimate is crucial for the incomplete
case as it enters Ŷ (t) in the E-step, see (6.47), thus, the caveat here is that we need
a reasonable dispersion estimate from the right-censored data (which we did not
discuss, here, and which requires further research). �

6.4.3 Parameter Estimation Under Lower-Truncation

Compared to censoring we have less information under truncation because not only
the claim sizes below the lower-truncation point are unknown, but we also do not
know how many claims there are below that truncation point τ . Assume we work
with responses belonging to the EDF. The incomplete log-likelihood is given by

�Y>τ (θ) =
n∑

i=1

log f (Yi; θi, vi/ϕ)− log (1 − F(τ ; θi, vi/ϕ)) ,

assuming that Y = (Yi)1≤i≤n > τ collects all claims above the truncation point
Yi > τ , see (6.41). We proceed as in Fung et al. [147] to construct a complete
log-likelihood; there are different ways to do so, but this proposal is convenient
for parameter estimation. Firstly, we equip each observed claim Yi > τ with an
independent count random variableKi ∼ p(·; θi, vi/ϕ) that determines the number
of claims below the truncation point that correspond to claim i above the truncation
point. Secondly, we assume that these claims are given by independent observations
Zi,1, . . . , Zi,Ki ≤ τ , a.s., with a distribution obtained from an un-truncated version
of Yi , i.e., we consider the upper-truncated version of f (·; θi, vi/ϕ) for Zi,j . This
gives us the complete log-likelihood

�(Y ,K,Z)(θ) =
n∑

i=1

(
log

(
f (Yi; θi, vi/ϕ)

1 − F(τ ; θi, vi/ϕ)
)

(6.49)

+ logp(Ki; θi, vi/ϕ)+
Ki∑

j=1

log

(
f (Zi,j ; θi, vi/ϕ)
F (τ ; θi, vi/ϕ)

))
,
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with K = (Ki)1≤i≤n, and Z collects all (latent) claims Zi,j ≤ τ , an empty sum is
set equal to zero. Next, we assume that Ki is following the geometric distribution

Pθi [Ki = k] = p(k; θi, vi/ϕ) = F(τ ; θi, vi/ϕ)k (1 − F(τ ; θi, vi/ϕ)) .
(6.50)

As emphasized in Fung et al. [147], this complete log-likelihood is an artificial
construct that supports parameter estimation of lower-truncated data. It does not
claim that the true un-truncated data follows this model (6.49) but it provides
a distributional extension below the truncation point τ > 0 that is convenient
for parameter estimation. Namely, inserting this geometric distribution assumption
into (6.49) gives us complete log-likelihood

�(Y ,K,Z)(θ) =
n∑

i=1

⎛

⎝log f (Yi; θi, vi/ϕ)+
Ki∑

j=1

log f (Zi,j ; θi, vi/ϕ)
⎞

⎠ . (6.51)

Within the EDF this allows us to do the same EM algorithm considerations as above;
note that this expression no longer involves the distribution function. We consider
one observation Yi > τ and we drop the lower index i. This gives us complete
observation (Y,K,Z = (Zj)1≤j≤K) and conditional density

f (k, z|y; θ, v/ϕ) = f (y, k, z; θ, v/ϕ)
f(τ,∞)(y; θ, v/ϕ) = f (y, k, z; θ, v/ϕ)

exp{�Y=y>τ (θ)} ,

where �Y>τ (θ) is the log-likelihood of the lower-truncated datum Y > τ . Choose an
arbitrary density π modeling the random vector (K,Z) below the truncation point
τ . This gives us for the random vector (K,Z) ∼ π

�Y>τ (θ) =
∫
π(k, z) �Y>τ (θ) dν(k, z)

=
∫
π(k, z) log

(
f (Y, k, z; θ, v/ϕ)/π(k, z)
f (k, z|Y ; θ, v/ϕ)/π(k, z)

)
dν(k, z)

=
∫
π(k, z) log

(
f (Y, k, z; θ, v/ϕ)

π(k, z)

)
dν(k, z)+DKL (π ||f (·|Y ; θ, v/ϕ))

≥
∫
π(k, z) log

(
f (Y, k, z; θ, v/ϕ)

π(k, z)

)
dν(k, z)

= Eπ

[
�(Y,K,Z)(θ)

∣∣ Y
]− Eπ

[
logπ(K,Z)

]

= log f (Y ; θ, v/ϕ) + Eπ

⎡

⎣
K∑

j=1

log f (Zj ; θ, v/ϕ)
⎤

⎦ − Eπ

[
logπ(K,Z)

]

def.= Q(θ;π),
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where the second last identity uses that the log-likelihood (6.51) has a simple form
under the geometric distribution chosen for K; this is exactly the step where we
benefit from this specific choice of the probability extension below the truncation
point. There is a subtle point here. Namely, �Y>τ (θ) is the log-likelihood of the
lower-truncated datum Y > τ , whereas log f (Y ; θ, v/ϕ) is the log-likelihood not
using any lower-truncation.

The E-step for given canonical parameter estimate θ̂ (t−1) reads as

π̂ (t) = arg max
π

Q
(
θ̂ (t−1);π

)
= arg min

π
DKL

(
π

∥
∥
∥f (·|Y ; θ̂ (t−1), v/ϕ)

)

= f
(
·
∣
∣
∣Y ; θ̂ (t−1), v/ϕ

)

= p
(
·; θ̂ (t−1), v/ϕ

) ·∏

j=1

f (·j ; θ̂ (t−1), v/ϕ)

F (τ ; θ̂ (t−1), v/ϕ)
.

The latter describes a compound distribution for
∑K
j=1 Zj with a geometric count

random variable K and independent i.i.d. random variables Z1, Z2, . . . , having
upper-truncated densities f(−∞,τ ](·; θ̂ (t−1), v/ϕ). This allows us to calculate the
expected compound claim below the truncation point

Ŷ
(t)
≤τ = Eπ̂ (t)

⎡

⎣
K∑

j=1

Zj

⎤

⎦ = Eπ̂ (t) [K] Eπ̂ (t) [Z1]

= F(τ ; θ̂ (t−1), v/ϕ)

1 − F(τ ; θ̂ (t−1), v/ϕ)

∫
z f(−∞,τ ](z; θ̂ (t−1), v/ϕ) dν(z).

This completes the E-step.
The M-step considers within the EDF

θ̂ (t ) = arg max
θ

Q
(
θ; π̂ (t)

)

= arg max
θ

(
Y + Eπ̂ (t)

[∑K
j=1 Zj

])
θ − (1 + Eπ̂ (t) [K])κ(θ)

ϕ/v

= arg max
θ

v(1 + Eπ̂ (t) [K])

ϕ

[(
Y + Ŷ (t)≤τ

1 + Eπ̂ (t) [K]

)

θ − κ(θ)
]

.
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That is, the M-step applies the classical MLE step, we only need to change weights
and observations

v �→ v(t) = v
(
1 + Eπ̂ (t) [K]

) = v

1 − F(τ ; θ̂ (t−1), v/ϕ)
,

Y �→ Ŷ (t) = Y + Ŷ (t)≤τ
1 + Eπ̂ (t) [K]

= Y + Eπ̂ (t) [K]Eπ̂ (t) [Z1]

1 + Eπ̂ (t) [K]
.

Note that this uses the specific structure of the EDF, in particular, we benefit from
linearity here which allows for closed-form solutions.

EM algorithm for lower-truncated data within the EDF

(0) Choose an initial parameter θ̂
(0) = (θ̂ (0)i )1≤i≤n.

(1) Repeat for t ≥ 1:

• E-step. Given parameter θ̂
(t−1) = (θ̂

(t−1)
i )1≤i≤n, estimate the number of

claims K and the corresponding claim sizes Zi,j by

K̂
(t)
i = F(τ ; θ̂ (t−1)

i , vi/ϕ)

1 − F(τ ; θ̂ (t−1)
i , vi/ϕ)

,

Ẑ
(t)
i,1 =

∫
z f(−∞,τ ](z; θ̂ (t−1)

i , vi/ϕ) dν(z). (6.52)

This provides us with estimated weights and observations for 1 ≤ i ≤ n

v
(t)
i = vi

(
1 + K̂(t)i

)
and Ŷ

(t)
i = Yi + K̂(t)i Ẑ(t)i,1

1 + K̂(t)i
.

• M-step. Calculate the MLE θ̂
(t) = (θ̂ (t)i )1≤i≤n based on observations Ŷ

(t) =
(Ŷ
(t)
i )

�
1≤i≤n and weights v̂(t) = (̂v(t)i )�1≤i≤n, i.e., solve

θ̂
(t) = arg max

θ

�
Ŷ
(t) (θ; v̂(t)/ϕ) = arg max

θ

n∑

i=1

log f (Ŷ (t)i ; θi, v̂(t)i /ϕ).

Remarks 6.17 Essentially, the above algorithm uses that the MLE in the EDF is
based on a sufficient statistics of the observations, and in our case this sufficient
statistics is Ŷ (t)i .

Example 6.18 (Lower-Truncated Claim Sizes) We revisit the gamma claim size
GLM introduced in Sect. 5.3.7, see also Example 6.16 on right-censored claims. We
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choose as lower-truncation point τ = 1′000, i.e., we get rid of the very small claims
that mainly generate administrative expenses at a rather small claim compensation.
We have 70 claims below this truncation point, and there remain n = 586 claims
above the truncation point that can be used for model fitting in the lower-truncated
case. We use the EM algorithm for lower-truncated data to fit a GLM to this problem.

In order to calculate the E-step we need to evaluate the conditional expecta-
tion (6.52) under the gamma model for truncation probability

F(τ ; θ̂ (t−1), v/ϕ) =
∫ τ

0

βα

(α)
zα−1 exp{−βz} dz = G(α, βτ),

with shape parameter α = v/ϕ and scale parameter β = −θ̂ (t−1)v/ϕ. In complete
analogy to (6.47) we have

Ẑ
(t)
1 =

∫
z f(∞,τ ](z; θ̂ (t−1), v/ϕ) dν(z) = α

β

G(α + 1, βτ)

G(α, βτ) .

For the modeling we choose again the features as used for model Gamma GLM2,
this gives q+1 = 7 regression parameter components and additionally we set for the
dispersion parameter ϕ̂MLE = 1.427. This dispersion parameter we keep fixed in all
the models studied in this example. In a first step we simply fit a gamma GLM to the
lower-truncated data Yi > τ . We call this model ‘crude GLM2’, and it overestimates
the true claim sizes because it ignores the fact of having lower-truncated data.

To initialize the EM algorithm for lower-truncated data we use the model crude
GLM2. We then iterate the algorithm for 10 steps which provides convergence.
The results are presented in Table 6.5. We observe that the resulting log-likelihood
fitted on the lower-truncated data and evaluated on the complete data �Y (which is
available here) is the same as for model Gamma GLM2 which has been estimated
on the complete data. Moreover, this lower-truncated EM algorithm fitted model
slightly under-estimates the average claim sizes.

Figure 6.18 shows the estimated means μ̂i on an individual claims level. The
x-axis always gives the estimates from the complete log-likelihood model Gamma
GLM2. The y-axis on the left-hand side shows the estimates from the crude GLM
and the right-hand side the estimates from the EM algorithm fitted counterpart
(fitted on the lower-truncated data). We observe that the crude model overestimates

Table 6.5 Comparison of the complete log-likelihood and the incomplete log-likelihood (lower-
truncation τ = 1′000) results

# Log-likelihood Dispersion Average Rel.

Param. �Y (θ̂
MLE, ϕ̂MLE) est. ϕ̂MLE amount change

Gamma GLM2 (complete data) 7 + 1 −7′129 1.427 25’130

Crude GLM2 (lower-truncated) 7 + 1 −7′133 26’879 +7%

EM est. GLM2 (lower-truncated) 7 + 1 −7′129 24’900 −1%
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Fig. 6.18 Comparison of the estimated means μ̂i in model Gamma GLM2 against (lhs) the crude
GLM and (rhs) the EM fitted lower-truncated model; both axis are on the log-scale

the claims (being above the orange diagonal), in particular, this applies to claims
with lower expected claim amounts. The EM algorithm fitted model, considering
the fact that we have lower-truncated data, corrects for the truncation, and the
resulting estimates almost completely coincide with the ones from the complete log-
likelihood model. Again we remark that we use an identical dispersion parameter
estimate ϕ̂MLE, and it is an open problem to select a reasonable value from lower-
truncated data. �

Example 6.19 (Zero-Truncated Claim Counts and the Hurdle Poisson Model) In
Sect. 5.3.6, we have been studying the ZIP model that has assigned an additional
probability weight to the event {N = 0} of having zero claims. This model can
be understood as a hierarchical model with a latent variable Z indicating whether
we have an excess zero claim or not, see (5.41). In that situation we have a
mixture distribution of a Poisson distribution and a degenerate distribution. Fitting
in Example 5.25 has been done brute force by using a general purpose optimizer,
but we could also use the EM algorithm for mixture distributions.

An alternative way of modeling excess zeros is the hurdle approach which
combines a lower-truncated count distribution with a point mass in zero. For the
Poisson case this reads as, see (5.42),

fhurdle Poisson(k; λ, v, π0) =
⎧
⎨

⎩

π0 for k = 0,

(1 − π0)
e−vλ (vλ)

k

k!
1−e−vλ for k ∈ N,

(6.53)

for π0 ∈ (0, 1) and λ, v > 0. If we ignore any observation {N = 0} we obtain
a lower-truncated Poisson model, also called zero-truncated Poisson (ZTP) model.
This ZTP model can be fitted with the EM algorithm for lower-truncated data. In the
following we only consider insurance policies i with Ni > 0. The log-likelihood of
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the ZTP modelN > 0 is given by (we consider one single component only and drop
the lower index in the notation)

θ �→ �N>0(θ) = Nθ − veθ − log(N !)+ N log(v)− log(1 − e−veθ ), (6.54)

with exposure v > 0 and canonical parameter θ ∈ � = R such that λ = exp{θ}.
The ZTP model provides for the random variable K the following geometric
distribution (for the number of claims below the truncation point), see (6.50),

Pθ [K = k] = Pθ [N = 0]k Pθ [N > 0] = e−kveθ
(

1 − e−veθ
)
.

In view of (6.51), this gives us complete log-likelihood (note that Zj = 0 for all j )

�(N,K,Z)(θ) = Nθ − veθ − log(N !) +N log(v)+
K∑

j=1

(
Zj θ − veθ − log(Zj !)+ Zj log(v)

)

= Nθ − (1 +K)veθ − log(N !) +N log(v).

We can now directly apply a simplified version of the EM algorithm for lower-
truncated data. For the E-step we have, given parameter θ̂ (t−1),

K̂(t) = Pθ̂ (t−1) [N = 0]
1 − Pθ̂ (t−1)[N = 0] = e−veθ̂

(t−1)

1 − e−veθ̂(t−1) and Ẑ
(t)
1 = 0.

This provides us with the estimated weights and observations (set Y = N/v)

v(t) = v
(

1 + K̂(t)
)

= v

1 − e−veθ̂(t−1) and Ŷ (t) = Y

1 + K̂(t) = N

v(t)
.

(6.55)

Thus, the EM algorithm iterates Poisson MLEs, and the E-Step modifies the weights
v(t) in each step of the loop correspondingly. We remark that the ZTP model
has an EF representation which allows one to directly estimate the corresponding
parameters without using the EM algorithm, see Remark 6.20, below.

We revisit the French MTPL claim frequency data, and, in particular, we use
model Poisson GLM3 as a benchmark, we refer to Tables 5.5 and 5.10. The feature
engineering is done exactly as in model Poisson GLM3. We then select only the
insurance policies from the learning data L that have suffered at least one claim, i.e.,
Ni > 0. These are m = 22′434 out of n = 610′206 insurance policies. Thus, we
only considerm/n = 3.68% of all insurance policies, and we fit the lower-truncated
log-likelihood (ZTP model) to this data

�N>0(β) =
m∑

i=1

Niθi − vieθi − log(Ni !)+Ni log(vi)− log(1 − e−vieθi ),
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Fig. 6.19 (lhs) Convergence of the EM algorithm for the lower-truncated data in the Poisson
hurdle case; (rhs) canonical parameters of the Poisson GLMs fitted on all data L vs. fitted only
on policies with Ni > 0

Table 6.6 Run times, number of parameters, AICs, in-sample and out-of-sample deviance losses
(units are in 10−2) and in-sample average frequency of the Poisson null model and the Poisson,
negative-binomial, ZIP and hurdle Poisson GLMs

Run # In-sample Out-of-sample Aver.

time Param. AIC loss on L loss on T freq.

Poisson null – 1 199’506 25.213 25.445 7.36%

Poisson GLM3 15 s 50 192’716 24.084 24.102 7.36%

NB GLM3 α̂MLE
NB = 1.810 85 s 51 192’113 20.722 20.674 7.38%

ZIP GLM3 (null π0) 270 s 51 192’393 – – 7.37%

Hurdle Poisson GLM3 300 s 100 191’851 – – 7.39%

where 1 ≤ i ≤ m runs over all insurance policies with at least one claim and where
the canonical parameter θi is given by the linear predictor θi = 〈β, xi〉. We fit this
model using the EM algorithm for lower-truncated data. In each loop this requires
that the offset o(t)i = log(v(t)i ) is adjusted according to (6.55); for the discussion of
offsets we refer to Sect. 5.2.3. Convergence of the EM algorithm is achieved after
roughly 75 iterations, see Fig. 6.19 (lhs).

In our first analysis we do not consider the Poisson hurdle model, but we simply
consider model Poisson GLM3. However, this Poisson model with regression
parameter β is fitted only on the data Ni > 0 (exactly using the results of the
EM algorithm for lower-truncated data Ni > 0). The resulting predictive model is
presented in Table 6.7. We observe that model Poisson GLM3 that is only fitted on
the data Ni > 0 is clearly not competitive, i.e., we cannot simply extrapolate this
estimated model to {Ni = 0}. This extrapolation results in a Poisson GLM that has
a much too large average frequency of 15.11%, see last column of Table 6.7; this
bias can clearly be seen in Fig. 6.19 (rhs) where we compare the two fits. From
this we conclude that either the Poisson model assumption in general does not
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Table 6.7 Number of parameters, in-sample and out-of-sample deviance losses on all data
(units are in 10−2), out-of-sample lower-truncated log-likelihood �N>0 and in-sample average
frequency of the Poisson null model and model Poisson GLM3 fitted on all data L and fitted on
the data Ni > 0 only

# In-sample Out-of-sample Aver.

Param. Loss on L Loss on T �N>0 freq.

Poisson null 1 25.213 25.445 – 7.36%

Poisson GLM3 fitted on all data 50 24.084 24.102 −0.2278 7.36%

Poisson GLM3 fitted on Ni > 0 50 28.064 28.211 −0.2195 15.11%

match the data, or that we have excess zeros (which do not influence the estimation
procedure if we only consider the policies with at least one claim). Let us compare
the lower-truncated log-likelihood �N>0 out-of-sample only on the policies with at
least one claim (ZTP model). We observe that the EM fitted model provides a better
description of the data, as we have a bigger log-likelihood than the model fitted on
all data L (i.e. −0.2195 vs. −0.2278 for the ZTP log-likelihood). Thus, the lower-
truncated fitting procedure finds a better model on {Ni > 0} when only fitted on
these lower-truncated claim counts.

This analysis concludes that we need to fit the full hurdle Poisson model (6.53).
That is, we cannot simply extrapolate the model fitted on the ZTP log-likelihood
�N>0 because, typically, π0(xi ) �= exp{−vie〈β,xi 〉}, the latter coming from the
Poisson GLM with regression parameter β. We model the zero claim probability
π0(xi ) by the logistic Bernoulli GLM indicating whether we have claims or not.
We set up the logistic GLM for p(x i ) = 1 − π0(xi ) of describing the indicator
Yi = 1{Ni>0} of having claims. The difficulty compared to the Poisson model is that
we cannot easily integrate the time exposure vi as a pro rata temporis variable like
in the Poisson case. We therefore make the following considerations. The canonical
link in the logistic Bernoulli GLM is the logit function p �→ logit(p) = log(p/(1−
p)) = log(p) − log(1 − p) for p ∈ (0, 1). Typically, in our application, p " 1 is
fairly small because claims are rare events. This implies log(p/(1 − p)) ≈ log(p),
i.e., the logit link behaves similarly to the log-link for small default probabilities p.
This motivates to integrate the logged exposures log vi as offsets into the logistic
probabilities. That is, we make the following model assumption

(x, v) �→ logit(p(xi , vi )) = log(vi)+ 〈β̃, xi〉,

with offset oi = log(vi) and regression parameter β̃ ∈ R
q+1. We fit this model using

the R command glm using family=binomial(). The results then allow us to
define the estimated hurdle Poisson model by, recall p(x i , vi ) = 1 − π0(xi , vi ),

fhurdle Poisson(k; xi , vi ) =
{

1 − p(x i , vi ) =
(
1 + exp{log(vi)+ 〈β̃,x i〉}

)−1
for k = 0,

p(xi ,vi )

1−e−μ(xi ,vi ) e
−μ(x i ,vi ) μ(xi ,vi )k

k! for k ∈ N,
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Table 6.8 Contingency table of the observed numbers of policies against predicted numbers of
policies with given claim counts ClaimNb (in-sample)

Numbers of claims ClaimNb

0 1 2 3 4 5

Observed number of policies 587’772 21’198 1’174 57 4 1

Poisson predicted number of policies 587’325 22’064 779 34 3 0.3

NB predicted number of policies 587’902 20’982 1’200 100 15 4

ZIP predicted number of policies 587’829 21’094 1’191 79 9 4

Hurdle Poisson predicted number of policies 587’772 21’119 1’233 76 6 1

where β̃ ∈ R
q+1 is the regression parameter from the logistic Bernoulli GLM,

and where μ(xi , vi ) = vi exp〈β, xi〉 is the Poisson GLM estimated with the
EM algorithm on the lower-truncated data Ni > 0 (ZTP model). The results are
presented in Table 6.6.

Table 6.6 compares the hurdle Poisson model to the approaches studied in
Table 5.10. Firstly, fitting the hurdle Poisson model is more time intensive, the EM
algorithm takes some time and we need to fit the Bernoulli logistic GLM which
is of a similar complexity as fitting model Poisson GLM3. The results in terms of
AIC look convincing. The hurdle Poisson model provides an excellent model for the
indicator of having a claim (here it outperforms model ZIP GLM3). It also tries to
optimally fit a ZTP model to all insurance policies having at least one claim. This
can also be seen from Table 6.8 which determines the expected number of policies
that suffer the different numbers of claims.

We close this example by concluding that the hurdle Poisson model provides the
best description, at the price of using more parameters. The ZIP model could be
lifted to a similar level, however, we consider fitting the hurdle approach to be more
convenient, see also Remark 6.20, below. In particular, feature engineering seems
simpler in the hurdle approach because the different effects are clearly separated,
whereas in the ZIP approach it is more difficult to suitably model the excess zeros,
see also Listing 5.10. This closes this example. �

Remark 6.20 In (6.54) we have been considering the ZTP model for different
exposures v > 0. If we set these exposures to v = 1, we obtain the ZTP log-
likelihood

�N>0(θ) = Nθ −
(
eθ + log(1 − e−eθ )

)
− log(N !).

Note that this describes a single-parameter linear EF with cumulant function

κ(θ) = eθ + log(1 − e−eθ ),
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for canonical parameter in the effective domain θ ∈ � = R. The mean of this EF
model is given by

μ = Eθ [N] = κ ′(θ) = eθ

1 − e−eθ = λ

1 − e−λ ,

where we set λ = eθ . The variance is given by

Varθ (N) = κ ′′(θ) = μ

(
eλ − (1 + λ)
eλ − 1

)
= μ

(
1 − μe−λ) > 0.

Note that the term in brackets is positive but less than one. The latter implies that
the ZTP model has under-dispersion. Alternatively to the EM algorithm, we can
also directly fit a GLM to this ZTP model. The only difficulty is that we need to
appropriately integrate the time exposures. The original Poisson model suggests
that if we choose the canonical parameter being equal to the linear predictor, we
should integrate the logged exposures as offsets into the linear predictors. Along
these lines, if we choose the canonical link h = (κ ′)−1 of the ZTP model, we
receive that the canonical parameter θ is equal to the linear predictor 〈β, x〉, and we
can directly integrate the logged exposures as offsets into the canonical parameters,
see (5.25). This then allows us to directly fit this ZTP model with exposures using
Fisher’s scoring method. In this case of a concave log-likelihood function, the result
will be identical to the solution of the EM algorithm found in Example 6.19, and, in
fact, this direct approach is more straightforward and more time-efficient. Similar
considerations can be done for other hurdle models.

6.4.4 Composite Models

In Sect. 6.3.1 we have promoted to mix distributions in cases where the data cannot
be modeled by a single EDF distribution. Alternatively, one can also consider to
compose densities which leads to so-called composite models (also called splicing
models). This idea has been introduced to the actuarial literature by Cooray–Ananda
[81] and Scollnik [332]. Assume we have two absolutely continuous densities
f (i)(·; θi) with corresponding distribution functions F (i)(·; θi), i = 1, 2. These two
densities can easily be composed at a splicing value τ and with weight p ∈ (0, 1)
by considering the following composite density

f (y;p, θ1, θ2) = p
f (1)(y; θ1)1{y≤τ }
F (1)(τ ; θ1)

+ (1 − p) f
(2)(y; θ2)1{y>τ }

1 − F (2)(τ ; θ2)
, (6.56)

supposed that both denominators are non-zero. In this notation we treat splicing
value τ as a hyper-parameter that is chosen by the modeler, and is not estimated
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from data. In view of (6.41) we can rewrite this in terms for lower- and upper-
truncated densities

f (y;p, θ1, θ2) = p f
(1)
(−∞,τ ](y; θ1)+ (1 − p) f (2)(τ,∞)(y; θ2).

In this notation, we see that a composite model can also be interpreted as a mixture
model with mixture probability p ∈ (0, 1) and mixing densities f (1)(−∞,τ ] and f (2)(τ,∞)
having disjoint supports (∞, τ ] and (τ,∞), respectively.

These disjoint supports allow for simpler MLE, i.e., we do not need to rely on
the ‘EM algorithm for mixture distributions’ to fit this model. The log-likelihood of
Y ∼ f (y;p, θ1, θ2) is given by

�Y (p, θ1, θ2) =
(

log(p)+ log f (1)(−∞,τ ](Y ; θ1)
)
1{Y≤τ }

+
(

log(1 − p)+ log f (2)(τ,∞)(Y ; θ2)
)
1{Y>τ }.

This shows that the log-likelihood nicely decouples in the composite case and all
parameters can directly be estimated with MLE: parameter θ1 uses all observations
smaller or equal to τ , parameter θ2 uses all observations bigger than τ , and p is
estimated by the proportions of claims below and above the splicing point τ . This
holds for a null model as well as for a GLM approach for θ1, θ2 and p.

Nevertheless, the EM algorithm may still be used for parameter estimation,
namely, truncation may ask for the ‘EM algorithm for truncated data’. Alternatively,
we could also use the ‘EM algorithm for censored data’ to estimate the truncated
densities, because we have knowledge of the number of claims above and below the
splicing point τ , thus, we could right- or left-censor these claims. The latter may
lead to more stability in the estimation procedure since we use more information
in parameter estimation, i.e., the two truncated densities will not be independent
because they simultaneously consider all claim counts (but not identical claim sizes
due to censoring).

For composite models one sometimes requires more regularity in the densities,
we may, e.g., require continuity in the density in the splicing point which provides
mixture probability

p = f (2)(τ ; θ2)F
(1)(τ ; θ1)

f (1)(τ ; θ1)(1 − F (2)(τ ; θ2))+ f (2)(τ ; θ2)F (1)(τ ; θ1)
.

This reduces the number of parameters to be estimated but complicates the score
equations. If we require a differential condition in τ we receive requirement

p = f
(2)
y (τ ; θ2)F

(1)(τ ; θ1)

f
(1)
y (τ ; θ1)(1 − F (2)(τ ; θ2))+ f (2)y (τ ; θ2)F (1)(τ ; θ1)

,
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where f (i)y (y; θi) denotes the first derivative w.r.t. y. Together with the continuity
this provides requirement for having differentiability in τ

f (2)(τ ; θ2)

f (1)(τ ; θ1)
= f

(2)
y (τ ; θ2)

f
(1)
y (τ ; θ1)

.

Again this reduces the degrees of freedom in parameter estimation but complicates
the score equations. We refrain from giving an example and close this section; we
will consider a deep composite regression model in Sect. 11.3.2, below, where we
replace the fixed splicing point by a quantile for a fixed quantile level.
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Chapter 7
Deep Learning

In the sequel, we introduce deep learning models. In this chapter these deep
learning models will be based on fully-connected feed-forward neural networks. We
present these networks as an extension of GLMs. These networks perform feature
engineering themselves. We discuss how networks achieve this, and we explain how
networks are used for predictive modeling. There is a vastly growing literature on
deep learning with networks, the classical reference is the book of Goodfellow et
al. [166], but also the numerous tutorials around the open-source deep learning
libraries TensorFlow [2], Keras [77] or PyTorch [296] give an excellent overview
of the state-of-the-art in this field.

7.1 Deep Learning and Representation Learning

In Chap. 5 on GLMs, we have been modeling the mean structure of the responses
Y , given features x, by the following regression function, see (5.6),

x �→ μ(x) = Eθ(x) [Y ] = g−1〈β, x〉. (7.1)

The crucial assumption has been that the regression function (7.1) provides a
reasonable functional description of the expected value Eθ(x)[Y ] of datum (Y, x).
As described in Sect. 5.2.2, this typically requires manual feature engineering of x,
bringing feature information into the right structural form.

In contrast to manual feature engineering, deep learning aims at performing an
automated feature engineering within the statistical model by massaging infor-
mation through different transformations. Deep learning uses a finite sequence of
functions (z(m))1≤m≤d , called layers,

z(m) : {1} × R
qm−1 → {1} ×R

qm,

© The Author(s) 2023
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of (fixed) dimensions qm ∈ N, 1 ≤ m ≤ d , and initialization q0 = q being the
dimension of the (raw) feature information x ∈ X ⊂ {1} × R

q . Each of these
layers presents a new representation of the features, that is, after layer m we have a
qm-dimensional representation of the raw feature x ∈ X

z(m:1)(x) def.=
(
z(m) ◦ · · · ◦ z(1)

)
(x) ∈ {1} ×R

qm. (7.2)

Note that the first component is always identically equal to 1. For this reason we
call the representation z(m:1)(x) ∈ {1} ×R

qm of x to be qm-dimensional.
Deep learning now assumes that we have d ∈ N appropriate transformations

(layers) z(m), 1 ≤ m ≤ d , such that z(d :1)(x) provides a suitable qd -dimensional
representation of the raw feature x ∈ X , that then enters a GLM

μ(x) = Eθ(x) [Y ] = g−1〈β, z(d :1)(x)〉, (7.3)

with link function g : M → R and regression parameter β ∈ R
qd+1. This

regression architecture is called a feed-forward network of depth d ∈ N because
information x is processed in a directed acyclic (feed-forward) path through the d
layers z(1), . . . , z(d) before entering the final GLM.

Each layer z(m) involves parameters. Successful deep learning simultaneously
fits these parameters as well as the regression parameter β to the available learning
data L so that we obtain an optimal predictive model on the test data T . That is,
the learned model should optimally generalize to unseen data, we refer to Chap. 4
on predictive modeling. Thus, the process of optimal representation learning is also
part of the model fitting procedure. In contrast to GLMs, the resulting log-likelihood
functions are non-concave in their parameters because, typically, each layer involves
non-linear transformations. This makes model fitting a challenge. State-of-the-art
model fitting in deep learning uses variants of the gradient descent algorithm which
we have already met in Sect. 6.2.4.

Remark 7.1 Representation learning x �→ z(d :1)(x) is closely related to Mercer’s
kernel [272]. If we have a portfolio with features x1, . . . , xn, we obtain a Mercer’s
kernel by considering the matrix

K = (K(xi , xj )
)

1≤i,j≤n =
(〈

z(d :1)(xi ), z(d :1)(xj )
〉)

1≤i,j≤n ∈ R
n×n. (7.4)

In many regression problems it can be shown that one can equivalently work
with the design matrix Z = (z(d :1)(x1), . . . , z

(d :1)(xn))� ∈ R
n×(qd+1) or with
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Mercer’s kernel K ∈ R
n×n. Mercer’s kernel does not require the full knowledge

of the learned representations z(d :1)(xi ), but it suffices to know the discrepancies
between z(d :1)(xi ) and z(d :1)(xj ) measured by the scalar products K(xi , xj ). This
is also closely related to the cosine similarity in word embeddings, see (10.11). This
approach then results in replacing the search for an optimal representation learning
by a search of the optimal Mercer’s kernel for the given data; this is called the kernel
trick in machine learning.

7.2 Generic Feed-Forward Neural Networks

Feed-forward neural (FN) networks use special layers z(m) in (7.2)–(7.3), whose
components are called neurons. This is discussed and studied in detail in this section.

7.2.1 Construction of Feed-Forward Neural Networks

FN networks are regression functions of type (7.3) where each neuron z(m)j , 1 ≤
j ≤ qm, of the layers z(m) = (1, z(m)1 , . . . , z

(m)
qm )

�, 1 ≤ m ≤ d , has the structure of

a GLM; the first component z(m)0 = 1 always plays the role of the intercept and does
not need any modeling.

A first important choice is the activation function φ : R → R which plays the
role of the inverse link function g−1. To perform non-linear representation learning,
this activation function should be non-linear, too. The most popular choices of
activation functions are listed in Table 7.1.

The first three examples in Table 7.1 are smooth functions with simple deriva-
tives, see the last column of Table 7.1. Having simple derivatives is an advantage in
gradient descent algorithms for model fitting. The derivative of the ReLU activation
function for x �= 0 is given by the step function activation, and in 0 one typically
considers a sub-gradient. We briefly comment on these activation functions.

Table 7.1 Popular choices of non-linear activation functions and their derivatives; the last two
examples are not strictly monotone

Activation function Derivative

Sigmoid (logistic) activation φ(x) = (1 + e−x )−1 φ′ = φ(1 − φ)
Hyperbolic tangent activation φ(x) = tanh(x) φ′ = 1 − φ2

Exponential activation φ(x) = exp(x) φ′ = φ
Step function activation φ(x) = 1{x≥0}
Rectified linear unit (ReLU) activation φ(x) = x1{x≥0}
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Fig. 7.1 Hyperbolic tangent
activation function
x �→ tanh(wx) ∈ (−1, 1) for
(fixed) weights
w ∈ {1/5, 1, 5} and
x ∈ (−10, 10)
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• We are mainly going to use the hyperbolic tangent activation function

x �→ tanh(x) = ex − e−x
ex + e−x = 2

(
1 + e−2x

)−1 − 1 ∈ (−1, 1).

Figure 7.1 illustrates the hyperbolic tangent activation function.
The hyperbolic tangent activation function is anti-symmetric w.r.t. the origin

with range (−1, 1). This anti-symmetry and boundedness is an advantage in
fitting deep FN network architectures. For this reason we usually prefer the
hyperbolic tangent over other activation functions.

• The sigmoid activation function corresponds to the logistic function that was
used in the Bernoulli and the categorical EFs, see Sects. 2.1.2 and 5.7. The sig-
moid activation function can be obtained from the hyperbolic tangent activation
function by setting φ(x) = (tanh(x/2)+ 1)/2.

• The step function activation is not really used in applications. However, it allows
for nice interpretations, and it links FN networks to the theory of regression and
classification trees (CARTs); see Breiman et al. [54] for CARTs.

• The exponential activation function is a nice differentiable choice whenever the
range should be one-sided bounded.

• The ReLU activation function is also called hinge function or ramp function. This
is the preferred choice in the machine learning community. However, typically,
we will not use it because in our experience it is less robust in fitting compared to
the hyperbolic tangent activation function. This may be for two reasons, firstly,
the ReLU activation is unbounded, and secondly, it is identically equal to zero
for x < 0, which implies that there is no sensitivity in negative choices of x.
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A FN layer with activation function φ is a mapping

z(m) : {1} × R
qm−1 → {1} ×R

qm (7.5)

z �→ z(m)(z) =
(

1, z(m)1 (z), . . . , z(m)qm (z)
)�
,

having neurons for 1 ≤ j ≤ qm

z
(m)
j (z) = φ〈w(m)j , z〉 = φ

(
qm−1∑

l=0

w
(m)
l,j zl

)

, (7.6)

with given network weights w
(m)
j = (w(m)l,j )0≤l≤qm−1 ∈ R

qm−1+1.

Interpretation Every neuron z �→ z
(m)
j (z) describes a GLM regression function

with link function φ−1 and regression parameter w
(m)
j ∈ R

qm−1+1 for features
z ∈ {1} × R

qm−1 . These GLM regression functions can be interpreted as data
compression, i.e., in each neuron the qm−1-dimensional feature z is projected to
a real number 〈w(m)j , z〉 ∈ R which is then (non-linearly) activated by φ. Since
this leads to a substantial loss of information, we perform this procedure of data
compression qm times in FN layer z(m), so that each neuron in (z(m)j (z))1≤j≤qm
represents a different projection of input z. Choosing suitable weights w

(m)
j will

allow us to extract the crucial feature information from z to receive good explanatory
variables for the regression task at hand.

A FN network of depth d ∈ N is obtained by composing d FN layers
z(1), . . . , z(d) to receive the mapping

z(d :1) : {1} ×R
q0=q → {1} × R

qd (7.7)

x �→ z(d :1)(x) =
(
z(d) ◦ · · · ◦ z(1)

)
(x).

Choosing a strictly monotone and smooth link function g and a regression
parameter β ∈ R

qd+1 we receive the FN network regression function

x ∈ X �→ μ(x) = g−1〈β, z(d :1)(x)〉. (7.8)
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Fig. 7.2 FN network of depth d = 3, with number of neurons (q1, q2, q3) = (20, 15, 10) and
input dimension q0 = 40. This gives us a network parameter ϑ ∈ R

r of dimension r = 1′306

This FN network regression function (7.8) has a network parameter ϑ =
(w
(1)
1 , . . . ,w

(d)
qd ,β)

� ∈ R
r of dimension

r =
d∑

m=1

qm(qm−1 + 1)+ (qd + 1).

In Fig. 7.2 we illustrate a FN network of depth d = 3, FN layers of dimensions
(q1, q2, q3) = (20, 15, 10) and input dimension q0 = 40.1 This gives us a network
parameter ϑ ∈ R

r of dimension r = 1′306. On the left-hand side we have the raw
features x ∈ X ⊂ {1}×R

q0, these are processed through the three FN layers, where
the black circles illustrate the neurons z(m)j . The third FN layer z(3) has dimension

1 Figures 7.2 and 7.9 are similar to Figure 1 in [122], and all FN network plots have been created
with modified versions of the plot functions of the R package neuralnet [144].
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q3 = 10 providing the learned representation z(3:1)(x) ∈ {1} × R
q3 of x. This is

used in the final GLM step (7.8) in the green box of Fig. 7.2.

Remarks 7.2

• One distinguishes between FN networks of depth d = 1, called shallow
networks, and FN networks of depth d > 1, called deep networks. In this
sense, deep learning means that we learn suitable feature representations through
multiple FN layers d > 1. We come back to this in Sect. 7.2.2, below. Remark
that some people would only call a network deep if d & 1, here d > 1 will be
chosen for the definition of deep (which is also a precise definition).

• There are two ways of receiving a GLM. If we have a (trivial) FN network of
depth d = 0, this naturally corresponds to a GLM, see Fig. 7.2. In that case, one
works with the original features x ∈ X in (7.8). The second way of receiving a
GLM is given by choosing the identity function as activation function φ(x) = x.
This implies that x �→ z(d :1)(x) = Ax is a linear function for some matrix
A ∈ R

(qd+1)×(q+1) and, henceforth, we receive a GLM.
• Under the above interpretation of the representation learning structure (7.7), we

may also give a different intuition for the FN layers. Typically, we expect that
the first FN layers decompose feature information x into bits and pieces, which
are then recomposed in a suitable way for the prediction task. In this sense, we
typically choose a larger dimension for the early FN layers otherwise we may
lose too much information already from the very beginning.

• The neural network introduced in (7.7) is called FN network because the signals
propagate from one layer to the next (directed acyclic graph). If the network
has loops it is called a recurrent neural (RN) network. RN networks have been
applied very successfully in image and speech recognition, for instance, long
short-term memory (LSTM) networks are very useful for time-series analysis.
We study RN networks in Chap. 8, below. A third type of neural networks
are convolutional neural (CN) networks which are very successfully applied
to image recognition because they are capable to detect similar structures at
different places in images, i.e., CN networks learn local representations. We will
discuss CN network architectures in Chap. 9, below.

• The generic FN network architecture (7.8) can be complemented by drop-
out layers, normalization layers, skip connections, embedding layers, etc. Such
layers are special purpose layers, for instance, taking care of over-fitting. We
introduce and discuss these below.

• The regression function (7.8) has a one-dimensional output for regression mod-
eling. Of course, categorical classification can be done completely analogously
by choosing a link function g suitable for classification, see Sect. 5.7. A similar
approach also works if, for instance, we want to model simultaneously the mean
and the dispersion of the data with a two-dimensional output function g−1.
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7.2.2 Universality Theorems

The use of FN networks for representation learning is motivated by the so-called
universality theorems which say that any compactly supported continuous (regres-
sion) function can be approximated arbitrarily well by a suitably large FN network.
As such, we can understand the FN network framework as an approximation tool
which, of course, is useful far beyond statistical modeling. In Chapter 12 we give
some proofs of selected universality statements to illustrate the flavor of such results.
In particular, Cybenko [86], Hornik et al. [192], Hornik [191], Leshno et al. [247],
Park–Sandberg [293, 294], Petrushev [302] and Isenbeck–Rüschendorf [198] have
shown (under mild conditions on the activation function) that shallow FN networks
can approximate any compactly supported continuous function arbitrarily well (in
supremum norm or inL2-norm), if we allow for an arbitrary number of neurons q1 ∈
N in the single FN layer. Roughly speaking, such a result for shallow FN networks
holds true if and only if the chosen activation function is non-polynomial, see
Leshno et al. [247]. Such results are proved either by algebraic methods of Stone–
Weierstrass type or by Wiener–Tauberian denseness type arguments. Moreover,
approximation results are studied in Barron [25, 26], Yukich et al. [399], Makavoz
[262], Pinkus [303] and Döhler–Rüschendorf [108].

The above stated universality theorems say that shallow FN networks are
sufficient from an approximation point of view. Nevertheless, we will mainly
use deep (multiple layers) FN networks, below. These have better convergence
properties to given function classes because they more easily promote interactions
in feature components compared to shallow ones. Such questions have been studied,
e.g., by Elbrächter et al. [120], Kidger–Lyons [215], Lu et al. [260] or Cheridito et
al. [75]. For instance, Elbrächter et al. [120] compare finite-depth wide networks
to finite-width deep networks (under the choice of the ReLU activation function),
and they conclude that for many function classes deep networks lead to exponential
approximation rates, whereas shallow networks only provide polynomial approxi-
mation rates at the same number of network parameters. This motivates to consider
sufficiently deep FN networks for representation learning because these typically
have a better approximation capacity compared to shallow ones.

We motivate this by two simple examples. For this motivation we use the step
function activation φ(x) = 1{x≥0} ∈ {0, 1}. If we have the step function activation,
each neuron partitions Rqm−1 along a hyperplane, i.e.,

z �→ z
(m)
j (z) = φ〈w(m)j , z〉 = 1{∑qm−1

l=1 w
(m)
l,j zl ≥ −w(m)0,j

} ∈ {0, 1}. (7.9)

For a shallow FN network we can study the question of the maximal complexity
of the resulting partition of the feature space X ⊂ {1} × R

q0 when considering q1
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neurons (7.9) in the single FN layer z(1). Zaslavsky [400] proved that q1 hyperplanes
can partition the Euclidean space Rq0 in at most

min{q0,q1}∑

j=0

(
q1

j

)
disjoint sets. (7.10)

This number (7.10) can be seen as a maximal upper complexity bound for shallow
FN networks with step function activation. It grows exponentially for q1 ≤ q0, and
it slows down to a polynomial growth for q1 > q0. Thus, the complexity of shallow
FN networks grows comparably slow as the width q1 of the network exceeds q0, and
therefore we often need a huge network to receive a good approximation.

This result (7.10) should be contrasted to Theorem 4 in Montúfar et al. [280] who
give a lower bound on the complexity of regression functions of deep FN networks
(under the ReLU activation function). Assume qm ≥ q0 for all 1 ≤ m ≤ d . The
maximal complexity is bounded below by

(
d−1∏

m=1

⌊
qm

q0

⌋q0
)
q0∑

j=0

(
qd

j

)
disjoint linear regions. (7.11)

If we choose as an example a FN network with fixed width qm = 4 for all m ≥ 1
and an input of dimension q0 = 2, we receive from (7.11) a lower bound of

4d−1
((

4

0

)
+
(

4

1

)
+
(

4

2

))
= 11

4
exp{dlog(4)}.

Thus, we have an exponential growth in depth d → ∞. This contrasts the
polynomial complexity growth (7.10) of shallow FN networks.

Example 7.3 (Shallow vs. Deep Networks: Partitions) We give a second more
explicit example that compares shallow and deep FN networks. Choose q0 = 2
and assume we want to describe a regression function

μ : R2 → R, x �→ μ(x).

If we think of a tool box of basis functions to build regression function μ we may
want to choose indicator functions x �→ χA(x) ∈ {0, 1} for arbitrary rectanglesA =
[x−

1 , x
+
1 ) × [x−

2 , x
+
2 ) ⊂ R

2. We show that we can easily construct such indicator
functions χA(x) for given rectanglesA ⊂ R

2 with FN networks of depth d = 2, but
not with shallow FN networks.

For illustrative purposes, we fix a squareA = [−1/2, 1/2)×[−1/2, 1/2)⊂ R
2,

and we want to construct χA(x) with a network of depth d = 2. This indicator
function χA is illustrated in Fig. 7.3.
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Fig. 7.3 Indicator function
χA(x) for square
A = [−1/2, 1/2) ×
[−1/2, 1/2) ⊂ R
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We choose the step function activation for φ and a first FN layer with q1 = 4
neurons

x �→ z(1)(x) =
(

1, z(1)1 (x), . . . , z
(1)
4 (x)

)�

= (1,1{x1≥−1/2},1{x2≥−1/2},1{x1≥1/2},1{x2≥1/2}
)� ∈ {1} × {0, 1}4.

This FN layer has a network parameter, see also (7.9),

(
w
(1)
1 , . . . ,w

(1)
4

)
=
⎛

⎝

⎛

⎝
1/2
1
0

⎞

⎠ ,

⎛

⎝
1/2
0
1

⎞

⎠ ,

⎛

⎝
−1/2

1
0

⎞

⎠ ,

⎛

⎝
−1/2

0
1

⎞

⎠

⎞

⎠ , (7.12)

having dimension q1(q0 + 1) = 12. For the second FN layer with q2 = 4 neurons
we choose the step function activation and

z �→ z(2)(z) =
(

1, z(2)1 (z), . . . , z
(2)
4 (z)

)�

= (
1,1{z1+z2≥3/2},1{z2+z3≥3/2},1{z1+z4≥3/2},1{z3+z4≥3/2}

)�
.

This FN layer has a network parameter

(
w
(2)
1 , . . . ,w

(2)
4

)
=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎛

⎜
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⎝
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⎠
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⎟
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⎟
⎠
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having dimension q2(q1 + 1) = 20. For the output layer we choose the identity link
g(x) = x, and the regression parameter β = (0, 1,−1,−1, 1)� ∈ R

5. As a result,
we obtain

χA(x) =
〈
β, z(2:1)(x)

〉
. (7.13)

That is, this network of depth d = 2, number of neurons (q1, q2) = (4, 4), step
function activation and identity link can perfectly replicate the indicator function for
the square A = [−1/2, 1/2)× [−1/2, 1/2), see Fig. 7.3. This network has r = 37
parameters.

We now consider a shallow FN network with q1 neurons. The resulting regression
function with identity link is given by

x �→
〈
β, z(1:1)(x)

〉
=
〈
β, (1, z(1)1 (x), . . . , z

(1)
q1
(x))�

〉

=
〈

β,

(
1,1{〈

w
(1)
1 ,x

〉
≥0
}, . . . ,1{〈

w
(1)
q1 ,x

〉
≥0
}
)�〉

,

where we have used the step function activation φ(x) = 1{x≥0}. As in (7.9),
each of these neurons leads to a partition of the space R

2 with a straight line.
Importantly these straight lines go across the entire feature space, and, there-
fore, we cannot exactly construct the indicator function of Fig. 7.3 with a shal-
low FN network. This can nicely be seen in Fig. 7.4 (lhs), where we con-
sider a shallow FN network with q1 = 4 neurons, weights (7.12), and β =
(0, 1/2, 1/2,−1/2,−1/2)�.

However, from the universality theorems we know that shallow FN networks
can approximate any compactly supported (continuous) function arbitrarily well
for sufficiently large q1. In this example we can introduce additional neurons and
let the resulting hyperplanes rotate around the origin. In Fig. 7.4 (middle, rhs) we
show this for q1 = 8 and q1 = 64 neurons. We observe that this allows us to
approximate a circle, see Fig. 7.4 (rhs), and having circles of different sizes at

shallow FN network q1=4
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x2
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0.5
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−0.5 0.0 0.5
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−0.5 0.0 0.5
x1
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shallow FN network q1=8 shallow FN network q1=64

Fig. 7.4 Shallow FN networks with q1 = 4 (lhs), q1 = 8 (middle) and q1 = 64 (rhs)
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different locations will allow us to approximate the square A considered above.
However, of course, this is a much less efficient way compared to the deep FN
network (7.13).

Intuitively speaking, shallow FN networks act like additions where we add more
and more separating hyperplanes for q1 → ∞ (superposition of basis functions).
In contrast to that, going deep allows us to not only use additions but to also use
multiplications (composition of basis functions). This is the reason, why we can
easily construct the indicator function χA in the deep case (where we multiply
zero’s along the boundary of A), but not in the shallow case. �

7.2.3 Gradient Descent Methods

We describe gradient descent methods in this section. These are used to fit FN
networks. Gradient descent algorithms have already been used in Sect. 6.2.4 for
fitting LASSO regularized regression models. We will give the full methodological
part here, without relying on Sect. 6.2.4.

Plain Vanilla Gradient Descent Algorithm

Assume we have independent instances (Yi, xi ), 1 ≤ i ≤ n, that follow the same
member of the EDF. We choose a regression function

xi �→ μ(xi ) = μϑ (xi ) = Eθ(xi )[Yi] = g−1
〈
β, z(d :1)(xi )

〉
,

for a strictly monotone and smooth link function g, and a FN network z(d :1) with
network parameter ϑ ∈ R

r . We assume that the chosen activation function φ is
differentiable. We highlight in the notation that the mean functional μϑ (·) depends
on the network parameter ϑ . The canonical parameter of the response Yi is given
by θ(xi ) = h(μϑ (xi )) ∈ �, where h = (κ ′)−1 is the canonical link and κ the
cumulant function of the chosen member of the EDF. This gives us (under constant
dispersion ϕ) the log-likelihood function, for given data Y = (Y1, . . . , Yn)

�,

ϑ �→ �Y (ϑ) =
n∑

i=1

vi

ϕ

[
Yih(μϑ (xi ))− κ (h(μϑ (xi )))

]
+ a(Yi; vi/ϕ).

The deviance loss function in this model is given by, see (4.9) and (4.8),

D(Y ,ϑ) = 2

n

n∑

i=1

vi

ϕ

(
Yih (Yi)− κ (h (Yi))− Yih (μϑ (xi ))+ κ (h (μϑ (xi )))

)
≥ 0.

(7.14)
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The MLE of ϑ is found by either maximizing the log-likelihood function or by
minimizing the deviance loss function in ϑ . This problem cannot be solved in
general because of complexity. Typically, the deviance loss function is non-convex
in ϑ and it may have many local minimums. This is one of the reasons, why we
are less ambitious here, and why we just try to find a network parameter ϑ̂ which
provides a “small” deviance loss D(Y , ϑ̂) for the given data Y . We discuss this
further, below, in fact, this is a crucial point in FN network fitting that is related to
in-sample over-fitting and, therefore, this point will require a broader discussion.

For the moment, we just try to find a network parameter ϑ̂ that provides a
small deviance loss D(Y , ϑ̂) for the given data Y . Gradient descent algorithms
suggest that we try to step-wise locally improve our current position by changing the
network parameter into the direction of the maximal local decrease of the deviance
loss function. By assumption, our deviance loss function is differentiable in ϑ . This
allows us to consider the following first order Taylor expansion in ϑ

D(Y , ϑ̃) = D(Y ,ϑ)+∇ϑD(Y ,ϑ)
� (ϑ̃ − ϑ

)+o (‖ϑ̃ − ϑ‖2
)

as ‖ϑ̃ −ϑ‖2 → 0.

This shows that the locally optimal change ϑ �→ ϑ̃ points into the opposite direction
of the gradient of the deviance loss function. This motivates the following gradient
descent step.

Assume that at algorithmic time t ∈ N we have a network parameter ϑ(t) ∈
R
r . Choose a suitable learning rate �t+1 > 0, and consider the gradient

descent update

ϑ(t) �→ ϑ(t+1) = ϑ (t) − �t+1∇ϑD(Y ,ϑ
(t)). (7.15)

This gradient descent update gives us the new (smaller) deviance loss at
algorithmic time t + 1

D(Y ,ϑ (t+1)) = D(Y ,ϑ(t))−�t+1

∥
∥∥∇ϑD(Y ,ϑ

(t))

∥
∥∥

2

2
+o (�t+1) for �t+1 ↓ 0.

Under suitably tempered learning rates (�t )t≥1, this algorithm will converge to a
local minimum of the deviance loss function as t → ∞ (supposed that we do not
get trapped in a saddlepoint).

Remarks 7.4 We give a couple of (preliminary) remarks on the gradient descent
algorithm (7.15), more explanation, further derivations, and variants of the gradient
descent algorithm will be discussed below.
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• In the applications we will early stop the gradient descent algorithm before
reaching a local minimum (to prevent from over-fitting). This is going to be
discussed in the next paragraphs.

• Fine-tuning the learning rate (�t )t is important, in particular, there is a trade-off
between smaller and bigger learning rates: they need to be sufficiently small so
that the first order Taylor expansion is still a valid approximation, and they should
be sufficiently big otherwise the convergence of the algorithm will be very slow
because it needs many iterations.

• The gradient descent algorithm is a first order algorithm, and one is tempted to
study higher order approximations, e.g., leading to the Newton–Raphson algo-
rithm. Unfortunately, higher order derivatives are computationally not feasible if
the size n of the data Y = (Y1, . . . , Yn)

� and the dimension r of the network
parameter ϑ are large. In fact, even the calculation of the first order derivatives
may be challenging and, therefore, stochastic gradient descent methods are
considered below. Nevertheless, it is beneficial to have a notion of a second order
term. Momentum-based methods originate from approximating the second order
terms, these will be studied in (7.19)–(7.20), below.

• The gradient descent step (7.15) solves an unconstraint local optimization.
Similarly to (6.15)–(6.16) we could change the gradient descent algorithm to
a constraint optimization problem, e.g., involving a LASSO constraint that can
be solved with the generalized projection operator (6.17).

Gradient Calculation via Back-Propagation

Fast gradient descent algorithms essentially rely on fast gradient calculations of the
deviance loss function. Under the EDF setup we have gradient w.r.t. ϑ

∇ϑD(Y ,ϑ) = 2

n

n∑

i=1

vi

ϕ

(
μϑ (xi )− Yi

)
h′ (μϑ (xi ))∇ϑμϑ (xi ) (7.16)

= 2

n

n∑

i=1

vi

ϕ

μϑ (xi )− Yi
V (μϑ (xi ))

1

g′(μϑ (xi ))
∇ϑ

〈
β, z(d :1)(xi )

〉
,

where the last step uses the variance function V (·) of the chosen EDF, we also refer
to (5.9). The main difficulty is the calculation of the gradient

∇ϑ

〈
β, z(d :1)(x)

〉
= ∇ϑ

〈
β,
(
z(d) ◦ · · · ◦ z(1)

)
(x)
〉
,

w.r.t. the network parameter ϑ = (w
(1)
1 , . . . ,w

(d)
qd ,β)

� ∈ R
r , and where each

FN layer z(m) involves the weights W(m) = (w
(m)
1 , . . . ,w

(m)
qm ) ∈ R

(qm−1+1)×qm .
The workhorse for these gradient calculations is the back-propagation method
of Rumelhart et al. [324]. Basically, the back-propagation method is a clever
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reparametrization of the problem so that the gradients can be calculated more easily.
We therefore modify the weight matrices W(m) by dropping the first row containing
the intercept parameters w(m)0,j , 1 ≤ j ≤ qm. Define for 1 ≤ m ≤ d + 1

W(m)
(−0) =

(
w
(m)
jm−1,jm

)

1≤jm−1≤qm−1; 1≤jm≤qm
∈ R

qm−1×qm,

where w(m)jm−1,jm
denotes component jm−1 of w

(m)
jm

, and where we set qd+1 = 1

(output dimension) and w(d+1)
jd ,1

= βjd for 0 ≤ jd ≤ qd .

Proposition 7.5 (Back-Propagation for the Hyperbolic Tangent Activation)
Choose a FN network of depth d ∈ N and with hyperbolic tangent activation
function φ(x) = tanh(x).

• Define recursively

– initialize qd+1 = 1 and δ(d+1)(x) = 1 ∈ R
qd+1;

– iterate for d ≥ m ≥ 1

δ(m)(x) = diag

(
1 −

(
z
(m:1)
jm

(x)
)2
)

1≤jm≤qm
W(m+1)
(−0) δ(m+1)(x) ∈ R

qm.

• We obtain for 0 ≤ m ≤ d
⎛

⎝∂〈β, z(d :1)(x)〉
∂w

(m+1)
jm,jm+1

⎞

⎠

0≤jm≤qm; 1≤jm+1≤qm+1

= z(m:1)(x) δ(m+1)(x)� ∈ R
(qm+1)×qm+1,

where z(0:1)(x) = x ∈ R
q0+1 and w

(d+1)
1 = β ∈ R

qd+1.

Proof of Proposition 7.5 Choose 1 ≤ m ≤ d and define for the neurons 1 ≤ jm ≤
qm the variables

ζ
(m)
jm
(x) =

〈
w
(m)
jm
, z(m−1:1)(x)

〉
.

The learned representation in the m-th FN layer is obtained by activating these
variables

z(m:1)(x) =
(

1, φ
(
ζ
(m)
1 (x)

)
, . . . , φ

(
ζ (m)qm

(x)
))� ∈ R

qm+1.

For the output we define

ζ
(d+1)
1 (x) = 〈β, z(d :1)(x)〉.
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The main idea is to calculate the derivatives of 〈β, z(d :1)(x)〉 w.r.t. these new
variables ζ (m)j (x).

Initialization form = d+1 This provides form = d+1 and 1 ≤ jd+1 ≤ qd+1 = 1

∂〈β, z(d :1)(x)〉
∂ζ
(d+1)
1 (x)

= 1 = δ(d+1)
1 (x).

Recursion form < d+1 Next, we calculate the derivatives w.r.t. ζ (d)jd (x), form = d
and 1 ≤ jd ≤ qd . They are given by (note qd+1 = 1)

∂〈β, z(d :1)(x)〉
∂ζ
(d)
jd
(x)

= ∂〈β, z(d :1)(x)〉
∂ζ
(d+1)
1 (x)

∂ζ
(d+1)
1 (x)

∂ζ
(d)
jd
(x)

= δ(d+1)
1 (x) βjd φ

′(ζ (d)jd (x)) (7.17)

= δ(d+1)
1 (x) w

(d+1)
jd ,1

(
1 − (z(d :1)jd

(x))2
)

= δ
(d)
jd
(x),

where we have usedw(d+1)
jd ,1

= βjd and for the hyperbolic tangent activation function

φ′ = 1 − φ2. Continuing recursively for d > m ≥ 1 and 1 ≤ jm ≤ qm we obtain

∂〈β, z(d :1)(x)〉
∂ζ
(m)
jm
(x)

=
qm+1∑

jm+1=1

∂〈β, z(d :1)(x)〉
∂ζ
(m+1)
jm+1

(x)

∂ζ
(m+1)
jm+1

(x)

∂ζ
(m)
jm
(x)

=
qm+1∑

jm+1=1

δ
(m+1)
jm+1

(x) w
(m+1)
jm,jm+1

(
1 − (z(m:1)

jm
(x))2

)
= δ

(m)
jm
(x).

Thus, the vectors δ(m)(x) = (δ
(m)
1 (x), . . . , δ

(m)
qm (x))

� are calculated recursively in
d ≥ m ≥ 1 with initialization δ(d+1)(x) = 1 and the recursion

δ(m)(x) = diag
(

1 − (z(m:1)
jm

(x))2
)

1≤jm≤qm
W(m+1)
(−0) δ(m+1)(x) ∈ R

qm.

Finally, we need to show how these derivatives are related to the original
derivatives in the gradient descent method. We have for 0 ≤ jd ≤ qd and jd+1 = 1

∂〈β, z(d :1)(x)〉
∂βjd

= ∂〈β, z(d :1)(x)〉
∂ζ
(d+1)
1 (x)

∂ζ
(d+1)
1 (x)

∂βjd
= δ

(d+1)
jd+1

(x) z
(d :1)
jd

(x).
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For 1 ≤ m < d , and 0 ≤ jm ≤ qm and 1 ≤ jm+1 ≤ qm+1 we have

∂〈β, z(d :1)(x)〉
∂w

(m+1)
jm,jm+1

= ∂〈β, z(d :1)(x)〉
∂ζ
(m+1)
jm+1

(x)

∂ζ
(m+1)
jm+1

(x)

∂w
(m+1)
jm,jm+1

= δ
(m+1)
jm+1

(x) z
(m:1)
jm

(x).

For m = 0, and 0 ≤ l ≤ q0 and 1 ≤ j1 ≤ q1 we have

∂〈β, z(d :1)(x)〉
∂w

(1)
l,j1

= ∂〈β, z(d :1)(x)〉
∂ζ
(1)
j1
(x)

∂ζ
(1)
j1
(x)

∂w
(1)
l,j1

= δ
(1)
j1
(x) xl.

This completes the proof of Proposition 7.5. �

Remark 7.6 Proposition 7.5 gives the back-propagation method for the hyperbolic
tangent activation function which has derivative φ′ = 1 − φ2. This becomes visible
in the definition of δ(m)(x) where we consider the diagonal matrix

diag

(
1 −

(
z
(m:1)
jm

(x)
)2
)

1≤jm≤qm
.

For a general differentiable activation function φ this needs to be replaced by,
see (7.17),

diag
(
φ′ 〈w(m)jm , z

(m−1:1)(x)
〉)

1≤jm≤qm
.

In the case of the sigmoid activation function this gives us, see also Table 7.1,

diag
(
z
(m:1)
jm

(x)
(

1 − z(m:1)
jm

(x)
))

1≤jm≤qm
.

Plain vanilla gradient descent algorithm for FN networks

1. Choose an initial network parameter ϑ(0) ∈ R
r .

2. Iterate for t ≥ 0 until a stopping criterion is met:

(a) Calculate the gradient ∇ϑD(Y ,ϑ) in network parameter ϑ = ϑ(t)

using (7.16) and the back-propagation method of Proposition 7.5 (for the
hyperbolic tangent activation function).

(b) Make the gradient descent step for a suitable learning rate �t+1 > 0

ϑ (t) �→ ϑ (t+1) = ϑ(t) − �t+1∇ϑD(Y ,ϑ
(t)).
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Remark 7.7 The initialization ϑ(0) ∈ R
r of the gradient descent algorithm needs

some care. A FN network has many symmetries, for instance, we can permute
neurons within a FN layer and we receive the same predictive model. For this
reason, the initial network weights W(m) = (w

(m)
1 , . . . ,w

(m)
qm ) ∈ R

(qm−1+1)×qm ,
1 ≤ m ≤ d , should not be chosen with identical components because this will
result in a saddlepoint of the corresponding objective function, and gradient descent
will not work. For this reason, these weights are initialized randomly either using a
uniform or a Gaussian distribution. The former is related to the glorot_uniform
initializer in keras,2 see (16) in Glorot–Bengio [160]. This initializer scales the
support of the uniform distribution with the sizes of the FN layers that are connected
by the corresponding weights w

(m)
j .

For the output parameter we usually set as initial value β(0) = (β̂(0)0 , 0, . . . , 0)� ∈
R
qd+1, where β̂(0)0 is the MLE in the corresponding null model (not considering any

features) and transformed to the chosen link g. This choice implies that the gradient
descent algorithm starts in the null model, and any decrease in deviance loss can be
seen as an improved in-sample loss of using the FN network regression structure
over the null model.

Stochastic Gradient Descent

The gradient in (7.16) has two parts. We have a vector

v(Y ) =
(
vi

ϕ

(
μϑ (xi )− Yi

) 1

V (μϑ (xi ))

1

g′(μϑ (xi ))

)�

1≤i≤n
∈ R

n,

and we have a matrix

M =
(
∇ϑ

〈
β, z(d :1)(x1)

〉
, . . . ,∇ϑ

〈
β, z(d :1)(xn)

〉)
∈ R

r×n.

The gradient of the deviance loss function is obtained by the matrix multiplication

∇ϑD(Y ,ϑ) = 2

n
M v(Y ).

Matrix multiplication can be very slow in numerical implementations if the
sample size n is large. For this reason, one typically uses the stochastic gradient
descent (SGD) method that does not consider the entire data Y = (Y1, . . . , Yn)

�
simultaneously.

2 For our examples we use the R library keras [77] which is an API to TensorFlow [2].
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For the SGD method one chooses a fixed batch size b ∈ N, and one randomly
partitions the entire data Y into (mini-)batches Y 1, . . . ,Y 'n/b( of approximately the
same size b (up to cardinality). Each gradient descent update

ϑ (t) �→ ϑ(t+1) = ϑ (t) − �t+1∇ϑD(Y s ,ϑ
(t)),

is then only based on the observations Y s in the corresponding batch 1 ≤ s ≤ 'n/b(.
Typically, one sequentially visits all batches, and screening each batch once is called
an epoch. Thus, if we run the SGD algorithm over K epochs on batches of size
b ≤ n, then we performK'n/b( gradient descent steps.

Choosing batches of size b reduces the complexity of the matrix multiplication
from n to b, and, henceforth, leads to much faster run times in one gradient
descent step. On the other hand, batches should have a minimal size so that the
gradient descent updates are not too erratic, i.e., if the batches are too small, the
randomness in the data may point too often into a (completely) wrong direction for
the optimal gradient descent step. For this reason, optimal batch sizes should be
chosen carefully. For instance, if we study a low frequency claims count problem,
say, with an expected frequency of λ = 10%, we can determine confidence bounds
for parameter estimation. This will provide an estimate of a minimal batch size b
for a reliable parameter estimate.

To have a few erratic steps in SGD, however, can also be beneficial, as long
as there are not too many of those. Sometimes, the algorithm gets trapped in
saddlepoints or in flat areas of the objective function (vanishing gradient problem).
If this is the case, an erratic step may be beneficial because it may perturb the
algorithm out of its bottleneck. In fact, often SGD has a better performance than the
plain vanilla gradient descent algorithm that is based on the entire data Y because
of these noisy contributions.

Momentum-Based Gradient Descent Methods

The gradient descent method only considers a first order Taylor expansion and one is
tempted to consider higher order terms to improve the approximation. For instance,
Newton’s method uses a second order Taylor term by updating

ϑ(t) �→ ϑ (t+1) = ϑ(t) −
(
∇2

ϑD(Y ,ϑ
(t))
)−1 ∇ϑD(Y ,ϑ

(t)). (7.18)

In many practical applications this calculation is not feasible as the Hessian
∇2

ϑD(Y ,ϑ
(t)) cannot be calculated in a reasonable amount of time. Another

(simple) way of considering the changes in the gradients is the momentum-based
gradient descent method of Rumelhart et al. [324]. This is inspired by mechanics in
physics and it is achieved by considering the gradients over several iterations of the
algorithm (with exponentially decaying weights). Choose a momentum coefficient
ν ∈ [0, 1) and define the initial speed v(0) = 0 ∈ R

r .
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Replace the gradient descent update (7.15) by

v(t) �→ v(t+1) = νv(t) − �t+1∇ϑD(Y ,ϑ
(t)), (7.19)

ϑ (t) �→ ϑ (t+1) = ϑ (t) + v(t+1). (7.20)

For ν = 0 we have the plain vanilla gradient descent method, for ν > 0 we also
memorize the previous gradients (with exponentially decaying weights). Typically
this leads to better convergence properties.

Nesterov [284] has noticed that for convex functions the gradient descent updates
may have a zig-zag behavior. Therefore, he proposed the so-called Nesterov-
accelerated version

v(t) �→ v(t+1) = νv(t) − �t+1∇ϑD(Y ,ϑ
(t) + νv(t)),

ϑ(t) �→ ϑ (t+1) = ϑ(t) + v(t+1). (7.21)

Thus, the calculation of the momentum v(t+1) uses a look-ahead ϑ (t) + νv(t) in
the gradient calculation (anticipating part of the next step). This provides for the

update (7.21) the following equivalent versions, under reparametrization ϑ̃
(t) =

ϑ(t) + νv(t),

ϑ(t+1) = ϑ (t) +
(
νv(t) − �t+1∇ϑD(Y ,ϑ

(t) + νv(t))
)

= ϑ (t) +
(
νv(t) − �t+1∇ϑD(Y , ϑ̃

(t)
)
)

(7.22)

= ϑ̃
(t) +

(
νv(t+1) − �t+1∇ϑD(Y , ϑ̃

(t)
)
)

− νv(t+1).

For the Nesterov accelerated update we can also study, we use the last line of (7.22),

v(t) �→ v(t+1) = νv(t) − �t+1∇ϑD(Y , ϑ̃
(t)
),

ϑ̃
(t) �→ ϑ̃

(t+1) = ϑ̃
(t) +

(
νv(t+1) − �t+1∇ϑD(Y , ϑ̃

(t)
)
)
. (7.23)

Compared to (7.19)–(7.20), we just shift the index by 1 in the momentum v(t) in
the round brackets of (7.23). The typical way how the Nesterov-acceleration is
formulated is, yet, another equivalent formulation, namely, only in terms of ϑ (t) and

ϑ̃
(t)

. From the second line of (7.22) and (7.21) we have the updates

ϑ (t+1) = ϑ̃
(t) − �t+1∇ϑD(Y , ϑ̃

(t)
),

ϑ̃
(t+1) = ϑ (t+1) + ν

(
ϑ(t+1) − ϑ (t)

)
. (7.24)
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Typically, one chooses the momentum coefficient ν in (7.24) time-dependent by
setting νt = t/(t + 3).

In our applications we will use the R interface to the keras library [77].
This library has a couple of standard momentum-based gradient descent methods
implemented which use pre-defined learning rates and momentum coefficients. In
our analysis we are mainly relying on the variants rmsprop and the Nesterov-
accelerated version of adam, called nadam. Therefore, we briefly describe these
three variants, and for more information we refer to Sections 8.3 and 8.5 in
Goodfellow et al. [166].

Predefined Gradient Descent Methods
• rmsprop stands for ‘root mean square propagation’, and its origin can be

found in a lecture of Hinton et al. [187]. Denote by ) the Hadamard product
that computes the component-wise products of two matrices. Choose a weight
α ∈ (0, 1) and calculate the accumulated squared gradients, set r(0) = 0 ∈ R

r ,

r(t) �→ r(t+1) = αr(t) + (1 − α)
(
∇ϑD(Y ,ϑ

(t))) ∇ϑD(Y ,ϑ
(t))
)

∈ R
r .

The sequence (r(t))t≥1 memorizes the (squared) magnitudes of the components
of the gradients ∇ϑD(Y ,ϑ

(t)), t ≥ 1. This is done individually for each
component because we may have directional differences in magnitudes (and
momentum). In contrast to (7.19), r(t) does not model the speed, but rather an
inverse weight. This then motivates the gradient descent update

ϑ(t) �→ ϑ (t+1) = ϑ (t) − �√
ε + r(t+1)

) ∇ϑD(Y ,ϑ
(t)),

where the square-root is taken component-wise, for a global decay rate � > 0,
and for a small positive constant ε > 0 to ensure that everything is well-defined.

• adam stands for ‘adaptive moment’ estimation, and it has been proposed by
Kingma–Ba [216]. The momentum is determined by the first two moments in
adam, namely, we set v(0) = r(0) = 0 ∈ R

r and we consider

v(t) �→ v(t+1) = νv(t) + (1 − ν)∇ϑD(Y ,ϑ
(t)), (7.25)

r(t) �→ r(t+1) = αr(t) + (1 − α)
(
∇ϑD(Y ,ϑ

(t))) ∇ϑD(Y ,ϑ
(t))
)
, (7.26)

for given weights ν, α ∈ (0, 1). Similar to Bayesian credibility theory, v(t)

and r(t) are biased because these two processes have been initialized in zero.
Therefore, they are rescaled by 1/(1 − νt ) and 1/(1 − αt ), respectively. This
gives us the gradient descent update

ϑ(t) �→ ϑ (t+1) = ϑ(t) − �

ε +
√

r(t+1)

1−αt
) v(t+1)

1 − νt ,
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where the square-root is taken component-wise, for a global decay rate � > 0,
and for a small positive constant ε > 0 to ensure that everything is well-defined.

• nadam is the Nesterov-accelerated [284] version of adam. Similarly as when
going from (7.19)–(7.20) to (7.23), the acceleration is obtained by a shift of 1 in
the velocity parameter, thus, consider the Nesterov-accelerated adam update

ϑ(t) �→ ϑ (t+1) = ϑ(t) − �

ε +
√

r(t+1)

1−αt
) νv(t+1) + (1 − ν)∇ϑD(Y ,ϑ

(t))

1 − νt ,

using (7.25) and (7.26).

Maximum Likelihood Estimation and Over-fitting

As explained above, we model the mean of the datum (Y, x) by a deep FN network

x �→ μ(x) = μϑ (x) = Eθ(x)[Y ] = g−1
〈
β, z(d :1)(x)

〉
,

for a network parameter ϑ ∈ R
r . MLE of this network parameter requires solving

for given data Y

ϑ̂
MLE = arg min

ϑ

D(Y ,ϑ).

In Fig. 7.5 we give a schematic figure of a loss surface ϑ �→ D(Y ,ϑ) for a (low-
dimensional) example ϑ ∈ R

2. The two plots show the same loss surface from two
different angles. This loss surface has three (local) minimums (red color), and the

smallest one (global minimum) gives the MLE ϑ̂
MLE

.
In general, this global minimum cannot be found for more complex network

architectures because the loss surface typically has a complicated structure for high-
dimensional parameter spaces. Is this a problem in FN network fitting? Not really!
We are going to explain why. The universality theorems in Sect. 7.2.2 state that more
complex FN networks have an excellent approximation capacity. If we translate
this to our statistical modeling problem it means that the observations Y can be
approximated arbitrarily well by sufficiently complex FN networks. In particular,

for a given complex network architecture, the MLE ϑ̂
MLE

will provide the optimal
fit of this architecture to the data Y , and, as a result, this network does not only
reflect the systematic effects in the data but also the noisy part. This behavior is
called (in-sample) over-fitting to the learning data L. It implies that such statistical
models typically have a poor generalization to unseen (out-of-sample) test data T ;
this is illustrated by the red color in Fig. 7.6. For this reason, in general, we are

not interested in finding the MLE ϑ̂
MLE

of ϑ in FN network regression modeling,
but we would like to find a parameter estimate ϑ̂ that (only) extracts the systematic
effects from the learning data L. This is illustrated by the different colors in Figs. 7.5
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Fig. 7.5 Schematic figure of a loss surface ϑ �→ D(Y ,ϑ) from two different angles for a two-
dimensional parameter ϑ ∈ R

2

Fig. 7.6 Schematic figure of
in-sample over-fitting (red),
under-fitting (blue) and
extracting systematic effects
(green)
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and 7.6, where we assume: (a) red color provides models with a poor generalization
power due to over-fitting, (b) blue color provides models with a poor generalization
power, too, because these parametrizations do not explain the systematic effects in
the data at all (called under-fitting), and (c) green color gives good parametrizations
that explain the systematic effects in the data and generalize well to unseen data.
Thus, the aim is to find parametrizations that are in the green area of Fig. 7.5.
This green area emphasizes that we lose the notion of uniqueness because there
are infinitely many models in the green area that have a comparable generalization
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power. Next we explain how we can exploit the gradient descent algorithm to make
it useful for finding parametrizations in the green area.

Remark 7.8 The loss surface considerations in Fig. 7.5 are based on a fixed network
architecture. Recent research promotes the so-called Graph HyperNetwork (GHN)
that is a (hyper-)network which tries to find the optimal network architecture and
its parametrization by an additional network, we refer to Zhang et al. [402] and
Knyazev et al. [219].

Regularization Through Early Stopping

As stated above, if we run the gradient descent algorithm with properly tempered
learning rates it will converge to a local minimum of the loss function, which means
that the resulting FN network over-fits to the learning data. For this reason we need
to early stop the gradient descent algorithm beforehand. Coming back to Fig. 7.5,
typically, we start the gradient descent algorithm somewhere in the blue area of
the loss surface (supposed that the red area is a sparse set on the loss surface).
Visually speaking, the gradient descent algorithm then walks down the valley (green,
yellow and red area) by exploiting locally optimal steps. Since at the early stage of
the algorithm the systematic effects play a dominant role over the noisy part, the
gradient descent algorithm learns these systematic effects at this first stage (blue
area in Fig. 7.5). When the algorithm arrives at the green area the noisy part in the
data starts to increasingly influence the model calibration (gradient descent steps),
and, henceforth, at this stage the algorithm should be stopped, and the learned
parameter should be selected for predictive modeling. This early stopping is an
implicit way of regularization, because it implies that we stop the parameter fitting
before the parameters start to learn very individual features of the (noisy) data (and
take extreme values).

This early stopping point is determined by doing an out-of-sample analysis. This
requires the learning data L to be further split into training data U and validation
data V . The training data U is used for gradient descent parameter learning, and
the validation data V is used for tracking the over-fitting by an instantaneous (out-
of-sample) validation analysis. This partition is illustrated in Fig. 7.7, which also
highlights that the validation data V is disjoint from the test data T , the latter only
being used in the final step for comparing different statistical models (e.g., a GLM
vs. a FN network). That is, model comparison is done in a proper out-of-sample
manner on T , and each of these models is only fit on U and V . Thus, for FN network
fitting with early stopping we need a reasonable amount of data that can be split into
3 sufficiently large data sets so that each is suitable for its purpose.

For early stopping we partition the learning data L into training data U and
validation data V . The plain vanilla gradient descent algorithm can then be changed
as follows.
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T

Fig. 7.7 Partition of entire data D (lhs) into learning data L and test data T (middle), and into
training data U , validation data V and test data T (rhs)

Plain vanilla gradient descent algorithm with early stopping

1. Choose an initial network parameter ϑ(0) ∈ R
r .

2. Iterate for t ≥ 0 until the early stopping criterion is met:

(a) Calculate the gradient ∇ϑD(U,ϑ) in network parameter ϑ = ϑ(t) on the
training data U using (7.16) and the back-propagation method of Proposi-
tion 7.5 (for the hyperbolic tangent activation function).

(b) Make the gradient descent step for a suitable learning rate �t+1 > 0

ϑ (t) �→ ϑ (t+1) = ϑ(t) − �t+1∇ϑD(U,ϑ (t)).

(c) Calculate the validation loss D(V,ϑ(t)) on the validation data V .
(d) Stop the algorithm if the validation loss increases, i.e., if

D(V,ϑ (t)) > D(V,ϑ(t−1)), (7.27)

and return the learned parameter (estimate) ϑ̂ = ϑ(t−1).

In applications we use the SGD algorithm that can also have erratic steps because
not all random (mini-)batches are necessarily typical representations of the data.
In such cases we should use more sophisticated stopping criteria than (7.27), for
instance, early stop if the validation loss increases five times in a row.
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Fig. 7.8 Training loss
D(U ,ϑ (t)) vs. validation loss
D(V,ϑ(t)) over different
iterations t ≥ 0 of the SGD
algorithm
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Figure 7.8 provides an example of the application of the SGD algorithm on
training data U and validation data V . The training loss is in blue color and the
validation loss in green color. We observe that the validation loss has its minimum
after 52 epochs (orange vertical line), and hence the fitting algorithm should be
stopped at this point. We give a couple of remarks concerning Fig. 7.8:

• The learning data L exactly corresponds to the claims frequency data of
Sect. 5.2.4, see also Table 5.2. We take 10% as validation data which gives
|U | = 549′185 and |V | = 61′021. For the SGD algorithm we use batches of size
10′000 which implies that one epoch corresponds to '549′185/10′000( = 54
gradient descent steps. For batches of size 10′000 we expect an approximate
estimation precision on an average frequency of λ̄ = 7.36% in the Poisson model
of

⎡

⎣λ̄− 2

√
λ̄

10′000v̄
, λ̄+ 2

√
λ̄

10′000v̄

⎤

⎦ = [6.62%, 8.11%],

with an average exposure v̄ = 0.5283 on our learning data, we also refer to
Example 3.22.

• The FN network architecture used in Fig. 7.8 is the one shown in Fig. 7.2
using one-hot encoding for categorical variables, see Sect. 7.3.1, below, and the
responses are modeled by a Poisson distribution.

• The training loss D(U,ϑ (t)), blue curve in Fig. 7.8, is a bit wiggly which comes
from the fact that we use a SGD where not every batch leads to the optimal
decrease in loss. Remark that the loss figures in the graph correspond to average
losses over an entire epoch, i.e., in our case an average over 54 SGD steps. Also
remark that the y-scale does not show the Poisson deviance loss: we use the loss
figures provided by keras [77] and these figures drop all terms of the deviance
loss that are not relevant for parameter estimation.
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We close this section with remarks.

Remarks 7.9

• We perform early stopping because otherwise a complex FN network would
in-sample over-fit to the learning data. At this stage, one could be tempted to
choose a smaller network to prevent from over-fitting. In general, this is not a
sensible thing to do because the network needs sufficient flexibility to be able to
be fitted to the data. That is, we need some redundancy in the model to be able to
successfully apply the SGD algorithm, otherwise the algorithm may get trapped
in saddlepoints or bottlenecks. Thus, the chosen network architecture should be
above the bound of a necessary minimal complexity, and different architectures
above this bound will provide similar accuracy (without a clear winner).

• The chosen network will contain certain elements of randomness, and different
runs of the SGD algorithm will provide different solutions. Firstly, the initializa-
tion ϑ (0) ∈ R

r of the algorithm is chosen at random, and since we early stop
the algorithm and because we do not have a unique optimal point, the chosen
solution will depend on this random initialization. Secondly, the split between
training and validation data is done at random, and thirdly the partitioning of the
training data into mini-batches is done at random. All these random elements
make the early stopped SGD solution non-unique.

• Early stopping implies that the chosen network parameter estimate ϑ̂ does not
correspond to a solution of the score equations and, henceforth, asymptotic
results about MLEs do not apply, see Theorem 3.28.

7.3 Feed-Forward Neural Network Examples

7.3.1 Feature Pre-processing

Similarly to GLMs, we also need to pre-process the feature components in FN
network regression modeling. The former Sect. 5.2.2 for GLMs has been called
‘feature engineering’ because we need to bring the feature components into an
appropriate functional form w.r.t. the given regression task. The present section is
called ‘feature pre-processing’ because we do not need to engineer the features for
FN networks. We only need to bring them into a suitable (tabular) form to enter the
network, and the network will then do an automated feature engineering through
representation learning.

Categorical Feature Components: One-Hot Encoding

The categorical features have been treated by dummy coding within GLMs. Dummy
coding provides full rank design matrices. For FN network regression modeling the
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Table 7.2 One-hot encoding
example mapping the K = 11
levels (colors) to the unit
vectors of the 11-dimensional
Euclidean space R

11 showing
the resulting encoding vectors
x�
j as row vectors

a1 = white 1 0 0 0 0 0 0 0 0 0 0

a2 = yellow 0 1 0 0 0 0 0 0 0 0 0

a3 = orange 0 0 1 0 0 0 0 0 0 0 0

a4 = red 0 0 0 1 0 0 0 0 0 0 0

a5 = magenta 0 0 0 0 1 0 0 0 0 0 0

a6 = violet 0 0 0 0 0 1 0 0 0 0 0

a7 = blue 0 0 0 0 0 0 1 0 0 0 0

a8 = cyan 0 0 0 0 0 0 0 1 0 0 0

a9 = green 0 0 0 0 0 0 0 0 1 0 0

a10 = beige 0 0 0 0 0 0 0 0 0 1 0

a11 = brown 0 0 0 0 0 0 0 0 0 0 1

full rank property is not important because, anyway, we neither have a single (local)
minimum in the objective function, nor do we want to calculate the MLE of the
network parameter. Typically, in FN network regression modeling one uses one-
hot encoding for the categorical variables that encodes every level by a unit vector.
Assume the raw feature component x̃j is a categorical variable taking K different
levels {a1, . . . , aK }. One-hot encoding is obtained by the embedding map

x̃j �→ xj = (1{̃xj=a1}, . . . ,1{̃xj=aK })� ∈ {0, 1}K. (7.28)

An explicit example is given in Table 7.2 which should be compared to Table 5.1.

Continuous Feature Components

The continuous feature components do not need any pre-processing but they can
directly enter the FN network which will take care of representation learning.
However, an efficient use of gradient descent methods typically requires that all
feature components live on a similar scale and that they are roughly uniformly
spread across their domains. This makes gradient descent steps more efficient in
exploiting the relevant directions.

One possibility is to use the MinMaxScaler. Let x−
j and x+

j be the minimal and
maximal possible feature values of the continuous feature component xj , i.e., xj ∈
[x−
j , x

+
j ]. We transform this continuous feature component to unit scale for all data

1 ≤ i ≤ n by

xi,j �→ xMM
i,j = 2

xi,j − x−
j

x+
j − x−

j

− 1 ∈ [−1, 1]. (7.29)

The resulting feature values (xMM
i,j )1≤i≤n should roughly be uniformly spread

across the interval [−1, 1]. If this is not the case, for instance, because we have
outliers in the feature values, we may first transform them non-linearly to get
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more uniformly spread values. For example, we consider the Density of the car
frequency example on the log scale.

An alternative to the MinMaxScaler is to consider normalization with the
empirical mean x̄j and the empirical standard deviation σ̂j over all data xi,j . That
is,

xi,j �→ xsd
i,j = xi,j − x̄j

σ̂j
. (7.30)

It depends on the application whether the MinMaxScaler or normalization with
the empirical mean and standard deviation works better. Important in applications
is that we use exactly the same values for the normalization of training data U ,
validation data V and test data T , to make the same network applicable to all
these data sets. For notational convenience we will drop the upper index in xMM

i,j

or xsd
i,j , respectively, and we throughout assume that all feature components are

appropriately pre-processed.

7.3.2 Lab: Poisson FN Network for Car Insurance Frequencies

We present a first FN network example applied to the French MTPL claim frequency
data studied in Sect. 5.2.4. We assume that the claim countsNi are independent and
Poisson distributed with claim count density (5.26), where we replace the GLM
regression function x �→ exp〈β, x〉 by a FN network regression function

x ∈ X �→ μ(x) = exp〈β, z(d :1)(x)〉.

We use a FN network of depth d = 3 having number of neurons (q1, q2, q3) =
(20, 15, 10) and using the hyperbolic tangent activation function. We pre-process
the categorical variables VehBrand and Region by one-hot encoding pro-
viding input dimensions 11 and 22, respectively. The binary variable VehGas
is encoded as 0–1. Because of scarcity of data we right-censor the continuous
variables VehAge at 20, DrivAge at 90 and BonusMalus at 150, and we
transform Density to the log scale. We then apply to each of these (modified)
continuous variables Area, VehPower, VehAge, DrivAge, BonusMalus and
log(Density) a MinMaxScaler. This provides us with an input dimension q0 =
11 + 22 + 1 + 6 = 40. The resulting FN network is illustrated in Fig. 7.2, with
the one-hot encoded variables VehBrand in orange color and Region in magenta
color. It has a network parameter ϑ ∈ R

r of dimension r = 1′306.
This network is implemented in R using the library keras [77]. The code is

provided in Listing 7.1 and the resulting network architecture is summarized in
Listing 7.2. This network is now fitted to the data. We use a batch size of 10’000,
we use the nadam version of SGD, we use 10% of the learning data L as validation
data V and the remaining 90% as training data U . We then run the corresponding
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Listing 7.1 FN network of depth d = 3 using the R library keras [77]

1 library(keras)
2 #
3 Design = layer_input(shape = c(40), dtype = ’float32’, name = ’Design’)
4 Vol = layer_input(shape = c(1), dtype = ’float32’, name = ’Vol’)
5 #
6 Network = Design %>%
7 layer_dense(units=20, activation=’tanh’, name=’FNLayer1’) %>%
8 layer_dense(units=15, activation=’tanh’, name=’FNLayer2’) %>%
9 layer_dense(units=10, activation=’tanh’, name=’FNLayer3’) %>%

10 layer_dense(units=1, activation=’exponential’, name=’Network’,
11 weights=list(array(0, dim=c(10,1)), array(log(lambda0), dim=c(1))))
12 #
13 Response = list(Network, Vol) %>% layer_multiply(name=’Multiply’)
14 #
15 model = keras_model(inputs = c(Design, Vol), outputs = c(Response))
16 #
17 summary(model)

Listing 7.2 FN network illustrated in Fig. 7.2

1 Layer (type) Output Shape Param # Connected to
2 ==================================================================
3 Design (InputLayer) (None, 40) 0
4 __________________________________________________________________
5 FNLayer1 (Dense) (None, 20) 820 Design[0][0]
6 __________________________________________________________________
7 FNLayer2 (Dense) (None, 15) 315 FNLayer1[0][0]
8 __________________________________________________________________
9 FNLayer3 (Dense) (None, 10) 160 FNLayer2[0][0]

10 __________________________________________________________________
11 Network (Dense) (None, 1) 11 FNLayer3[0][0]
12 __________________________________________________________________
13 Vol (InputLayer) (None, 1) 0
14 __________________________________________________________________
15 Multiply (Multiply) (None, 1) 0 Network[0][0]
16 Vol[0][0]
17 ==================================================================
18 Total params: 1,306
19 Trainable params: 1,306
20 Non-trainable params: 0

Listing 7.3 Fitting a FN network using the R library keras [77]

1 path0 <- "path_for_callback"
2 CBs <- callback_model_checkpoint(path0, monitor = "val_loss", verbose = 0,
3 save_best_only = TRUE, save_weights_only = TRUE)
4 #
5 model %>% compile(loss = ’poisson’, optimizer = ’nadam’)
6 fit <- model %>% fit(list(Xlearn, Vlearn), Ylearn, validation_split=0.1,
7 batch_size=10000, epochs=1000, verbose=0, callbacks=CBs)
8 #
9 load_model_weights_hdf5(model, path0)
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Table 7.3 Run times, number of parameters, in-sample and out-of-sample deviance losses (units
are in 10−2) and in-sample average frequency of the Poisson null model, model Poisson GLM3 of
Table 5.5 and the FN network model (with one-hot encoding of the categorical variables)

Run # In-sample Out-of-sample Aver.

time param. loss on L loss on T freq.

Poisson null – 1 25.213 25.445 7.36%

Poisson GLM3 15 s 50 24.084 24.102 7.36%

One-hot FN (q1, q2, q3) = (20, 15, 10) 51 s 1’306 23.757 23.885 6.96%

SGD algorithm and we retrieve the network with the lowest validation loss using
a callback. This is illustrated in Listing 7.3. The fitting performance on the
training and validation data is illustrated in Fig. 7.8, and we retrieve the network
calibration after the 52th epoch because it has the lowest validation loss. The results
are presented in Table 7.3.

From the results of Table 7.3 we conclude that the FN network outperforms
model Poisson GLM3 (out-of-sample) since it has a (clearly) lower out-of-sample
deviance loss on the test data T . This may indicate that there is an interaction
between the feature components that has not been captured in the GLM. The run
time of 51s corresponds to the run time until the minimal validation loss is reached,
of course, in practice we need to continue beyond this minimal validation loss to
ensure that we have really found the minimum. Finally, and importantly, we observe
that this early stopped FN network calibration does not meet the balance property
because the resulting average frequency of this fitted model of 6.96% is below the
empirical frequency of 7.36%. This is a major deficiency of this FN network fitting
approach, and this is going to be discussed further in Sect. 7.4.2, below.

We can perform a detailed analysis about different batch sizes, variants of SGD
methods, run times, etc. We briefly summarize our findings; this summary is also
based on the findings in Ferrario et al. [127]. We have fitted this model on batches
of sizes 2’000, 5’000, 10’000 and 20’000, and it seems that a batch size around
5’000 has the best performance, both concerning out-of-sample performance and
run time to reach the minimal validation loss. Comparing the different optimizers
rmsprop, adam and nadam, a clear preference can be given to nadam: the
resulting prediction accuracy is similar in all three optimizers (they all reach the
green area in Fig. 7.5), but nadam reaches this optimal point in half of the time
compared to rmsprop and adam.

We conclude by highlighting that different initial points ϑ (0) of the SGD
algorithm will give different network calibrations, and differences can be consid-
erable. This is discussed in Sect. 7.4.4, below. Moreover, we could explore different
network architectures, more simple ones, more complex ones, different activation
functions, etc. The results of these different architectures will not be essentially
different from our results, as long as the networks are above a minimal complexity
bound. This closes our first example on FN networks and this example is the
benchmark for refined versions that are presented in the subsequent sections.
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7.4 Special Features in Networks

7.4.1 Special Purpose Layers

So far, our networks consist of stacked FN layers, and information is passed in a
directed acyclic feed-forward path from one to the next FN layer. In this section we
discuss special purpose layers that perform a specific task in a FN network. These
include embedding layers, drop-out layers and normalization layers. These modules
should be seen as add-ons to the FN layers. Besides these add-ons, there are also
recurrent layers and convolutional layers. These two types of layers are going to be
discussed in own chapters, below, because their importance goes beyond just being
add-ons to the FN layers.

Embedding Layers for Categorical Feature Components

The categorical feature components have been treated either by dummy coding or
by one-hot encoding, and this has resulted in numerous network parameters in the
first FN layer, see Fig. 7.2. Natural language processing (NLP) treats categorical
feature components differently, namely, it embeds categorical feature components
(or words in NLP) into a Euclidean space R

b of a small dimension b. This small
dimension b is a hyper-parameter that has to be selected by the modeler, and which,
typically, is selected much smaller than the total number of levels of the categorical
feature. This embedding technique is quite common in NLP, see Bengio et al. [27–
29], but it goes beyond NLP applications, see Guo–Berkhahn [176], and it has been
introduced to the actuarial community by Richman [312, 313] and the tutorial of
Schelldorfer–Wüthrich [329].

We assume the same set-up as in dummy coding (5.21) and in one-hot encod-
ing (7.28), namely, that we have a raw categorical feature component x̃j taking K
different levels {a1, . . . , aK }. In one-hot encoding these K levels are mapped to the
K unit vectors of the Euclidean space RK , and consequently all levels have the same
mutual Euclidean distance. This does not seem to be the best way of comparing the
different levels because in our regression analysis we would like to identify the
levels that are more similar w.r.t. the regression task and, thus, these should cluster.
For an embedding layer one chooses a Euclidean space R

b of a dimension b < K ,
typically being (much) smaller than K . One then considers the embedding map

e : {a1, . . . , aK } → R
b, ak �→ e(ak)

def.= e(k). (7.31)

That is, every level ak receives a vector representation e(k) ∈ R
b which is

lower dimensional than its one-hot encoding counterpart in R
K . Proximity of the

representations e(k) and e(k
′) in R

b, i.e., of two levels ak and ak′ , should be related
to similarity w.r.t. the regression task at hand. Such an embedding involves K
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Fig. 7.9 (lhs) One-hot encoding with q0 = 40, and (rhs) embedding layers for VehBrand and
Region with embedding dimension b = 2 and q0 = 11; the remaining network architecture is
identical with (q1, q2, q3) = (20, 15, 10) for depth d = 3

vectors e(k) ∈ R
b of dimension b, thus, it involvesKb parameters, called embedding

weights.
In network modeling, these embedding weights e(1), . . . , e(K) can also be learned

during gradient descent training. Basically, it just means that for the categorical
variables we add an additional embedding layer before the first FN layer z(1), i.e.,
we increase the depth of the network by 1 for the categorical feature components
(by a layer that is not fully connected). This is illustrated in Fig. 7.9 (rhs) for
the French MTPL insurance example of Sect. 7.3.2. The graph on the left-hand
side shows the network if we apply one-hot encoding to the categorical variables
VehBrand and Region; this results in a network parameter of dimension r =
1′306. The graph on the right-hand side first embeds VehBrand and Region
into two 2-dimensional spaces, illustrated by the orange and magenta circles. These
embeddings are concatenated with the remaining feature components, which then
provides a new dimension q0 = 7 + 2 + 2 = 11 in that example. This results in a
network parameter of dimension r = 726 + 22 + 44 = 792, where 22 + 44 = 66
stands for the 2-dimensional embedding weights of the 11 VehBrands and the 22
French Regions, see Listing 7.5.

Example 7.10 (Embedding Layers for Categorical Features) We revisit the exam-
ple of Sect. 7.3.2, but we replace one-hot encoding of the categorical variables by
embedding layers of dimension b = 2. The corresponding R code is given in
Listing 7.4 and the resulting model is illustrated in Listing 7.5 and Fig. 7.9 (rhs).

Apart from replacing one-hot encoding by embedding layers, we use exactly
the same FN network architecture as in Sect. 7.3.2 and we apply the same fitting
strategy in terms of batch sizes, optimizer and early stopping strategy. The results
are presented in Table 7.4.
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Listing 7.4 FN network of depth d = 3 using embedding layers

1 Design = layer_input(shape = c(7), dtype = ’float32’, name = ’Design’)
2 VehBrand = layer_input(shape = c(1), dtype = ’int32’, name = ’VehBrand’)
3 Region = layer_input(shape = c(1), dtype = ’int32’, name = ’Region’)
4 Vol = layer_input(shape = c(1), dtype = ’float32’, name = ’Vol’)
5 #
6 BrandEmb = VehBrand %>%
7 layer_embedding(input_dim=11,output_dim=2,input_length=1,name=’BrandEmb’) %>%
8 layer_flatten(name=’Brand_flat’)
9 RegionEmb = Region %>%

10 layer_embedding(input_dim=22,output_dim=2,input_length=1,name=’RegionEmb’) %>%
11 layer_flatten(name=’Region_flat’)
12 #
13 Network = list(Design,BrandEmb,RegionEmb) %>% layer_concatenate(name=’concate’) %>%
14 layer_dense(units=20, activation=’tanh’, name=’FNLayer1’) %>%
15 layer_dense(units=15, activation=’tanh’, name=’FNLayer2’) %>%
16 layer_dense(units=10, activation=’tanh’, name=’FNLayer3’) %>%
17 layer_dense(units=1, activation=’exponential’, name=’Network’,
18 weights=list(array(0, dim=c(10,1)), array(log(lambda0), dim=c(1))))
19 #
20 Response = list(Network, Vol) %>% layer_multiply(name=’Multiply’)
21 #
22 model = keras_model(inputs = c(Design, VehBrand, Region, Vol),
23 outputs = c(Response))

Table 7.4 Run times, number of parameters, in-sample and out-of-sample deviance losses (units
are in 10−2) and in-sample average frequency of the Poisson null model, model Poisson GLM3 of
Table 5.5 and the FN network models (with one-hot encoding and embedding layers of dimension
b = 2, respectively)

Run # In-sample Out-of-sample Aver.

time param. loss on L loss on T freq.

Poisson null – 1 25.213 25.445 7.36%

Poisson GLM3 15 s 50 24.084 24.102 7.36%

One-hot FN (q1, q2, q3) = (20, 15, 10) 51 s 1’306 23.757 23.885 6.96%

Embed FN (q1, q2, q3) = (20, 15, 10) 120 s 792 23.694 23.820 7.24%

A first remark is that the model calibration takes longer using embedding layers
compared to one-hot encoding. The main reason for this is that having an embedding
layer increases the depth of the network by one layer, as can be seen from Fig. 7.9.
Therefore, the back-propagation takes more time, and the convergence is slower
requiring more gradient descent steps. We have less over-fitting as can be seen from
Fig. 7.10. The final fitted model has a slightly better out-of-sample performance
compared to the one-hot encoding one. However, this slight improvement in the
performance should not be overstated because, as explained in Remarks 7.9, there
are a couple of elements of randomness involved in SGD fitting, and choosing
a different seed may change the results. We remark that the balance property is
not fulfilled because the average frequency of the fitted model does not meet the
empirical frequency, see the last column of Table 7.4; we come back to this in
Sect. 7.4.2, below.
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Listing 7.5 Summary of FN network of Fig. 7.9 (rhs) using embedding layers of dimension b = 2

1 Layer (type) Output Shape Param # Connected to
2 ==============================================================================
3 VehBrand (InputLayer) (None, 1) 0
4 ______________________________________________________________________________
5 Region (InputLayer) (None, 1) 0
6 ______________________________________________________________________________
7 BrandEmb (Embedding) (None, 1, 2) 22 VehBrand[0][0]
8 ______________________________________________________________________________
9 RegionEmb (Embedding) (None, 1, 2) 44 Region[0][0]

10 ______________________________________________________________________________
11 Design (InputLayer) (None, 7) 0
12 ______________________________________________________________________________
13 Brand_flat (Flatten) (None, 2) 0 BrandEmb[0][0]
14 ______________________________________________________________________________
15 Region_flat (Flatten) (None, 2) 0 RegionEmb[0][0]
16 ______________________________________________________________________________
17 concate (Concatenate) (None, 11) 0 Design[0][0]
18 Brand_flat[0][0]
19 Region_flat[0][0]
20 ______________________________________________________________________________
21 FNLayer1 (Dense) (None, 20) 240 concate[0][0]
22 ______________________________________________________________________________
23 FNLayer2 (Dense) (None, 15) 315 FNLayer1[0][0]
24 ______________________________________________________________________________
25 FNLayer3 (Dense) (None, 10) 160 FNLayer2[0][0]
26 ______________________________________________________________________________
27 Network (Dense) (None, 1) 11 FNLayer3[0][0]
28 ______________________________________________________________________________
29 Vol (InputLayer) (None, 1) 0
30 ______________________________________________________________________________
31 Multiply (Multiply) (None, 1) 0 Network[0][0]
32 Vol[0][0]
33 ==============================================================================
34 Total params: 792
35 Trainable params: 792
36 Non-trainable params: 0

Fig. 7.10 Training loss
D(U ,ϑ (t)) vs. validation loss
D(V,ϑ(t)) over different
iterations t ≥ 0 of the SGD
algorithm in the deep FN
network with embedding
layers for categorical
variables
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Fig. 7.11 Embedding weights eVehBrand ∈ R
2 and eRegion ∈ R

2 of the categorical variables
VehBrand and Region for embedding dimension b = 2

A major advantage of using embedding layers for the categorical variables is that
we receive a continuous representation of nominal variables, where proximity can be
interpreted as similarity for the regression task at hand. This is nicely illustrated in
Fig. 7.11 which shows the resulting 2-dimensional embeddings eVehBrand ∈ R

2 and
eRegion ∈ R

2 of the categorical variables VehBrand and Region. The Region
embedding eRegion ∈ R

2 shows surprising similarities with the French map, for
instance, Paris region R11 is adjacent to R23, R22, R21, R26, R24 (which is also
the case in the French map), the Isle of Corsica R94 and the South of France R93,
R91 and R73 are well separated from other regions, etc. Similar observations can
be made for the embedding of VehBrand, Japanese cars B12 are far apart from the
other cars, cars B1, B2, B3 and B6 (Renault, Nissan, Citroen, Volkswagen, Audi,
Skoda, Seat and Fiat) cluster, etc. �

Drop-Out Layers and Regularization

Above, over-fitting to the learning data has been taken care of by early stopping. In
view of Sect. 6.2 one could also use regularization. This can easily be obtained by
replacing (7.14), for instance, by the following Lp-regularized counterpart

ϑ �→ 2

n

n∑

i=1

vi

ϕ

(
Yih (Yi)−κ (h (Yi))−Yih (μϑ (xi ))+κ (h (μϑ (xi )))

)
+λ ‖ϑ−‖pp ,

for some p ≥ 1, regularization parameter λ > 0 and where the reduced network
parameter ϑ− ∈ R

r−1 excludes the intercept parameter β0 of the output layer,
we also refer to (6.4) in the context of GLMs. For grouped penalty terms we
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refer to (6.21). The difficulty with this approach is the tuning of the regularization
parameter(s) λ: run time is one issue, suitable grouping is another issue, and non-
uniqueness of the optimal network a further one that can substantially distort the
selection of reasonable regularization parameters.

A more popular method to prevent from over-fitting individual neurons in a FN
layer to a certain task are so-called drop-out layers. A drop-out layer is an additional
layer between FN layers that removes at random during gradient descent training
neurons from the network, i.e., in each gradient descent step, any of the earmarked
neurons is offset independently from the others with a fixed probability δ ∈ (0, 1).
This random removal will imply that the composite of the remaining neurons needs
to be sufficiently well balanced to take over the role of the dropped-out neurons.
Therefore, a single neuron cannot be over-trained to a certain task because it needs
to be able play several different roles. Drop-out has been introduced by Srivastava
et al. [345] and Wager et al. [373].

Listing 7.6 FN network of depth d = 3 using a drop-out layer, ridge regularization and a
normalization layer

1 Network = list(Design,BrandEmb,RegionEmb) %>%
2 layer_concatenate(name=’concate’) %>%
3 layer_dense(units=20, activation=’tanh’, name=’FNLayer1’) %>%
4 layer_dropout (rate = 0.01) %>%
5 layer_dense(units=15, kernel_regularizer=regularizer_l2(0.0001),
6 activation=’tanh’, name=’FNLayer2’) %>%
7 layer_batch_normalization() %>%
8 layer_dense(units=10, activation=’tanh’, name=’FNLayer3’) %>%
9 layer_dense(units=1, activation=’exponential’, name=’Network’,

10 weights=list(array(0, dim=c(10,1)), array(log(lambda0), dim=c(1))))

Listing 7.6 gives an example, where we add a drop-out layer with a drop-out
probability of δ = 0.01 after the first FN layer, and in the second FN layer we apply
ridge regularization to the weights (w(2)1,1, . . . , w

(2)
q1,q2), i.e., excluding the intercepts

w
(2)
0,j , 1 ≤ j ≤ q2. Both the drop-out layer and regularization are only used during

the gradient descent fitting, and these network features are disabled during the
prediction.

Drop-out is closely related to ridge regularization as the following linear
Gaussian regression example shows; this consideration is taken from Section 18.6
of Efron–Hastie [117]. Assume we have a linear regression problem with square
loss function

D(Y ,β) = 1

2

n∑

i=1

(Yi − 〈β, xi〉)2 .

We assume in this Gaussian case that the observations and the features are
standardized, see Sect. 6.2.4. This means that

∑n
i=1 Yi = 0,

∑n
i=1 xi,j = 0 and
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n−1∑n
i=1 x

2
i,j = 1, for all 1 ≤ j ≤ q . This standardization implies that we can

omit the intercept parameter β0 because its MLE is equal to 0.
We introduce i.i.d. drop-out random variables Ii,j for 1 ≤ i ≤ n and 1 ≤ j ≤ q

with (1 − δ)Ii,j being Bernoulli distributed with probability 1 − δ ∈ (0, 1). This
scaling implies E[Ii,j ] = 1. Using these Bernoulli random variables we modify the
above square loss function to

DI (Y ,β) = 1

2

n∑

i=1

⎛

⎝Yi −
q∑

j=1

βj Ii,j xi,j

⎞

⎠

2

,

i.e., every individual component xi,j can drop out independently of the others.
Gaussian MLE requires to set the gradient of DI (Y ,β) w.r.t. β ∈ R

q equal to
zero. The average score equation is given by (we average over the drop-out random
variables Ii,j )

Eδ

[∇βDI (Y ,β)
∣
∣Y
] = −X�Y + X�Xβ + δ

1 − δ diag

(
n∑

i=1

x2
i,1, . . . ,

n∑

i=1

x2
i,q

)

β

= −X�Y + X�Xβ + δn

1 − δ β
!= 0,

where we have used the normalization of the columns of the design matrix X ∈
R
n×q (we drop the intercept column). This is ridge regression in the linear Gaussian

case with a regularization parameter λ = δ/(2(1 − δ)) > 0 for δ ∈ (0, 1), see (6.9).

Normalization Layers

In (7.29) and (7.30) we have discussed that the continuous feature components
should be pre-processed so that all components live on the same scale, otherwise the
gradient descent fitting may not be efficient. A similar phenomenon may occur with
the learned representations z(m:1)(xi ) in the FN layers 1 ≤ m ≤ d . In particular, this
is the case if we choose an unbounded activation function φ. For this reason, it can
be advantageous to rescale the components z(m:1)

j (xi ), 1 ≤ j ≤ qm, in a given FN
layer back to the same scale. To achieve this, a normalization step (7.30) is applied
to every neuron z(m:1)

j (xi ) over the given cases i in the considered (mini-)batch. This
involves two more parameters (for the empirical mean and the empirical standard
deviation) in each neuron of the corresponding FN layer. Note, however, that all
these operations are of a linear nature. Therefore, they do not affect the predictive
model (i.e., these operations cancel in the scalar products in (7.6)), but they may
improve the performance of the gradient descent algorithm.

The code in Listing 7.6 uses a normalization layer on line 6. In our applications,
it has not been necessary to use these normalization layers, as it has not led to better
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run times in SGD algorithms; note that our networks are not very deep and they use
the symmetric and bounded hyperbolic tangent activation function.

7.4.2 The Balance Property in Neural Networks

We have seen in Table 7.4 that our FN network outperforms the GLM for claim
frequency prediction in terms of a lower out-of-sample loss. We interpret this as
follows. Feature engineering has not been done in the most optimal way for the
GLM because the FN network finds modeling structure that is not present in the
selected GLM. As a consequence, the FN network provides a better generalization
to unseen data, i.e., we can better predict new data on a granular level with the FN
network. However, having a more precise model on an individual policy level does
not necessarily imply that the model also performs better on a global portfolio level.
In our example we see that we may have smaller errors on an individual policy level,
but these smaller errors do not aggregate to a more precise model in the average
portfolio frequency. In our case, we have a misspecification of the average portfolio
frequency, see the last column of Table 7.4. This is a major deficiency in insurance
pricing because it may result in a misspecification of the overall price level, and this
requires a correction. We call this correction bias regularization.

Simple Bias Regularization

The straightforward correction is to adjust the intercept parameter β0 ∈ R

accordingly. That is, compare the empirical mean

μ̄ =
∑n
i=1 viYi∑n
i=1 vi

,

to the model average of the fitted FN network

μ̂ =
∑n
i=1 viμϑ̂ (xi )∑n

i=1 vi
,

where ϑ̂ = (ŵ
(1)
1 , . . . , ŵ

(d)
qd , β̂)

� ∈ R
r is the learned network parameter from the

(early stopped) SGD algorithm. The output of this fitted model reads as

xi �→ μϑ̂ (xi ) = g−1
〈
β̂, ẑ(d :1)(xi )

〉
= g−1

⎛

⎝β̂0 +
qd∑

j=1

β̂j ẑ
(d :1)
j (xi )

⎞

⎠ ,
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where the hat in ẑ(d :1) indicates that we use the estimated weights ŵ
(m)
l , 1 ≤ l ≤ qm,

1 ≤ m ≤ d , in the FN layers. The balance property can be rectified by replacing β̂0

by the solution ̂̂β0 of the following identity

n∑

i=1

viYi
!=

n∑

i=1

vig
−1

⎛

⎝̂̂β0 +
qd∑

j=1

β̂j ẑ
(d :1)
j (xi )

⎞

⎠ .

Since g−1 is continuous and strictly monotone, there is a unique solution to this
requirement supposed that the range of g−1 covers the support of the Yi’s. If we
work with the log-link g(·) = log(·), this can easily be solved and we obtain

̂̂β0 = β̂0 + log

(
μ̄

μ̂

)
.

Sophisticated Bias Regularization Under the Canonical Link Choice

If we work with the canonical link g = h = (κ ′)−1, we can do better because the
MLE of such a GLM automatically provides the balance property, see Corollary 5.7.
Choose the SGD learned network parameter ϑ̂ = (ŵ

(1)
1 , . . . , ŵ

(d)
qd , β̂)

� ∈ R
r .

Denote by ẑ(d :1) the fitted network architecture that is based on the estimated
weights ŵ

(1)
1 , . . . , ŵ

(d)
qd . This allows us to study the learned representations of the

raw features x1, . . . , xn in the last FN layer. We denote these learned representations
by

ẑ1 = ẑ(d :1)(x1), . . . , ẑn = ẑ(d :1)(xn) ∈ {1} × R
qd . (7.32)

These learned representations can be used as new features to explain the response
Y . We define the feature engineered design matrix by

X̂ = (̂z1, . . . , ẑn)
� ∈ R

n×(qd+1).

Based on this new design matrix X̂ we can run a classical GLM receiving a unique

MLE β̂
MLE ∈ R

qd+1 supposed that this design matrix has a full rank qd + 1 ≤ n,
see Proposition 5.1. Since we work with the canonical link, this re-calibrated FN
network will automatically satisfy the balance property, and the resulting regression
function reads as

x �→ μ̂(x) = h−1
〈
β̂

MLE
, ẑ(d :1)(x)

〉
. (7.33)
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This is the proposal of Wüthrich [390]. We give some remarks.

Remarks 7.11

• This additional MLE step for the output parameter β ∈ R
qd+1 may lead to

over-fitting. In that case one might choose a lower dimensional last FN layer.
Alternatively, one might explore a more early stopping rule in SGD.

• Wüthrich [390] also explores other bias correction methods like regularization
using shrinkage. In combination with regression trees one can achieve averages
on pre-defined sub-portfolios. We will not further explore these other approaches
because they are less robust and more difficult in the applications.

Example 7.12 (Balance Property in Networks) We apply this additional MLE step
to the two FN networks of Table 7.4. Note that in these two examples we consider
a Poisson model using the canonical link for g, thus, the resulting adjusted
network (7.33) will automatically satisfy the balance property, see Corollary 5.7.

Listing 7.7 Balance property adjustment (7.33)

1 glm.formula <- function(nn){
2 string <- "yy ~ X1"
3 if (nn>1){for (ll in 2:nn){ string <- paste(string, "+X",ll, sep="")}}
4 string
5 }
6 #
7 zz <- keras_model(inputs=model$input,
8 outputs=get_layer(model, ’FNLayer3’)$output)
9 xx.learn <- data.frame(zz %>% predict(list(Xlearn, Vlearn)))

10 q3 <- ncol(xx.learn)
11 xx.learn$yy <- Ylearn
12 xx.learn$Exposure <- learn$Exposure
13 #
14 glm1 <- glm(as.formula(glm.formula(q3)),
15 data=xx.learn, offset=log(Exposure), family=poisson())
16
17 #
18 w1 <- get_weights(model)
19 w1[[7]] <- array(glm1$coefficients[2:(q3+1)], dim=c(q3,1))
20 w1[[8]] <- array(glm1$coefficients[1], dim=c(1))
21 set_weights(model, w1)

In Listing 7.7 we illustrate the necessary code that has to be added to List-
ings 7.1–7.3. On lines 7–8 of Listing 7.7 we retrieve the learned representa-
tions (7.32) which are used as the new features in the Poisson GLM on lines 13–14.
The resulting MLE β̂

MLE ∈ R
qd+1 is imputed to the network parameter ϑ̂ on

lines 17–20. Table 7.5 shows the performance of the resulting bias regularized FN
networks.

Firstly, we observe from the last column of Table 7.5 that, indeed, the bias
regularization step (7.33) provides the balance property. In general, in-sample losses

(have to) decrease because β̂
MLE

is (in-sample) more optimal than the early stopped
SGD solution β̂. Out-of-sample this leads to a small improvement in the one-
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Table 7.5 Run times, number of parameters, in-sample and out-of-sample deviance losses (units
are in 10−2) and in-sample average frequency of the Poisson null model, model Poisson GLM3 of
Table 5.5 and the FN network models (with one-hot encoding and embedding layers of dimension
b = 2, respectively), and their bias regularized counterparts

Run # In-sample Out-of-sample Aver.

time param. loss on L loss on T freq.

Poisson null – 1 25.213 25.445 7.36%

Poisson GLM3 15 s 50 24.084 24.102 7.36%

One-hot FN (q1, q2, q3) = (20, 15, 10) 51 s 1’306 23.757 23.885 6.96%

Embed FN (q1, q2, q3) = (20, 15, 10) 120 s 792 23.694 23.820 7.24%

One-hot FN bias regularized +4 s 1’306 23.742 23.878 7.36%

Embed FN bias regularized +4 s 792 23.690 23.824 7.36%

hot encoded variant and a small worsening in the embedding variant, i.e., the
latter slightly over-fits in this additional MLE step. However, these differences are
comparably small so that we do not further worry about the over-fitting, here. This
closes this example. �

Auto-Calibration for Bias Regularization

We present another approach of correcting for the potential failure of the balance
property. This method does not depend on a particular type of regression model,
i.e., it can be applied to any regression model. This proposal goes back to Denuit et
al. [97], and it is based on the notion of auto-calibration introduced by Patton [297]
and Krüger–Ziegel [227]. We first describe auto-calibration and its implications.

Definition 7.13 The random variable Z is an auto-calibrated forecast of random
variable Y if E[Y |Z] = Z, a.s.

If the response Y is described by the features X = x, we consider the conditional
mean of Y , given X,

μ(X) = E [Y |X] .

This conditional mean μ(X) is an auto-calibrated forecast for the response Y . Use
the tower property and note that σ(μ(X)) ⊂ σ(X) to receive, a.s.,

E [Y |μ(X)] = E [E [Y |X]|μ(X)] = E [μ(X)|μ(X)] = μ(X).

For the further understanding of auto-calibration and forecast dominance, we
introduce the concept of convex order; forecast dominance has been introduced in
Definition 4.20.
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Definition 7.14 (Convex Order) A random variable Z1 is bigger in convex order
than a random variable Z2, write Z1 ,cx Z2, if E[�(Z1)] ≥ E[�(Z2)], for all
convex functions� for which the expectations exist.

By Strassen’s theorem [346], Z1 ,cx Z2 if and only if there exist random variables

Z′
1 and Z′

2 with Z1
(d)= Z′

1 and Z2
(d)= Z′

2 and E[Z′
1|Z′

2] = Z′
2, a.s. In particular,

the convex order Z1 ,cx Z2 implies that Var(Z1) ≥ Var(Z2) and E[Z1] = E[Z2].
The latter follows from Strassen’s theorem and the tower property, and the former
follows from the latter and the convex order by using the explicit choice�(x) = x2.
Thus, the random variable Z1 is more volatile than Z2, both having the same mean.
The following theorem shows that this additional volatility is a favorable property
in terms of forecast dominance under auto-calibration.

Theorem 7.15 (Krüger–Ziegel [227, Theorem 3.1], Without Proof) Assume that
μ̂1 and μ̂2 are auto-calibrated forecasts for the random variable Y . Predictor μ̂1
forecast dominates μ̂2 if and only if μ̂1 ,cx μ̂2.

Recall that forecast dominance of μ̂1 over μ̂2 was defined as follows, see Defini-
tion 4.20,

E
[
Dψ(Y, μ̂1)

] ≤ E
[
Dψ(Y, μ̂2)

]
,

for all Bregman divergencesDψ . Strassen’s theorem tells us that μ̂1 is more volatile
than μ̂2 (both being auto-calibrated and unbiased for E[Y ]) and this additional
volatility implies that the former auto-calibrated predictor can better follow Y . This
provides the superior forecast dominance of μ̂1 over μ̂2. This relation is most easily
understood by the following example. Consider (Y,X) as above. Assume that the
feature X̃ is a sub-variable of the feature X by dropping some of the components
of X. Naturally, we have σ(X̃) ⊂ σ(X), and both sets of information provide auto-
calibrated forecasts

μ(X) = E [Y |X] and μ(X̃) = E
[
Y
∣
∣X̃
]
.

The tower property and Jensen’s inequality give for any convex function� (subject
to existence)

E [�(μ(X))] = E [� (E [Y |X])] = E
[
E
[
� (E [Y |X])

∣∣X̃
] ]

≥ E
[
�
(
E
[
E [Y |X]

∣
∣X̃
])] = E

[
�
(
E
[
Y
∣
∣X̃
] )] = E

[
�
(
μ(X̃)

)]
.

Thus, we have μ(X) ,cx μ(X̃) which implies forecast dominance of μ(X) over
μ(X̃). This makes perfect sense in view of σ(X̃) ⊂ σ(X). Basically, this describes
the construction of a F-martingale using an integrable random variable Y and a
filtration F on the underlying probability space (�,A,P). This martingale sequence
provides forecast dominance with increasing information sets described by the
filtration F.
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We now turn our attention to the balance property and the unbiasedness of
predictors, this follows Denuit et al. [97]. Assume we have any predictor μ̂(x) of
Y , for instance, this can be any FN network predictor μϑ̂ (x) coming from an early
stopped SGD algorithm. We define its balance-corrected version by

μ̂BC(x) = E [Y |μ̂(x)] . (7.34)

Proposition 7.16 (Wüthrich [391, Proposition 4.6], Without Proof) The
balance-corrected predictor μ̂BC(X) is an auto-calibrated forecast for Y .

Remarks 7.17 (Expected Deviance Generalization Loss) We return to the decom-
position of the expected deviance GL given in Theorem 4.7, but we add the features
X = x, now. The expected deviance GL of a predictor μ̂(X) under the unit deviance
d then reads as

Eθ [d (Y, μ̂(X))] = Eθ [d (Y, μ)]

+ 2
(
μh(μ)− κ(h(μ))− Eθ [Yh (μ̂(X))] + Eθ [κ (h (μ̂(X)))]

)
,

where μ = Eθ [Y ] is the unconditional mean of Y (averaging also over the feature
distribution of X). Note that this formula differs from (4.13) because Y and h(μ̂(X))
are no longer independent if we include the features X. The term Eθ [d (Y, μ)] is
called the entropy which is driven by the stochastic nature of the random variable
Y . This is the irreducible risk if no feature information is available.

In statistical modeling one considers different decompositions of the expected
deviance GL, we refer to Fissler et al. [129]. Namely, introducing the features X

we can reduce the expected deviance GL compared to the unconditional mean μ in
terms of forecast dominance. This allows us to decouple as follows for the prediction
μ(X) = Eθ [Y |X]

Eθ [d (Y, μ̂(X))] = Eθ [d (Y, μ)] −
(
Eθ [d (Y, μ)] − Eθ [d (Y, μ(X))]

)

+
(
Eθ [d (Y, μ̂(X))] − Eθ [d (Y, μ(X))]

)
.

This expresses the expected deviance GL of the predictor μ̂(X) as the entropy (first
term), the conditional resolution (second term) and the conditional calibration (third
term). The conditional resolution describes the information gain in terms of forecast
dominance knowing the feature X, and the conditional calibration describes how
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well we estimate μ(X). The conditional resolution is positive because μ(X) ,cx μ

and the unit deviance d(Y, ·) is a convex function, see Lemma 2.22. The conditional
calibration is also positive, this can be seen by considering the deviance GL,
conditional on X.

We can reformulate this expected deviance GL in terms of the auto-calibration
property

Eθ [d (Y, μ̂(X))] = Eθ [d (Y, μ)] −
(
Eθ [d (Y, μ)] − Eθ [d (Y, μ̂BC(X))]

)

+
(
Eθ [d (Y, μ̂(X))] − Eθ [d (Y, μ̂BC(X))]

)
.

The first term is the entropy, the second term is called the auto-resolution and the
third term describes the auto-calibration. If we have an auto-calibrated forecast
μ̂(X) then the last term vanishes because it is equal to its balance-corrected version
μ̂BC(X). Again these two latter terms are positive, for the auto-calibration this can
be seen by considering the deviance GL, conditioned on μ̂(X).

To rectify the balance property we directly focus on (7.34), and we estimate
this conditional expectation. That is, the balance correction can be achieved by an
additional regression step directly estimating the balance-corrected version μ̂BC(x)

in (7.34). This additional regression step differs from (7.33) as it does not use the
learned representations ẑ(d :1)(x) in the last FN layer (7.32), but it uses the learned
representations in the output layer. That is, consider the learned features

ẑ#1 = (1, μϑ̂ (x1))
�, . . . , ẑ#n = (1, μϑ̂ (xn))

� ∈ {1} × R,

and perform an additional linear regression step for the response Y using the design
matrix

X̂ = (ẑ#1, . . . , ẑ#n
)� ∈ R

n×2.

This additional linear regression step gives us an estimate

β̂ =
(
X̂�V X̂

)−1
X̂�V Y ∈ R

2, (7.35)

with diagonal weight matrix V = diag(vi)1≤i≤n. The balance property is then
restored by estimating the balance-corrected means μ̂BC(xi ) by

̂̂μBC(xi ) = β̂0 + β̂1μϑ̂ (xi ), (7.36)

for 1 ≤ i ≤ n. Note that this can be done for any regression model since we do not
rely on the network architecture in this step.
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Remarks 7.18

• Balance correction (7.36) may lead to some conflict in range if the dual (mean)
parameter space M is (one-sided) bounded. Moreover, it does not consider the
deviance loss of the response Y , but it rather underlies a Gaussian model by
using the weighted square loss function for finding (the Gaussian MLE) β̂ ∈ R

2.
Alternatively, we could consider the canonical link h that belongs to the chosen
EDF. This then allows us to study the regression problem on the canonical scale
by setting for the learned representations

ẑθ1 = (1, h(μϑ̂ (x1))
)�
, . . . , ẑθn = (1, h(μϑ̂ (xn))

)� ∈ {1} × �. (7.37)

The latter motivates the consideration of a GLM under the chosen EDF

xi �→ h (μ̂BC(xi )) = 〈β, ẑθi 〉 = β0 + β1h(μϑ̂ (xi )), (7.38)

for regression parameter β ∈ R
2. The choice of the canonical link and the

inclusion of an intercept will provide the balance property when estimating β

with MLE, see Corollary 5.7. If the mean estimates μϑ̂ (xi ) involve the canonical
link h, (7.38) reads as

xi �→ h (μ̂BC(xi )) = 〈β, ẑθi 〉 = β0 + β1

〈
β̂, ẑ(d :1)(xi )

〉
,

the latter scalar product is the output activation received from the FN net-
work. From this we see that the estimated balance-corrected calibration on the
canonical scale will give us a non-optimal (in-sample) estimation step compared
to (7.33), if we work with the canonical link h.

• Denuit et al. [97] give a proposal to break down the global balance to a local
version using a suitable kernel function, this will be further discussed in the next
Example 7.19.

Example 7.19 (Auto-calibration in Networks) We apply this additional auto-
calibration step (7.34) to the FN network with embedding layers that does not
satisfy the balance property, i.e., having an average frequency of 7.24% < 7.36%,
see Tables 7.4 and 7.5. We start by analyzing the auto-calibration property (7.34) of
this network predictor vμϑ̂ (x) by studying an empirical version of

z �→ vμ̂BC(x) = E
[
vY
∣
∣vμϑ̂ (x) = z

]
. (7.39)

This empirical version is obtained from the R library locfit [254] that allows us
to consider a local polynomial regression fit of degree deg=2, and we use a nearest
neighbor fraction of alpha=0.05, the code is provided in Listing 7.8. We use the
exposure v scaled version in (7.39) since the balance property should hold on that
scale, see Corollary 5.7. The claim counts are given by N = vY , and the exposure
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v is integrated as an offset into the FN network regression function, see line 20 of
Listing 7.4.

Listing 7.8 Empirical auto-calibration using the R library locfit [254]

1 z <- learn$pred
2 mu.BC <- predict(locfit(learn$N ~ learn$pred, alpha=0.05, deg=2), newdata=z)

Figure 7.12 (lhs) shows the empirical auto-calibration of (7.39) using the R
code of Listing 7.8. If the auto-calibration would hold exactly, then the black
dots should lie on the red diagonal line. We observe a very good match, which
indicates that the auto-calibration property holds quite accurately for our network
predictor (v, x) �→ vμϑ̂ (x). For very small expectations Eθ(x)[N] we slightly
underestimate, and for bigger expectations we slightly overestimate. The blue line
shows the empirical density of the predictors viμϑ̂ (xi ), 1 ≤ i ≤ n, highlighting
heavy-tailedness and that the underestimation in the right tail will not substantially
contribute to the balance property as these are only very few insurance policies.

We explore the Gaussian balance correction (7.35) considering a linear regression
model with weighted square loss function. We receive the estimate β̂ = (9 ·
10−4, 1.005)�, thus,μϑ̂ (x) only gets very gently distorted, see (7.36). The results of
this balance-corrected version ̂̂μBC(x) are given on line ‘embed FN Gauss balance-
corrected’ in Table 7.6. We observe that this approach is rather competitive leading
to a slightly better model (out-of-sample). Figure 7.12 (rhs) shows the resulting
(empirical) auto-calibration plot which is still not fully in line with Proposition 7.16;
this empirical plot may be distorted by the exposures, by the fact that it is an
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Fig. 7.12 (lhs) Empirical auto-calibration (7.39), the blue line shows the empirical density of the
predictors viμϑ̂ (xi ), 1 ≤ i ≤ n; (rhs) balance-corrected version using the weighted Gaussian
correction (7.35)
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Table 7.6 Run times, number of parameters, in-sample and out-of-sample deviance losses (units
are in 10−2) and in-sample average frequency of the Poisson null model, model Poisson GLM3
of Table 5.5, the FN network model (with embedding layers of dimension b = 2), and their bias
regularized and balance-corrected counterparts, the local correction uses a GAM with 2.6 degrees
of freedom in the cubic spline part

Run # In-sample Out-of-sample Aver.

time param. loss on L loss on T freq.

Poisson null – 1 25.213 25.445 7.36%

Poisson GLM3 15 s 50 24.084 24.102 7.36%

Embed FN (q1, q2, q3) = (20, 15, 10) 120 s 792 23.694 23.820 7.24%

Embed FN bias regularized +4 s 792 23.690 23.824 7.36%

Embed FN Gauss balance-corrected – 792 + 2 23.692 23.819 7.36%

Embed FN locally balance-corrected – 792 + 3.6 23.692 23.818 7.36%

empirical plot fitted with locfit, and by fact that a linear Gaussian correction
estimate may not be fully suitable.

Denuit et al. [97] propose a local balance correction that is very much in the
spirit of the local polynomial regression fit with locfit. However, when using
locfit we did not pay any attention to the balance property. Therefore, we
proceed slightly differently, here. In formula (7.37) we give the network predictors
on the canonical scale. This equips us with the data (Yi , vi , ẑθi )1≤i≤n. To perform
a local balance correction we fit a generalized additive model (GAM) to this data,
using the canonical link, the Poisson deviance loss function, the observations Yi ,
the exposures vi and the feature information ẑθi ; for GAMs we refer to Hastie–
Tibshirani [181, 182], Wood [384] and Chapter 3 in Wüthrich–Buser [392], in
particular, we proceed as in Example 3.4 of the latter reference.

The GAM regression fit on the canonical scale is illustrated in Fig. 7.13 (lhs).
We essentially receive a straight line which says that the auto-calibration property is
already well satisfied by the FN network predictor μϑ̂ . In fact, it is not completely
a straight line, but GCV provides an optimal model with 2.6 effective degrees of
freedom in the natural cubic spline part. This local (GAM) balance correction leads
to another small model improvement (out-of-sample), see last line of Table 7.6.

Conclusion The balance property adjustment and the bias regularization are crucial
in ensuring that the predictive model is on the right (price) level. We have pre-
sented three sophisticated methods of balance property adjustments: the additional
GLM step under the canonical link choice (7.33), the model-free global Gaussian
correction (7.35)–(7.36), and the local balance correction using a GAM under the
canonical link choice. In our example, the results of the three different approaches
are rather similar. In the sequel, we use the additional GLM step solution (7.33), the
reason being that under this approach we can rely on one single regression model
that directly predicts the claims. The other two approaches need two steps to get the
predictions, which requires the storage of two models. �
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Fig. 7.13 (lhs) GAM fit on the canonical scale having 2.6 effective degrees of freedom (red shows
the estimated confidence bounds); (rhs) balance-corrected version using the local GAM correction

7.4.3 Boosting Regression Models with Network Features

From Table 7.5 we conclude that the FN networks find systematic structure in the
data that is not present in model Poisson GLM3, thus, the feature engineering for
the GLM can be improved. Unfortunately, FN networks neither directly build on
GLMs nor do they highlight the weaknesses of GLMs. In this section we discuss
a proposal presented in Wüthrich–Merz [394] and Schelldorfer–Wüthrich [329]
of combining two regression approaches. We are going to boost a GLM with FN
network features. Typically, boosting is applied within the framework of regression
trees. It goes back to the work of Valiant [362], Kearns–Valiant [209, 210], Schapire
[328], Freund [139] and Freund–Schapire [140]. The idea behind boosting is to
analyze the residuals of a given regression model with a second regression model
to see whether this second regression model can still find systematic effects in the
residuals which have not been discovered by the first one.

We start from the GLM studied in Chap. 5, and we boost this GLM with a FN
network. Assume that both regression models act on the same feature space X ⊂
{1} × R

q0 . The GLM provides a regression function for link function g and GLM
parameter βGLM ∈ R

q0+1

x �→ μGLM(x) = g−1
〈
βGLM, x

〉
.

Recall that this GLM can be interpreted as a FN network of depth 0, see
Remarks 7.2. Next, we choose a FN network of depth d ≥ 1 with the same link
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function g as the GLM

x �→ μFN(x) = g−1
〈
βFN, z(d :1)(x)

〉
,

having a network parameter ϑ = (w
(1)
1 , . . . ,w

(d)
qd ,β

FN)� ∈ R
r . In particular, we

have the FN output parameter βFN ∈ R
qd+1, we refer to Fig. 7.2.

We blend these two regression models by combining their regression func-
tions

x �→ μ(x) = g−1
{〈

βGLM, x
〉
+
〈
βFN, z(d :1)(x)

〉}
, (7.40)

with parameter ! = (βGLM,ϑ)� = (βGLM,w
(1)
1 , . . . ,w

(d)
qd ,β

FN)� ∈
R
q0+1+r .

An example is provided in Fig. 7.14. It shows the FN network using embedding
layers for the categorical variables, see also Fig. 7.9 (rhs), and we add a GLM (in
green color) that directly links the input x to the response variable. In machine
learning this green connection is called a skip connection because it skips the FN
layers.

Remarks 7.20

• Skip connections are a popular tool in network modeling, and they can be applied
to any FN layers, i.e., a skip connection can, for instance, be added to skip the
first FN layer. There are two benefits from skip connections. Firstly, they allow
for more modeling flexibility, in (7.40) we directly combine a linear function

Fig. 7.14 Illustration of the
combined regression
function (7.40) using a GLM
(in a skip connection) and a
FN network

RegEmb

Density

VehGas

VehBrEmb

Bonus

DrivAge

VehAge

Power

Area

skip connection

Y
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(coming from the GLM) with a non-linear one (coming form the FN network).
This has the flavor of a Taylor expansion to combine terms of different orders.
Secondly, skip connections can also be beneficial for gradient descent fitting
because the inputs have a more direct link to the outputs, and the network only
builds the functional form around the function in the skip connection.

• There are numerous variants of (7.40). A straightforward one is to choose a
weight α ∈ (0, 1) and consider the regression function

x �→ μ(x) = g−1
{
α
〈
βGLM, x

〉
+ (1 − α)

〈
βFN, z(d :1)(x)

〉}
. (7.41)

The weight α can be interpreted as the credibility assigned to the GLM.
• Regression function (7.40) considers two intercepts βGLM

0 and βFN
0 . If we do not

consider the credibility version (7.41), one of the two intercepts is redundant.
• This approach also allows us to learn systematic effects across different insurance

portfolios. If we have three insurance portfolios living on the same feature space
and if χ ∈ {1, 2, 3} indicates which insurance portfolio we consider, we can
modify the regression function (7.40) to

(x, χ) �→ μ(x, χ) = g−1

⎧
⎨

⎩

3∑

j=1

〈
βGLM
j , x

〉
1{χ=j} +

〈
βFN, z(d :1)(x, χ)

〉
⎫
⎬

⎭
.

The indicator 1{χ=j} chooses the GLM that belongs to the corresponding
insurance portfolio χ ∈ {1, 2, 3} with the (individual) GLM parameter βGLM

χ .
The FN network term makes them related, i.e., the GLMs of the different
insurance portfolios interact (jointly learn) via the FN network module. This is
the approach used in Gabrielli et al. [149] to improve the chain-ladder reserving
method by learning across different claims reserving triangles.

The regression function (7.40) gives the structural form of the combined
regression model, but there is a second important ingredient proposed by Wüthrich–
Merz [394]. Namely, the gradient descent algorithm (7.15) for model fitting can be
started in an initial network parameter!(0) ∈ R

q0+1+r that corresponds to the MLE

of the GLM. Denote by β̂
GLM

the MLE of the GLM part, only.

Choose the initial value of the gradient descent algorithm for the fitting of the
combined regression model (7.40)

!(0) =
(
β̂

GLM
,w

(1)
1 , . . . ,w

(d)
qd
,βFN ≡ 0

)� ∈ R
q0+1+r , (7.42)

that is, initially, no signals traverse the FN network part because we set βFN ≡
0.
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Remarks 7.21

• Using the initialization (7.42), the gradient descent algorithm starts exactly in
the optimal GLM. The algorithm then tries to improve this GLM w.r.t. the given
loss function using the additional FN network features. If the loss substantially
reduces during the gradient descent training, the GLM misses systematic struc-
ture and it can be improved, otherwise the GLM is already good (enough).

• We can declare the MLE β̂
GLM

to be non-trainable. In that case the original
GLM always remains in the combined regression model and it acts as an offset.

If we declare the MLE β̂
GLM

to be non-trainable, we could choose a trainable
credibility weight α ∈ (0, 1), see (7.41), which gradually reduces the influence
of the GLM (if necessary).

Implementation of the general combined regression model (7.40) can be a bit
cumbersome, see Listing 4 in Gabrielli et al. [149], but things can substantially
be simplified by declaring the GLM part in (7.40) as being non-trainable, i.e.,

estimating βGLM by β̂
GLM

in the GLM, and then freeze this parameter. In view

of (7.40) this simply means that we add an offset oi = 〈β̂GLM
, xi〉 to the FN

network that is treated as a prior difference between the different data points, we
refer to Sect. 5.2.3.

Example 7.22 (Combined GLM and FN Network) We revisit the French MTPL
claim frequency GLM of Sect. 5.3.4, and we boost model Poisson GLM3 with FN
network features. For the FN architecture we use the structure depicted in Fig. 7.14,
i.e., a FN network of depth d = 3 having (q1, q2, q3) = (20, 15, 10) neurons, and
using embedding layers of dimension b = 2 for the categorical feature components.
Moreover, we declare the GLM part to be non-trainable which allows us to use the
GLM as an offset in the FN network. Moreover, we apply bias regularization (7.33)
to receive the balance property.

The results are presented in Table 7.7. A first observation is that using model
Poisson GLM3 as an offset reduces the run time of gradient descent fitting because
we start the algorithm already in a reasonable model. Secondly, as expected, the

Table 7.7 Run times, number of parameters, in-sample and out-of-sample deviance losses (units
are in 10−2) and in-sample average frequency of the Poisson null model, model Poisson GLM3 of
Table 5.5, the FN network model (with embedding layers of dimension b = 2), and the combined
regression model GLM3+FN, see (7.40)

Run # In-sample Out-of-sample Aver.

time param. loss on L loss on T freq.

Poisson null – 1 25.213 25.445 7.36%

Poisson GLM3 15 s 50 24.084 24.102 7.36%

Embed FN (q1, q2, q3) = (20, 15, 10) 120 s 792 23.694 23.820 7.24%

Embed FN bias regularized +4 s 792 23.690 23.824 7.36%

Combined GLM+FN (20, 15, 10) +53 s 50 + 792 23.772 23.834 7.24%

Combined GLM+FN bias regularized +4 s 50 + 792 23.765 23.830 7.36%
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FN features decrease the loss of model Poisson GLM3, this indicates that there
are systematic effects that are not captured by the GLM. The final combined and
regularized model has roughly the same out-of-sample loss as the corresponding
FN network, showing that this approach can be beneficial in run times, and the
predictive power is similar to a pure FN network. �

Example 7.23 (Improving Model Poisson GLM3) In this example we would like to
explore the deficiencies of model Poisson GLM3 by boosting it with FN network
features. We do this in a systematic way by only considering two (continuous)
features components at a time in the FN network. That is, we consider the combined
approach (7.40) with initialization (7.42), but as feature information for the network
part, we only consider two components at a time. For instance, we start with the
features (1,Area,VehPower) ∈ {1}×R

2 for the network part, and the remaining
feature information is ignored in this step. This way we can test whether the
marginal modeling of Area and VehPower is suitable in model Poisson GLM3,
and whether a pairwise interaction in these two components is missing. We train
this FN network starting from model Poisson GLM3 (and keeping this GLM part
frozen). The decrease in the out-of-sample loss during the gradient descent training
is shown in Fig. 7.15 (top-left). We observe that the loss remains rather constant over
100 training epochs. This tells us that the pair (Area,VehPower) is appropriately
considered in model Poisson GLM3.

Figure 7.15 gives all pairwise plots of the continuous feature components Area,
VehPower, VehAge, DrivAge, BonusMalus, Density, the scale on the y-
axis is identical in all plots. We observe that only the plots including the variable
BonusMalus provide a bigger decrease in loss (in blue color in the colored
version). This indicates that mainly this feature component is not modeled optimally
in model Poisson GLM3, because boosting with a FN network finds systematic
structure here that improves the loss of model Poisson GLM3. In model Poisson
GLM3, the variable BonusMalus has been modeled log-linearly with an interac-
tion term with DrivAge and (DrivAge)2, see (5.35). Table 7.8 shows the result
if we add a FN network feature (7.40) for the pair (DrivAge,BonusMalus)
to model Poisson GLM3. Indeed, we see that the resulting combined GLM-FN
network model has the same GL as the full FN network approach. Thus, we
conclude that model Poisson GLM3 performs fairly well and only the modeling
of the pair (DrivAge,BonusMalus) should be improved. �

7.4.4 Network Ensemble Learning

Ensemble learning is a popular way of expressing that one takes an average over
different predictors. There are many established methods that belong to the family of
ensemble learning, e.g., there is boostrap aggregating (called bagging) introduced
by Breiman [51], there are random forests, and there is boosting. Random forests
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Fig. 7.15 Exploring all pairwise interactions: out-of-sample losses over 100 gradient descent
epochs for all pairs of the continuous feature components Area, VehPower, VehAge,
DrivAge, BonusMalus, Density (the scale on the y-axis is identical in all plots)

and boosting are mainly based on classification and regression trees (CARTs) and
they belong to the most powerful machine learning methods for tabular data. These
methods combine a family of predictors to a more powerful predictor. The present
section is inspired by the bagging method of Breiman [51], and we perform network
aggregating (called nagging).

Stochastic Gradient Descent Fitting of Networks

We have described that network calibration involves several elements of random-
ness. This in combination with early stopping leads to the non-uniqueness of
reasonably good networks for prediction and pricing. We have discussed this based
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Table 7.8 Run times, number of parameters, in-sample and out-of-sample deviance losses (units
are in 10−2) and in-sample average frequency of the Poisson null model, model Poisson GLM3
of Table 5.5, model Poisson GLM3 with additional FN features for (DrivAge, BonusMalus),
the FN network model (with embedding layers of dimension b = 2), and the combined regression
model GLM3+FN, see (7.40)

Run # In-sample Out-of-sample Aver.

time param. loss on L loss on T freq.

Poisson null – 1 25.213 25.445 7.36%

Poisson GLM3 15 s 50 24.084 24.102 7.36%

GLM3 +FN(DrivAge,BonusMalus) – 50 + 792 23.804 23.805 7.36%

Embed FN bias regularized 124 s 792 23.690 23.824 7.36%

Combined GLM+FN bias regularized 72 s 50 + 792 23.765 23.830 7.36%

on Fig. 7.5, namely, for a given network architecture we have a continuum of
comparably good models (w.r.t. the chosen objective function) that lie in the green
area of Fig. 7.5. One SGD calibration picks one specific model from this green area,
we also refer to Remarks 7.9. Of course, this is very unsatisfactory in insurance
pricing because it implies that the selection of a price for an insurance policy has
a substantial element of subjectivity (that cannot be explained to the customer).
Naturally, we would like to combine models in the green area of Fig. 7.5, for
instance, by performing some sort of integration over the models in the green area.
Intuitively, this should lead to a very powerful predictive model because it diversifies
the weaknesses of each individual model. This is exactly what we discuss in this
section. Before doing so, we would first like to understand the different single
calibrations of a given network architecture.

We consider the MTPL data of Example 7.12. We model this data with a Poisson
FN network using embedding layers for the categorical features and using bias
regularization (7.33) to guarantee the balance property to hold. For the FN network
architecture we choose depth d = 3 with (q1, q2, q3) = (20, 15, 10) FN neurons;
this setup gives us the results on the last line of Table 7.5. We now repeat this
procedure M = 1′600 times, using exactly the same FN network architecture, the
same early stopping strategy, the same SGD method and the same batch size. We
only change the seeds of the starting point ϑ(0) ∈ R

r of the SGD algorithm, the
partitioning of the learning data L into training data U and validation data V , see
Fig. 7.7, and the partitioning of the training data into the (mini-)batches.

The resulting 1′600 in-sample and out-of-sample deviance losses are presented
in Fig. 7.16. We observe a considerable variation in these figures. The in-sample
losses vary between 23.616 and 23.815 (mean 23.728), and the corresponding out-
of-sample loss between 23.766 and 23.899 (mean 23.819), units are in 10−2; note
that all network calibrations are bias regularized. The in-sample loss is an average
over n = 610′206 (individual) unit deviance losses, and the out-of-sample an
average over T = 67′801 unit deviance losses, see also Definition 4.24. Therefore,
we expect an even much bigger variation on individual insurance policies. We are
going to analyze this in more detail in this section.
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Fig. 7.16 Boxplots over 1′600 network calibrations only differing in the seeds for the SGD
algorithm and the partitioning of the learning data: (lhs) in-sample losses on L and (rhs) out-
of-sample losses on T , the horizontal lines show the calibration chosen in Table 7.5; units are in
10−2

Before doing so, we would like to understand whether there is some dependence
between the in-sample and the out-of-sample losses over the M = 1′600 runs of
the SGD algorithm with different seeds. In Fig. 7.17 we provide a scatter plot of
the out-of-sample losses vs. the in-sample losses. This plot is complemented by
a cubic spline regression (in orange color). From this plot we conclude that the
models with very small in-sample losses tend to over-fit, and the models with large
in-sample losses tend to under-fit (always using the same early stopping rule). In
view of these results we conclude that the chosen early stopping rule is sensible
because on average it tends to provide the model with the smallest out-of-sample
loss on T . Recall that we do not use T during the SGD fitting, but only the learning
data L that is split into the training data U and the validation data V for exercising
the early stopping, see Fig. 7.7.

Fig. 7.17 Scatter plot of
out-of-sample losses
vs. in-sample losses for
different seeds, the orange
line gives a fitted cubic
spline, and the cyan lines
show the empirical means;
units are in 10−2
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Next, we study the estimated prices on the test data (out-of-sample)

T =
{
(Y

†
t = N†

t /v
†
t , x

†
t , v

†
t ) : t = 1, . . . , T = 67′801

}
.

For each run of the SGD algorithm we receive a different (early stopped) network
parameter estimate ϑ̂

m ∈ R
r , 1 ≤ m ≤ M = 1′600. Using these parameter

estimates we receive the estimated network regression functions, for 1 ≤ m ≤ M ,

x �→ μ̂m(x) = μ
ϑ̂
m(x),

using the FN network of Listing 7.4 with network parameter ϑ̂
m

. Thus, for the out-
of-sample policies 1 ≤ t ≤ T we receive the expected frequencies

x
†
t �→ μ̂mt = μ̂m

(
x

†
t

)
= μ

ϑ̂
m

(
x

†
t

)
.

Since we choose the seeds of the SGD runs at random we may (and will) assume
that we have independence between the prices (μ̂mt )t∈T of the different runs 1 ≤
m ≤ M of the SGD algorithm. This allows us to estimate the average price and the
coefficient of variation of these prices of a fixed insurance policy t over the different
SGD runs

μ̄
(1:M)
t = 1

M

M∑

m=1

μ̂mt and Vcot = 1

μ̄
(1:M)
t

√√√
√ 1

M − 1

M∑

m=1

(
μ̂mt − μ̄(1:M)t

)2
.

(7.43)
These (out-of-sample) coefficients of variation are illustrated in Fig. 7.18. We
observe a considerable variation on some policies. The average coefficient of
variation is roughly 10% (orange horizontal line, lhs). The maximal coefficient of
variation is about 40%, thus, for this policy the individual prices μ̂mt of the different

SGD runs 1 ≤ m ≤ M fluctuate considerably around μ̄(1:M)t . This now explains
why we choose M = 1′600 SGD runs, namely, the averaging in (7.43) reduces the
coefficient of variation on this policy to 40%/

√
M = 40%/40 = 1%, note that we

have independence between the different SGD runs. Thus, by averaging we receive
an acceptable influence of the variation of the individual SGD fittings.

Listing 7.9 shows the 10 policies (out-of-sample) with the largest coefficients
of variations Vcot . These polices have in common that they belong to the lowest
BonusMalus level, the drivers are very young, the cars are comparably old and
they have a bigger vehicle power. From a practical point of view we should doubt
these policies, since the information provided may not be correct. New drivers (at
the age of 18) typically enter a bonus-malus scheme at level 100, and only after
several accident-free years these drivers can reach a bonus-malus level of 50. Thus,
policies as in Listing 7.9 should not exist, and our pricing framework has difficulties
to (correctly) handle them. In practice, this needs further investigation because,
obviously, there is a data issue, here.
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Fig. 7.18 Out-of-sample coefficients of variations Vcot on an individual policy level 1 ≤ t ≤ T

over the 1′600 calibrations (lhs) scatter plot against the average estimated frequencies μ̄(1:M)t and
(rhs) resulting histogram

Listing 7.9 The 10 policies (out-of-sample) with the largest coefficients of variation

1 Area VehPower VehAge DrivAge BonusMalus VehBrand VehGas Region vco
2 D 8 16 18 50 B11 Regular R53 0.4089006
3 D 9 17 20 50 B11 Regular R24 0.3827665
4 C 8 11 18 50 B5 Regular R24 0.3762306
5 C 9 18 18 50 B5 Regular R24 0.3697370
6 C 7 17 18 50 B1 Regular R24 0.3579979
7 C 9 19 19 50 B5 Regular R24 0.3554879
8 C 6 15 20 50 B1 Regular R93 0.3528679
9 C 7 14 19 50 B1 Regular R53 0.3518279

10 A 11 20 50 50 B13 Regular R74 0.3442184
11 D 5 14 18 50 B3 Diesel R24 0.3403783

Nagging Predictor

The previously observed variations of the prices motivate to average over the
different models (network calibrations). This brings us to bagging introduced by
Breiman [51]. Bagging is based on averaging/aggregating over several ‘indepen-
dent’ predictions; this is done in three steps. In a first step, a model is fitted to the
data L. In a second step, independent bootstrap samples L∗(m) are generated from
this fitted model; the independence has to be understood in a conditional sense,
namely, the different bootstrap samples L∗(m) are independent in m, given the data
L. In the third step, for every bootstrap sample L∗(m) one estimates a model μ̂m,
and averaging (7.43) provides the bagging predictor. Bagging is mainly a variance
reduction technique. Note that if the fitted model of the first step has a bias, then
likely the bootstrap samples L∗(m) are biased, and so is the bagging predictor.
Therefore, bagging does not help to reduce a potential bias. All these results have to
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be understood conditionally on the data L. If this data is atypical for the problem,
so will the bootstrap samples be.

We can perform a similar analysis for the fitted networks, but we do not need to
bootstrap, here, because the various elements of randomness in SGD fitting allow us
to generate independent predictors μ̂m, conditional on the data L. Averaging (7.43)
over these predictors then provides us with the network aggregating (nagging)
predictor μ̄(1:M); we also refer to Dietterich [105] and Richman–Wüthrich [315]
for this aggregation. Thus, we replace the bootstrap step by the different runs of
the SGD algorithm. Both options provide independent predictors μ̂m, conditional
on the data L. However, there is a fundamental difference between bagging and
nagging. Bagging generates new (bootstrap) samples L∗(m) and, thus, bagging also
involves randomness coming from sampling the new observations. Nagging always
acts on the same sample L, and it only refits the model multiple times. Therefore,
the latter will typically introduce less variation. Of course, bagging and nagging can
be combined, and then the full expected GL can be estimated, we come back to this
in Sect. 11.4, below. We do not sample new observations, here, because we would
like to understand the variations implied by the SGD algorithm with early stopping
on the given (fixed) data.

In Fig. 7.18 we have seen that we need nagging over 1′600 network calibrations
so that the maximal coefficient of variation on an individual policy level is below
1% in our MTPL example. In this section we would like to understand the minimal
out-of-sample loss that can be achieved by nagging on the (entire) test data set, and
we would like to analyze its rate of convergence.

For this we define the sequence of nagging predictors

μ̄(1:M)(x) = 1

M

M∑

m=1

μ̂m(x) forM ≥ 1. (7.44)

This allows us to study the out-of-sample losses on T in the Poisson model for
M ≥ 1

D(T , μ̄(1:M)) = 2

T

T∑

t=1

v
†
t

(

μ̄(1:M)(x†
t )− Y †

t − Y †
t log

(
μ̄(1:M)(x†

t )

Y
†
t

))

.

Remark 7.24 From Remarks 7.17 we know that the expected deviance GL of
the estimated model is lower bounded by the expected deviance GL of the true
data generating model; the difference is the conditional calibration. Within the
family of Tweedie’s CP models Richman–Wüthrich [315] proved that, indeed,
aggregating decreases monotonically the expected deviance GL of the estimated
model (Proposition 2 of [315]), convergence is established (Proposition 3 of [315]),
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and the speed of convergence is provided using asymptotic normality (Proposition
4 of [315]). For the Gaussian square loss results we refer to Breiman [51] and
Bühlmann–Yu [60].

We revisit Proposition 2 of Richman–Wüthrich [315] which has also been proved
in Proposition 3.1 of Denuit–Trufin [103]. We only consider a single case in the next
proposition and we drop the feature information x (because we can condition on
X = x).

Proposition 7.25 Choose a response Y ∼ f (·; θ, v/ϕ) belonging to Tweedie’s CP
model having a power variance cumulant function κ = κp with power variance
parameter p ∈ [1, 2], see (2.17). Assume μ̂ is an estimator for the mean parameter
μ = κ ′

p(θ) > 0 satisfying ε < μ̂ ≤ p/(p−1)μ, a.s., for some ε ∈ (0, p/(p−1)μ).
Choose i.i.d. copies μ̂m, m ≥ 1, of μ̂ being all independent of Y . We have for all
M ≥ 1

Eθ

[
d
(
Y, μ̂1

)]
≥ Eθ

[
d
(
Y, μ̄(1:M)

)]
≥ Eθ

[
d
(
Y, μ̄(1:M+1)

)]
≥ Eθ [d(Y, μ)] .

Proof of Proposition 7.25 The lower bound on the right-hand side immediately
follows from Theorem 4.19. For an estimate μ̂ > 0 we define the function, we
also refer to (4.18) and we set for the canonical link hp = (κ ′

p)
−1,

μ̂ �→ ψp(μ̂) = μhp (μ̂)− κp
(
hp (μ̂)

) =

⎧
⎪⎨

⎪⎩

μlog(μ̂)− μ̂ for p = 1,

μ
μ̂1−p
1−p − μ̂2−p

2−p for p ∈ (1, 2),
−μ/μ̂− log(μ̂) for p = 2.

This is the part of the log-likelihood (and deviance loss) that depends on the
canonical parameter θ̂ = hp(μ̂), and replacing the observation Y by μ. Calculating
the second derivative w.r.t. μ̂ provides for p ∈ [1, 2]

∂2

∂μ̂2ψp(μ̂) = −pμμ̂−p−1 − (1 − p)μ̂−p = μ̂−(1+p) [−pμ− (1 − p)μ̂] ≤ 0,

the last inequality uses that the square bracket is non-positive, a.s., under our
assumptions on μ̂. Thus, ψp is concave on the interval (0, p/(p − 1)μ). We now
focus on the inequalities for M ≥ 1. Consider the decomposition of the nagging
predictor forM + 1

μ̄(1:M+1) = 1

M + 1

M+1∑

j=1

μ̄(−j), where μ̄(−j) = 1

M

M+1∑

m=1

μ̂m1{m�=j}.
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The predictors μ̄(−j), j ≥ 1, are copies of μ̄(1:M), though not independent ones.
Using the functionψp, the second term on the right-hand side has the same structure
as the estimation risk function (4.14),

Eθ

[
d(Y, μ̄(1:M))

]

= Eθ

[
d(Y, μ̄(1:M+1))

]
+ 2 Eθ

[
Yhp

(
μ̄(1:M+1)

)
− κp

(
hp

(
μ̄(1:M+1)

))]

− 2 Eθ

[
Yhp

(
μ̄(1:M)

)
− κp

(
hp

(
μ̄(1:M)

))]

= Eθ

[
d(Y, μ̄(1:M+1))

]
+ 2

(
E

[
ψp

(
μ̄(1:M+1)

)]
− E

[
ψp

(
μ̄(1:M)

)])

= Eθ

[
d(Y, μ̄(1:M+1))

]
+ 2

⎛

⎝E

⎡

⎣ψp

⎛

⎝ 1

M + 1

M+1∑

j=1

μ̄(−j)
⎞

⎠

⎤

⎦− E

[
ψp

(
μ̄(1:M)

)]
⎞

⎠

≥ Eθ

[
d(Y, μ̄(1:M+1))

]
+ 2

⎛

⎝E

⎡

⎣ 1

M + 1

M+1∑

j=1

ψp

(
μ̄(−j)

)
⎤

⎦− E

[
ψp

(
μ̄(1:M)

)]
⎞

⎠

= Eθ

[
d(Y, μ̄(1:M+1))

]
,

the second last step applies Jensen’s inequality to the concave function ψp, and the
last step follows from the fact that μ̄(−j), j ≥ 1, are copies of μ̄(1:M). �

Remarks 7.26

• Proposition 7.25 says that aggregation works, i.e., aggregating i.i.d. predictors
leads to monotonically decreasing expected deviance GLs. In fact, if μ̂ ≤ 2μ,
a.s., we receive Tweedie’s forecast dominance by aggregating, restricted to the
power variance parameters p ∈ [1, 2], see Definition 4.22.

• The i.i.d. assumption can be relaxed, indeed, it is sufficient that every μ̄(−j)
in the above proof has the same distribution as μ̄(1:M). This does not require
independence between the predictors μ̂m, m ≥ 1, but exchangeability is
sufficient.

• We need the condition ε < μ̂ ≤ p/(p − 1)μ, a.s., to ensure the monotonicity
within Tweedie’s CP models. For the Poisson model p = 1 we can drop the
upper bound, and we only need the lower bound to ensure the existence of the
expected deviance GL. For p ∈ (1, 2] the upper bound is increasingly binding,
in the gamma case p = 2 requiring μ̂ ≤ 2μ, a.s.

• Note that we do not require unbiasedness of μ̂ for μ in Proposition 7.25. Thus,
at this stage, aggregating is a variance reduction technique.



328 7 Deep Learning

Fig. 7.19 Out-of-sample
losses D(T , μ̄(1:M)) of the
nagging predictors
(μ̄(1:M)(x†

t ))1≤t≤T for
1 ≤ M ≤ 40; losses are in
10−2
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• If additionally we have unbiasedness of μ̂ for μ and a uniformly integrable upper
bound on μ̄(1:M), we can use Lebesgue’s dominated convergence theorem and the
law of large numbers to prove

lim
M→∞Eθ

[
d
(
Y, μ̄(1:M)

)]
= Eθ

[
lim
M→∞ d

(
Y, μ̄(1:M)

)]
= Eθ [d(Y, μ)] .

(7.45)

The uniformly integrable upper bound is only needed in the Poisson case p = 1,
because the other cases are covered by ε < μ̂ ≤ p/(p − 1)μ, a.s. Moreover,
asymptotic normality can be established, we refer to Proposition 4 in Richman–
Wüthrich [315].

We come back to our MTPL Poisson claim frequency example and its 1′600
network calibrations illustrated in Fig. 7.17. Figure 7.19 provides the out-of-sample
portfolio losses D(T , μ̄(1:M)) of the resulting nagging predictors (μ̄(1:M)(x†

t ))1≤t≤T
for 1 ≤ M ≤ 40 in red color, and the corresponding 1 standard deviation confidence
bounds in orange color. The blue horizontal dotted line shows the case M = 1
which exactly refers to the (first) bias regularized FN network μ̂m=1 with embedding
layers given in Table 7.5. Indeed, averaging over multiple networks improves the
predictive model and the out-of-sample loss decreases over the first 2 ≤ M ≤ 10
nagging steps. After the first 10 steps the picture starts to stabilize which indicates
that for this size of portfolio (and this type of problem) we need to average over
roughly 10–20 FN networks to receive optimal predictive models on the portfolio
level. ForM → ∞ the out-of-sample loss converges to the green horizontal dotted
line in Fig. 7.19 of 23.783 · 10−2. These numbers are also reported on the last line
of Table 7.9.

Figure 7.20 provides the empirical auto-calibration property (7.39) of the
nagging predictor μ̄(1:1600); this is obtained completely analogously to Fig. 7.12.



7.4 Special Features in Networks 329

Table 7.9 Run times, number of parameters, in-sample and out-of-sample deviance losses (units
are in 10−2) and in-sample average frequency of the Poisson null model, model Poisson GLM3 of
Table 5.5, the FN network models (with embedding layers of dimension b = 2), and the nagging
predictor for M = 1′600

Run # In-sample Out-of-sample Aver.

time param. loss on L loss on T freq.

Poisson null – 1 25.213 25.445 7.36%

Poisson GLM3 15 s 50 24.084 24.102 7.36%

Embed FN bias regularized μ̂m=1 +4 s 792 23.690 23.824 7.36%

Average over 1′600 SGDs (Fig. 7.16) – 792 23.728 23.819 7.36%

Nagging FN μ̄(1:M),M = 1′600 ∞ ‘792’ 23.691 23.783 7.36%

Fig. 7.20 Empirical
auto-calibration (7.39) of the
Poisson nagging predictor,
the blue line shows the
empirical density of
vi μ̄

(1:1600)(xi ), 1 ≤ i ≤ n
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The nagging predictors are (already) bias regularized, and Fig. 7.20 supports that
the auto-calibration property holds rather accurately.

At this stage, we have fully arrived at Breiman’s [53] two modeling cultures
dilemma, see also Sect. 1.1. We have started from a parametric data model, and
in order to boost its predictive performance we have combined such models in
an algorithmic way. Working with many blended networks is not really practical,
therefore, in such situations, a meta model can be fitted to the resulting nagging
predictor.

Meta Model

Since working withM = 1′600 different FN networks is not practical, we fit a meta
model to the nagging predictors μ̄(1:M)(·). This can easily be done by just selecting
an additional FN network and fit this additional network to the working data

D∗ =
{(
μ̄(1:M)(xi ), xi , vi

)
: i = 1, . . . , n

}
∪
{(
μ̄(1:M)(x†

t ), x
†
t , v

†
t

)
: t = 1, . . . , T

}
.
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Table 7.10 Run times, number of parameters, in-sample and out-of-sample deviance losses (units
are in 10−2) and in-sample average frequency of the Poisson null model, model Poisson GLM3
of Table 5.5, the FN network model (with embedding layers of dimension b = 2), the nagging
predictor, and the meta network model

Run # In-sample Out-of-sample Aver.

time param. loss on L loss on T freq.

Poisson null – 1 25.213 25.445 7.36%

Poisson GLM3 15 s 50 24.084 24.102 7.36%

Embed FN bias regularized μ̂m=1 +4 s 792 23.690 23.824 7.36%

Nagging FN μ̄(1:M) ∞ ‘792’ 23.691 23.783 7.36%

Meta FN network μ̂meta – 792 23.714 23.777 7.36%

For this calibration step we can consider all data, since we would like to fit a
regression model as accurately as possible to the entire regression surface formed by
all nagging predictors from the learning and the test data sets L and T . Moreover,
this step should not over-fit since this regression surface of nagging predictors
does not include any noise, but it is on the level of expected values. As network
architecture we choose again the same FN network of depth d = 3. The only
change to the fitting procedure above is replacing the Poisson deviance loss by the
square loss function, since we do not work with the Poisson responsesNi but rather
with their mean estimates μ̄(1:M)(xi ) and μ̄(1:M)(x†

t ) in this fitting step. Since the
resulting meta network model may still have a bias we apply the bias regularization
step of Listing 7.7 to the Poisson observations with the Poisson deviance loss on the
learning data L (only). The results are presented in Table 7.10.

From these results we observe that in our case the meta network performs
similarly well to the nagging predictor, and it seems to be a very reasonable choice.

Finally, in Fig. 7.21 (lhs) we analyze the resulting frequencies on an individual
policy level on the test data set T . We plot the estimated frequencies μ̂m=1(x

†
t ) of

the first FN network (this corresponds to ‘embed FN bias regularized’ in Table 7.10
with an out-of-sample loss of 23.824) against the nagging predictor μ̄(1:M)(x†

t )

which averages over M = 1′600 networks. From Fig. 7.21 (lhs) we conclude
that there are quite some differences between these two predictors, this exactly
reflects the variations obtained in Fig. 7.18 (lhs). The nagging predictor removes this
variation by averaging. Figure 7.21 (rhs) compares the nagging predictor μ̄(1:M)(x†

t )

to the one of the meta model μ̂meta(x
†
t ). This scatter plot shows that the predictors

lie almost perfectly on the diagonal line which suggests that the meta model can be
used as a substitute for the nagging predictor. This completes this claim frequency
modeling example.

Remark 7.27 The meta model concept can also be useful in other situations. For
instance, we can fit a gradient boosting regression model to the observations.
Typically, this is much faster than calculating a nagging predictor (because it directly
focuses on the weaknesses of the existing model). If the gradient boosting model
is based on regression trees, it has the disadvantage that the resulting regression
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Fig. 7.21 Scatter plot of the out-of-sample predictions μ̂m=1(x
†
t ), μ̄

(1:M)(x†
t ) and μ̂meta(x

†
t ) over

all polices 1 ≤ t ≤ T on the test data set T : (lhs) μ̂m=1(x
†
t ) vs. μ̄(1:M)(x†

t ) and (rhs) μ̂meta(x
†
t )

vs. μ̄(1:M)(x†
t ); the color scale shows the exposures v†

t ∈ (0, 1]

function is not continuous, and a non-constant extrapolation might be an issue.
In a second step we can fit a meta FN network model to the former regression
model, lifting the boosting model to a smooth network that allows for a non-constant
extrapolation.

Example 7.28 (Gamma Claim Size Modeling) We revisit the gamma claim size
example of Sect. 5.3.7. The data comprises Swedish motorcycle claim amounts. We
have seen that this claim size data is not heavy-tailed, thus, a gamma distribution
may be a reasonable choice for this data. For the modeling of this data we use the
same normalization is in (5.45), this parametrization does not require the explicit
knowledge of the (constant) shape parameter of the gamma distribution for mean
estimation.

The difficulty with this data is that only 656 insurance policies suffer a claim,
and likely a single FN network will not lead to stable results in this example.
As FN network architecture we again choose a network of depth d = 3 and
with (q1, q2, q3) = (20, 15, 10) neurons. Since the input layer has dimension
q0 = 1 + 6 = 7 we receive a network parameter of dimension r = 626. As loss
function we choose the gamma deviance loss, see Table 4.1. Moreover, we choose
the nadam optimizer, a batch size of 300, a training-validation split of 8:2, and we
retrieve the network calibration with the lowest validation loss with a callback.

Figure 7.22 shows the results of 1′000 different SGD runs (only differing in the
initial seeds and the splits of the training-validation sets as well as the batches).
We see a considerable variation between the different SGD runs, both in in-sample
deviance losses but also in the average estimated claims. Note that we did not bias-
regularize the resulting networks (we work with the log-link here which is not the
canonical one). This is why we receive fluctuating portfolio averages in Fig. 7.22
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Fig. 7.22 Boxplots over 1′000 network calibrations only differing in the seeds for the SGD
algorithm and the partitioning of the learning-validation data: (lhs) in-sample losses on the (entire)
data L and (rhs) average estimated claims
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Fig. 7.23 Coefficients of variations Vcoi on an individual claim level 1 ≤ i ≤ n over the 1′000
calibrations (lhs) scatter plot against the nagging predictor μ̄(1:M)(xi ) and (rhs) histogram

(rhs), the red line illustrates the empirical mean. Obviously, these FN networks are
(on average) positively biased, and they will need a bias correction for the final
prediction.

Figure 7.23 analyzes the variations on an individual claim level by studying
the in-sample version of the coefficient of variation given in (7.43). We see that
these coefficients of variation are bigger than in the claim frequency example, see
Fig. 7.18. Thus, to receive stable results the nagging predictors μ̄(1:M)(xi ) have to be
calculated over many networks. Figure 7.24 confirms that aggregating reduces (in-
sample) losses also in this case. From this figure we also see that the convergence is
slower compared to the MTPL frequency example of Fig. 7.19, of course, because
we have a much smaller claims portfolio.
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Fig. 7.24 In-sample losses
D(L, μ̄(1:M)) of the nagging
predictors (μ̄(1:M)(xi ))1≤i≤n
for 1 ≤M ≤ 40 on the
motorcycle claim size data
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Table 7.11 Number of parameters, Pearson’s dispersion estimate, MLE dispersion estimate, in-
sample losses and in-sample average claim amounts of the null model (gamma intercept model),
the gamma GLMs and the network nagging predictor; for the GLMs we refer to Table 5.13

# Dispersion In-sample Average

param. ϕ̂P ϕ̂MLE loss on L amount

Gamma null 1 + 1 2.057 1.690 2.085 24’641

Gamma GLM1 9 + 1 1.537 1.426 1.717 25’105

Gamma GLM2 7 + 1 1.544 1.427 1.719 25’130

Gamma FN network nagging 626 + 1 – – 1.478 26’387

Gamma FN network nagging (bias reg) 626 + 1 1.050 1.240 1.465 24’641

Table 7.11 presents the results if we take the nagging predictor over 1′000
different networks. The first observation is that we receive a much smaller in-sample
loss compared to the GLMs, thus, there seems to be much room for improvements in
the GLMs. Secondly, the nagging predictor has a substantial bias. For this reason we
shift the intercept parameter in the output layer so that the portfolio average of the
nagging predictor is equal to the empirical mean, see the last column of Table 7.11.

A main difficulty in this model is the estimation of the dispersion parameter
ϕ > 0 and the shape parameter α = 1/ϕ of the gamma distribution, respectively.
Pearson’s dispersion estimate does not work because we do not know the degrees
of freedom of the nagging predictor, see also (5.49). In Table 7.11 we calculate
Pearson’s dispersion estimate by simply dividing by the number of observations;
this should be understood as a lower bound; this number is highlighted in italic.
Alternatively, we can calculate the MLE, however, this may be rather different from
Pearson’s estimate, as indicated in Table 7.11. Figure 7.25 (lhs) shows the resulting
QQ plot of the nagging predictor if we use the MLE ϕ̂MLE = 1.240, and the right-
hand side shows the same plot for ϕ̂ = 1.050. From these plots it seems that we
should rather go for a smaller dispersion parameter, the MLE being probably too
much dominated by the small claims. This observation should also be understood as
a red flag, as it tells us that the chosen gamma model is not fully suitable. This may
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Fig. 7.25 QQ plots of the nagging predictors against the gamma density with (lhs) ϕ̂MLE = 1.240
and (rhs) ϕ̂ = 1.050
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Fig. 7.26 (lhs) Scatter plot of model Gamma GLM2 predictors against the nagging predictors
μ̄(1:M)(xi ) over all instances 1 ≤ i ≤ n, (rhs) scatter plot of two (independent) nagging predictors

be for various reasons: (1) the dispersion is not constant and should be modeled
policy dependent, (2) the features are not sufficient to explain the observations,
or (3) the gamma distribution is not suitable and should be replaced by another
distribution.

In Fig. 7.26 (lhs) we compare the predictions received from model Gamma
GLM2 against the nagging predictors μ̄(1:M)(xi ) over all instances 1 ≤ i ≤ n.
The scatter plot spreads quite wildly around the diagonal which seriously questions
at least one of the two models. To ensure that this variability between the two models
is not caused by the (complex) FN network architecture, we verify the nagging
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Fig. 7.27 Empirical
auto-calibration (7.39) of the
Gamma FN network nagging
predictor of Table 7.11, the
blue line shows the empirical
density of μ̄(1:M)(xi ),
1 ≤ i ≤ n
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predictor μ̄(1:M), M = 1′000, by computing a second independent one. Indeed,
Fig. 7.26 shows that these two independent nagging predictors come to the same
conclusion on the individual instance level. Thus, the network finds/uses systematic
effects that are not present in model Gamma GLM2. If we perform a pairwise
interaction analysis for boosting the GLM as in Example 7.23, we find that we
should add interactions to the GLM between (VehAge, RiskClass), (VehAge,
BonusClass), (OwnerAge, Area), and (OwnerAge, VehAge); recall that
model Gamma GLM2 neither includes BonusClass nor Gender as supported
by a drop1 backward elimination analysis from model Gamma GLM1. However,
it turns out, here, that we should have BonusClass in the model by letting it
interact with VehAge.

Finally, Fig. 7.27 shows the empirical auto-calibration behavior (7.39) of the
Gamma FN network nagging predictor of Table 7.11. The resulting black dots are
rather volatile which shows that we do not (fully) have the auto-calibration property,
here, but it also expresses that we fit a model on only 656 claims. The prediction
of these claims is highlighted by the blue empirical density given by μ̄(1:M)(xi ),
1 ≤ i ≤ n. On the positive side, the auto-calibration plot shows that we neither
systematically under- nor over-estimate because the black dots fluctuate around the
diagonal red line, only the upper tail seems to under-estimate the true claim size. �

Ensembling over Selected Networks vs. All Networks

Zhou et al. [406] ask the question whether ensembling over ‘selected’ networks is
better than ensembling over all networks. In their proposal they introduce a weighted
averaging scheme over the different network predictors μ̂m, 1 ≤ m ≤ M . We
perform a slightly different analysis here. We are re-using the M = 1′600 SGD
calibrations of the Poisson FN network illustrated in Fig. 7.17. We order these SGD
calibrations w.r.t. their in-sample losses D(L, μ̂m), 1 ≤ m ≤ M , and partition this
ordered sample into three equally sized sets: the first one containing the smallest
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Fig. 7.28 Empirical density
of the in-sample losses
D(L, μ̂m), 1 ≤ m ≤ M , of
Fig. 7.17
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in-sample losses, the second one the middle sized in-sample losses, and the third
one the largest in-sample losses. Figure 7.28 shows the empirical density of these
in-sample losses, and the vertical lines give the partition into the three sets, we call
the resulting (disjoint) index sets Ismall,Imiddle,I large ⊂ {1, . . . ,M}. Remark that
this partition is done fully in-sample, based on the learning data L, only.

We then consider the nagging predictors on each of these index sets separately,
i.e.,

μ̄small(x) = 1

|Ismall|
∑

m∈Ismall

μ̂m(x),

μ̄middle(x) = 1

|Imiddle|
∑

m∈Imiddle

μ̂m(x), (7.46)

μ̄large(x) = 1

|I large|
∑

m∈I large

μ̂m(x).

If we believe into the orange cubic spline in Fig. 7.17, the middle nagging predictor
μ̄middle should out-perform the other two nagging predictors. Indeed, this is the case,
here. We receive the out-of-sample losses (in 10−2) on the three subsets

D(T , μ̄small) = 23.784, D(T , μ̄middle) = 23.272, D(T , μ̄large) = 23.782.
(7.47)

This approach boosts by far any other approach considered, see Table 7.10; note that
this analysis relies on a fully proper in-sample and out-of-sample testing strategy.
Moreover, this also supports our early stopping strategy because, obviously, the
optimal networks are centered around our early stopping rule. How does this result
match Proposition 7.25 saying that the nagging predictor has a monotonically
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Fig. 7.29 Scatter plot of the
nagging predictors
μ̄middle(x

†
t ) and μ̄(1:M)(x†

t )

over all out-of-sample polices
1 ≤ t ≤ T ; the color scale
shows the sizes of the
exposures v†

t ∈ (0, 1]

decreasing deviance loss. For the convergence (7.45) we need unbiasedness,
and (7.47) indicates that averaging over allM network calibrations results in biases
on an individual policy level; on the aggregate portfolio level, we have applied the
bias regularization step (7.33), but this does not act on an individual policy level.
The latter would require a local balance correction similar to the GAM approach
presented in Example 7.19.

Figure 7.29 is truly striking! It compares the nagging predictors μ̄(1:M)(x†
t )

to the ones μ̄middle(x
†
t ) only using the calibrations m ∈ Imiddle, i.e., only using

the calibrations with middle sized in-sample losses. The different colors show the
exposures v†

t ∈ (0, 1]. We observe that only portfolios with short exposures do not
lie on the diagonal line. Thus, there seems to be an issue with insurance policies
with short exposures. Recall that we model the Poisson claim counts Ni using the
assumption, see (5.27),

Ni ∼ Poi(viμ(xi )). (7.48)

That is, the expected claim count Eθi [Ni] = viμ(xi ) is assumed to scale
proportionally in the exposure vi > 0. Figure 7.29 raises some doubts whether this
is really the case, or at least SGD fitting has some difficulties to assess the expected
frequencies μ(xi ) on the policies i with short exposures vi > 0. We discuss this
further in the next subsection. Table 7.12 gives a summary of our results.

Analysis of Over-dispersion

With all the excitement of Fig. 7.29, the above models do not fit the observations
since the over-dispersion is too large, see the last column of Table 7.12. This has
motivated the study of the negative binomial model in Sect. 5.3.5, the ZIP model in
Sect. 5.3.6, and the hurdle Poisson model in Example 6.19. These models have led
to an improvement in terms of AIC, see Table 6.6. We could go down the same
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Table 7.12 Number of parameters, in-sample and out-of-sample deviance losses (units are in
10−2), in-sample average frequency and (over-)dispersion of the Poisson null model, model Poisson
GLM3 of Table 5.5, the FN network model (with embedding layers of dimension b = 2), the
nagging predictor, the meta network model, and the middle nagging predictor

# In-sample Out-of-sample Aver. Disp.

param. loss on L loss on T freq. ϕ̂P

Poisson null 1 25.213 25.445 7.36% 1.7160

Poisson GLM3 50 24.084 24.102 7.36% 1.6644

Embed FN bias regularized μ̂m=1 792 23.690 23.824 7.36% 1.6812

Nagging FN μ̄(1:M) ‘792’ 23.691 23.783 7.36% 1.6592

Meta FN network μ̂meta 792 23.714 23.777 7.36% 1.6737

Middle nagging FN μ̄middle ‘792’ 23.698 23.272 7.36% 1.6618

route here by substituting the Poisson model. We refrain from doing so, as we
want to further analyze the Poisson model. Suppose we calculate an AIC value for
the Poisson FN network using 792 as the number of parameters involved. In that
case, we receive a value of 191′790, thus, clearly lower than the one of the negative
binomial GLM, and also slightly lower than the one of the hurdle Poisson model,
see Table 6.6. Remark that AIC values within FN networks are not supported by
any theory as we neither use the MLE nor do we have a reasonable evaluation of the
number of parameters involved in networks. Thus, such a value may serve at best as
a rough rule of thumb.

This lower AIC value suggests that we should try to improve the modeling of
the systematic effects by better regression functions. In particular, there may be
more explanatory variables involved that have predictive power. If these explanatory
variables are latent, we can rely on the negative binomial model, as it can be
interpreted as a mixture model averaging over latent variables. In view of Fig. 7.29,
the exposures vi seem to have a predictive power different from proportional scaling,
see (7.48); we also mention some peculiarities of the exposures on page 556. This
motivates to change the FN network regression model such that the exposures are
considered non-proportionally. We choose a FN network that directly models the
mean of the claim counts

(x, v) ∈ X × (0, 1] �→ μ(x, v) = exp
〈
β, z(d :1)(x, v)

〉
> 0, (7.49)

modeling the mean Eϑ [N] = μ(x, v) of the Poisson datum (N, x, v). The expected
frequency is then given by Eϑ [Y ] = Eϑ [N/v] = μ(x, v)/v.

Remark 7.29 At this stage we clearly have to distinguish between statistical
modeling and actuarial modeling. In statistical modeling it makes perfect sense
to choose the regression function (7.49), since including the exposure in a non-
proportional way may increase the predictive power of the model, at least this is
what our data suggests.
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From an actuarial point of view this approach should clearly be doubted. The
typical exposure of car insurance policies is one calendar year, i.e., v = 1, if the
renewals of insurance policies are accounted correctly. Shorter exposures may have
a specific (non-predictable) reason, for example, the policyholder or the insurance
company may terminate an insurance contract after a claim. Thus, if this is possible,
the exposure is a random variable, too, and it clearly has a predictive power for
claims prediction; in that case we lose the properties of the Poisson count process
(having independent and stationary increments).

As a consequence, we should include the exposure proportionally from an
actuarial modeling point of view. Nevertheless we do the modeling exercise based
on the regression function (7.49), here. This will indicate the predictive power of the
exposure, which may be thought of a proxy for another (non-available) explanatory
variable. Moreover, if (7.49) allows for a good Poisson regression model, we have a
simple way of bootstrapping from our data (conditionally on given exposures v).

We would also like to emphasize that if one feature component dominates all
others in terms of the predictive power, then likely there is a leakage of information
through this component, and this needs a more careful analysis.

We implement the FN network regression model (7.49) using again a network
architecture of depth d = 3 with (q1, q2, q3) = (20, 15, 10) neurons. We use
embedding layers for the two categorical variables VehBrand and Region, and
we have 8 continuous/binary feature components. This is one more compared to
Fig. 7.9 (rhs) because we also model the exposure vi as a continuous input to the
network. As a result, the dimension r of the network parameter ϑ ∈ R

r increases
from 792 to 812 (because we have q1 = 20 neurons in the first FN layer). We
calculate the nagging predictor μ̄(1:M) of this network averaging over M = 500
individual (early stopped) FN network calibrations, the results are presented in
Table 7.13.

Table 7.13 Number of parameters, in-sample and out-of-sample deviance losses (units are in
10−2), in-sample average frequency and (over-)dispersion of the Poisson null model, model Poisson
GLM3 of Table 5.5, the FN network models (with embedding layers of dimension b = 2), the
nagging predictors, and the middle nagging predictors excluding and including exposures vi as
continuous network inputs

# In-sample Out-of-sample Aver. Disp.

param. loss on L loss on T freq. ϕ̂P

Poisson null 1 25.213 25.445 7.36% 1.7160

Poisson GLM3 50 24.084 24.102 7.36% 1.6644

Embed FN μ̂m=1 792 23.690 23.824 7.36% 1.6812

Nagging FN μ̄(1:M) ‘792’ 23.691 23.783 7.36% 1.6592

Middle nagging FN μ̄middle ‘792’ 23.698 23.272 7.36% 1.6618

Exposure v: FN μ̂m=1 812 23.358 23.496 7.36% 1.0650

Exposure v: nagging FN μ̄(1:M) ‘812’ 23.299 23.382 7.36% 1.0416

Exposure v: middle nagging FN μ̄middle ‘812’ 23.303 23.299 7.36% 1.0427
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Fig. 7.30 Average frequency
as a function of the exposure
v ∈ (0, 1]: nagging predictors
considering the exposures
proportionally (blue), the
model including exposures
non-proportionally through
the FN network (black) and
observed (red)

0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

frequency as a function of Exposure

Exposure

fr
eq

ue
nc

y

FN w/o exposure
FN exposure
observed

We observe a major improvement when including the exposure v as an input
to the network, i.e., by including the exposure non-proportionally into the mean
estimate. This is true in-sample (we use early stopping here), and in terms of
Pearson’s dispersion estimate; we set r = 812 for the number of parameters in
Pearson’s dispersion estimate (5.30) which may be too big because we do not
perform proper MLE, here. In particular, we receive a dispersion estimate close
to one which, now, is in support of modeling the claim counts by Poisson random
variables (using this regression function). That is, this regression function explains
the systematic effects so that we no longer observe much over-dispersion in the data
relative to the chosen model. However, we would like to remind of Remark 7.29
which needs a careful consideration for the use of this regression model in insurance
practice.

This is also supported by Fig. 7.30 which studies the average frequency as a
function of the exposure v ∈ (0, 1]. The red observed average frequency has a
clear decreasing slope which can be modeled by running the exposure v through the
FN network (black), but not by including it proportionally (blue). From an actuarial
modeling point of view this plot clearly questions the quality of the data, because
there seem to be effects in the exposures that certainly require more investigation.
Unfortunately, we cannot do this here because we do not have additional insight into
this data set. This closes the example.

7.4.5 Identifiability in Feed-Forward Neural Networks

In the previous section we have studied ensembles of FN networks. One may also
aim at directly comparing these networks to each other in terms of the fitted network

parameters ϑ̂
j

over the different calibrations 1 ≤ j ≤ M (of the same FN network
architecture). Such a comparison may, e.g., be useful if one wants to choose a
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prior parameter distribution π for ϑ in a Bayesian setting. Comparing the different

network calibrations ϑ̂
j
, 1 ≤ j ≤ M , of an architecture needs some care because

networks have many symmetries that make the parameters non-identifiable. We
can, for instance, permute the neurons in a FN layer z(m), with the corresponding
permutation of the weights that connect this layer to the previous layer z(m−1) and to
the succeeding layer z(m+1). The resulting predictive model under this permutation
is the same as the original one. For this reason we need to introduce some order in a
FN network to make the parameters identifiable.

Rüger–Ossen [323] have introduced the notion of a fundamental domain for the
network parameter ϑ , and we briefly review this idea. We start with an explicit
example. Assume that the activation function fulfills the anti-symmetry property
−φ(x) = φ(−x) for all x ∈ R, this is the case for the hyperbolic tangent. This
implies several symmetries in the FN network parametrization. E.g., if we consider
the output of a shallow FN network d = 1 with link function g, we can do a sign
switch in a fixed neuron 1 ≤ k ≤ q1

g(μ(x)) = β0 +
q1∑

j=1

βjz
(1:1)
j (x) = β0 +

q1∑

j=1

βj φ
〈
w
(1)
j , x

〉

= β0 +
∑

j �=k
βj φ

〈
w
(1)
j , x

〉
+ (−βk) φ

〈
−w

(1)
k , x

〉
. (7.50)

From this we see that the following two network parameters (we switch signs in all
the parameters that belong to index k)

ϑ = (w(1)1 , . . . ,w
(1)
k , . . . ,w

(1)
q1
, β0, . . . , βk, . . . , βq1)

� and

ϑ̃ = (w(1)1 , . . . ,−w
(1)
k , . . . ,w

(1)
q1
, β0, . . . ,−βk, . . . , βq1)

�

give the same FN network predictions. Beside these sign switches, we can also
permute the enumeration of the neurons in a given FN layer, giving the same
predictions. We discuss Theorem 2 of Rüger–Ossen [323] to solve this identifiability
issue. First, we consider the network weights from the input x to the first FN layer
z(1)(x). Apply the sign switch operation (7.50) to the neurons in the first FN layer
so that all the resulting intercepts w(1)0,1, . . . , w

(1)
0,q1

are positive while not changing
the regression function x �→ g(μ(x)). Next, apply a permutation to the indices
1 ≤ j ≤ q1 so that we receive ordered intercepts

w
(1)
0,1 > . . . > w

(1)
0,q1

> 0,

with an unchanged regression function x �→ g(μ(x)). To make these transforma-
tions well-defined we need to assume that all intercepts are non-zero and mutually
different (which we assume for the time-being).
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Then, we move recursively through the FN layers 2 ≤ m ≤ d applying the sign
switch operations and the permutations so that the regression function x �→ g(μ(x))

remains unchanged and such that for all 1 ≤ m ≤ d

w
(m)
0,1 > . . . > w

(m)
0,qm

> 0.

This provides us with a unique representation of every network parameter ϑ ∈ R
r

in the fundamental domain

{
ϑ ∈ R

r ; w(m)0,1 > . . . > w
(m)
0,qm

> 0 for all 1 ≤ m ≤ d
}

⊂ R
r , (7.51)

supposed that all intercepts are different from zero and mutually different in the
same FN layers. As stated in Section 2.2 of Rüger–Ossen [323], there may still exist
different parameters in this fundamental domain that provide the same predictive
model, but these are of zero Lebesgue measure. The same applies to the intercepts
w
(m)
0,j being zero or having equal intercepts for different neurons. Basically, this

means that we are fine if we work with absolutely continuous prior distributions
on the fundamental domain when we want to work within a Bayesian setup.

7.5 Auto-encoders

Auto-encoders are tools that aim at reducing the dimension of high-dimensional
data such that the reconstruction error of the original data is small, i.e., such that
the loss of information by the dimension reduction is minimized. The most popular
auto-encoder is the principal components analysis (PCA) which we are going to
present here. The PCA is a linear dimension reduction technique. Bottleneck neural
(BN) networks can be viewed as a non-linear extension of the PCA. This is going
to be discussed in Sect. 7.5.5, below. Dimension reduction techniques belong to the
family of unsupervised learning methods because they do not consider a response
variable, but they aim at finding common structure in the features. Unsupervised
learning methods can roughly be categorized into three classes: dimension reduction
techniques (studied in this section), clustering methods and visualization methods.
For a discussion of clustering and visualization methods we refer to the tutorial of
Rentzmann–Wüthrich [310].
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7.5.1 Standardization of the Data Matrix

Assume we have q-dimensional data points yi ∈ R
q , 1 ≤ i ≤ n. This provides us

with a data matrix

Y = (y1, . . . , yn)
� =

⎛

⎜
⎝

y1,1 · · · y1,q
...
. . .

...

yn,1 · · · yn,q

⎞

⎟
⎠ ∈ R

n×q .

We assume that each of the q columns of Y measures a quantity in a given unit.
The first column may, for instance, describe the age of a car driver in years, the
second column his body weight in kilograms, etc. That is, each column 1 ≤ j ≤ q
of Y describes a specific quantity, and each row y�

i of Y describes these quantities
for a given instance 1 ≤ i ≤ n. Since often the analysis should not depend on
the units of the columns of Y , one centers the columns with the empirical means
ȳj =∑n

i=1 yi,j /n, and one normalizes them with the empirical standard deviations
σ̂j = (∑n

i=1(yi,j − ȳj )2/n)1/2, 1 ≤ j ≤ q . This gives the normalized data matrix

⎛

⎜
⎜
⎝

y1,1−ȳ1
σ̂1

· · · y1,q−ȳq
σ̂q

...
. . .

...
yn,1−ȳ1
σ̂1

· · · yn,q−ȳq
σ̂q

⎞

⎟
⎟
⎠ ∈ R

n×q . (7.52)

We typically center the data matrix Y , providing
∑n
i=1 yi,j = 0 for all 1 ≤ j ≤ q ,

normalization w.r.t. the standard deviation can be done, but is not always necessary.
Centering implies that we can interpret Y as a q-dimensional empirical distribution
with each component (column) being centered. The covariance matrix of this
(centered) empirical distribution is calculated as

�̂ = 1

n

(
n∑

i=1

yi,j yi,k

)

1≤j,k≤q
= 1

n
Y�Y ∈ R

q×q . (7.53)

This is a covariance matrix, and if the columns of Y are normalized with the
empirical standard deviations σ̂j , 1 ≤ j ≤ q , this is a correlation matrix.

7.5.2 Introduction to Auto-encoders

An auto-encoder encodes a high-dimensional vector y ∈ R
q to a low-dimensional

representation so that the dimension reduction leads to a minimal loss of infor-
mation. A function L(·, ·) : R

q × R
q → R+ is called dissimilarity function if

L(y, y′) = 0 if and only if y = y′.
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An auto-encoder is a pair (!,�) of mappings, for given dimensions p < q ,

! : Rq → R
p and � : Rp → R

q, (7.54)

such that their composition� ◦! has a small reconstruction error w.r.t. the chosen
dissimilarity function L(·, ·), that is,

y �→ L (y,� ◦!(y)) is small for all cases y of interest. (7.55)

Note that we want (7.55) for selected cases y, and if they are within a p-dimensional
manifold the auto-encoding will be successful. The first mapping! : Rq → R

p is
called encoder, and the second mapping� : Rp → R

q is called decoder. The object
!(y) ∈ R

p is a p-dimensional encoding (representation) of y ∈ R
q which contains

maximal information of y up to the reconstruction error (7.55).

7.5.3 Principal Components Analysis

PCA gives us a linear auto-encoder (7.54). If the data matrix Y ∈ R
n×q has rank

q , there exist q linearly independent rows of Y that span R
q . PCA determines a

different, very specific basis of Rq . It looks for an orthonormal basis v1, . . . , vq ∈
R
q such that v1 explains the direction of the biggest variability in Y , v2 the direction

of the second biggest variability in Y orthogonal to v1, and so forth. Variability is
understood in the sense of maximal empirical variance under the assumption that
the columns of Y are centered, see (7.52)–(7.53). Such an orthonormal basis can
be found by determining q linearly independent eigenvectors of the symmetric and
positive definite matrix

A = n�̂ = Y�Y ∈ R
q×q .

For this we can solve recursively the following convex Lagrange problems. The first
basis vector v1 ∈ R

q is determined by the solution of3

v1 = arg max
‖w‖2=1

‖Yw‖2
2 = arg max

w�w=1

(
w�Y�Yw

)
, (7.56)

and the j -th basis vector vj ∈ R
q , 2 ≤ j ≤ q , is received recursively by the solution

of

vj = arg max
‖w‖2=1

‖Yw‖2
2 subject to 〈vk,w〉 = 0 for all 1 ≤ k ≤ j−1. (7.57)

3 If the q eigenvalues of A are distinct, the solution to (7.56) and (7.57) is unique up to the sign,
otherwise this requires more care.
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Singular value decomposition (SVD) gives an alternative way of computing this
orthonormal basis, we refer to Section 14.5.1 in Hastie et al. [183]. The algorithm
of Golub–Van Loan [165] gives an efficient way of performing a SVD. There exist
orthogonal matrices U ∈ R

n×q and V ∈ R
q×q (with U�U = V�V = 1q ), and

a diagonal matrix  = diag(λ1, . . . , λq) ∈ R
q×q with singular values λ1 ≥ . . . ≥

λq > 0 such that we have the SVD

Y = U V �. (7.58)

The matrix U is called left-singular matrix of Y , and the matrix V is called right-
singular matrix of Y . Observe by using the SVD (7.58)

V �AV = V �Y�YV = V �V U�U V �V =  2 = diag(λ2
1, . . . , λ

2
q ).

That is, the squared singular values (λ2
j )1≤j≤q are the eigenvalues of matrix A, and

the column vectors of the right-singular matrix V = (v1, . . . , vq) (eigenvectors of
A) give an orthonormal basis v1, . . . , vq . This motivates to define the q principal
components of Y by the column vectors of

YV = U = Udiag(λ1, . . . , λq) (7.59)

= (
λ1u1, . . . , λquq

) ∈ R
n×q .

E.g., the first principal component of the instances 1 ≤ i ≤ n is given by Yv1 =
λ1u1 ∈ R

n. Considering the first p ≤ q principal components gives the rank p
matrix

Y p = Udiag(λ1, . . . , λp, 0, . . . , 0)V
� ∈ R

n×q . (7.60)

The Eckart–Young–Mirsky theorem [114, 279]4 proves that this rank p matrix Y p
minimizes the Frobenius norm relative to Y among all rank p matrices, that is,

Yp ∈ arg min
B∈Rn×q

‖Y − B‖F subject to rank(B) ≤ p, (7.61)

where the Frobenius norm is given by ‖C‖2
F =∑i,j c

2
i,j for a matrix C = (ci,j )i,j .

The orthonormal basis v1, . . . , vq ∈ R
q gives the (linear) encoder (projection)

! : Rq → R
p, y �→ !(y) =

(
y�v1, . . . , y

�vp

)� = (v1, . . . , vp)
�y.

4 In fact, (7.61) holds for both the Frobenius norm and the spectral norm.
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These gives the first p principal components in (7.59) if we insert the transposed
data matrix Y� = (y1, . . . , yn) ∈ R

q×n for y ∈ R
q . The (linear) decoder � is

given by

� : Rp → R
q , z �→ �(z) = (v1, . . . , vp)z.

The following is understood column-wise for the transposed data matrix Y�,

� ◦!(Y�) = �
(
(v1, . . . , vp)

�Y�)

=
(
Y (v1, . . . , vp)(v1, . . . , vp)

�)�

=
(
Y (v1, . . . , vp, 0, . . . , 0)(v1, . . . , vp, vp+1, . . . , vq)

�)�

=
(
Udiag(λ1, . . . , λp, 0, . . . , 0)V�)� = Y�

p .

Thus, � ◦ !(Y�) minimizes the Frobenius reconstruction error (7.61) on the data
matrix Y� among all linear maps of rank p. In view of (7.55) we can express the
squared Frobenius reconstruction error as

‖Y − Y p‖2
F =

n∑

i=1

∥∥yi −� ◦!(yi )
∥∥2

2 =
n∑

i=1

L
(
yi , � ◦!(yi )

)
, (7.62)

thus, we choose the squared Euclidean distance as the dissimilarity measure, here,
that we minimize simultaneously on all cases yi , 1 ≤ i ≤ n.

Remark 7.30 The PCA gives a linear approximation to the data matrix Y by
minimizing (7.61) and (7.62) for given rank p. This may not be appropriate if the
non-linear terms are dominant. Figure 7.31 (lhs) gives a situation where the PCA
works well; this data has been generated by i.i.d. multivariate Gaussian random
vectors yi ∼ N (0,�). Figure 7.31 (middle) gives a non-linear example where the
PCA does not work well, the data matrix Y ∈ R

n×2 is a column-centered matrix
that builds a circle around the origin.

Another nice example where the PCA fails is Fig. 7.31 (rhs). This figure is
inspired by Shlens [337] and Ruckstuhl [321]. It shows a situation where the level
sets are non-convex, and the principal components point into a completely wrong
direction to explain the structure of the data.
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Fig. 7.31 Two-dimensional PCAs in different situations of the data matrix Y ∈ R
n×2

7.5.4 Lab: Lee–Carter Mortality Model

We use the SVD to fit the most popular stochastic mortality model, the Lee–Carter
(LC) model [238], to (raw) mortality data. The raw mortality data considers for each
calendar year t and each age x the number of people Dx,t who died (in that year t
at age x) divided by the corresponding population exposure ex,t . In practice this
requires some care. Due to migration, often, the exposures ex,t are non-observable
figures and need to be estimated. Moreover, also the death counts Dx,t in year t at
age x can be defined differently, age cohorts are usually defined by the year of birth.
We denote the (observed) raw mortality rates byMx,t = Dx,t/ex,t . The subsequent
derivations consider the raw log-mortality rates log(Mx,t ), for this reason we assume
that Mx,t > 0 for all calendar years t and ages x. The goal is to model these raw
log-mortality rates (for each country, region, risk group and gender separately).

The LC model defines the force of mortality as

log(μx,t ) = ax + bxkt , (7.63)

where log(μx,t ) is the (deterministic) log-mortality rate in calendar year t for a
person aged x (for a fixed country, region and gender). The individual terms in (7.63)
have the following meaning: ax is the average force of mortality at age x, bx is the
rate of change of the force of mortality broken down to the different ages x, and kt
is the time index describing the change of the force of mortality in calendar year t .

Strictly speaking, we do not have a stochastic model, here, that can explain the
observations Mx,t , but we try to fit a deterministic mortality surface (μx,t )x,t to
these noisy observations (Mx,t )x,t . For this we use the PCA and the Frobenius norm
as the measure of dissimilarity (on the log-scale).

In a first step, we center the raw log-mortality rates for all ages x, i.e., over the
calendar years t ∈ T under consideration. We define the centered raw log-mortality
rates yx,t and the estimate âx of the average force of mortality at age x as follows

Yx,t = log(Mx,t )− âx = log(Mx,t )− 1

|T |
∑

s∈T
log(Mx,s), (7.64)
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where the last identity defines the estimate âx . Strictly speaking we have a slight
difference to the centering in Sect. 7.5.1 because we center the rows and not the
columns of the data matrix, here, but the role of rows and columns is exchangeable in
the PCA. The optimal (parameter) values (̂bx)x and (̂kt )t are determined as follows,
see (7.63),

arg min
(bx)x ,(kt )t

∑

x,t

(
Yx,t − bxkt

)2
,

where the sum runs over the years t ∈ T and the ages x0 ≤ x ≤ x1, with x0 and x1
being the lower and upper age boundaries. This can be rewritten as an optimization
problem (7.61)–(7.62). Consider the data matrix Y = (Yx,t )x0≤x≤x1;t∈T ∈ R

n×q ,
and set n = x1 − x0 + 1 and q = |T |. Assume Y has rank q . This allows us to
consider

Y 1 ∈ arg min
B∈Rn×q

‖Y − B‖F subject to rank(B) ≤ 1.

A solution to this problem is given, see (7.60),

Y 1 = Udiag(λ1, 0, . . . , 0)V
� = (λ1u1) v

�
1 = (Yv1) v

�
1 ∈ R

n×q ,

with left-singular matrix U = (u1, . . . ,uq) ∈ R
n×q and right-singular matrix V =

(v1, . . . , vq) ∈ R
q×q of Y . This implies that the first principal component λ1u1 =

Yv1 ∈ R
n gives an estimate for (bx)x0≤x≤x1, and the first column vector v1 ∈ R

q

of V gives an estimate for the time index (kt )t∈T . For parameter identifiability we
normalize

x1∑

x=x0

b̂x = 1 and
∑

t∈T
k̂t = 0, (7.65)

the latter being consistent with the centering of the rows of Y with âx in (7.64).
We fit the LC model to the Swiss mortality data of females and males separately.

The raw log-mortality rates log(Mx,t ) for the years t ∈ T = {1950, . . . , 2016}
and the ages 0 ≤ x ≤ 99 are illustrated in Fig. 7.32; both plots use the same color
scale. This mortality data has been obtained from the Human Mortality Database
(HMD) [195]. In general, we observe a diagonal structure that indicates mortality
improvements over time.
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Fig. 7.32 Raw log-mortality rates log(Mx,t ) for the calendar years 1950 ≤ t ≤ 2016 and the ages
x0 = 0 ≤ x ≤ x1 = 99 of Swiss females (lhs) and Swiss males (rhs); both plots use the same color
scale
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Fig. 7.33 LC fitted log-mortality rates log(μ̂x,t ) for the calendar years 1950 ≤ t ≤ 2016 and the
ages x0 = 0 ≤ x ≤ x1 = 99 of Swiss females (lhs) and Swiss males (rhs); the plots use the same
color scale as Fig. 7.32

Define the fitted log-mortality surface

log(μ̂x,t ) = âx + b̂x k̂t for x0 ≤ x ≤ x1 and t ∈ T .

Figure 7.33 shows the LC fitted log-mortality surface (log(μ̂x,t ))0≤x≤99;t∈T sepa-
rately for Swiss females and Swiss males, the color scale is the same as in Fig. 7.32.
The plots show a huge similarity between the raw log-mortality data and the LC
fitted log-mortality surface which clearly supports the LC model for the Swiss
data. In general, the LC surface is a smoothed version of the raw log-mortality
surface. The main difference in our LC fit concerns the male population for ages
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Fig. 7.34 (lhs) Singular values λj , 1 ≤ j ≤ |T |, of the SVD of the data matrix Y ∈ R
n×|T |, and

(rhs) the reconstruction errors ‖Y − Yp‖2
F for 0 ≤ p ≤ |T |

20 ≤ x ≤ 40 from 1980 to 2000, one explanation of the special pattern in the
observed data during that time is the emergence of HIV.

Figure 7.34 (lhs) shows the singular values λ1 ≥ . . . ≥ λ|T | > 0 for
Swiss females and Swiss males. We observe that the first singular value λ1 by
far dominates the remaining singular values λj , j ≥ 2. Thus, the first principal
component indeed may already be sufficient, and the centered raw log-mortality
data Y can be described by a matrix Y 1 of rank p = 1. Figure 7.34 (rhs) gives
the squared Frobenius reconstruction errors of the approximations Yp of ranks
0 ≤ p ≤ |T |, where Y 0 corresponds to the zero matrix where we do not use any
approximation, but use just the average observed log-mortality rate. We observe that
the first singular value leads by far to the biggest decrease in the reconstruction error,
and the subsequent expansions λj , j ≥ 2, improve it only slightly in each step. This
supports the use of the LC model using a rank p = 1 approximation to the centered
raw log-mortality rates Y . The higher rank PCA within mortality modeling has
been studied in Renshaw–Haberman (RH) [308], and the RH(p) mortality model
considers the rank p approximation Yp to the raw log-mortality rates Y given by

log(μx,t ) = ax + 〈bx, kt 〉,

for bx, kt ∈ R
p.

We have (only) fitted a mortality surface to the raw log-mortality rates on the
rectangle {x0, . . . , x1} × T . This does not allow us to forecast mortality into the
future. Forecasting requires a two step procedure, which, after this first estimation
step, extrapolates the time index (time-series) (̂kt )t∈T beyond the latest observation
point in T . The simplest (meaningful) model for this second (extrapolation) step
is a random walk with drift for the time index process (̂kt )t≥0. Figure 7.35 shows
the estimated two-dimensional process (̂kt )t∈T , i.e., for p = 2, on the rectangle
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Fig. 7.35 Estimated two-dimensional processes (̂kt )t∈T for Swiss females (lhs) and Swiss males
(rhs); these are normalized such that they are centered and such that the components of b̂x add up
to 1

{x0, . . . , x1} × T which needs to be extrapolated to predict within the RH (p = 2)
mortality model. We refrain from doing this step, but extrapolation will be studied
in Sect. 8.4, below.

7.5.5 Bottleneck Neural Network

BN networks have become popular in studying non-linear generalizations of PCA,
we refer to Kramer [225] and Hinton–Salakhutdinov [186]. The BN network
architecture is such that (1) the input dimension q0 is equal to the output dimension
qd+1 of a FN network, and (2) in between there is a FN layer 1 ≤ m ≤ d that has a
very low dimension qm " q0, called the bottleneck. Figure 7.36 (lhs) shows such a
BN network of depth d = 3 and neurons

(q0, q1, q2, q3, q4) = (20, 7, 2, 7, 20).

The input and output neurons have blue color, and the bottleneck of dimension q2 =
2 is shown in red color in Fig. 7.36 (lhs).
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Fig. 7.36 (lhs) BN network of depth d = 3 with (q0, q1, q2, q3, q4) = (20, 7, 2, 7, 20), (middle
and rhs) shallow BN networks with a bottleneck of dimensions 7 and 2, respectively

The motivation is as follows. Assume we have a given dissimilarity function
L(·, ·) : Rq × R

q → R+ that measures the reconstruction error of an auto-encoder
� ◦!(y) ∈ R

q relative to the original input y ∈ R
q , see (7.55). We try to find a BN

network with input and output dimensions q0 = qd+1 = q (we drop the intercepts in
the entire construction) and a bottleneck in layerm having a low dimension qm, such
that the BN network provides a small reconstruction error. Choose a FN network

y ∈ R
q �→ � ◦!(y) = z(d+1:1)(y) =

(
z(d+1) ◦ z(d) ◦ · · · ◦ z(1)

)
(y) ∈ R

q,

with FN layers for 1 ≤ m ≤ d (excluding intercepts)

z(m) : Rqm−1 → R
qm, z �→ z(m)(z) =

(
φ〈w(m)1 , z〉, . . . , φ〈w(m)qm , z〉

)�
,

and having network weights w
(m)
j ∈ R

qm−1 , 1 ≤ j ≤ qm. For the output we choose
the identity function as activation function

z(d+1) : Rqd → R
qd+1, z �→ z(d+1)(z) =

(
〈w(d+1)

1 , z〉, . . . , 〈w(d+1)
qd+1

, z〉
)�
,

and having network weights w
(d+1)
j ∈ R

qd , 1 ≤ j ≤ qd+1. The resulting network

parameter ϑ is now fitted to the data matrix Y = (y1, . . . , yn)
� ∈ R

n×q such that
the reconstruction error is minimized over all instances

ϑ̂ = arg min
ϑ∈Rr

n∑

i=1

L
(
yi , � ◦!(yi )

) = arg min
ϑ∈Rr

n∑

i=1

L
(
yi , z

(d+1:1)(yi )
)
.

We use this fitted network parameter ϑ̂ and denote the resulting FN layers by ẑ(m)

for 1 ≤ m ≤ d + 1.
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This allows us to define the BN encoder, set q = q0 and p = qm,

! : Rq0 → R
qm, y �→ !(y) = ẑ(m:1)(y) =

(
ẑ(m) ◦ · · · ◦ ẑ(1)

)
(y),

(7.66)
and the BN decoder is given by, set qm = p and qd+1 = q ,

� : Rqm → R
qd+1, z �→ �(z) = ẑ(d+1:m+1)(z) =

(
ẑ(d+1) ◦ · · · ◦ ẑ(m+1)

)
(z).

The BN encoder (7.66) gives us a qm-dimensional representation of the data. A
linear rank p representation Y p of Y , see (7.61), can be found by a BN network
architecture that has a minimal FN layer width of dimension p = min1≤j≤d qj , and
with the identity activation function φ(x) = x. Such a BN network is a linear map
of maximal rank p. Using the Euclidean square distance as dissimilarity measure
provides us an optimal network parameter ϑ̂ for this linear map such that we receive
Y�
p = ẑ(d+1:1)(Y�). There is one point to be considered, here, why the bottleneck

activations !(y) = ẑ(m:1)(y) ∈ R
p in the linear activation case are not directly

comparable to the principal components (y�v1, . . . , y
�vp)

� of the PCA. Namely,
the PCA uses an orthonormal basis v1, . . . , vp whereas the linear BN network case
uses any p-dimensional basis, i.e., to directly bring these two representations in line
we still need a coordinate transformation of the bottleneck activations.

Hinton–Salakhutdinov [186] noticed that the gradient descent fitting of a BN
network needs some care, otherwise we may find a local minimum of the loss
function that has a poor reconstruction performance. In order to implement a more
sophisticated way of SGD fitting we require that the depth d of the network is an
odd number and that the network architecture is symmetric around the central FN
layer (d + 1)/2. This is the case in Fig. 7.36 (lhs). Fitting of this network of depth
d = 3 is now done in three steps:

1. The symmetry around the central FN layer m = 2 allows us to collapse this
central layer by merging layers 1 and 3 (because q1 = q3). Merging these two
layers provides us a shallow BN network with neurons (q0, q1 = q3, qd+1 =
q0) = (20, 7, 20). This shallow BN network is shown in Fig. 7.36 (middle).
In a first step we fit this simpler network to the data Y . This gives us the
preliminary estimates for the network weights w

(1)
1 , . . . ,w

(1)
q1 and w

(4)
1 , . . . ,w

(4)
q4

of the full BN network. From this fitted shallow BN network we receive the
learned representations zi = z(1)(yi ) ∈ R

q1 , 1 ≤ i ≤ n, in the central layer
using the preliminary estimates of the network weights.

2. In the second step we use the learned representations zi ∈ R
q1 , 1 ≤ i ≤ n, to

fit the inner part of the original network (using a suitable dissimilarity function).
This inner part is a shallow network with neurons (q1, q2, q3 = q1) = (7, 2, 7),
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see Fig. 7.36 (rhs). This second step gives us the preliminary estimates for the
network weights w

(2)
1 , . . . ,w

(2)
q2 and w

(3)
1 , . . . ,w

(3)
q3 of the full BN network.

3. In the final step we fit the full BN network on the data Y and use the preliminary
estimates of the weights (of the previous two steps) as initialization of the
gradient descent algorithm.

Example 7.31 (BN Network Mortality Model) We apply this BN network approach
to modify the LC model of Sect. 7.5.4. Hainaut [178] considered such a BN network
application. For computational reasons, Hainaut [178] proposed a calibration
strategy different from Hinton–Salakhutdinov [186]. We use this latter calibration
strategy as it has turned out to work well in our setting.

As BN network architecture we choose a FN network of depth d = 3. The input
and output dimensions are equal to q0 = q4 = 67, this exactly corresponds to
the number of available calendar years 1950 ≤ t ≤ 2016, see Fig. 7.32. Then, we
select a symmetric architecture around the central FN layer m = 2 with q1 = q3 =
20 neurons. That is, in a first step, the 67 calendar years are compressed to a 20-
dimensional representation. For the bottleneck we then explore different numbers
of neurons q2 = p ∈ {1, . . . , 20}. These BN networks are implemented and fitted in
R with the library keras [77]. We have fitted these models separately to the Swiss
female and male populations. The raw log-mortality rates are illustrated in Fig. 7.32,
and for comparability with the LC approach we have centered these log-mortality
rates according to (7.64), and we use the squared Euclidean distance as the objective
function.

Figure 7.37 compares the squared Frobenius reconstruction errors of the linear
LC approximations Yp to their non-linear BN network counterparts with bottle-
necks q2 = p. We observe that the BN figures are clearly smaller saying that a
non-linear auto-encoding provides a better reconstruction, this is true, in particular,
for 2 ≤ q2 < 20. For q2 ≥ 20 the learning with the BN networks seems saturated,
note that the outer layers have q1 = q3 = 20 neurons which limits the learning at
the bottleneck for bigger q2. In view of Fig. 7.37 there seems to be a kink at q2 = 4,

Fig. 7.37 Frobenius
reconstruction errors
‖Y − Yp‖2

F for
1 ≤ p = q2 ≤ 20 in the linear
LC approach and the
non-linear BN approach
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Fig. 7.38 BN network (q1, q2, q3) = (20, 2, 20) fitted log-mortality rates log(μ̂x,t ) for the
calendar years 1950 ≤ t ≤ 2016 and the ages x0 = 0 ≤ x ≤ x1 = 99 of Swiss females
(left) and Swiss males (right); the plots use the same color scale as Fig. 7.32

and an “elbow” criterion says that this is the critical bottleneck size that should not
be exceeded.

The resulting estimated log-mortality surfaces for the bottleneck q2 = 2 are
illustrated in Fig. 7.38. These strongly resemble the raw log-mortality rates in
Fig. 7.32, in particular, for the male population we get a better fit for ages 20 ≤
x ≤ 40 from 1980 to 2000 compared to the LC model. In a further analysis we
should check whether this BN network does not over-fit to the data. We could, e.g.,
explore drop-outs during calibration or smaller FN (compression) layers q1 = q3.

Finally, we analyze the resulting activations at the bottleneck by considering the
BN encoder (7.66). Note that we assume y ∈ R

q in (7.66) with q = |T | being
the rank of the data matrix Y ∈ R

n×q . Thus, the encoder takes a fixed age 0 ≤
x ≤ 99 and encodes the corresponding time-series observation yx ∈ R

|T | by the
bottleneck activations. This parametrization has been inspired by the PCA which
typically considers a data matrix that has more rows than columns. This results in
at most q = rank(Y ) singular values, supposed n ≥ q . However, we can easily
exchange the role of rows and columns, e.g., by transposing all matrices involved.
For mortality forecasting it is advantageous to exchange these roles because we
would like to extrapolate a time-series beyond T . For this reason we set for the input
dimension q0 = q = 100, which provides us with |T | observations y t ∈ R

100. We
then fit the BN encoder (7.66) to receive the bottleneck activations

Y = (yt )t∈T �→ !(Y ) = (!(y t ))t∈T ∈ R
q2×|T |.

Figure 7.39 shows these figures for a bottleneck q2 = 2. We observe that these
bottleneck time-series (!(y t ))t∈T are much more difficult to understand than the
LC/RH ones given in Fig. 7.35. Firstly, we see that we have quite some dependence
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Fig. 7.39 BN network (q1, q2, q3) = (20, 2, 20): bottleneck activations showing !(y t ) ∈ R
2 for

t ∈ T

between the components of the time-series. Secondly, in contrast to the LC/RH case
of Fig. 7.35, there is not one component that dominates. Note that this dominance
has been obtained by scaling the components of (bx)x to add up to 1 (which,
of course, reflects the magnitudes of the singular values). In the non-linear case,
these scales are hidden in the decoder which is more difficult to extract. Thirdly,
the extrapolation may not work if the time-series has a trend and if we use the
hyperbolic tangent activation function that has a bounded range. In general, a trend
extrapolation has to be considered very carefully with FN networks with non-linear
activation functions, and often there is no good solution to this problem within
the FN network framework. We conclude that this approach improves in-sample
mortality surface modeling, but it leaves open the question about forecasting the
future mortality rates because an extrapolation seems more difficult. �

Remark 7.32 The concept of BN networks has also been considered in the actuarial
literature to encode geographic information, see Blier-Wong et al. [39]. Since
geographic information has a natural spatial component, these authors propose
to use a convolutional neural network to encode the spatial information before
processing the learned features through a BN network. The proposed decoder may
have different forms, either it tries to reconstruct the whole (spatial) neighborhood
of a given location or it only tries to reconstruct the site of a given location.
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7.6 Model-Agnostic Tools

We collect some model-agnostic tools in this section that help us to better understand
and analyze the networks, their calibrations and predictions. Model-agnostic tools
are techniques that are not specific to a certain model type and can be used for
any regression model. Most methods presented here are nicely presented in the
tutorial of Lorentzen–Mayer [258]. There are several ways of getting a better
understanding of a regression model. First, we can analyze variable importance
which tries to answer similar questions to the GLM variable selection tools
of Sect. 5.3 on model validation. However, in general, we cannot rely on any
asymptotic likelihood theory for such an analysis. Second, we can try to understand
the predictive model. For a GLM with the log-link function this is quite simple
because the systematic effects are of a multiplicative nature. For networks this
is much more complicated because we allow for much more general regression
functions. We can either try to understand these functions on a global portfolio level
(by averaging the effects over many insurance policies) or we can try to understand
these functions locally for individual insurance policies. The latter refers to local
sensitivities around a chosen feature value x ∈ X , and the former to global model-
agnostics.

7.6.1 Variable Permutation Importance

For GLMs we have studied the LRT and the Wald test that have been assisting us
in reducing the GLM by the feature components that do not contribute sufficiently
to the regression task at hand, see Sects. 5.3.2 and 5.3.3. These variable reduction
techniques rely on an asymptotic likelihood theory. Here, we need to proceed
differently, and we just aim at ranking the variables by their importance, similarly
to a drop1 analysis, see Listing 5.6.

For a given FN network regression model

x ∈ X �→ μ(x) = g−1〈β, z(d :1)(x)〉,

we randomize one component of x = (x1, . . . , xq)
� at a time, and we study the

resulting change in the objective function. More precisely, for given (learning) data
L, with features x1, . . . , xn, we select one feature component 1 ≤ j ≤ q and
permute (xi,j )1≤i≤n randomly across the entire portfolio 1 ≤ i ≤ n. We denote by
L(j) the resulting data with the j -th component being permuted. We then compare
the resulting deviance loss D(L(j), μ) to the one D(L, μ) on the original data L
using the same regression model μ. We call this approach variable permutation
importance (VPI). Note that such a permutation does not only act on the marginal
effects, but it also distorts the interaction effects of the different feature components.
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Fig. 7.40 VPI measured by
the relative change vpi(j),
1 ≤ j ≤ q, of model Poisson
GLM3 of Table 5.5 and the
FN network regression model
μ̂m=1 of Table 7.9
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We calculate the VPI on the MTPL claim frequency data of model Poisson
GLM3 of Table 5.5 and the FN network regression model μ̂m=1 of Table 7.9; we
use this example throughout this section on model-agnostic tools. Figure 7.40 shows
the relative increases

vpi(j) = D(L(j), μ)− D(L, μ)
D(L, μ) ,

of the deviance losses by permuting one feature component 1 ≤ j ≤ q at a time.
Obviously, the BonusMalus level followed by DrivAge and VehBrand are

the most important variables according to this VPI method. This is in alignment for
both models. Thereafter, there are smaller disagreements between the two models.
These disagreements may (also) be caused by a non-optimal feature pre-processing
in the GLM where, for instance, we have to add the interaction effects manually,
see (5.35). Overall, these VPI results are in line with the findings of the classical
methods on GLMs, see for instance the drop1 table in Listing 5.6.

One point that is worth mentioning (and which makes the VPI results not fully
reliable) is the use of feature components that are highly correlated. In our case,
Density and Area are highly correlated, see Fig. 13.12. Therefore, it may not
make sense to randomly permute one component while keeping the other one
unchanged. This issue will also arise in other methods described below.

Remark 7.33 (Global Surrogate Model) There are other machine learning methods
that offer different measures of variable importance. For instance, (binary split)
classification and regression trees (CARTs) offer popular methods for measuring
variable importance; for binary split CARTs we refer to Breiman et al. [54]
and Denuit et al. [100]. These CARTs select individual feature components for
partitioning the feature space X , and variable importance is measured by analyzing
the contribution of each feature component to the total decrease of the objective
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function. Binary split CARTs have the advantage that this can be done in an additive
way.

More complex regression models like FN networks can then be analyzed by using
a binary split regression tree as a global surrogate model. That is, we can fit a CART
to the network regression function (as a surrogate model) and then analyze variable
importance in this surrogate regression tree model using the tools of regression trees.
We will not give an explicit example here because we have not formally introduced
regression trees in this manuscript, but this concept is fairly straightforward and
well-understood.

7.6.2 Partial Dependence Plots

There are several graphical tools that study the individual behavior in the feature
components. Some of these tools select individual insurance policies and others
study global portfolio properties. They have in common that they are based on
marginal considerations, i.e., some sort of projection.

Individual Conditional Expectation

Individual conditional expectation (ICE) selects individual insurance policies
(Yi, x i , vi ) and varies the feature components of xi over their entire domain;
we refer to Goldstein et al. [164]. Similarly to the VPI of Sect. 7.6.1, ICE does
not respect collinearity in feature components, but it is rather an isolated view of
individual components.

In Fig. 7.41 we provide the ICE plots of model Poisson GLM3 of Table 5.5 and
the FN network regression model μ̂m=1 of Table 7.9 of 100 randomly selected
insurance policies xi . For these randomly selected insurance policies we let the
variable DrivAge vary over its domain {18, . . . , 90}. Each color corresponds to
one insurance policy i, and the colors in the two plots coincide. In the GLM
we observe that the lines are roughly parallel which reflects that we have an
additive regression structure on the canonical scale (note that these plots are on the
canonical parameter scale). The lines are not perfectly parallel because we allow
for an interaction between DrivAge and BonusMalus in model Poisson GLM3,
see (5.35). The plot of the FN network is more difficult to interpret. Overall the
levels (colors) coincide in the two plots, but in the FN network plot the lines are not
increasing for ages approaching 18, the reason for this is that we have interactions
with other feature components that are important. In particular, for ages close to
18 we cannot have a BonusMalus level of 50% and, therefore, the FN network
cannot be trained on this part of the feature space. Nevertheless, the ICE plot allows
for such feature configurations (by just extrapolating the FN network regression
function beyond the set of available insurance policies). This difficulty is confirmed
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Fig. 7.41 ICE plots of 100 randomly selected insurance policies xi of (lhs) model Poisson GLM3
and (rhs) FN network μ̂m=1 letting the variable DrivAge vary over its domain; the y-axis is on
the canonical parameter scale

by exploiting the same plot only on insurance policies that have a BonusMalus
level of at least 100%. In that case the lines for small ages are non-decreasing when
approaching the age of 18, thus, providing a more reasonable interpretation. We
conclude that if we have strong dependence and/or interactions between the feature
components this method may not provide any reasonable interpretations.

Partial Dependence Plot

Partial dependence plots (PDPs) have been introduced by Friedman [141], see also
Zhao–Hastie [405]. PDPs are closely related to the do-operator in causal inference
in statistics; we refer to Pearl [298] and Pearl et al. [299] for the do-operator. A
PDP and the do-operator, respectively, are obtained by breaking the dependence
structure between different feature components. Namely, we decompose the feature
x = (xj , x\j ) into two parts with x\j denoting all feature components except of
component xj ; we will use a slight abuse of notation because the components need
to be permuted correspondingly in the following regression function x → μ(x) =
μ(xj , x\j ). Since, typically, there is dependence between xj and x\j one can infer
x\j from xj , and vice versa. A PDP breaks this inference potential so that the
sensitivity can be studied purely in xj . In particular, the partial dependence profile
is obtained by

xj �→ μ̄j (xj ) =
∫
μ(xj , x\j ) dp(x\j ), (7.67)
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where p(x\j ) is the marginal (portfolio) distribution of the feature components x\j .
Observe that this differs from the conditional expectation which reads as

xj �→ μ(xj ) = Ep

[
μ(xj , x\j )

∣
∣ xj
] =

∫
μ(xj , x\j ) dp(x\j |xj ),

the latter allowing for inferring x\j from xj through the conditional probability
dp(x\j |xj ).
Remark 7.34 (Discrimination-Free Insurance Pricing) Recent actuarial literature
discusses discrimination-free insurance pricing which aims at developing a pricing
framework that is free of discrimination w.r.t. so-called protected characteristics
such as gender and ethnicity; we refer to Guillén [174], Chen et al. [69, 70],
Lindholm et al. [253] and Frees–Huang [136] for discussions on discrimination
in insurance. In general, part of the problem also lies in the fact that one can
often infer the protected characteristics from the non-protected feature information.
This is called indirect discrimination or proxy discrimination. The proposal of
Lindholm et al. [253] for achieving discrimination-free prices exactly follows the
construction (7.67), by breaking the link, which infers the protected characteristics
from the non-protected ones.

The partial dependence profile on our portfolio L with given features x1, . . . , xn
is now obtained by just using the portfolio distribution as an empirical distribution
for p in (7.67). That is, for a selected component xj of x, we consider the partial
dependence profile

xj �→ μ̄j (xj ) = 1

n

n∑

i=1

μ(xj , xi,\j ) = 1

n

n∑

i=1

μ
(
xi,0, xi,1, . . . , xi,j−1, xj , xi,j+1, . . . , xi,q

)
,

thus, we average the ICE plots over xi,\j of our portfolio 1 ≤ i ≤ n.
Figure 7.42 (lhs, middle) give the PDPs of the variables BonusMalus and

DrivAge of model Poisson GLM3 and the FN network μ̂m=1. Overall they

Fig. 7.42 PDPs of (lhs) BonusMalus level and (middle) DrivAge; the y-axis is on the
canonical parameter scale; (rhs) ratio of policies with a bonus-malus level of 50% per driver’s
age
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look reasonable. However, we are again facing the difficulty that these partial
dependence profiles consider feature configurations that should not appear in our
portfolio. Roughly 57% of all insurance policies have a bonus-malus level of 50%,
which means that these driver’s did not suffer any claims in the past couple of
years. Obviously a driver of age 18 cannot be on this bonus-malus level, simply
because she/he is not in a state where she/he can have multiple years of driving
experience without an accident. However, the PDP does not respect this fact, and just
extrapolates the regression function into that part of the feature space. Therefore, the
PDP at driver’s age 18 is based on 57% of the insurance policies being on a bonus-
malus level of 50% because this corresponds to the empirical portfolio distribution
p(x\j ) excluding the driver’s age xj = DrivAge information. Figure 7.42 (rhs)
shows the ratio of insurance policies that have a bonus-malus level of 50%. We
observe that this ratio is roughly zero up to age 28 (orange vertical dotted line),
which indicates that a driver needs 10 successive accident-free years to reach the
lowest bonus-malus level (starting from 100%). We consider it to be data error that
this ratio below age 28 is not identically equal to zero. We conclude that these PDPs
need to be interpreted very carefully because the insurance portfolio is not uniformly
distributed across the feature space. In some parts of the feature space the regression
function x �→ μ(x) may not even be well-defined because certain combinations of
feature values x may not exist (e.g., a driver of age 18 on bonus-malus level 50% or
a boy at a girl’s college).

Accumulated Local Effects Profile

PDPs have the problem that they do not respect the dependencies between the
feature components, as explained in the previous paragraphs. The accumulated local
effects (ALE) profile tries to take account for these dependencies by only studying
a local feature perturbation, we refer to Apley–Zhu [13]. We present a smooth
(gradient-based) version of ALE because our regression functions are differentiable.
Consider the local effect in the individual feature x w.r.t. the component xj by
studying the partial derivative

μj (x) = ∂μ(x)

∂xj
. (7.68)

The average local effect of component j is received by

xj �→ �j(xj ;μ) =
∫
μj(xj , x\j )dp(x\j |xj ). (7.69)

ALE integrate the average local effects�j(·) over their domain, and the ALE profile
is defined by

xj �→
∫ xj

xj0

�j(zj ;μ)dzj =
∫ xj

xj0

∫
μj(zj , x\j )dp(x\j |zj )dzj , (7.70)
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where xj0 is a given initialization point. The difference between PDPs and ALE
is that the latter correctly considers the dependence structure between xj and x\j ,
see (7.69).

Listing 7.10 Local effects through the gradients of FN networks in keras [77]

1 Input = layer_input(shape = c(11), dtype = ’float32’, name = ’Design’)
2 #
3 Output = Input %>%
4 layer_dense(units=20, activation=’tanh’, name=’FNLayer1’) %>%
5 layer_dense(units=15, activation=’tanh’, name=’FNLayer2’) %>%
6 layer_dense(units=10, activation=’tanh’, name=’FNLayer3’) %>%
7 layer_dense(units=1, activation=’linear’, name=’Network’)
8 #
9 model = keras_model(inputs = c(Input), outputs = c(Output))

10 #
11 grad = Output %>%
12 layer_lambda(function(x) k_gradients(model$outputs, model$inputs))
13 model.grad = keras_model(inputs = c(Input), outputs = c(grad))
14 theta.grad <- data.frame(model.grad %>% predict(XX))

Example We come back to our MTPL claim frequency FN network example. The
local effects (7.68) can directly be calculated in the R library keras [77] for a FN
network, see Listing 7.10. In order to do so we need to drop the embedding layers,
compared to Listing 7.4, and directly work on the learned embeddings. This gives
an input layer of dimension q = 7 + 2 + 2 = 11 because we have two categorical
features that have been embedded into 2-dimensional Euclidean spaces R

2. Then,
we can formally calculate the gradient of the FN network w.r.t. its inputs which is
done on lines 11–13 of Listing 7.10. Remark that we work on the canonical scale
because we use the linear activation function on line 7 of the listing.

There remain the averaging (7.69) and the integration (7.70) which can be done
empirically

xj �→ �j(xj ;μ) = 1

|E(xj )|
∑

i∈E(xj )
μj (xi ), (7.71)

where E(xj ) denotes the indices i of all cases xi , 1 ≤ i ≤ n, with xi,j = xj ,
assuming of having discrete feature data observations. Note that this empirical
averaging respects the dependence within x. The (uncentered) ALE profile is then
obtained by aggregating these local effects, that is,

xj �→ μ̃j (xj ) =
∫ xj

xj0

�j(zj ;μ)dzj ,
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where this integration is typically understood in a discrete sense because the
observed feature components xi,j are discrete. Often, this uncentered ALE profile is
still translated (centered) by the portfolio average.

Remarks 7.35

• We have only introduced ALE for continuous feature variables. For nominal
categorical feature components it is not immediately clear how to reasonably
integrate the average local effects�j(xj ;μ), and one typically directly analyzes
these average local effects.

• For GLMs the ALEs are rather simple if we work on the canonical scale and
under the canonical link, since

θj (x) = ∂θ(x)

∂xj
= βj ≡ �j(xj ; θ).

In the case of model Poisson GLM3 presented in Sect. 5.3.4 the situation is
more delicate as we model the interactions in the GLM as follows, see (5.34)
and (5.35),

(DrivAge,BonusMalus)

�→ βl DrivAge+ βl+1log(DrivAge)+
4∑

j=2

βl+j (DrivAge)j

+βl+5BonusMalus+ βl+6 BonusMalus · DrivAge
+βl+7BonusMalus · (DrivAge)2.

In that case, though we work with a GLM, the resulting local effects are different
if we calculate the derivatives w.r.t. DrivAge and BonusMalus, respectively,
because we explicitly (manually) include non-linear effects into the GLM.

Figure 7.43 shows the ALE profiles of the variables BonusMalus and
DrivAge. The shapes of these profiles can directly be compared to the PDPs
of Fig. 7.42 (the scale on the y-axis should be ignored because this will depend
on the applied centering, however, we hold on to the canonical scale). The main
difference between these two plots can be observed for the variable DrivAge at
low ages. Namely, the ALE profiles have a different shape at low ages respecting
the dependencies in the feature components by only considering real local feature
configurations.
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Fig. 7.43 ALE profiles of (lhs) BonusMalus level and (rhs) DrivAge; the y-axis is on the
log-scale

7.6.3 Interaction Strength

Next we are going to discuss pairwise interaction strength. Friedman–Popescu [143]
made the following proposal. Roughly speaking, there is an interaction between the
two feature components xj and xk of x in the regression function x �→ μ(x) if

μj,k(x) = ∂2μ(x)

∂xj∂xk
�= 0. (7.72)

This means that the magnitude of a change of the regression function μ(x) in xj
depends on the current value of xk. If there is no such interaction, we can additively
decompose the regression function μ(x) into two independent terms. This then
reads as μ(x) = μ\j (x\j ) + μ\k(x\k). This motivation is now applied to the
PDP profiles given in (7.67). We define the centered versions xj �→ μ̆j (xj ) and
xk �→ μ̆k(xk) of the PDP profiles by centering the PDP profiles xj �→ μ̄j (xj )

and xk �→ μ̄k(xk) over the portfolio values xi , 1 ≤ i ≤ n. Next, we consider an
analogous two-dimensional version for (xj , xk). Let (xj , xk) �→ μ̆j,k(xj , xk) be the
centered version of a two-dimensional PDP profile (xj , xk) �→ μ̄j,k(xj , xk).

Friedman’s H -statistics measures the pairwise interaction strength between the
components xj and xk, and it is defined by

H 2
j,k =

∑n
i=1

(
μ̆j,k(xi,j , xi,k)− μ̆j (xi,j )− μ̆k(xi,k)

)2
∑n
i=1 μ̆

j,k(xi,j , xi,k)2
, (7.73)

we refer to formula (44) in Friedman–Popescu [143]. While H 2
j,k measures the

proportion of the joint interaction effect, as we normalize by the variability of
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the joint effect
∑n
i=1 μ̆

j,k(xi,j , xi,k)
2, sometimes also the absolute measure is

considered by taking the square root of the enumerator in (7.73). Of course, this
can be extended to interactions of three components, etc., we refer to Friedman–
Popescu [143].

We do not give an example here, because calculating Friedman’s H -statistics
can be computationally demanding if one has many feature components with many
levels in FN network modeling.

7.6.4 Local Model-Agnostic Methods

The above methods like the PDP and the ALE profile have been analyzing the global
behavior of the regression functions. We briefly mention some tools that describe the
local sensitivity and explanation of regression results.

Probably the most popular method is the locally interpretable model-agnostic
explanation (LIME) introduced by Ribeiro et al. [311]. This analyzes locally the
expected response of a given feature x by perturbing x. In a nutshell, the idea is to
select an environment E(x) ⊂ X of a chosen feature x and to study the regression
function x′ �→ μ(x′) in this environment x′ ∈ E(x). This is done by fitting a
(much) simpler surrogate model to μ on this environment E(x). If the environment
is small, often a linear regression model is chosen. This then allows one to interpret
the regression function μ(·) locally using the simpler surrogate model, and if we
have a high-dimensional feature space, this linear regression is complemented with
LASSO regularization to only select the most important feature components.

The second method considered in the literature is the Shapley additive expla-
nation (SHAP). The SHAP is based on Shapley values [335] which is a method
of allocating rewards to players in cooperative games, where a team of individual
players jointly contributes to a potential success. Shapley values solve this allocation
problem under the requirements of additivity and fairness. This concept can be
translated to analyzing how individual feature components of x contribute to the
total prediction μ(x) of a given case. Shapley values allow one to do such a
contribution analysis in the aforementioned additive and fair way, see Lundberg–Lee
[261]. The calculation of SHAP values is combinatorially demanding and therefore
several approximations have been proposed, many of them having their own caveats,
we refer to Aas et al. [1]. We will not further consider these but refer to the relevant
literature.

7.6.5 Marginal Attribution by Conditioning on Quantiles

The above model-agnostic tools have mainly been studying the sensitivities of the
expected response μ(x) in the feature components of x. This becomes apparent
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from considering the partial derivatives (7.68) to calculate the local effects. Alterna-
tively, we could try to understand how the feature components of x contribute to a
given response μ(x), see Ancona et al. [12]; this section follows Merz et al. [273].
The marginal attribution on an input component j of the response μ(x) can be
studied by the directional derivative

xj �→ xjμj (x) = xj
∂μ(x)

∂xj
. (7.74)

This was first proposed to the data science community by Shrikumar et al. [340].
Basically, it means that we replace the partial derivative μj(x) by the directional
derivative along the vector xjej = (0, . . . , 0, xj , 0, . . . , 0)� ∈ R

q+1

lim
ε→0

μ(x + εxjej )− μ(x)
ε

= lim
ε→0

μ
(
(1, x1, . . . , xj−1, (1 + ε)xj , xj+1, . . . , xq)

�)− μ(x)
ε

= xjμj (x),

where ej is the (j + 1)-st basis vector in R
q+1 (index j = 0 corresponds to the

intercept component x0 = 1).
We start by recalling the sensitivity analysis of Hong [189] and Tsanakas–

Millossovich [355] in the context of risk measurement. Assume the features have
a portfolio distribution X ∼ p. This describes the random selection of an insurance
policy X = x from the portfolio described by p. The average price over the entire
portfolio is then given by

μ = Ep[μ(X)] =
∫
μ(x)dp(x).

We implicitly interpret μ(X) = E[Y |X] as the price of the response Y , here,
though we do not need the response distribution in this section. Assume μ(X)
has a continuous distribution function Fμ(X); and we drop the intercept component
X0 = x0 = 1 from these considerations (but we still keep it in the regression
model). This implies that Uμ(X) = Fμ(X)(μ(X)) is uniformly distributed on [0, 1].
Choosing a density ζ on [0, 1] gives us a probability distortion ζ(Uμ(X)) as we have
the normalization

Ep

[
ζ(Uμ(X))

] =
∫ 1

0
ζ(u)du = 1.

This allows us to define a distorted portfolio price in the sense of a Radon–Nikodým
derivative, namely, we set for the distorted portfolio price

�(μ(X); ζ ) = Ep

[
μ(X)ζ(Uμ(X))

]
.
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This functional �(μ(X); ζ ) is a so-called distortion risk measure. Our goal is to
study the sensitivities of this distortion risk measure in the components of X.
Assume existence of the following directional derivatives for all 1 ≤ j ≤ q

Sj (μ; ζ ) = ∂

∂ε
�
(
μ
(
(1,X1, . . . , Xj−1, (1 + ε)Xj ,Xj+1, . . . Xq)

�) ; ζ
)∣∣
∣
ε=0
.

Sj (μ; ζ ) can be used to describe the sensitivities of the regression function X �→
μ(X) in the feature components Xj . Under different sets of assumptions, Hong
[189] and Tsanakas–Millossovich [355] have proved the following identity

Sj (μ; ζ ) = Ep

[
Xjμj (X)ζ(Uμ(X))

]
,

the right-hand side exactly uses the marginal attribution (7.74). There remains the
freedom of the choice of the density ζ on [0, 1], which allows us to study the
sensitivities of different distortion risk measures. For the uniform distribution ζ ≡ 1
on [0, 1] we simply have the average (best-estimate) price and its average marginal
attributions

�(μ(X); ζ ≡ 1) = Ep[μ(X)] = μ and Sj (μ; ζ ≡ 1) = Ep[Xjμj (X)].

If we want to consider a quantile risk measure, called value-at-risk (VaR), we choose
a Dirac measure for the density ζ . That is, choose a point measure of mass 1 in
α ∈ (0, 1), i.e., the density ζ is concentrated in the single point α. In that case, the
event {Fμ(X)(μ(X)) = Uμ(X) = α} receives probability one, and therefore we have
the α-quantile

�(μ(X); α) = F−1
μ(X)(α),

and the corresponding sensitivities for 1 ≤ j ≤ q

Sj (μ; α) = Ep

[
Xjμj (X)

∣
∣∣μ(X) = F−1

μ(X)(α)
]
. (7.75)

Remarks 7.36

• In the introduction to this section we have assumed that μ(X) has a continuous
distribution function. This emphasizes that this sensitivity analysis is most
suitable for continuous feature components. Categorical and discrete feature
components can be embedded into a Euclidean space, e.g., using embedding
layers, and then they can be treated as continuous variables.

• Sensitivities (7.75) respect the local portfolio structure as they are calculated
w.r.t. p.

• In applications, we will work with the empirical portfolio distribution for p
provided by (xi )1≤i≤n. This gives an empirical approximation to (7.75) and,
in particular, it will require a choice of a bandwidth for the evaluation of the
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conditional probability, conditioned on the event {μ(X) = F−1
μ(X)(α)}. This is

done with a local smoother similarly to Listing 7.8.

In analogy to Merz et al. [273] we give a different interpretation to the
sensitivities (7.75), which allows us to further expand this formula. We have 1st
order Taylor expansion

μ(x + ε) = μ(x)+ (∇xμ(x))
�ε + o (‖ε‖2) for ‖ε‖2 → 0.

Obviously, this is a local approximation in x. Setting ε = −x, we get (a possibly
crude) approximation

μ(0) ≈ μ (x)− (∇xμ(x))
� x.

By bringing the gradient term to the other side, using (7.75) and conditionally
averaging, we receive the 1st order marginal attributions

F−1
μ(X)(α) = Ep

[
μ (X)

∣∣
∣μ(X) = F−1

μ(X)(α)
]

≈ μ (0)+
q∑

j=1

Sj (μ; α). (7.76)

Thus, the sensitivities Sj (μ; α) provide a 1st order description of the quantiles
F−1
μ(X)(α) of μ(X). We call this approach marginal attribution by conditioning on

quantiles (MACQ) because it shows how the components Xj of X contribute to a
given quantile level.

Example 7.37 (MACQ for Linear Regression) The simplest case is the linear
regression case because the 1st order marginal attributions (7.76) are exact in this
case. Consider a linear regression function with regression parameter β ∈ R

q+1

x �→ μ(x) = 〈β, x〉 = β0 +
q∑

j=1

βjxj .

The 1st order marginal attributions for fixed α ∈ (0, 1) are given by

F−1
μ(X)(α) = μ (0)+

q∑

j=1

Sj (μ; α)

= β0 +
q∑

j=1

βjEp

[
Xj

∣
∣
∣μ(X) = F−1

μ(X)(α)
]
. (7.77)

That is, we replace the feature components Xj by their expected contributions on
a given quantile level F−1

μ(X)(α) in (7.77). We compare this explanation to the ALE
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profile (7.70). Set initial value xj0 = 0, the ALE profile for the linear regression
model is given by

xj �→
∫ xj

0
�j(zj )dzj = βjxj .

This is the sensitivity of the linear regression function in component xj ,
whereas (7.77) describes the contribution of each feature component to an expected
response level μ(x), in particular, Ep[Xj |μ(X) = F−1

μ(X)
(α)] describes the average

feature value in component j on a given quantile level. �

A natural next step is to expand the 1st order attributions to 2nd orders. This
allows us to consider the interaction terms. Consider the 2nd order Taylor expansion

μ(x + ε) = μ(x)+ (∇xμ(x))
�ε + 1

2
ε�∇2

xμ(x)ε + o(‖ε‖2
2) for ‖ε‖2 → 0.

Similar to (7.76), setting ε = −x, this gives us the 2nd order marginal attributions

F−1
μ(X)(α) ≈ μ (0)+

q∑

j=1

Sj (μ; α)− 1

2

q∑

j,k=1

Tj,k(μ; α) (7.78)

= μ (0)+
q∑

j=1

(
Sj (μ; α)− 1

2
Tj,j (μ; α)

)
−

∑

1≤j<k≤q
Tj,k(μ; α),

where for 1 ≤ j, k ≤ q we define μj,k(x) = ∂xj ∂xkμ(x), see (7.72), and

Tj,k(μ; α) = Ep

[
XjXkμj,k(X)

∣
∣
∣μ(X) = F−1

μ(X)(α)
]
. (7.79)

Remarks 7.38

• The first line of (7.78) separates the 1st order attributions from the 2nd order
attributions, the second line splits w.r.t. the individual component j attributions
and the interaction attributions j �= k.

• The 1st order attributions (7.75) have been motivated by considering the direc-
tional derivatives of the VaR distortion risk measure. Unfortunately, the 2nd order
consideration has no simple equivalent motivation, as the 2nd order directional
derivatives are much more involved, even in the linear case, we refer to Property
1 in Gourieroux et al. [167].
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• Interestingly, we can precisely evaluate the accuracy of approximation (7.78) by
analyzing for a given regression function μ(·)

sup
α∈(0,1)

∣
∣
∣∣
∣
∣
F−1
μ(X)(α)− μ (0)−

q∑

j=1

Sj (μ; α)+ 1

2

q∑

j,k=1

Tj,k(μ; α)
∣
∣
∣∣
∣
∣
. (7.80)

Intuitively, in order to have a uniform good approximation, the origin 0 should be
somehow centered in the feature distribution X ∼ p. This will be studied next.

Above we have implicitly assumed that 0 is a suitable reference point that makes
the approximation error (7.80) small. For FN network fitting we typically normalize
the features either using the MinMaxScaler (7.29) or we center and normalize the
components of (xi )1≤i≤n according to (7.30). That is, the reference point is chosen
such that the gradient descent fitting works efficiently. However, this may not be
an optimal reference point for studying the 2nd order attributions. Therefore, we
analyze this question in more detail, and the following reparametrization can still be
done after model fitting.

If we choose an arbitrary translation a ∈ R
q , we can set ε = a − x in the

above 2nd order Taylor expansion to receive another 2nd order marginal attribution
representation

F−1
μ(X)(α) ≈ μ (a)− Ep

[
(a − X)�∇xμ(X)

∣∣
∣μ(X) = F−1

μ(X)(α)
]

(7.81)

−1

2
Ep

[
(a − X)�∇2

xμ(X)(a − X)

∣
∣
∣μ(X) = F−1

μ(X)(α)
]
.

Essentially, this means that we shift the feature distribution p to considering the
shifted random vectors Xa = X − a and while setting μa(·) = μ(a + ·),
thus, this simply says that we pre-process the features differently. In view of
approximation (7.81) we can now select a reference point a ∈ R

q that makes the 2nd
order marginal attributions as precise as possible. Define the events Al = {μ(X) =
F−1
μ(X)(αl)} for a discrete quantile grid 0 < α1 < . . . < αL < 1. We define the

objective function

a �→ G(a;μ) =
L∑

l=1

(
F−1
μ(X)

(αl)− μ (a)+ Ep

[
(a − X)�∇xμ(X)

∣
∣
∣Al

]
(7.82)

+ 1

2
Ep

[
(a − X)�∇2

xμ(X)(a − X)�
∣
∣
∣Al

])2

.

Making this objective function G(a;μ) small in a will provide us with a good
reference point for the selected quantile levels (αl)1≤l≤L; this is exactly the MACQ
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proposal of Merz et al. [273]. A local minimum can be found by applying a gradient
descent algorithm

a(t) �→ a(t+1) = a(t) − δt+1∇aG(a
(t);μ),

for tempered learning rates δt+1 > 0. The gradient of G w.r.t. a is given by

∇aG(a;μ) = 2
L∑

l=1

(
F−1
μ(X)(αl)− μ (a)+ Ep

[
(a − X)�∇xμ(X)

∣
∣
∣Al

]

+1

2
Ep

[
(a − X)�∇2

xμ(X)(a − X)�
∣
∣
∣Al

])

×
(

− ∇aμ (a)+ Ep [∇xμ(X)|Al]

−Ep

[
X�∇2

xμ(X)

∣
∣
∣Al

]
+ 1

2
a�

Ep

[
∇2

xμ(X)

∣
∣
∣Al

])
.

All subsequent considerations and interpretations are done w.r.t. an optimal ref-
erence point a ∈ R

q by minimizing the objective function (7.82) on the chosen
quantile grid. Mathematically speaking, this optimal choice is w.l.o.g. because the
origin 0 of the coordinate system of the feature space X is arbitrary, and any
other origin can be chosen by a translation, see formula (7.81) and the subsequent
discussion. For interpretations, however, the choice of the reference point a matters
because the directional derivativeXjμj (X) can be small either becauseXj is small
or because μj(X) is small. Having a small Xj means that this feature value is close
to the chosen reference point.

Example 7.39 (MACQ Analysis) We revisit the MTPL claim frequency example
using the FN network regression model of depth d = 3 having (q1, q2, q3) =
(20, 15, 10) neurons. Importantly, we use the hyperbolic tangent as the activation
function in the FN layers which provides smoothness of the regression function.
Figure 7.40 shows the VPI plot of this fitted model. Obviously, the variable
BonusMalus plays the most important role in this predictive model. Remark that
the VPI plot does not properly respect the dependence structure in the features as it
independently permutes each feature component at a time. The aim in this example
is to determine variable importance by doing the MACQ analysis (7.78).

Figure 7.44 (lhs) shows the empirical density of the fitted canonical parameter
θ(xi ), 1 ≤ i ≤ n; all plots in this example refer to the canonical scale. We then
minimize the objective function (7.82) which provides us with an optimal reference
point a ∈ R

q ; we choose equidistant quantile grid 1% < 2% < . . . < 99%
and all conditional expectations in ∇aG(a;μ) are empirically approximated by a
local smoother similar to Listing 7.8. Figure 7.44 (rhs) gives the resulting marginal
attributions w.r.t. this reference point. The orange line shows the 1st order marginal
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Fig. 7.45 (lhs) Second order marginal attributions Sj (μ;α) − 1
2Tj,j (μ;α) excluding interaction

terms, and (rhs) interaction terms − 1
2Tj,k(μ;α), j �= k

attributions (7.76), and the red line the 2nd order marginal attributions (7.78). The
cyan line drops the interaction terms Tj,k(μ; α), j �= k, from the 2nd order marginal
attributions. From the shaded cyan area we see the importance of the interaction
terms. We note that the 2nd order marginal attributions (red line) match the true
empirical quantiles (black dots) quite well for the chosen reference point a.

Figure 7.45 gives the 2nd order marginal attributions Sj (μ; α)− 1
2Tj,j (μ; α) of

the individual components 1 ≤ j ≤ q on the left-hand side, and the interaction terms
− 1

2Tj,k(μ; α), j �= k on the right-hand side. We identify the following components
as being important BonusMalus, DrivAge, VehGas, VehBrand and Region;
these components show a behavior substantially different from being equal to 0, i.e.,
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∑q

k=1 Tj,k(μ;α) including
interaction terms, and (rhs) slices at the quantile levels α ∈ {20%, 40%, 60%, 80%}

these components differentiate from the reference point a. These components also
have major interactions that contribute to the quantiles above the level 80%.

If we allocate the interaction terms to the corresponding components 1 ≤ j ≤ q
we receive the second order marginal attributions Sj (μ; α) − 1

2

∑q

k=1 Tj,k(μ; α).
These are illustrated in Fig. 7.46 (lhs) and the quantile slices at the levels α ∈
{20%, 40%, 60%, 80%} are given in Fig. 7.46 (rhs). These graphs illustrate variable
importance on different quantile levels (and respecting the dependence within
the features). In particular, we identify the main variables that distinguish the
given quantile levels from the reference level θ(a), i.e., Fig. 7.46 (rhs) should be
understood as the relative differences to the chosen reference level. Once more we
see that BonusMalus is the main driver, but also other variables contribute to the
differentiation of the high quantile levels.

Figure 7.47 shows the individual attributions xi,jμj (xi ) of 1’000 randomly
selected cases xi for the feature components j = BonusMalus,DrivAge,
VehGas,VehBrand; the colors illustrate the corresponding feature values xi,j
of the individual car drivers i, and the black solid line corresponds to Sj (μ; α) −
1
2Tj,j (μ; α) excluding the interaction terms (the black dotted line is one empir-
ical standard deviation around the black solid line). Focusing on the variable
BonusMalus we observe that the lower quantiles are almost completely domi-
nated by insurance policies on the lowest bonus-malus level. The bonus-malus levels
70–80 provide little sensitivity (are concentrated around the zero line) because the
reference point a reflects these bonus-malus levels, and, finally, the large quantiles
are dominated by high bonus-malus levels (red dots).

The plot of the variable DrivAge is interpreted similarly. The reference point
a is close to the young drivers, therefore, young drivers are concentrated around
the zero line. At the low quantile levels, higher ages contribute positively to the
low expected frequencies, whereas these ages have an unfavorable impact at higher
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Fig. 7.47 Individual attributions xi,jμj (xi ) of 1’000 randomly selected cases xi for j =
BonusMalus,DrivAge,VehGas,VehBrand; the plots have different y-scales

quantile levels (this should be considered in combination with their bonus-malus
levels). We also observe a few outliers in this plot, for instance, we can identify a
driver of age 20 at a quantile level of 20%. Further inspection of this driver raises
some doubts whether this data is correct since this driver is at a bonus-malus level
of 68% (which should technically not be possible) and she/he has an exposure of 2
days. Surely, this insurance policy would need further investigation.

The plot of VehGas shows that the chosen reference level θ(a) is closer to
Diesel fuel cars as the red dots fluctuate less around the zero line; in different
runs of the gradient descent algorithm (with different seeds) this order has been
changing (as it depends on the reference point a). We skip a detailed analysis of the
variable VehBrand. �
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7.7 Lab: Analysis of the Fitted Networks

In the previous section we have studied some model-agnostic tools that can be used
for any (differentiable) regression model. In this section we give some network
specific plots. For simplicity we choose one specific example, namely, the FN

network μ̂
def.= μ̂m=1 of Table 7.9. We start by analyzing the learned representations

in the different FN layers, this links to our introduction in Sect. 7.1.
For any FN layer 1 ≤ m ≤ d we can study the learned representations

z(m:1)(x). For Fig. 7.48 we select at random 1’000 insurance policies xi , and the
dots show the activations of these insurance policies in neurons j = 4 (x-axis)
and j = 9 (y-axis) in the corresponding FN layers. These neuron activations are
in the interval (−1, 1) because we work with the hyperbolic tangent activation
function for φ. The color scale shows the resulting estimated frequencies μ̂(xi ) of
the selected policies. We observe that the layers are increasingly (in the depth of the
network) separating the low frequency policies (light blue-green colors) from the
high frequency policies (red color). This is a quite typical picture that we obtain
here, though, this sparsity in the 3rd FN layer is not the case for every neuron
1 ≤ j ≤ qd .

In higher dimensional FN architectures it will be difficult to analyze the learned
representations on each individual neuron, but at least one can try to understand
the main effects learned. For this, on the one hand, we can focus on the important
feature components, see, e.g., Sect. 7.6.1, and, on the other hand, we can try to study
the main effects learned using a PCA in each FN layer, see Sect. 7.5.3. Figure 7.49
shows the singular values λ1 ≥ λ2 ≥ . . . ≥ λqm > 0 in each of the three FN layers
1 ≤ m ≤ d = 3; we center the neuron activations to mean zero before applying
the SVD. These plots support the previously made statement that the layers are
increasingly separating the high frequency from the low frequency policies. An
elbow criterion tells us that in the first FN layer we have 8 important principal
components (out of 20), in the second FN layer 3 (out of 15) and in the third FN
layer 1 (out of 10). This is also reflected in Fig. 7.48 where we see more and more

Fig. 7.48 Observed activations in the three FN layers m = 1, 2, 3 (left-middle-right) in the
corresponding neurons j = 4, 9, the color key shows the estimated frequencies μ̂(xi )



7.7 Lab: Analysis of the Fitted Networks 377

5 10 15 20

0
50

10
0

15
0

20
0

25
0

30
0

singular values: FN layer 1

Index

si
ng

ul
ar

 v
al

ue
s

2 4 6 8 10 12 14

0
50

10
0

15
0

20
0

25
0

30
0

singular values: FN layer 2

Index
si

ng
ul

ar
 v

al
ue

s

2 4 6 8 10

0
50

10
0

15
0

20
0

25
0

30
0

singular values: FN layer 3

Index

si
ng

ul
ar

 v
al

ue
s

Fig. 7.49 Singular values λ1 ≥ λ2 ≥ . . . ≥ λqm > 0 in the FN layers 1 ≤ m ≤ d = 3

concentration in the neuron activations. It is important to notice that the chosen
FN network calibration μ̂ does not involve any drop-out layers during the gradient
descent fitting, see Sect. 7.4.1. Drop-out layers prevent individual neurons to over-
train to a specific task. Consequently, we will receive a network calibration that is
more equally balanced across all neurons under drop-outs, because if one neuron
drops out, the composite of the remaining neurons needs to be able to take over the
task of the dropped out neuron. This leads to less sparsity and to singular values that
are more similarly sized.

In Fig. 7.50 we analyze the first two principal components in each FN layer,
thus, these are the two principal components that correspond to the two biggest
singular values (λ1, λ2) in each of the three FN layers. The first row shows the
input variables (BonusMalus,DrivAge) ∈ [50, 125] × [18, 90] of the 1’000
randomly selected policies xi ; these are the two most important feature components
according to the VPI analysis. All three columns show the same data, however, in
different color scales: (lhs) gives the color scale μ̂, (middle) gives the color scale
BonusMalus, and (rhs) gives the color scale DrivAge. These color scales also
apply to the other rows. The 2nd row shows the first two principal components in
the 1st FN layer, the 3rd row in the 2nd FN layer, and the last row in the third
FN layer. Focusing on the first column we observe that the layers cluster the high
and the low frequency policies in the 1st principal component more and more
across the FN layers. Not surprisingly this leads to a quite clear-cut separation
w.r.t. the bonus-malus level which can be verified from the second column of
Fig. 7.50. For the driver’s age variable this sharp separation gets lost across the
layers, see third column of Fig. 7.50, which indicates that the variable DrivAge
does not influence the frequency monotonically and it interacts with the variable
BonusMalus.

Figure 7.51 shows the second order marginal attributions (7.78) for the different
inputs. The graph on the left-hand side shows the plot w.r.t. the original inputs
xi , the graph in the middle w.r.t. the learned representations z(1:1)(xi ) ∈ R

q1

in the first FN layer, and on the right-hand side w.r.t. the learned representations
z(2:1)(xi ) ∈ R

q2 in the second FN layer. We interpret these plots as follows: the
FN network disentangles the different effects through the FN layers by making
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Fig. 7.50 (First row) Input variables (BonusMalus,DrivAge), (Second–fourth row) first two
principal components in FN layers m = 1, 2, 3; (lhs) gives the color scale of estimated frequency
μ̂, (middle) gives the color scale BonusMalus, and (rhs) gives the color scale DrivAge
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Fig. 7.51 Second order marginal attributions: (lhs) w.r.t. the input layer x ∈ R
q0 , (middle)

w.r.t. the first FN layer z(1:1)(x) ∈ R
q1 , and (rhs) w.r.t. the second FN layer z(2:1)(x) ∈ R

q2

the plots more smooth and making the interactions between the neurons smaller.
Note that the learned representations z(3:1)(xi ) ∈ R

q3 in the last FN layer go into
a classical GLM for the output layer, which does not have any interactions in the
canonical predictor (because it is additive on the canonical scale), thus, being of
the same type as the linear regression of Example 7.37. In the Poisson model with
the log-link function, the interactions can only be of a multiplicative type in GLMs.
Therefore, the network feature-engineers the input xi (in an automated way) such
that the learned representation z(d :1)(xi ) in the last FN layer is exactly in this GLM
structure. This is verified by the small interaction part in Fig. 7.51 (rhs). This closes
this part on model-agnostic tools.
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Chapter 8
Recurrent Neural Networks

Chapter 7 has discussed fully-connected feed-forward neural (FN) networks. Feed-
forward means that information is passed in a directed acyclic path from the input
layer to the output layer. A natural extension is to allow these networks to have
cycles. In that case, we call the architecture a recurrent neural (RN) network. A RN
network architecture is particularly useful for time-series modeling. The discussion
on time-series data also links to Sect. 5.8.1 on longitudinal and panel data. RN
networks have been introduced in the 1980s, and the two most popular RN network
architectures are the long short-term memory (LSTM) architecture proposed by
Hochreiter–Schmidhuber [188] and the gated recurrent unit (GRU) architecture
introduced by Cho et al. [76]. These two architectures will be described in detail
in this chapter.

8.1 Motivation for Recurrent Neural Networks

We start from a deep FN network providing the regression function, see (7.2)–(7.3),

x �→ μ(x) = g−1〈β, z(d :1)(x)〉, (8.1)

with a composition z(d :1) of d FN layers z(m), 1 ≤ m ≤ d , link function g and with
output parameter β ∈ R

qd+1. In principle, we could directly use this FN network
architecture for time-series forecasting. We explain here why this is not the best
option to deal with time-series data.

Assume we want to predict a random variable YT+1 at time T ≥ 0 based on the
time-series information x0, x1, . . . , xT . This information is assumed to be available
at time T for predicting the response YT+1. The past response information Yt , 1 ≤

© The Author(s) 2023
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Applications, Springer Actuarial, https://doi.org/10.1007/978-3-031-12409-9_8
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t ≤ T , is typically included in xt .1 Using the above FN network architecture we
could directly try to predict YT+1, based on this past information. Therefore, we
define the feature information x0:T = (x0, . . . , xT ) and we aim at designing a FN
network (8.1) for modeling

x0:T �→ μT (x0:T ) = E[YT+1|x0:T ] = E[YT+1|x0, . . . , xT ].

In principle we could work with such an approach, however, it has a couple
of severe drawbacks. Obviously, the length of the feature vector x0:T depends
on time T , that is, it will grow with every time step. Therefore, the regression
function (network architecture) x0:T �→ μT (x0:T ) is time-dependent. Consequently,
with this approach we have to fit a network for every T . This deficiency can be
circumvented if we assume a Markov property that does not require of carrying
forward the whole past history. Assume that it is sufficient to consider a history of
a certain length. Choose τ ≥ 0 fixed, then, for T ≥ τ , we can set for the feature
information xT−τ :T = (xT−τ , . . . , xT ), which has a fixed length τ + 1 ≥ 1, now.
In this situation we could try to design a FN network

xT−τ :T �→ μ(xT−τ :T ) = E[YT+1|xT−τ :T ] = E[YT+1|xT−τ , . . . , xT ].

This network regression function can be chosen independent of T since the relevant
history xT−τ :T always has the same length τ+1. The time variable T could be used
as a feature component in xT−τ :T . The disadvantage of this approach is that such
a FN network architecture does not respect the temporal causality. Observe that we
feed the past history into the first FN layer

xT−τ :T �→ z(1)(xT−τ :T ) ∈ {1} × R
q1 .

This operation typically does not respect any topology in the time index of
xT−τ+1:T . Thus, the FN network does not recognize that the feature xt−1 has been
experienced just before the next feature xt . For this reason we are looking for a
network architecture that can handle the time-series information in a temporal causal
way.

1 More mathematically speaking, we assume to have a filtration (At )t≥0 on the probability space
(�,A,P). The basic assumption then is that both sequences (xt )t and (Yt )t are (At )t -adapted, and
we aim at predicting YT+1, based on the information AT . In the above case this information AT is
generated by x0, x1, . . . , xT , where xt typically includes the observation Yt . We could also shift
the time index in x t by one time unit, and in that case we would assume that (x t )t is previsible
w.r.t. the filtration (At )t . We do not consider this shift in time index as it only makes the notation
unnecessarily more complicated, but the results remain the same by including the information
correspondingly into the features.
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8.2 Plain-Vanilla Recurrent Neural Network

8.2.1 Recurrent Neural Network Layer

We explain the basic idea of RN networks in a shallow network architecture, and
deep network architectures will be discussed in Sect. 8.2.2, below. We start from the
time-series input variable x0:T = (x0, . . . , xT ), all components having the same
structure xt ∈ X ⊂ {1} × R

q0 , 0 ≤ t ≤ T . The aim is to design a network
architecture that allows us to predict the random variable YT+1, based on this time-
series information x0:T .

The main idea is to feed one component xt of the time-series x0:T at a time into
the network, and at the same time we use the output zt−1 of the previous loop as
an input for the next loop. This variable zt−1 carries forward a memory of the past
variables x0:t−1. We explain this with a single RN layer having q1 ∈ N neurons. A
RN layer is given (recursively) by a mapping, t ≥ 1,

z(1) : {1} ×R
q0 × R

q1 → R
q1, (8.2)

(xt , zt−1) �→ zt = z(1) (xt , zt−1) ,

where the RN layer z(1) has the same structure as the FN layer given in (7.5), but
based on feature input (xt , zt−1) ∈ X ×R

q1 ⊂ {1} ×R
q0 ×R

q1 , and not including
an intercept component {1} in the output.

More formally, a RN layer with activation function φ is a mapping

z(1) : {1} × R
q0 ×R

q1 → R
q1 (8.3)

(x, z) �→ z(1)(x, z) =
(
z
(1)
1 (x, z), . . . , z

(1)
q1
(x, z)

)�
,

having neurons, 1 ≤ j ≤ q1,

z
(1)
j (x, z) = φ

(〈
w
(1)
j , x

〉
+
〈
u
(1)
j , z

〉)
, (8.4)

for given network weights w
(1)
j ∈ R

q0+1 and u
(1)
j ∈ R

q1 .

Thus, the FN layers (7.5)–(7.6) and the RN layers (8.3)–(8.4) are structurally
equivalent, only the input x ∈ X is adapted to the time-series structure (xt , zt−1) ∈
X × R

q1 . Before giving more interpretation and before explaining how this single
RN network structure can be extended to a deep RN network we illustrate this RN
layer.
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time-series
input xt

RN layer
z(1)(xt, zt−1)
processing

input (xt, zt−1)

output
zt

Fig. 8.1 RN layer z(1) processing the input (xt , zt−1)

output
zt−1

time-series
input xt

RN layer
z(1)(xt, zt−1)
processing

input (xt, zt−1)

output
zt

time-series
input xt+1

RN layer
z(1)(xt+1, zt)
processing

input (xt+1, zt)

output
zt+1

Fig. 8.2 Unfolded representation of RN layer z(1) processing the input (xt , zt−1)

Figure 8.1 shows an RN layer z(1) processing the input (xt , zt−1), see (8.2). From
this graph, the recurrent structure becomes clear since we have a loop (cycle) feeding
the output zt back into the RN layer to process the next input (xt+1, zt ).
Often one depicts the RN architecture in a so-called unfolded way. This is done
in Fig. 8.2. Instead of plotting the loop (cycle) as in Fig. 8.1 (orange arrow in the
colored version), we unfold this loop by plotting the RN layer multiple times. Note
that this RN layer in Fig. 8.2 uses always the same network weights w

(1)
j and u

(1)
j ,

1 ≤ j ≤ q1, for all t . Moreover, the use of the colors of the arrows (in the colored
version) in the two figures coincides.

Remarks 8.1

• The neurons of the RN layer (8.4) have the following structure

z
(1)
j (x, z) = φ

(
〈w(1)j , x〉 + 〈u(1)j , z〉

)
= φ

(

w
(1)
0,j +

q0∑

l=1

w
(1)
l,j xl +

q1∑

l=1

u
(1)
l,j zl

)

.
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The network weights W(1) = (w
(1)
j )1≤j≤q1 ∈ R

(q0+1)×q1 include an intercept

component w(1)0,j and the network weights U(1) = (u
(1)
j )1≤j≤q1 ∈ R

q1×q1 do not
include an intercept component, otherwise we would have a redundancy.

• The RN network architecture generates a new process (zt )t . This process encodes
the part of the past history (x0:t )t which is relevant for forecasting the next step.
Thus, (zt )t can be interpreted as a (latent) memory process, or as the process of
learned (relevant) time-series representation giving us zt = zt (x0:t ).

• The same activation function φ and the same network weights (w(1)j )1≤j≤q1 and

(u
(1)
j )1≤j≤q1 are shared across all time periods t ≥ 0. This means that we assume

a stationary (stochastic) process.
• The upper index (1) indicates the fact that this is the first (and single) RN layer

in this example. In this sense, Figs. 8.1 and 8.2 show a shallow RN network. In
the next section we are going to discuss deep RN networks, and below we are
also going to discuss how the output is modeled, i.e., how the response YT+1 is
predicted based on the pre-processed features (zt )0≤t≤T ∈ R

q1×(T+1).

8.2.2 Deep Recurrent Neural Network Architectures

There are many different ways of extending a shallow RN network to a deep RN
network. Assume we want to model a RN network of depth d ≥ 2. A first (obvious)
way of receiving a deep RN network architecture is

z
[1]
t = z(1)

(
xt , z

[1]
t−1

)
∈ R

q1, (8.5)

z
[m]
t = z(m)

(
z
[m−1]
t , z

[m]
t−1

)
∈ R

qm for 2 ≤ m ≤ d , (8.6)

where all RN layers z(m), 1 ≤ m ≤ d , are of type (8.3)–(8.4), and additionally we
include an intercept component in the RN layers z(m), 2 ≤ m ≤ d . We add the
upper indices (in square brackets [·]) to the time-series (z[m]

t )t to indicate which
RN layer outputs these learned representations (memory processes). In fact, we
could also write z

[m:1]
t instead of z

[m]
t , because in z

[m:1]
t the feature input x0:t has

been processed through m RN layers z(1), . . . , z(m). For simplicity, we just use the
notation z

[m]
t = z

[m]
t (x0:t ).
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We are going to use the following abbreviation for a RN layer m ≥ 1

z
[m]
t = z(m)

(
z
[m−1]
t , z

[m]
t−1

)
= φ

(〈
W(m), z

[m−1]
t

〉
+
〈
U(m), z

[m]
t−1

〉)
∈ R

qm,

(8.7)
where the weights W(m) = (w

(m)
1 , . . . ,w

(m)
qm ) ∈ R

(qm−1+1)×qm include the

intercept components, and the weights U(m) = (u
(m)
1 , . . . ,u

(m)
qm ) ∈ R

qm×qm
do not include any intercept components. The scalar product is understood
column-wise in the weight matrices W(m) and U(m), and the activation φ is
understood component-wise. Moreover, we initialize for the input z

[0]
t = xt .

output
z
[1]
t−1

output
z
[2]
t−1
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t , z
[2]
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[1]
t )

processing
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[1]
t )
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z
[1]
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t+1, z

[2]
t )

processing
input (z[1]

t+1, z
[2]
t )

output
z
[2]
t+1

Fig. 8.3 Unfolded representation of a RN network architecture of depth d = 2

Figure 8.3 shows the RN network architecture of depth d = 2 defined in (8.5)–(8.6).
The dimension of the input z

[0]
t = xt ∈ X ⊆ {1} ×R

q0 is q0 + 1, the first RN layer
has q1 neurons and the second RN layer q2 neurons. From this graph it becomes
clear how a RN network architecture of any depth d ∈ N can be constructed
(recursively).

Remark 8.2 There are many alternative ways in building deep RN networks. E.g.,
we can add a loop that connects the output of the second RN layer back to the first
one

z
[1]
t = z(1)

(
xt , z

[1]
t−1, z

[2]
t−1

)
,

z
[2]
t = z(2)

(
z
[1]
t , z

[2]
t−1

)
,
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or we can add a skip connection from the input variable xt to the second RN layer

z
[1]
t = z(1)

(
xt , z

[1]
t−1

)
,

z
[2]
t = z(2)

(
xt , z

[1]
t , z

[2]
t−1

)
.

We refrain from explicitly studying such RN network variants any further.

8.2.3 Designing the Network Output

There remains to explain how to predict the response variable YT+1 based on
the pre-processed features (memory processes) z

[1]
T , . . . , z

[d]
T , outputted by the RN

network of depth d ≥ 1. Typically, only the final output of the last RN layer
z
[d]
T = z

[d]
T (x0:T ) ∈ R

qd is considered to predict the response YT+1. We take this
output and feed it into a FN network z̄(D:1) : {1} × R

qd → {1} × R
q̄D of depth

D ∈ N and with FN layers z̄(m), 1 ≤ m ≤ D, given by (7.5). Moreover, we choose
a strictly monotone and smooth link function g.

This then provides us with the regression function, see (7.7)–(7.8),

x0:T �→ E[YT+1|x0:T ] = μ(x0:T ) = g−1
〈
β, z̄(D:1) (z[d]

T (x0:T )
)〉
. (8.8)

Thus, we first process the time-series features x0:T through a RN network
to receive the learned representation z

[d]
T (x0:T ) ∈ R

qd at time T . This learned
representation is then used as a feature input to a FN network z̄(D:1) that allows
us to predict the response YT+1. This is illustrated in Fig. 8.4 for depth d = 1.

Remarks 8.3

• From the graph in Fig. 8.4 it also becomes apparent that we can consider different
insurance policies 1 ≤ i ≤ n having different lengths of the corresponding his-
tories xi,T−τi :T ∈ R

(q0+1)×(τi+1), τi ∈ {0, . . . , T }. The stationarity assumption
allows us to enter the network in Fig. 8.4 at any time T − τi . The RN network
encodes this history into a learned feature z

[1]
T (xi,T−τi :T ) which is then decoded

by the FN network z̄(D:1) to forecast Yi,T+1.
• If there is additional insurance policy dependent feature information x̃i that

is not of a time-series structure, we can concatenate the feature information
(z

[d]
T (xi,0:T ), x̃i ) which then enters the FN network (8.8).
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Fig. 8.4 Forecasting the response YT+1 using a RN network (8.8) based on a single RN layer
d = 1 and on a FN network of depth D

There remains to fit this network architecture having d RN layers and D FN
layers to the available data. The RN layers involve the network weights W(m) ∈
R
(qm−1+1)×qm and U(m) ∈ R

qm×qm , for 1 ≤ m ≤ d , and the FN layers involve the
network weights (w̄(m)j )1≤j≤q̄m ∈ R

(q̄m−1+1)×q̄m , for 1 ≤ m ≤ D, and with q̄0 = qd .

Moreover, we have an output parameter β ∈ R
q̄D+1. The fitting is again done by a

gradient descent algorithm minimizing the corresponding objective function.
Assume we have independent (in i) data (Yi,T+1, x i,0:T , vi,T+1) of the cases 1 ≤

i ≤ n. We then assume that the responses Yi,T+1 can be modeled by a fixed member
of the EDF having unit deviance d. We consider the deviance loss function, see (4.9),

ϑ �→ D(Y T+1,ϑ) = 1

n

n∑

i=1

vi,T+1

ϕ
d
(
Yi,T+1, μϑ (xi,0:T )

)
, (8.9)

for the observations Y T+1 = (Y1,T+1, . . . , Yn,T+1)
�, and where ϑ collects all the

RN and FN network weights/parameters of the regression function (8.8). This model
can now be fitted using a variant of the gradient descent algorithm. The variant
uses back-propagation through time (BPTT) which is an adaption of the back-
propagation method to calculate the gradient w.r.t. the network parameter ϑ .

8.2.4 Time-Distributed Layer

There is a special feature in RN network modeling which is called a time-distributed
layer. Observe from Fig. 8.4 that the deviance loss function (8.9) only focuses on the
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final observation Yi,T+1. However, the stationarity assumption allows us to output
and study any (previous) observation Yi,t+1, 0 ≤ t ≤ T . A time-distributed layer
considers applying the deep FN network (8.8) simultaneously at all time points 0 ≤
t ≤ T ; simultaneously meaning that we use the same FN network weights for all t .
The latter is justified under the assumption of having stationarity.

This then provides us with the regressions

x0:t �→ E[Yt+1|x0:t ] = μ(x0:t ) = g−1
〈
β, z̄(D:1) (z[d]

t (x0:t )
)〉

for all t ≥ 0. (8.10)

Figure 8.5 illustrates a time-distributed output where we predict (Yt+1)t based on
the history (x0:t )t , and we always apply the same FN network z̄(D:1) to the memory
z
[1]
t = z

[1]
t (x0:t ).

A time-distributed layer changes the fitting procedure. Instead of considering
the objective function (8.9) for the final observation Yi,T+1, we now include all
observations Y = (Yi,t+1)0≤t≤T ,1≤i≤n into the objective function. This results in
studying the deviance loss function

ϑ �→ D(Y ,ϑ) = 1

n

n∑

i=1

1

T + 1

T∑

t=0

vi,t+1

ϕ
d
(
Yi,t+1, μϑ (xi,0:t )

)
. (8.11)
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Fig. 8.5 Forecasting (Yt+1)t using a RN network (8.10) based on a single RN layer d = 1 and
using a time-distributed FN layer for the outputs
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Note that this can easily be adapted if the different cases 1 ≤ i ≤ n have different
lengths in their histories. An example is provided in Listing 10.8, below.

8.3 Special Recurrent Neural Networks

In the plain-vanilla RN networks introduced above we have defined the memory
processes (z[m]

t )t≥0, 1 ≤ m ≤ d , which encode the information history (xt )t≥0
through different RN layers in a temporal causal way. This is naturally done through
the use of a time-series structure as illustrated, e.g., in Fig. 8.5. There are more
specific RN network architectures that allow the memory processes to be of a long
memory or a short memory type. In this section, we present the two most popular
architectures that pay a special attention to the memory storage. This is the long
short-term memory (LSTM) architecture introduced by Hochreiter–Schmidhuber
[188] and the gated recurrent unit (GRU) architecture proposed by Cho et al. [76].

8.3.1 Long Short-Term Memory Network

The LSTM network of Hochreiter–Schmidhuber [188] is the most commonly used
RN network architecture. The LSTM network uses simultaneously three different
activation functions for different purposes, the sigmoid and hyperbolic tangent
activation functions, respectively,

φσ (x) = 1

1 + e−x ∈ (0, 1) and φtanh(x) = ex − e−x
ex + e−x ∈ (−1, 1),

and a general activation function φ : R → R, see also Table 7.1.
The LSTM network relies on several RN layers that are of the same structure

as the plain-vanilla RN layer given in (8.7). We start by defining three different so-
called gates that all have the RN layer structure (8.7). These three gates are used
to model the memory cell of the LSTM network. Choose a layer index m ≥ 1 and
assume that z

[m−1]
t is modeled by the previous layer m− 1; form = 1 we initialize

z
[0]
t = xt . The three gates are then defined as follows, set t ≥ 1:

• The forget gate models the loss of memory rate

f
[m]
t = f (m)

(
z
[m−1]
t , z

[m]
t−1

)
= φfσ

(〈
W
(m)
f , z

[m−1]
t

〉
+
〈
U
(m)
f , z

[m]
t−1

〉)
∈ (0, 1)qm,

with the network weights W(m)
f ∈ R

(qm−1+1)×qm and U(m)f ∈ R
qm×qm , and with

the sigmoid activation function φfσ = φσ , we also refer to (8.7).
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• The input gate models the memory update rate

i
[m]
t = i(m)

(
z
[m−1]
t , z

[m]
t−1

)
= φiσ

(〈
W
(m)
i , z

[m−1]
t

〉
+
〈
U
(m)
i , z

[m]
t−1

〉)
∈ (0, 1)qm,

with the network weights W(m)
i ∈ R

(qm−1+1)×qm and U(m)i ∈ R
qm×qm , and with

the sigmoid activation function φiσ = φσ .
• The output gate models the release of memory information rate

o
[m]
t = o(m)

(
z
[m−1]
t , z

[m]
t−1

)
= φoσ

(〈
W(m)
o , z

[m−1]
t

〉
+
〈
U(m)o , z

[m]
t−1

〉)
∈ (0, 1)qm,

(8.12)

with the network weights W(m)
o ∈ R

(qm−1+1)×qm and U(m)o ∈ R
qm×qm , and with

the sigmoid activation function φoσ = φσ .

These gates have outputs in (0, 1), and they determine the relative amount of
memory that is updated and released in each step. The so-called cell state process
(c

[m]
t )t is used to store the relevant memory. Given z

[m−1]
t , z

[m]
t−1 and c

[m]
t−1, the

updated cell state is defined by

c
[m]
t = c(m)

(
z
[m−1]
t , z

[m]
t−1, c

[m]
t−1

)
(8.13)

= f
[m]
t ) c

[m]
t−1 + i

[m]
t ) φtanh

(〈
W(m)
c , z

[m−1]
t

〉
+
〈
U(m)c , z

[m]
t−1

〉)
∈ R

qm,

with the network weights W(m)
c ∈ R

(qm−1+1)×qm and U(m)c ∈ R
qm×qm , and )

denotes the Hadamard product. This defines how the memory (cell state) is updated
and passed forward using the forget and the input gates f

[m]
t and i

[m]
t , respectively.

The neuron activations z
[m]
t are updated, given z

[m−1]
t , z

[m]
t−1 and c

[m]
t , by

z
[m]
t = z(m)

(
z
[m−1]
t , z

[m]
t−1, c

[m]
t

)
= o

[m]
t ) φ

(
c
[m]
t

)
∈ R

qm, (8.14)

with the cell state c
[m]
t given in (8.13) and the output gate o

[m]
t defined in (8.12).

Figure 8.62 shows a LSTM cell (8.13)–(8.14) which includes four RN layers (8.7)
for the forget gate f (m), the input gate i(m), the output gate o(m) and in the cell
state update (8.13). These RN layers are combined using the Hadamard product )
resulting in the updated cell state c

[m]
t and the learned representation z

[m]
t both being

functions of the inputs x0:t .

2 This figure is based on colah’s blog explaining LSTMs https://colah.github.io/posts/2015-08-
Understanding-LSTMs/.
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Fig. 8.6 LSTM cell z(m) with forget gate φfσ , input gate φiσ and output gate φoσ

Below, we are going to summarize the LSTM cell update (8.13)–(8.14) as
follows
(
z
[m−1]
t , z

[m]
t−1, c

[m]
t−1

)
�→

(
z
[m]
t , c

[m]
t

)
= zLSTM(m)

(
z
[m−1]
t , z

[m]
t−1, c

[m]
t−1

)
.

(8.15)

The update (8.15) involves the eight network weight matricesW(m)
f ,W

(m)
i ,W

(m)
o ,

W
(m)
c ∈ R

(qm−1+1)×qm and U(m)f , U
(m)
i , U

(m)
o , U

(m)
c ∈ R

qm×qm . Altogether we have
4(qm−1 + 1 + qm)qm network parameters in each LSTM cell 1 ≤ m ≤ d . These
are learned with the gradient descent method. Moreover, we need to initialize the
LSTM cell update (8.15). From the previous layer m − 1 we have the input z

[m−1]
t

which we initialize as z
[0]
t = xt for m = 1 and t ≥ 0. The initial states z

[m]
0 and

c
[m]
0 are usually set to zero.

8.3.2 Gated Recurrent Unit Network

The LSTM architecture of the previous section seems quite complex and involves
many parameters. Cho et al. [76] have introduced the GRU architecture that is
simpler and uses less parameters, but has similar properties. The GRU architecture
uses two gates that are defined as follows for t ≥ 1, see also (8.7):
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• The reset gate models the memory reset rate

r
[m]
t = r (m)

(
z
[m−1]
t , z

[m]
t−1

)
= φrσ

(〈
W(m)
r , z

[m−1]
t

〉
+
〈
U(m)r , z

[m]
t−1

〉)
∈ (0, 1)qm,

with the network weights W(m)
r ∈ R

(qm−1+1)×qm and U(m)r ∈ R
qm×qm , and with

the sigmoid activation function φrσ = φσ .
• The update gate models the memory update rate

u
[m]
t = u(m)

(
z
[m−1]
t , z

[m]
t−1

)
= φuσ

(〈
W(m)
u , z

[m−1]
t

〉
+
〈
U(m)u , z

[m]
t−1

〉)
∈ (0, 1)qm,

with the network weights W(m)
u ∈ R

(qm−1+1)×qm and U(m)u ∈ R
qm×qm , and with

the sigmoid activation function φuσ = φσ .

The neuron activations z
[m]
t are updated, given z

[m−1]
t and z

[m]
t−1, by

z
[m]
t = z(m)

(
z
[m−1]
t , z

[m]
t−1

)
(8.16)

= r
[m]
t ) z

[m]
t−1 + (1 − r

[m]
t )) φ

(
〈W(m), z

[m−1]
t 〉 + u

[m]
t ) 〈U(m), z[m]

t−1〉
)

∈ R
qm,

with the network weights W(m) ∈ R
(qm−1+1)×qm and U(m) ∈ R

qm×qm , and for a
general activation function φ.
The GRU and the LSTM architectures are similar, the former using less parameters
because we do not explicitly model the cell state process. For an illustration of a
GRU cell we refer to Fig. 8.7. In the sequel we focus on the LSTM architecture;

Fig. 8.7 GRU cell z(m) with reset gate φrσ and update gate φuσ
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though the GRU architecture is simpler and has less parameters, it is less robust in
fitting.

8.4 Lab: Mortality Forecasting with RN Networks

8.4.1 Lee–Carter Model, Revisited

The mortality data has a natural time-series structure, and for this reason mortality
forecasting is an obvious problem that can be studied within RN networks. For
instance, the LC mortality model (7.63) involves a stochastic process (kt )t that
needs to be extrapolated into the future. This extrapolation problem can be done
in different ways. The original proposal of Lee and Carter [238] has been to analyze
ARIMA time-series models, and to use standard statistical tools, Lee and Carter
found that the random walk with drift gives a good stochastic description of the
time index process (kt)t . Nigri et al. [286] proposed to fit a LSTM network to
this stochastic process, this approach is also studied in Lindholm–Palmborg [252]
where an efficient use of the mortality data for network fitting is discussed. These
approaches still rely on the classical LC calibration using the SVD of Sect. 7.5.4,
and the LSTM network is (only) used to extrapolate the LC time index process (kt )t .

More generally, one can design a RN network architecture that directly processes
the raw mortality dataMx,t = Dx,t/ex,t , not specifically relying on the LC structure.
This has been done in Richman–Wüthrich [316] using a FN network architecture, in
Perla et al. [301] using a RN network and a convolutional neural (CN) network
architecture, and in Schürch–Korn [330] extending this analysis to the study of
prediction uncertainty using bootstrapping. A similar CN network approach has
been taken by Wang et al. [375] interpreting the raw mortality data of Fig. 7.32
as an image.

Lee–Carter Mortality Model: RandomWalk with Drift Extrapolation

We revisit the LC mortality model [238] presented in Sect. 7.5.4. The LC log-
mortality rate is assumed to have the following structure, see (7.63),

log(μ(p)x,t ) = a(p)x + b(p)x k(p)t ,

for the ages x0 ≤ x ≤ x1 and for the calendar years t ∈ T . We now add the upper
indices (p) to consider different populations p. The SVD gives us the estimates â(p)x ,
k̂
(p)
t and b̂(p)x based on the observed centered raw log-mortality rates, see Sect. 7.5.4.

The SVD is applied to each population p separately, i.e., there is no interaction
between the different populations. This approach allows us to fit a separate log-
mortality surface estimate (log(μ̂(p)x,t ))x0≤x≤x1;t∈T to each population p. Figure 7.33
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shows an example for two populations p, namely, for Swiss females and for Swiss
males.

The mortality forecasting requires to extrapolate the time index processes
(̂k
(p)
t )t∈T beyond the latest observed calendar year t1 = max{T }. As mentioned in

Lee–Carter [238] a random walk with drift provides a suitable model for modeling
(̂k
(p)
t )t≥0 for many populations p, see Fig. 7.35 for the Swiss population. Assume

that

k̂
(p)

t+1 = k̂(p)t + ε(p)t+1 t ≥ 0, (8.17)

with ε(p)t
i.i.d.∼ N (δp, σ 2

p), t ≥ 1, having drift δp ∈ R and variance σ 2
p > 0.

Model assumption (8.17) allows us to estimate the (constant) drift δp with MLE.

For observations (̂k(p)t )t∈T we receive the log-likelihood function

δp �→ �
(̂k
(p)
t )t∈T

(δp) =
t1∑

t=t0+1

− log(
√

2πσp)− 1

2σ 2
p

(
k̂
(p)
t − k̂(p)t−1 − δp

)2
,

with first observed calendar year t0 = min{T }. The MLE is given by

δ̂MLE
p = k̂

(p)
t1

− k̂(p)t0
t1 − t0 . (8.18)

This allows us to forecast the time index process for t > t1 by

k̂
(p)
t = k̂(p)t1 + (t − t1)̂δMLE

p .

We explore this extrapolation for different Western European countries from the
HMD [195]. We consider separately females and males of the countries {AUT, BE,
CH, ESP, FRA, ITA, NL, POR}, thus, we choose 2 · 8 = 16 different populations
p. For these countries we have observations for the ages 0 = x0 ≤ x ≤ x1 = 99
and for the calendar years 1950 ≤ t ≤ 2018.3 For the following analysis we choose
T = {t0 ≤ t ≤ t1} = {1950 ≤ t ≤ 2003}, thus, we fit the models on 54 years
of mortality history. This fitted models are then extrapolated to the calendar years
2004 ≤ t ≤ 2018. These 15 calendar years from 2004 to 2018 allow us to perform
an out-of-sample evaluation because we have the observations M(p)

x,t = D
(p)
x,t /e

(p)
x,t

for these years from the HMD [195].
Figure 8.8 shows the estimated time index process (̂k(p)t )t∈T to the left of the
dotted lines, and to the right of the dotted lines we have the random walk with
drift extrapolation (̂k(p)t )t>t1 . The general observation is that, indeed, the random

walk with drift seems to be a suitable model for (̂k(p)t )t . Moreover, there is a huge

3 We exclude Germany from this consideration of (continental) Western European countries
because the German mortality history is shorter due to the reunification in 1990.
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Fig. 8.8 Random walk with drift extrapolation of the time index process (̂kt )t for different
countries and genders; the y-scale is the same in both plots

similarity between the different countries, only with the Netherlands (NL) being
somewhat an outlier.

Remarks 8.4

• For Fig. 8.8 we did not explore any fine-tuning, for instance, the estimation of
the drift δp is very sensitive in the selection of the time span T . ESP has the
biggest negative drift estimate, but this is partially caused by the corresponding
observations in the calendar years between 1950 and 1960, see Fig. 8.8, which
may no longer be relevant for a decline in mortality in the new millennium.

• For all countries, the females have a bigger negative drift than the males (the
y-scale in both plots is the same). Moreover, note that we use the normalization
∑x1
x=x0

b̂
(p)
x = 1 and

∑
t∈T k̂

(p)
t = 0, see (7.65). This normalization is discussed

and questioned in many publications as the extrapolation becomes dependent on
these choices; see De Jong et al. [90] and the references therein, who propose
different identification schemes.

• Another issue is an age coherence in forecasting, meaning that for long term
forecasts the mortality rates across the different ages should not diverge, see Li
et al. [250], Li–Lu [248] and Gao–Shi [153] and the references therein.

• There are many modifications and extensions of the LC model, we just mention
a few of them. Brouhns et al. [56] embed the LC model into a Poisson modeling
framework which provides a proper stochastic model for mortality modeling.
Renshaw–Haberman [308] extend the one-factor LC model to a multifactor
model, and in Renshaw–Haberman [309] a cohort effect is added. Hyndman–
Ullah [197] and Hainaut–Denuit [179] explore a functional data method and a
wavelet-based decomposition, respectively. The static PCA can be adopted to
a dynamic PCA version, see Shang [333], and a long memory behavior in the
time-series is studied in Yan et al. [395].
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• The LC model is fitted to each population p separately, without exploring
any common structure across the populations. There are many multi-population
extensions that try to learn common structure across different populations. We
mention the common age effect (CAE) model of Kleinow [218], the augmented
common factor (ACF) model of Li–Lee [249] and the functional time-series
models of Hyndman et al. [196] and Shang–Haberman [334]. A direct multi-
population extension of the SVD matrix decomposition of the LC model is
obtained by the tensor decomposition approaches of Russolillo et al. [325] and
Dong et al. [110].

Lee–Carter Mortality Model: LSTM Extrapolation

Our aim here is to replace the individual random walk with drift extrapola-
tions (8.17) by a common extrapolation across all considered populations p. For
this we design a LSTM architecture. A second observation is that the increments
ε
(p)
t = k̂(p)t − k̂(p)t−1 have an average empirical auto-correlation (for lag 1) of −0.33.

This clearly questions the Gaussian i.i.d. assumption in (8.17).
We first discuss the available data and we construct the input data. We have

the time-series observations (̂k(p)t )t∈T , and the population index p = (c, g) has
two categorical labels c for country and g for gender. We are going to use two-
dimensional embedding layers for these two categorical variables, see (7.31) for
embedding layers. The time-series observations (̂k(p)t )t∈T will be pre-processed
such that we do not simultaneously feed the entire time-series into the LSTM layer,
but we divide them into shorter time-series. We will directly forecast the increments
ε
(p)
t = k̂(p)t − k̂(p)t−1 and not the time index process (̂k(p)t )t≥t0; in extrapolations with

drift it is easier to forecast the increments with the networks. We choose a lookback
period of τ = 3 calendar years, and we aim at predicting the response Yt = ε

(p)
t

based on the time-series features xt−τ :t−1 = (ε(p)t−τ , . . . , ε(p)t−1)
� ∈ R

τ . This provides
us with the following data structure for each population p = (c, g):

year country gender feature xt−τ :t−1 Yt

t0 + τ + 1 c g ε
(p)

t0+1 · · · ε(p)t0+τ ε(p)t0+τ+1
...

...
...

...
...

...

t c g ε
(p)
t−τ · · · ε(p)t−1 ε

(p)
t

...
...

...
...

...
...

t1 c g ε
(p)
t1−τ · · · ε(p)t1−1 ε

(p)
t1

(8.19)

Thus, each observation Yt = ε
(p)
t is equipped with the feature information

(t, c, g, xt−τ :t−1). As discussed in Lindholm–Palmborg [252], one should highlight
that there is a dependence across t , since we have a diagonal cohort structure in the
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features and the observations (xt−τ :t−1, Yt ). Usually, this dependence is not harmful
in stochastic gradient descent fitting.

Listing 8.1 LSTM architecture example

1 TS = layer_input(shape=c(lookback,1), dtype=’float32’, name=’TS’)
2 Country = layer_input(shape=c(1), dtype=’int32’, name=’Country’)
3 Gender = layer_input(shape=c(1), dtype=’int32’, name=’Gender’)
4 Time = layer_input(shape=c(1), dtype=’float32’, name=’Time’)
5 #
6 CountryEmb = Country %>%
7 layer_embedding(input_dim=8,output_dim=2,input_length=1,name=’CountryEmb’) %>%
8 layer_flatten(name=’Country_flat’)
9 #

10 GenderEmb = Gender %>%
11 layer_embedding(input_dim=2,output_dim=2,input_length=1,name=’GenderEmb’) %>%
12 layer_flatten(name=’Gender_flat’)
13 #
14 LSTM = TS %>%
15 layer_lstm(units=15,activation=’tanh’,recurrent_activation=’sigmoid’,
16 name=’LSTM’)
17 #
18 Output = list(LSTM,CountryEmb,GenderEmb,Time) %>% layer_concatenate() %>%
19 layer_dense(units=10, activation=’tanh’, name=’FNLayer’) %>%
20 layer_dense(units=1, activation=’linear’, name=’Network’)
21 #
22 model = keras_model(inputs = list(TS, Country, Gender, Time),
23 outputs = c(Output))

In Fig. 8.9 we plot the LSTM architecture used to forecast ε(p)t for t > t1, and
Listing 8.1 gives the corresponding R code. We process the time-series xt−τ :t−1
through a LSTM cell, see lines 14–16 of Listing 8.1. We choose a shallow LSTM
network (d = 1) and therefore drop the upper index m = 1 in (8.15), but we add
an upper index [LSTM] to highlight the output of the LSTM cell. This gives us the

input
xt−τ :t−1

LSTM cell
depth d = 1

concatenation
into a shallow

FN layer

output
̂Yt

country
c

embedding
layer

gender
g

embedding
layer

year
t

Fig. 8.9 LSTM architecture used to forecast ε(p)t for t > t1
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LSTM cell updates for t − τ ≤ s ≤ t − 1

(
xs, z

[LSTM]
s−1 , cs−1

)
�→

(
z[LSTM]
s , cs

)
= zLSTM

(
xs , z

[LSTM]
s−1 , cs−1

)
.

This LSTM recursion to process the time-series xt−τ :t−1 gives us the LSTM output
z
[LSTM]
t−1 ∈ R

q1 , and it involves 4(q0 + 1 + q1)q1 = 4(2 + 15)15 = 1′020 network
parameters for the input dimension q0 = 1 and the output dimension q1 = 15.

For the categorical country code c and the binary gender g we choose two-
dimensional embedding layers, see (7.31),

c �→ eC(c) ∈ R
2 and g �→ eG(g) ∈ R

2,

these embedding maps give us 2(8 + 2) = 20 embedding weights. Finally, we
concatenate the LSTM output z

[LSTM]
t−1 ∈ R

15, the embeddings eC(c), eG(g) ∈ R
2

and the continuous calendar year variable t ∈ R and process this vector through a
shallow FN network with q2 = 10 neurons, see lines 18–20 of Listing 8.1. This FN
layer gives us (q1 + 2 + 2 + 1 + 1)q2 = (15 + 2 + 2 + 1 + 1)10 = 210 parameters.
Together with the output parameter of dimension q2 + 1 = 11, we receive 1’261
network parameters to be fitted, which seems quite a lot.

To fit this model we have 8 · 2 = 16 populations, and for each population we
have the observations k̂(p)t for the calendar years 1950 ≤ t ≤ 2003. Considering

the increments ε(p)t and a lookback period of τ = 3 calendar years gives us 2003 −
1950− τ = 50 observations, rows in (8.19), per population p, thus, we have in total
800 observations. For the gradient descent fitting and the early stopping we choose a
training to validation split of 8 : 2. As loss function we choose the squared error loss
function. This implicitly implies that we assume that the increments Yt = ε

(p)
t are

Gaussian distributed, or in other words, minimizing the squared error loss function
means maximizing the Gaussian log-likelihood function. We then fit this model to
the data using early stopping as described in (7.27). We analyze this fitted model.
Figure 8.10 provides the learned embeddings for the country codes c. These learned
embeddings have some similarity with the European map.
The final step is the extrapolation k̂t , t > t1. These updates need to be done
recursively. We initialize for t = t1 + 1 the time-series feature

xt1+1−τ :t1 = (ε(p)t1+1−τ , . . . , ε
(p)
t1
)� ∈ R

τ . (8.20)

Using the feature information (t1 + 1, c, g, xt1+1−τ :t1) allows us to forecast the next

increment Yt1+1 = ε
(p)

t1+1 by Ŷt1+1, using the fitted LSTM architecture of Fig. 8.9.
Thus, this LSTM network allows us to perform a one-period-ahead forecast to
receive

k̂t1+1 = k̂t1 + Ŷt1+1. (8.21)
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Fig. 8.10 Learned country
embeddings for forecasting
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This update (8.21) needs to be iterated recursively. For the next period t = t1 + 2
we set for the time-series feature

xt1+2−τ :t1+1 = (ε(p)t1+2−τ , . . . , ε
(p)
t1
, Ŷt1+1)

� ∈ R
τ , (8.22)

which gives us the next predictions Ŷt1+2 and k̂t1+2, etc.

In Fig. 8.11 we present the extrapolation of (ε(p)t )t for Belgium females and males.
The blue curve shows the observed increments (ε(p)t )1951≤t≤2003 and the LSTM fit-
ted (in-sample) values (Ŷt )1954≤t≤2003 are in red color. Firstly, we observe a negative

correlation (zig-zag behavior) in both the blue observations (ε(p)t )1951≤t≤2003 and
in their red estimated means (Ŷt )1954≤t≤2003. Thus, the LSTM finds this negative
correlation (and it does not propose i.i.d. residuals). Secondly, the volatility in the
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Fig. 8.11 LSTM network extrapolation (Ŷt )t>t1 for Belgium (BE) females and males
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red curve is smaller than in the blue curve, the former relates to expected values and
the latter to observations of the random variables (which should be more volatile).
The light-blue color shows the random walk with drift extrapolation (which is just a
horizontal straight line at level δ̂MLE

p , see (8.18)). The orange color shows the LSTM
extrapolation using the recursive one-period-ahead updates (8.20)–(8.22), which has
a zig-zag behavior that vanishes over time. This vanishing behavior is critical and is
going to be discussed next.

There is one issue with this recursive one-period-ahead updating algorithm. This
updating algorithm is not fully consistent in how the data is being used. The original
LSTM architecture calibration is based on the feature components ε(p)t , see (8.20).
Since these increments are not known for the later periods t > t1, we replace
their unknown values by the predictors, see (8.22). The subtle point here is that
the predictors are on the level of expected values, and not on the level of random
variables. Thus, Ŷt is typically less volatile than ε(p)t , but in (8.22) we pretend
that we can use these predictors as a one-to-one replacement. A more consistent
way would be to simulate/bootstrap ε(p)t from N (Ŷt , σ 2) so that the extrapolation
receives the same volatility as the original process. For simplicity we refrain from
doing so, but Fig. 8.11 indicates that this would be a necessary step because the
volatility in the orange curve is going to vanish after the calendar year 2003, i.e., the
zig-zag behavior vanishes, which is clearly not appropriate.
The LSTM extrapolation of (̂kt )t is shown in Fig. 8.12. We observe quite some
similarity to the random walk with drift extrapolation in Fig. 8.8, and, indeed, the
random walk with drift seems to work very well (though the auto-correlation has not
been specified correctly). Note that Fig. 8.8 is based on the individual extrapolations
in p, whereas in Fig. 8.12 we have a common model for all populations.
Table 8.1 shows how often one model outperforms the other one (out-of-sample
on calendar years 2004 ≤ t ≤ 2018 and per gender). On the male populations of
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Fig. 8.12 LSTM network extrapolation of (̂kt )t for different countries and genders
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Table 8.1 Comparison of the out-of-sample mean squared error losses for the calendar years
2004 ≤ t ≤ 2018: the numbers show how often one approach outperforms the other one on
each gender

Female Male

Random walk with drift 5/8 4/8

LSTM architecture 3/8 4/8

the 8 European countries both models outperform the other one 4 times, whereas
for the female population the random walk with drift gives 5 times the better out-of-
sample prediction. Of course, this seems disappointing for the LSTM approach. This
observation is quite common, namely, that the deep learning approach outperforms
the classical methods on complex problems. However, on simple problems, as the
one here, we should go for a classical (simpler) model like a random walk with drift
or an ARIMA model.

8.4.2 Direct LSTM Mortality Forecasting

The previous section has been relying on the LC mortality model and only the
extrapolation of the time-series (̂kt )t has been based on a RN network architecture.
In this section we aim at directly processing the raw mortality rates Mx,t =
Dx,t/ex,t through a network, thus, we perform the representation learning directly
on the raw data. We therefore use a simplified version of the network architecture
proposed in Perla et al. [301].

As input to the network we use the raw mortality rates Mx,t . We choose a
lookback period of τ = 5 years and we define the time-series feature information to
forecast the mortality in calendar year t by

xt−τ :t−1 = (xt−τ , . . . ,xt−1) =
(
Mx,s

)
x0≤x≤x1,t−τ≤s≤t−1 ∈ R

(x1−x0+1)×τ = R
100×5.

(8.23)

Thus, we directly process the raw mortality rates (simultaneously for all ages x)
through the network architecture; in the corresponding R code we need to input the
transposed features x�

t−τ :t−1 ∈ R
5×100, see line 1 of Listing 8.2.

We choose a shallow LSTM network (d = 1) and drop the upper index m = 1
in (8.15). This gives us the LSTM cell updates for t − τ ≤ s ≤ t − 1

(
xs, z

[LSTM]
s−1 , cs−1

)
�→

(
z[LSTM]
s , cs

)
= zLSTM

(
xs , z

[LSTM]
s−1 , cs−1

)
.

This LSTM recursion to process the time-series xt−τ :t−1 gives us the LSTM output
z
[LSTM]
t−1 ∈ R

q1 , see lines 14–15 of Listing 8.2. It involves 4(q0 + 1 + q1)q1 =
4(100 + 1 + 20)20 = 9′680 network parameters for the input dimension q0 = 100
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input
xt−τ :t−1

LSTM cell
of depth d = 1

concatenation
into a shallow
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(̂Yx,t)0≤x≤99
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embedding
layer

gender
g
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Fig. 8.13 LSTM architecture used to process the raw mortality rates (Mx,t )x,t

and the output dimension q1 = 20. Many statisticians would probably stop at this
point with this approach, as it seems highly over-parametrized. Let’s see what we
get.

For the categorical country code c and the binary gender g we choose two one-
dimensional embeddings, see (7.31),

c �→ eC(c) ∈ R and g �→ eG(g) ∈ R. (8.24)

These embeddings give us 8 + 2 = 10 embedding weights. Figure 8.13 shows
the LSTM cell in orange color and the embeddings in yellow color (in the colored
version).
The LSTM output and the two embeddings are then concatenated to a learned
representation zt−1 = (z

[LSTM]
t−1 , eC(c), eG(g))� ∈ R

q1×1×1 = R
22. The 22-

dimensional learned representation zt−1 encodes the 500-dimensional input
xt−τ :t−1 ∈ R

100×5 and the two categorical variables c and g. The last step
is to decode this representation zt−1 ∈ R

22 to predict the log-mortality rates
(Yx,t )0≤x≤99 = (logMx,t )0≤x≤99 ∈ R

100, simultaneously for all ages x. This
decoding is obtained by the code on lines 17–19 of Listing 8.2; this reads as

zt−1 �→
(
β0
x + βCx eC(c)+ βGx eG(g)+

〈
βx, z

[LSTM]
t−1

〉)

0≤x≤99
. (8.25)

This decoding involves another (1 + 22)100 = 2′300 parameters (β0
x , β

G
x , β

C
x ,

βx)0≤x≤99. Thus, altogether this LSTM network has r = 11′990 parameters.
Summarizing: the above architecture follows the philosophy of the auto-encoder

of Sect. 7.5. A high-dimensional observation (xt−τ :t−1, c, g) is encoded to a low-
dimensional bottleneck activation zt−1 ∈ R

22, which is then decoded by (8.25)
to give the forecast (Ŷx,t )0≤x≤99 for the log-mortality rates. It is not precisely an
auto-encoder because the response is different from the input, as we forecast the
log-mortality rates in the next calendar year t based on the information zt−1 that
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Listing 8.2 LSTM architecture to directly process the raw mortality rates (Mx,t )x,t

1 TS = layer_input(shape=c(lookback,100), dtype=’float32’, name=’TS’)
2 Country = layer_input(shape=c(1), dtype=’int32’, name=’Country’)
3 Gender = layer_input(shape=c(1), dtype=’int32’, name=’Gender’)
4 Time = layer_input(shape=c(1), dtype=’float32’, name=’Time’)
5 #
6 CountryEmb = Country %>%
7 layer_embedding(input_dim=8,output_dim=1,input_length=1,name=’CountryEmb’) %>%
8 layer_flatten(name=’Country_flat’)
9 #

10 GenderEmb = Gender %>%
11 layer_embedding(input_dim=2,output_dim=1,input_length=1,name=’GenderEmb’) %>%
12 layer_flatten(name=’Gender_flat’)
13 #
14 LSTM = TS %>%
15 layer_lstm(units=20,activation=’linear’,recurrent_activation=’sigmoid’,
16 name=’LSTM’)
17 #
18 Output = list(LSTM,CountryEmb,GenderEmb) %>% layer_concatenate() %>%
19 layer_dense(units=100, activation=’linear’, name=’scalarproduct’) %>%
20 layer_reshape(c(1,100), name = ’Output’)
21 #
22 model = keras_model(inputs = list(TS, Country, Gender),
23 outputs = c(Output))

is available at the end of the previous calendar year t − 1. In contrast to the LC
mortality model, we no longer rely on the two-step approach by first fitting the
parameters with a SVD, and performing a random walk with drift extrapolation.
This encoder-decoder network performs both steps simultaneously.

We fit this network architecture to the available data. We have r = 11′990
network parameters. Based on a lookback period of τ = 5 years, we have 2003 −
1950−τ+1 = 49 observations per populationp = (c, g). Thus, we have in total 784
observations

(
xt−τ :t−1, c, g, (Yx,t )0≤x≤99

)
. We fit this network using the nadam

version of the gradient descent algorithm. We choose a training to validation split of
8 : 2 and we explore 10’000 gradient descent epochs. A crucial observation is that
the algorithm converges rather slowly and it does not show any signs of over-fitting,
i.e., there is no strong need for the early stopping. This seems surprising because we
have 11’990 parameters and only 784 observations. There are a couple of important
ingredients that make this work. The features and observations themselves are
high-dimensional, the low-dimensional encoding (compression) leads to a natural
regularization, Moreover, this is combined with linear activation functions, see lines
15 and 19 of Listing 8.2. The gradient descent fitting has a certain inertness, and
it seems that high-dimensional problems on comparably smooth high-dimensional
data do not over-fit to individual components because the gradients are not very
sensitive in the individual partial derivatives (in high dimensions). These high-
dimensional approaches only work if we have sufficiently many populations across
which we can learn, here we have 16 populations, Perla et al. [301] even use 76
populations.
Since every gradient descent fit still involves several elements of randomness,
we consider the nagging predictor (7.44), averaging over 10 fitted networks, see
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Table 8.2 Comparison of the out-of-sample mean squared losses for the calendar years 2004 ≤
t ≤ 2018; the figures are in 10−4

LC female LSTM female LC male LSTM male

Austria AUT 0.765 0.312 2.527 1.169
Belgium BE 0.371 0.311 2.835 0.960
Switzerland CH 0.654 0.478 1.609 1.134
Spain ESP 1.446 0.514 1.742 0.245
France FRA 0.175 1.684 0.333 0.363

Italy ITA 0.179 0.330 0.874 0.320
The Netherlands NL 0.426 0.315 1.978 0.601
Portugal POR 2.097 0.464 1.848 1.239

Sect. 7.4.4. The out-of-sample prediction results on the calendar years 2004 to
2018, i.e., t > t1 = 2004, are presented in Table 8.2. These results verify the
appropriateness of this LSTM approach. It outperforms the LC model on the female
population in 6 out of 8 cases and on the male population on 7 out of 8 cases,
only for the French population this LSTM approach seems to have some difficulties
(compared to the LC model). Note that these are out-of-sample figures because
the LSTM has only been fitted on the data prior to 2004. Moreover, we did not
pre-process the raw mortality rates Mx,t , t ≤ 2003, and the prediction is done
recursively in a one-period-ahead prediction approach, we also refer to (8.22). A
more detailed analysis of the results shows that the LC and the LSTM approaches
have a rather similar behavior for females. For males the LSTM prediction clearly
outperforms the LC model prediction, this out-performance is across different ages
x and different calendar years t ≥ 2004.

The advantage of this LSTM approach is that we can directly predict by
processing the raw data. The disadvantage compared to the LC approach is that the
LSTM network approach is more complex and more time-consuming. Moreover,
unlike in the LC approach, we cannot (easily) assess the prediction uncertainty.
In the LC approach the prediction uncertainty is obtained from assessing the
uncertainty in the extrapolation and the uncertainty in the parameter estimates, e.g.,
using a bootstrap. The LSTM approach is not sufficiently robust (at least not on our
data) to provide any reasonable uncertainty estimates.

We close this section and example by analyzing the functional form of the
decoder (8.25). We observe that this decoder has much similarity with the LC model
assumption (7.63)

Ŷx,t = β0
x + βCx eC(c)+ βGx eG(g)+

〈
βx, z

[LSTM]
t−1

〉
,

log(μ(p)x,t ) = a(p)x + b(p)x k(p)t .

The LC model considers the average force of mortality a(p)x ∈ R for each population
p = (c, g) and each age x; the LSTM architecture has the same term β0

x+βCx eC(c)+
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βGx eG(g). In the LC model, the change of force of mortality is considered by a

population-dependent term b
(p)
x k

(p)
t , whereas the LSTM architecture has a term

〈βx, z[LSTM]
t−1 〉. This latter term is also population-dependent because the LSTM cell

directly processes the raw mortality dataMx,t coming from the different populations
p. Note that this is the only time-t-dependent term in the LSTM architecture. We
conclude that the main difference between these two forecast approaches is how the
past mortality observations are processed. Apart from that the general structure is
the same.
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Chapter 9
Convolutional Neural Networks

The previous two chapters have been considering fully-connected feed-forward
neural (FN) networks and recurrent neural (RN) networks. Fully-connected FN
networks are the prototype of networks for deep representation learning on tabular
data. This type of networks extracts global properties from the features x. RN
networks are an adaption of FN networks to time-series data. Convolutional neural
(CN) networks are a third type of networks, and their specialty is to extract local
structure from the features. Originally, they have been introduced for speech and
image recognition aiming at finding similar structure in different parts of the feature
x. For instance, if x is a picture consisting of pixels, and if we want to classify
this picture according to its contents, then we try to find similar structure (objects)
in different locations of this picture. CN networks are suitable for this task as
they work with filters (kernels) that have a fixed window size. These filters then
screen across the picture to detect similar local structure at different locations in
the picture. CN networks were introduced in the 1980s by Fukushima [145] and
LeCun et al. [234, 235], and they have been celebrating great success in many
applications. Our introduction to CN networks is based on the tutorial of Meier–
Wüthrich [269]. For real data applications there are many pre-trained CN network
libraries that can be downloaded and used for several different tasks, an example for
image recognition is the AlexNet of Krizhevsky et al. [226].

9.1 Plain-Vanilla Convolutional Neural Network Layer

Structurally, the CN network architectures are similar to the FN network architec-
tures, only they replace certain FN layers by CN layers. Therefore, we start by
introducing the CN layer, and one should keep the structure of the FN layer (7.5)

© The Author(s) 2023
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Applications, Springer Actuarial, https://doi.org/10.1007/978-3-031-12409-9_9
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in mind. In a nutshell, FN layers consider non-linearly activated inner products
〈w(m)j , z〉, and CN layers replace these inner products by a type of convolution

W
(m)
j ∗ z.

9.1.1 Input Tensors and Channels

We start from an input tensor z ∈ R
q(1)×···×q(K) that has dimension q(1)×· · ·×q(K).

This input tensor z is a multi-dimensional array of order (length) K ∈ N and with
elements zi1,...,iK ∈ R for 1 ≤ ik ≤ q(k) and 1 ≤ k ≤ K . The special case of order

K = 2 is a matrix z ∈ R
q(1)×q(2) . This matrix can illustrate a black and white image

of dimension q(1)× q(2) with the matrix entries zi1,i2 ∈ R describing the intensities
of the gray scale in the corresponding pixels (i1, i2). A color image typically has
the three color channels Red, Green and Blue (RGB), and such a RGB image can
be represented by a tensor z ∈ R

q(1)×q(2)×q(3) of order 3 with q(1) × q(2) being
the dimension of the image and q(3) = 3 describing the three color channels, i.e.,
(zi1,i2,1, zi1,i2,2, zi1,i2,3)

� ∈ R
3 describes the intensities of the colors RGB in the

pixel (i1, i2).
Typically, the structure of black and white images and RGB images is unified by

representing the black and white picture by a tensor z ∈ R
q(1)×q(2)×q(3) of order 3

with a single channel q(3) = 1. This philosophy is going to be used throughout this
chapter. Namely, if we consider a tensor z ∈ R

q(1)×···×q(K−1)×q(K) of order K , the
first K − 1 components (i1, . . . , iK−1) will play the role of the spatial components
that have a natural topology, and the last components 1 ≤ iK ≤ q(K) are called
the channels reflecting, e.g., a gray scale (for q(K) = 1) or the RGB intensities (for
q(K) = 3).

In Sect. 9.1.3, below, we will also study time-series data where we have 2nd
order tensors (matrices). The first component reflects time 1 ≤ t ≤ q(1), i.e.,
the spatial component is temporal for time-series data, and the second component
(channels) describes the different elements zt = (zt,1, . . . , zt,q(2))� ∈ R

q(2) that are
measured/observed at each time point t .

9.1.2 Generic Convolutional Neural Network Layer

We start from an input tensor z ∈ R
q
(1)
m−1×···×q(K)m−1 of order K . The first K − 1

components of this tensor have a spatial structure and the K-th component stands
for the channels. A CN layer applies (local) convolution operations to this tensor. We
choose a filter size, also called window size or kernel size, (f (1)m , . . . , f

(K)
m )� ∈ N

K

with f (k)m ≤ q(k)m−1, for 1 ≤ k ≤ K−1, and f (K)m = q(K)m−1. This filter size determines
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the output dimension of the CN operation by

q(k)m
def.= q

(k)
m−1 − f (k)m + 1, (9.1)

for 1 ≤ k ≤ K . Thus, the size of the image is reduced by the window size of
the filter. In particular, the output dimension of the channels component k = K

is q(K)m = 1, i.e., all channels are compressed to a scalar output. The spatial
components 1 ≤ k ≤ K − 1 retain their spatial structure but the dimension is
reduced according to (9.1).

A CN operation is a mapping (note that the order of the tensor is reduced from
K to K − 1 because the channels are compressed; index j is going to be explained
later)

z
(m)
j : Rq(1)m−1×···×q(K)m−1 → R

q
(1)
m ×···×q(K−1)

m (9.2)

z �→ z
(m)
j (z) =

(
z
(m)
i1,...,iK−1;j (z)

)

1≤ik≤q(k)m ;1≤k≤K−1
,

taking the values for a fixed activation function φ : R → R

z
(m)
i1,...,iK−1;j (z) = φ

⎛

⎝w(m)0,j +
f
(1)
m∑

l1=1

· · ·
f
(K)
m∑

lK=1

w
(m)
l1,...,lK ;j zi1+l1−1,...,iK−1+lK−1−1,lK

⎞

⎠ ,

(9.3)

for given intercept w(m)0,j ∈ R and filter weights

W
(m)
j =

(
w
(m)
l1,...,lK ;j

)

1≤lk≤f (k)m ;1≤k≤K ∈ R
f
(1)
m ×···×f (K)m ; (9.4)

the network parameter has dimension rm = 1 +∏Kk=1 f
(k)
m .

At first sight this CN operation looks quite complicated. Let us give some
remarks that allow for a better understanding and a more compact notation. The
operation in (9.3) chooses the corner (i1, . . . , iK−1, 1) as base point, and then it
reads the tensor elements in the (discrete) window

(i1, . . . , iK−1, 1)+
[
0 : f (1)m − 1

]
× · · · ×

[
0 : f (K−1)

m − 1
]
×
[
0 : f (K)m − 1

]
,

(9.5)

with given filter weights W
(m)
j . This window is then moved across the entire

tensor z by changing the base point (i1, . . . , iK−1, 1) accordingly, but with fixed
filter weights W

(m)
j . This operation resembles a convolution, however, in (9.3) the

indices in zi1+l1−1,...,iK−1+lK−1−1,lK run in reverse direction compared to a classical
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(mathematical) convolution. By a slight abuse of notation, nevertheless, we use the
symbol of the convolution operator ∗ to abbreviate (9.2). This gives us the compact
notation:

z
(m)
j : Rq(1)m−1×···×q(K)

m−1 → R
q
(1)
m ×···×q(K−1)

m

z �→ z
(m)
j (z) = φ

(
w
(m)
0,j + W

(m)
j ∗ z

)
, (9.6)

having the activations for 1 ≤ ik ≤ q(k)m , 1 ≤ k ≤ K − 1,

φ
(
w
(m)
0,j + W

(m)
j ∗ z

)

i1,...,iK−1
= z(m)i1,...,iK−1;j (z),

where the latter is given by (9.3).

Remarks 9.1

• The beauty of this notation is that we can now see the analogy to the FN layer.
Namely, (9.6) exactly plays the role of a FN neuron (7.6), but the CN operation
w
(m)
0,j + W

(m)
j ∗ z replaces the inner product 〈w(m)j , z〉, and correspondingly

accounting for the intercept.
• A FN neuron (7.6) can be seen as a special case of CN operation (9.6). Namely,

if we have a tensor of orderK = 1, the input tensor (vector) reads as z ∈ R
q
(1)
m−1 .

That is, we do not have a spatial component, but only qm−1 = q
(1)
m−1 channels.

In that case we have W
(m)
j ∗ z = 〈W (m)

j , z〉 for the filter weights W
(m)
j ∈ R

q
(1)
m−1 ,

and where we assume that z does not include an intercept component. Thus, the
CN operation boils down to a FN neuron in the case of a tensor of order 1.

• In the CN operation we take advantage of having a spatial structure in the tensor
z, which is not the case in the FN operation. The CN operation takes a spatial
input of dimension

∏K
k=1 q

(k)
m−1 and it maps this input to a spatial object of

dimension
∏K−1
k=1 q

(k)
m . For this it uses rm = 1 +∏Kk=1 f

(k)
m filter weights. The

FN operation takes an input of dimension qm−1 and it maps it to a 1-dimensional
neuron activation, for this it uses 1 + qm−1 parameters. If we identify the input

dimensions qm−1
!= ∏K

k=1 q
(k)
m−1 we can observe that rm " 1 + qm−1 because,

typically, the filter sizes f (k)m " q
(k)
m−1, for 1 ≤ k ≤ K − 1. Thus, the CN

operation uses much less parameters as the filters only act locally through the
∗-operation by translating the filter window (9.5).

This understanding now allows us to define a CN layer. Note that the map-
pings (9.6) have a lower index j which indicates that this is one single projection
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(filter extraction), called a filter. By choosing multiple different filters (w(m)0,j ,W
(m)
j ),

we can define the CN layer as follows.

Choose q(K)m ∈ N filters, each having a rm-dimensional filter weight
(w
(m)
0,j ,W

(m)
j ), 1 ≤ j ≤ q(K)m . A CN layer is a mapping

z(m) : Rq(1)m−1×···×q(K)m−1 → R
q
(1)
m ×···×q(K)m (9.7)

z �→ z(m)(z) =
(

z
(m)
1 (z), . . . , z

(m)

q
(K)
m

(z)

)
,

with filters z
(m)
j (z) ∈ R

q
(1)
m ×···×q(K−1)

m , 1 ≤ j ≤ q(K)m , given by (9.6).

A CN layer (9.7) converts the q(K)m−1 input channels to q(K)m output filters by
preserving the spatial structure on the first K − 1 components of the input tensor z.
More mathematically, CN layers and networks have been studied, among others,
by Zhang et al. [403, 404], Mallat [263] and Wiatowski–Bölcskei [382]. These
authors prove that CN networks have certain translation invariance properties
and deformation stability. This exactly explains why these networks allow one to
recognize similar objects at different locations in the input tensor. Basically, by
translating the filter windows (9.5) across the tensor, we try to extract the local
structure from the tensor that provides similar signals in different locations of that
tensor. Thinking of an image where we try to recognize, say, a dog, such a dog can
be located at different sites in the image, and a filter (window) that moves across
that image tries to locate the dogs in the image.

A CN layer (9.7) defines one layer indexed by the upper index (m), and for deep
representation learning we now have to compose multiple of these CN layers, but we
can also compose CN layers with FN layers or RN layers. Before doing so, we need
to introduce some special purpose layers and tools that are useful for CN network
modeling, this is done in Sect. 9.2, below.

9.1.3 Example: Time-Series Analysis and Image Recognition

Most CN network examples are based on time-series data or images. The former
has a 1-dimensional temporal component, and the latter has a 2-dimensional spatial
component. Thus, these two examples are giving us tensors of orders K = 2 and
K = 3, respectively. We briefly discuss such examples as specific applications of a
tensors of a general orderK ≥ 2.
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Time-Series Analysis with CN Networks

For a time-series analysis we often have observations xt ∈ R
q0 for the time points

0 ≤ t ≤ T . Bringing this time-series data into a tensor form gives us

x = x�
0:T = (x0, . . . , xT )

� ∈ R
(T+1)×q0 = R

q
(1)
0 ×q(2)0 ,

with q(1)0 = T + 1 and q(2)0 = q0. We have met such examples in Chap. 8 on RN
networks. Thus, for time-series data the input to a CN network is a tensor of order
K = 2 with a temporal component having the dimension T + 1 and at each time
point t we have q0 measurements (channels) xt ∈ R

q0 . A CN network tries to find
similar structure at different time points in this time-series data x0:T . For a first CN
layer m = 1 we therefore choose q1 ∈ N filters and consider the mapping

z(1) : R(T+1)×q0 → R
(T−f1+2)×q1 (9.8)

x�
0:T �→ z(1)(x�

0:T ) =
(
z
(1)
1 (x

�
0:T ), . . . , z(1)q1

(x�
0:T )
)
,

with filters z
(1)
j (x

�
0:T ) ∈ R

T−f1+2, 1 ≤ j ≤ q1, given by (9.6) and for a fixed
window size f1 ∈ N. From (9.8) we observe that the length of the time-series is
reduced from T + 1 to T − f1 + 2 accounting for the window size f1. In financial
mathematics, a structure (9.8) is often called a rolling window that moves across the
time-series x0:T and extracts the corresponding information.

We have introduced two different architectures to process time-series information
x0:T , and these different architectures serve different purposes. A RN network
architecture is most suitable if we try to forecast the next response of a time-
series. I.e., we typically process the past observations through a recurrent structure
to predict the next response, this is the motivation, e.g., behind Figs. 8.4 and 8.5.
The motivation for the use of a CN network architecture is different as we try to
find similar structure at different times, e.g., in a financial time-series we may be
interested in finding the downturns of more than 20%. The latter is a local analysis
which is explored by local filters (of a finite window size).

Image Recognition

Image recognition extends (9.8) by one order to a tensor of orderK = 3. Typically,
we have images of dimensions (pixels) I×J , and having three color channels RGB.
These images then read as

x = (x1, x2, x3) ∈ R
I×J×3 = R

q
(1)
0 ×q(2)0 ×q(3)0 ,

where x1 ∈ R
I×J is the intensity of red, x2 ∈ R

I×J is the intensity of green, and
x3 ∈ R

I×J is the intensity of blue.
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Chose a window size of f (1)1 × f (2)1 and q1 ∈ N filters to receive the CN layer

z(1) : RI×J×3 → R
(I−f (1)1 +1)×(J−f (2)1 +1)×q1 (9.9)

(x1, x2, x3) �→ z(1)(x1, x2, x3) =
(
z
(1)
1 (x1, x2, x3), . . . , z

(1)
q1
(x1, x2, x3)

)
,

with filters z
(1)
j (x1, x2, x3) ∈ R

(I−f (1)1 +1)×(J−f (2)1 +1), 1 ≤ j ≤ q1. Thus, we
compress the 3 channels in each filter j , but we preserve the spatial structure of
the image (by the convolution operation ∗).

For black and white pictures which only have one color channel, we preserve the
spatial structure of the picture, and we modify the input tensor to a tensor of order 3
and of the form

x = (x1) ∈ R
I×J×1.

9.2 Special Purpose Tools for Convolutional Neural
Networks

9.2.1 Padding with Zeros

We have seen that the CN operation reduces the size of the output by the filter sizes,
see (9.1). Thus, if we start from an image of size 100 × 50 × 1, and if the filter sizes
are given by f (1)m = f (2)m = 9, then the output will be of dimension 92 × 42 × q(3)1 ,
see (9.9). Sometimes, this reduction in dimension is impractical, and padding helps
to keep the original shape. Padding a tensor z with p(k)m parameters, 1 ≤ k ≤ K−1,
means that the tensor is extended in allK−1 spatial directions by (typically) adding
zeros of that size, so that the padded tensor has dimension

(
p(1)m + q(1)m−1 + p(1)m

)
× · · · ×

(
p(K−1)
m + q(K−1)

m−1 + p(K−1)
m

)
× q(K)m−1.

This implies that the output filters will have the dimensions

q(k)m = q(k)m−1 + 2p(k)m − f (k)m + 1,

for 1 ≤ k ≤ K − 1. The spatial dimension of the original tensor size is preserved if
2p(k)m −f (k)m + 1 = 0. Padding does not add any additional parameters, but it is only
used to reshape the tensors.
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9.2.2 Stride

Strides are used to skip part of the input tensor z in order to reduce the size of the
output. This may be useful if the input tensor is a very high resolution image. Choose
the stride parameters s(k)m , 1 ≤ k ≤ K − 1. We can then replace the summation
in (9.3) by the following term

f
(1)
m∑

l1=1

· · ·
f
(K)
m∑

lK=1

w
(m)
l1,...,lK ;j zs(1)m (i1−1)+l1,...,s(K−1)

m (iK−1−1)+lK−1,lK
.

This only extracts the tensor entries on a discrete grid of the tensor by translating
the window by multiples of integers, see also (9.5),

(
s(1)m (i1 − 1), . . . , s(K−1)

m (iK−1 − 1), 1
)
+
[
1 : f (1)m

]
×· · ·×

[
1 : f (K−1)

m

]
×
[
0 : f (K)m − 1

]
,

and the size of the output is reduced correspondingly. If we choose strides s(k)m =
f
(k)
m , 1 ≤ k ≤ K − 1, we receive a partition of the spatial part of the input tensor z,

this is going to be used in the max-pooling layer (9.11).

9.2.3 Dilation

Dilation is similar to stride, though, different in that it enlarges the filter sizes instead
of skipping certain positions in the input tensor. Choose the dilation parameters e(k)m ,
1 ≤ k ≤ K − 1. We can then replace the summation in (9.3) by the following term

f
(1)
m∑

l1=1

· · ·
f
(K)
m∑

lK=1

w
(m)
l1,...,lK ;j zi1+e(1)m (l1−1),...,iK−1+e(K−1)

m (lK−1−1),lK
.

This applies the filter weights to the tensor entries on discrete grids

(i1, . . . , iK−1, 1)+e(1)m
[
0 : f (1)m − 1

]
×· · ·×e(K−1)

m

[
0 : f (K−1)

m − 1
]
×
[
0 : f (K)m − 1

]
,

where the intervals e(k)m [0 : f (k)m − 1] run over the grids of span sizes e(k)m , 1 ≤ k ≤
K−1. Thus, in comparably smoothing images we do not read all the pixels but only
every e(k)m -th pixel in the window. Also this reduces the size of the output tensor.
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9.2.4 Pooling Layer

As we have seen above, the dimension of the tensor is reduced by the filter
size in each spatial direction if we do not apply padding with zeros. In general,
deep representation learning follows the paradigm of auto-encoding by reducing a
high-dimensional input to a low-dimensional representation. In CN networks this
is usually (efficiently) done by so-called pooling layers. In spirit, pooling layers
work similarly to CN layers (having a fixed window size), but we do not apply a
convolution operation ∗, but rather a maximum operation to the window to extract
the dominant tensor elements.

We choose a fixed window size (f (1)m , . . . , f
(K−1)
m )� ∈ N

K−1 and strides s(k)m =
f
(k)
m , 1 ≤ k ≤ K − 1, for the spatial components of the tensor z of order K. A

max-pooling layer is given by

z(m) : Rq(1)m−1×···×q(K)m−1 → R
q
(1)
m ×···×q(K)m

z �→ z(m)(z) = MaxPool(z), (9.10)

with dimensions q(K)m = q(K)m−1 and for 1 ≤ k ≤ K − 1

q(k)m =
⌊
q
(k)
m−1/f

(k)
m

⌋
, (9.11)

having the activations for 1 ≤ ik ≤ q(k)m , 1 ≤ k ≤ K,

MaxPool(z)i1,...,iK = max
1≤lk≤f (k)m ,
1≤k≤K−1

z
f
(1)
m (i1−1)+l1,...,f (K−1)

m (iK−1−1)+lK−1,iK
.

Alternatively, the floors in (9.11) could be replaced by ceilings and padding with
zeros to receive the right cardinality. This extracts the maximums from the (spatial)
windows
(
f (1)m (i1 − 1), . . . , f (K−1)

m (iK−1 − 1), iK
)

+
[
1 : f (1)m

]
× · · · ×

[
1 : f (K−1)

m

]
× [0]

=
[
f (1)m (i1 − 1)+ 1 : f (1)m i1

]
× · · · ×

[
f (K−1)
m (iK−1 − 1)+ 1 : f (K−1)

m iK−1

]
× [iK ] ,

for each channel 1 ≤ iK ≤ q
(K)
m−1 individually. Thus, the max-pooling operator is

chosen such that it extracts the maximum of each channel and each window, the
windows providing a partition of the spatial part of the tensor. This reduces the
dimension of the tensor according to (9.11), e.g., if we consider a tensor of order 3
of an RGB image of dimension I × J = 180 × 50 and apply a max-pooling layer
with window sizes f (1)m = 10 and f (2)m = 5, we receive a dimension reduction

180 × 50 × 3 �→ 18 × 10 × 3.
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Replacing the maximum operator in (9.10) by an averaging operator is sometimes
also used, and this is called an average-pooling layer.

9.2.5 Flatten Layer

A flatten layer performs the transformation of rearranging a tensor to a vector, so that
the output of a flatten layer can be used as an input to a FN layer. That is,

z(m) : Rq(1)m−1×···×q(K)
m−1 → R

qm

z �→ z(m)(z) =
(
z1,...,1, . . . , zq(1)m−1,...,q

(K)
m−1

)�
, (9.12)

with qm = ∏K
k=1 q

(k)
m−1. We have already used flatten layers after embedding layers

on lines 8 and 11 of Listing 7.4.

9.3 Convolutional Neural Network Architectures

9.3.1 Illustrative Example of a CN Network Architecture

We are now ready to patch everything together. Assume we have RGB images
described by tensors x(0) ∈ R

I×J×3 of order 3 modeling the three RGB channels
of images of a fixed size I × J . Moreover, we have the tabular feature information
x(1) ∈ X ⊂ {1}×R

q that describes further properties of the data. That is, we have an
input variable (x(0), x(1)), and we aim at predicting a response variable Y by a using
a suitable regression function

(x(0), x(1)) �→ μ(x(0), x(1)) = E

[
Y

∣
∣
∣x(0), x(1)

]
. (9.13)

We choose two convolutional layers z(CN1) and z(CN2), each followed by a max-
pooling layer z(Max1) and z(Max2), respectively. Then we apply a flatten layer z(flatten)

to bring the learned representation into a vector form. These layers are chosen
according to (9.7), (9.10) and (9.12) with matching input and output dimensions
so that the following composition is well-defined

z(5:1) =
(
z(flatten) ◦ z(Max2) ◦ z(CN2) ◦ z(Max1) ◦ z(CN1)

)
: RI×J×3 → R

q5 .

Listing 9.1 provides an example starting from a I ×J ×3 = 180×50×3 input tensor
x(0) and receiving a q5 = 60 dimensional learned representation z(5:1)(x(0)) ∈ R

60.
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Listing 9.1 CN network architecture in keras

1 shape <- c(180,50,3)
2 #
3 model = keras_model_sequential()
4 model %>%
5 layer_conv_2d(filters = 10, kernel_size = c(11,6), activation=’tanh’,
6 input_shape = shape) %>%
7 layer_max_pooling_2d(pool_size = c(10,5)) %>%
8 layer_conv_2d(filters = 5, kernel_size = c(6,4), activation=’tanh’) %>%
9 layer_max_pooling_2d(pool_size = c(3,2)) %>%

10 layer_flatten()

Listing 9.2 Summary of CN network architecture

1 Layer (type) Output Shape Param #
2 =======================================================================
3 conv2d_1 (Conv2D) (None, 170, 45, 10) 1990
4 -----------------------------------------------------------------------
5 max_pooling2d_1 (MaxPooling2D) (None, 17, 9, 10) 0
6 -----------------------------------------------------------------------
7 conv2d_2 (Conv2D) (None, 12, 6, 5) 1205
8 -----------------------------------------------------------------------
9 max_pooling2d_2 (MaxPooling2D) (None, 4, 3, 5) 0

10 -----------------------------------------------------------------------
11 flatten_1 (Flatten) (None, 60) 0
12 =======================================================================
13 Total params: 3,195
14 Trainable params: 3,195
15 Non-trainable params: 0

Listing 9.2 gives the summary of this architecture providing the dimension reduction
mappings (encodings)

180 × 50 × 3
CN1�→ 170 × 45 × 10

Max1�→ 17 × 9 × 10
CN2�→ 12 × 6 × 5

Max2�→ 4 × 3 × 5
flatten�→ 60.

The first CN layer (m = 1) involves q(3)1 r1 = 10 · (1 + 11 · 6 · 3) = 1′990 filter weights
(w
(1)
0,j ,W

(1)
j )1≤j≤q(3)1

(including the intercepts), and the second CN layer (m = 3)

involves q(3)3 r3 = 5·(1+6·4·10) = 1′205 filter weights (w(3)0,j ,W
(3)
j )1≤j≤q(3)3

. Altogether

we have a network parameter of dimension 3′195 to be fitted in this CN network
architecture.

To perform the prediction task (9.13) we concatenate the learned representation
z(5:1)(x(0)) ∈ R

q5 of the RGB image x(0) with the tabular feature x(1) ∈ X ⊂ {1}×R
q .

This concatenated vector is processed through a FN network architecture z(d+5:6) of
depth d ≥ 1 providing the output

(
z(5:1)(x(0)), x(1)

)
�→ E

[
Y

∣∣
∣x(0), x(1)

]
= g−1

〈
β, z(d+5:6) (z(5:1)(x(0)), x(1)

)〉
,

for given link function g. This last step can be done in complete analogy to Chap. 7,
and fitting of such a network architecture uses variants of the SGD algorithm.
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9.3.2 Lab: Telematics Data

We present a CN network example that studies time-series of telematics car driving
data. Unfortunately, this data is not publicly available. Recently, telematics car
driving data has gained much popularity in actuarial science, because this data
provides information of car drivers that goes beyond the classical features (age of
driver, year of driving test, etc.), and it provides a better discrimination of good and
bad drivers as it is directly based on the driving habits and the driving styles.

The telematics data has many different aspects. Raw telematics data typically
consists of high-frequency GPS location data, say, second by second, from which
several different statistics such as speed, acceleration and change of direction can
be calculated. Besides the GPS location data, it often contains vehicle speeds
from the vehicle instrumental panel, and acceleration in all directions from an
accelerometer. Thus, often, there are 3 different sources from which the speed and
the acceleration can be extracted. In practice, the data quality is often an issue as
these 3 different sources may give substantially different numbers, Meng et al. [271]
give a broader discussion on these data quality issues. The telematics GPS data
is often complemented by further information such as engine revolutions, daytime
of trips, road and traffic conditions, weather conditions, traffic rule violations, etc.
This raw telematics data is then pre-processed, e.g., special maneuvers are extracted
(speeding, sudden acceleration, hard braking, extreme right- and left-turns), total
distances are calculated, driving distances at different daytimes and weekdays are
analyzed. For references analyzing such statistics for predictive modeling we refer to
Ayuso et al. [17–19], Boucher et al. [42], Huang–Meng [193], Lemaire et al. [246],
Paefgen et al. [291], So et al. [344], Sun et al. [347] and Verbelen et al. [370]. A
different approach has been taken by Wüthrich [388] and Gao et al. [151, 154, 155],
namely, these authors aggregate the telematics data of speed and acceleration to
so-called speed-acceleration v-a heatmaps. These v-a heatmaps are understood as
images which can be analyzed, e.g., by CN networks; such an analysis has been
performed in Zhu–Wüthrich [407] for image classification and in Gao et al. [154]
for claim frequency modeling. Finally, the work of Weidner et al. [377, 378] directly
acts on the time-series of the telematics GPS data by performing a Fourier analysis.

In this section, we aim at allocating individual car driving trips to the right drivers
by directly analyzing the time-series of the telematics data of these trips using CN
networks. We therefore replicate the analysis of Gao–Wüthrich [156] on slightly
different data. For our illustrative example we select 3 car drivers and we call them
driver A, driver B and driver C. For each of these 3 drivers we choose individual
car driving trips of 180 seconds, and we analyze their speed-acceleration-change in
angle (v-a-�) pattern every second. Thus, for t = 1, . . . , T = 180, we study the three
input channels

xs,t = (vs,t , as,t , �s,t )� ∈ [2, 50]km/h × [−3, 3]m/s2 × [0, 1/2] ⊂ R
3,
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where 1 ≤ s ≤ S labels all individual trips of the considered drivers. This data has
been pre-processed by cutting-out the idling phase and the speeds above 50km/h
and concatenating the remaining pieces. We perform this pre-processing since
we do not want to identify the drivers because they have a special idling phase
picture or because they are more likely on the highway. Acceleration has been
censored at ±3m/s2 because we cannot exclude that more extreme observations are
caused by data quality issues (note that the acceleration is calculated from the GPS
coordinates and if the signals are not fully precise it can lead to extreme acceleration
observations). Finally, change in angle is measured in absolute values of sine per
second (censored at 1/2), i.e., we do not distinguish between left and right turns.
This then provides us with three time-series channels giving tensors of order 2

xs =
(
(vs,1, as,1,�s,1)

�, . . . , (vs,180, as,180,�s,180)
�)� ∈ R

180×3,

for 1 ≤ s ≤ S. Moreover, there is a categorical response Ys ∈ {A,B,C} indicating
which driver has been driving trip s.
Figure 9.1 illustrates the first three trips xs of T = 180 seconds of each of these three
drivers A (top), B (middle) and C (bottom); note that the 180 seconds have been
chosen at a random location within each trip. The first lines in red color show the
acceleration patterns (at )1≤t≤T , the second lines in black color the change in angle
patterns (�t )1≤t≤T , and the last lines in blue color the speed patterns (vt )1≤t≤T .
Table 9.1 summarizes the available data. In total we have 932 individual trips, and
we randomly split these trips in the learning data L consisting of 744 trips and the
test data T collecting the remaining trips. The goal is to train a classification model
that correctly allocates the test data T to the right driver. As feature information, we
use the telematics data xs of length 180 seconds. We design a logistic categorical
regression model with response set Y = {A,B,C}. Hence, we obtain a vector-valued
parameter EF with a response having 3 levels, see Sect. 2.1.4.

To process the telematics data xs , we design a CN network architecture having
three convolutional layers z(CNj), 1 ≤ j ≤ 3, each followed by a max-pooling
layer z(Maxj), then we apply a drop-out layer z(DO) and finally a fully-connected FN
layer z(FN) providing the logistic response classification; this is the same network
architecture as used in Gao–Wüthrich [156]. The code is given in Listing 9.3 and it
describes the mapping

z(8:1) =
(
z(FN) ◦ z(DO) ◦ z(Max3) ◦ z(CN3) ◦ z(Max2) ◦ z(CN2) ◦ z(Max1) ◦ z(CN1)

)
:

R
T×3 → (0, 1)3.

The first CN and pooling layer z(Max1) ◦ z(CN1) maps the dimension 180 × 3 to a
tensor of dimension 58 × 12 using 12 filters; the max-pooling uses the floor (9.11).
The second CN and pooling layer z(Max2) ◦ z(CN2) maps to 18 × 10 using 10 filters,
and the third CN and pooling layer z(Max3) ◦ z(CN3) maps to 1 × 8 using 8 filters.
Actually, this last max-pooling layer is a global max-pooling layer extracting the
maximum in each of the 8 filters. Next, we apply a drop-out layer with a drop-out
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Fig. 9.1 First 3 trips of driver A (top), driver B (middle) and driver C (bottom); each trip is 180
seconds, red color shows the acceleration pattern (at )t , black color the change in angle pattern
(�t )t and blue color the speed pattern (vt )t

Table 9.1 Summary of the trips and the choice of learning and test data sets L and T

Driver A Driver B Driver C Total

Number of trips S 261 385 286 932

Learning data L 209 307 228 744

Test data T 52 78 58 188

Average speed vt 24.8 30.4 30.2 km/h

Average acceleration/braking |at | 0.56 0.61 0.74 m/s2

Average change in angle �t 0.065 0.054 0.076 |sin|/s

rate of 30% to prevent from over-fitting. Finally we apply a fully-connected FN
layer that maps the 8 neurons to the 3 categorical outputs using the softmax output
activation function, which provides the canonical link of the logistic categorical EF.



9.3 Convolutional Neural Network Architectures 421

Listing 9.3 CN network architecture for the individual car trip allocation

1 shape <- c(180,3)
2 #
3 model = keras_model_sequential()
4 model %>%
5 layer_conv_1d(filters = 12, kernel_size = 5, activation=’tanh’,
6 input_shape = shape) %>%
7 layer_max_pooling_1d(pool_size = 3) %>%
8 layer_conv_1d(filters = 10, kernel_size = 5, activation=’tanh’) %>%
9 layer_max_pooling_1d(pool_size = 3) %>%

10 layer_conv_1d(filters = 8, kernel_size = 5, activation=’tanh’) %>%
11 layer_global_max_pooling_1d() %>%
12 layer_dropout(rate = .3) %>%
13 layer_dense(units = 3, activation = ’softmax’)

For a summary of the network architecture see Listing 9.4. Altogether this involves
1’237 network parameters that need to be fitted.

Listing 9.4 Summary of CN network architecture for the individual car trip allocation

1 Layer (type) Output Shape Param #
2 ===============================================================================
3 conv1d_1 (Conv1D) (None, 176, 12) 192
4 -------------------------------------------------------------------------------
5 max_pooling1d_1 (MaxPooling1D) (None, 58, 12) 0
6 -------------------------------------------------------------------------------
7 conv1d_2 (Conv1D) (None, 54, 10) 610
8 -------------------------------------------------------------------------------
9 max_pooling1d_2 (MaxPooling1D) (None, 18, 10) 0

10 -------------------------------------------------------------------------------
11 conv1d_3 (Conv1D) (None, 14, 8) 408
12 -------------------------------------------------------------------------------
13 global_max_pooling1d_1 (GlobalMaxPool (None, 8) 0
14 -------------------------------------------------------------------------------
15 dropout_1 (Dropout) (None, 8) 0
16 -------------------------------------------------------------------------------
17 dense_1 (Dense) (None, 3) 27
18 ===============================================================================
19 Total params: 1,237
20 Trainable params: 1,237
21 Non-trainable params: 0

We choose the 744 trips of the learning data L to train this network to the
classification task, see Table 9.1. We use the multi-class cross-entropy loss function,
see (4.19), with 80% of the learning data L as training data U and the remaining
20% as validation data V to track over-fitting. We retrieve the network with the
smallest validation loss using a callback, we refer to Listing 7.3 for a callback.
Since the learning data is comparably small and to reduce randomness, we use the
nagging predictor averaging over 10 different network fits (using different seeds).



422 9 Convolutional Neural Networks

Table 9.2 Out-of-sample
confusion matrix

True labels

Driver A Driver B Driver C

Predicted label A 39 10 2

Predicted label B 9 66 6

Predicted label C 4 2 50
% correctly allocated 75.0% 84.6% 86.2%

# of trips in test data 52 78 58

These fitted networks then provide us with a mapping

z(8:1) : RT×3 → (0, 1)3, x �→ z(8:1)(x) =
(
z
(8:1)
A (x), z

(8:1)
B (x), z

(8:1)
C (x)

)�
,

and for each trip xs ∈ R
T×3 we receive the classification

Ŷs = arg max
y∈{A,B,C}

z(8:1)y (xs).

Table 9.2 shows the out-of-sample results on the test data T . On average more than
80% of all trips are correctly allocated; a purely random allocation would provide
a success rate of 33%. This shows that this allocation problem can be solved rather
successfully and, indeed, the CN network architecture is able to learn structure in
the telematics trip data xs that allows one to discriminate car drivers. This sounds
very promising. In fact, the telematics car driving data seems to be very transparent
which, of course, also raises privacy issues. On the downside we should mention
that from this approach we cannot really see what the network has learned and how
it manages to distinguish the different trips.

There are several approaches that try to visualize what the network has learned
in the different layers by extracting the filter activations in the CN layers, others
try to invert the networks trying to backtrack which activations and weights mostly
contribute to a certain output, we mention, e.g., DeepLIFT of Shrikumar et al. [339].
For more analysis and references we refer to Sect. 4 of the tutorial Meier–Wüthrich
[269]. We do not further discuss this and close this example.

9.3.3 Lab: Mortality Surface Modeling

We revisit the mortality example of Sect. 8.4.2 where we used a LSTM architecture
to process the raw mortality data for forecasting, see Fig. 8.13. We are going to do
a (small) change to that architecture by simply replacing the LSTM encoder by a
CN network encoder. This approach has been promoted in the literature, e.g., by
Perla et al. [301], Schnürch–Korn [330] and Wang et al. [375]. A main difference
between these references is whether the mortality tensor is considered as a tensor
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of order 2 (reflecting time-series data) or of order 3 (reflecting the mortality surface
as an image). In the present example we are going to interpret the mortality tensor
as a monochrome image, and this requires that we extend (8.23) by an additional
channels component

xt−τ :t−1 = (xt−τ , . . . , xt−1)
�

= (
Mx,s

)
t−τ≤s≤t−1,x0≤x≤x1

∈ R
τ×(x1−x0+1)×1 = R

5×100×1,

for a lookback period of τ = 5. The LSTM cell encodes this tensor/matrix into a 20-
dimensional vector which is then concatenated with the embeddings of the country
code and the gender code (8.24). We use the same architecture here, only the LSTM
part is replaced by a CN network in (8.25), the corresponding code is given on lines
14–17 of Listing 9.5.

Listing 9.5 CN network architecture to directly process the raw mortality rates (Mx,t )x,t

1 Tensor = layer_input(shape=c(lookback,100,1), dtype=’float32’, name=’Tensor’)
2 Country = layer_input(shape=c(1), dtype=’int32’, name=’Country’)
3 Gender = layer_input(shape=c(1), dtype=’int32’, name=’Gender’)
4 Time = layer_input(shape=c(1), dtype=’float32’, name=’Time’)
5 #
6 CountryEmb = Country %>%
7 layer_embedding(input_dim=8,output_dim=1,input_length=1,name=’CountryEmb’) %>%
8 layer_flatten(name=’Country_flat’)
9 #

10 GenderEmb = Gender %>%
11 layer_embedding(input_dim=2,output_dim=1,input_length=1,name=’GenderEmb’) %>%
12 layer_flatten(name=’Gender_flat’)
13 #
14 CN = Tensor %>%
15 layer_conv_2d(filter = 10, kernel_size = c(5,5), activation = ’linear’) %>%
16 layer_max_pooling_2d(pool_size = c(1,8)) %>%
17 layer_flatten()
18 #
19 Output = list(CN,CountryEmb,GenderEmb) %>% layer_concatenate() %>%
20 layer_dense(units=100, activation=’linear’, name=’scalarproduct’) %>%
21 layer_reshape(c(1,100), name = ’Output’)
22 #
23 model = keras_model(inputs = list(Tensor, Country, Gender),
24 outputs = c(Output))

Line 15 maps the input tensor 5×100×1 to a tensor 1×96×10 having 10 filters, the
max-pooling layer reduces this tensor to 1 × 12 × 10, and the flatten layer encodes
this tensor into a 120-dimensional vector. This vector is then concatenated with the
embedding vectors of the country and the gender codes, and this provides us with
r = 12′570 network parameters, thus, the LSTM architecture and the CN network
architecture use roughly equally many network parameters that need to be fitted. We
then use the identical partition in training, validation and test data as in Sect. 8.4.2,
i.e., we use the data from 1950 to 2003 for fitting the network architecture, which is
then used to forecast the calendar years 2004 to 2018. The results are presented in
Table 9.3.
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Table 9.3 Comparison of the out-of-sample mean squared losses for the calendar years 2004 ≤
t ≤ 2018; the figures are in 10−4

Female Male

LC LSTM CN LC LSTM CN

Austria AUT 0.765 0.312 0.635 2.527 1.169 1.569

Belgium BE 0.371 0.311 0.290 2.835 0.960 1.100

Switzerland CH 0.654 0.478 0.772 1.609 1.134 2.035

Spain ESP 1.446 0.514 0.199 1.742 0.245 0.240
France FRA 0.175 1.684 0.309 0.333 0.363 0.770

Italy ITA 0.179 0.330 0.186 0.874 0.320 0.421

The Netherlands NL 0.426 0.315 0.266 1.978 0.601 0.606

Portugal POR 2.097 0.464 0.416 1.848 1.239 1.880

We observe that in our case the CN network architecture provides good results for
the female populations, whereas for the male populations we rather prefer the LSTM
architecture. At the current stage we rather see this as a proof of concept, because
we have not really fine-tuned the network architectures, nor has the SGD fitting
been perfected, e.g., often bigger architectures are used in combination with drop-
outs, etc. We refrain from doing so, here, but refer to the relevant literature Perla
et al. [301], Schnürch–Korn [330] and Wang et al. [375] for a more sophisticated
fine-tuning.
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Chapter 10
Natural Language Processing

Natural language processing (NLP) is a vastly growing field that is studying lan-
guage, communication and text recognition. The purpose of this chapter is to present
an introduction to NLP. Important milestones in the field of NLP are the work of
Bengio et al. [28, 29] who have introduced the idea of word embedding, the work
of Mikolov et al. [275, 276] who have developed word2vec which is an efficient
word embedding tool, and the work of Pennington et al. [300] and Chaubard et
al. [68] who provide the pre-trained word embedding model GloVe1 and detailed
educational material.2 An excellent overview of the NLP working pipeline is
provided by the tutorial of Ferrario–Nägelin [126]. This overview distinguishes
three approaches: (1) the classical approach using bag-of-words and bag-of-part-
of-speech models to classify text documents; (2) the modern approach using word
embeddings to receive a low-dimensional representation of the dictionary, which
is then further processed; (3) the contemporary approach uses a minimal amount
of text pre-processing but directly feeds raw data to a machine learning algorithm.
We discuss these different approaches and show how they can be used to extract
the relevant information from claim descriptions to predict the claim types and the
claim sizes; in the actuarial literature first papers on this topic have been published
by Lee et al. [236] and Manski et al. [264].

10.1 Feature Pre-processing and Bag-of-Words

NLP requires an extensive feature pre-processing and engineering as different texts
can be rather diverse in language, grammar, abbreviations, typos, etc. The current
developments aim at automating this process, nevertheless, many of these steps

1 https://nlp.stanford.edu/projects/glove/.
2 https://nlp.stanford.edu/teaching/.
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are still (tedious) manual work. Our goal here is to present the whole working
pipeline to process language, perform text recognition and text understanding. As
an example we use the claim data described in Chap. 13.3; this data has been made
available through the book project of Frees [135], and it comprises property claims
of governmental institutions in Wisconsin, US. An excerpt of the data is given in
Listing 10.1; our attention applies to line 11 which provides a (very) short claim
description for every claim.

Listing 10.1 Excerpt of the Wisconsin Local Government Property Insurance Fund (LGPIF) data
set with short claim descriptions on line 11

1 ’data.frame’: 5424 obs. of 10 variables:
2 $ PolicyNum : int 120002 120003 120003 120003 120003 120003 120003 ...
3 $ Year : int 2010 2007 2008 2007 2009 2010 2007 2007 2009 2007 ...
4 $ Claim : num 6839 2085 8775 600 34610 ...
5 $ Deduct : int 1000 5000 5000 5000 5000 5000 5000 5000 5000 5000 ...
6 $ EntityType : Factor w/ 6 levels "City","County",..: 2 2 2 2 2 2 2 2 2 2 ...
7 $ CoverageCode: Factor w/ 13 levels "CE","CF","CS",..: 12 12 11 11 11 12 ...
8 $ Fire5 : int 4 0 0 0 0 0 0 0 0 0 ...
9 $ CountyCode : Factor w/ 72 levels "ADA","ASH","BAR",..: 2 3 3 3 3 3 3 3...

10 $ Hazard : Factor w/ 9 levels "Fire","Hail",..: 3 3 5 5 9 6 3 3 3 3 ...
11 $ Description : chr "lightning damage" "lightning damage at Comm. Center" ...

In a first step we need to pre-process the texts to make them suitable for predictive
modeling. This first step is called tokenization. Essentially, tokenization labels the
words with integers, that is, the used vocabulary is encoded by integers. There are
several issues that one has to deal with in this first step such as upper and lower
case, punctuation, orthographic errors and differences, abbreviations, etc. Different
treatments of these issues will lead to different results, for more on this topic we
refer to Sect. 1 in Ferrario–Nägelin [126]. We simply use the standard routine
offered in R keras [77] called text_tokenizer() with its standard settings.

Listing 10.2 Tokenization within R keras [77]

1 library(keras)
2
3 ## initialize tokenizer and fit
4 tokenizer <- text_tokenizer() %>% fit_text_tokenizer(dat$Description)
5
6 ## number of tokens/words
7 length(tokenizer$word_index)
8
9 ## frequency of word appearances in each text

10 freq.text <- texts_to_matrix(tokenizer, dat$Description, mode = "count")

The R code in Listing 10.2 shows the crucial steps in tokenization. Line 4 extracts
the relevant vocabulary from all available claim descriptions. In total the 5’424 claim
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Fig. 10.1 Most frequently
used words in the claim
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descriptions of Listing 10.1 use W = 2′237 different words. This double counts
different spellings, e.g., ‘color’ vs. ’colour’.
Figure 10.1 shows the most frequently used words in the claim descriptions of
Listing 10.1. These are (in this order): ‘at’, ‘damage’, ‘damaged’, ‘vandalism’,
‘lightning’, ‘to’, ‘water’, ‘glass’, ‘park’, ‘fire’, ‘hs’, ‘wind’, ‘light’, ‘door’, ‘es’,
‘and’, ‘of’, ‘vehicle’, ‘pole’ and ‘power’. We observe that many of these words
are directly related to insurance claims, such as ‘damage’ and ‘vandalism’, others
are frequent stopwords like ‘at’ and ‘to’, and then there are abbreviations like ‘hs’
and ‘es’ standing for high school and elementary school.

Listing 10.3 Word and text encoding

1 maxlen <- max(rowSums(freq.text))
2
3 ## encode the sentences
4 text.seq <- texts_to_sequences(tokenizer, dat$Description)
5
6 ## pad the sentences
7 text.seq.pad <- pad_sequences(text.seq, maxlen = maxlen, padding = "post")
8
9 ## examples

10 lightning/hail damage to equip at airport
11 5 48 2 6 196 1 40 0 0 0 0
12 ##
13 garage door damaged
14 36 14 3 0 0 0 0 0 0 0 0

The next step is to assign the (integer) labels 1 ≤ w ≤ W from the tokenization
to the words in the texts. The maximal length over all texts/sentences is T = 11
words. This step and padding the sentences with zeros to equal length T is presented
on lines 1–7 of Listing 10.3. Lines 11 and 14 of this listing give two explicit text
examples

text = (w1, . . . , wT )
� ∈ WT

0 ,
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where we set for the vocabulary W0 used

W = {1, . . . ,W } ⊂ N and W0 = W ∪ {0}.

The label 0 is used for padding shorter texts to the common length T = 11. The
method of bag-of-words embeds text = (w1, . . . , wT )

� into N
W
0

ψ : WT
0 → N

W
0 , text �→ ψ(text) =

(
T∑

t=1

1{wt=w}

)�

w∈W
. (10.1)

The bag-of-wordsψ(text) counts how often each wordw ∈ W appears in a given
text = (w1, . . . , wT )

�; the corresponding code is given on line 10 of Listing 10.2.
The bag-of-words mapping ψ is not injective as the order of occurrence of the
words gets lost, and, thus, also the semantics of the sentence gets lost. E.g., the
bag-of-words of the following two sentences is the same ‘The claim is expensive.’
and ‘Is the claim expensive?’. This is the reason for calling it a “bag of words”
(which is unordered). This bag-of-words encoding resembles one-hot encoding,
namely, if every text consists of a single word T = 1, then we receive the one-hot
encoding with W describing the number of different levels, see (7.28). The bag-of-
words ψ(text) ∈ N

W
0 can directly be used as an input to a regression model. The

disadvantage of this approach is that the input typically is high-dimensional (and
likely sparse), and it is recommended that only the frequent words are considered.

Listing 10.4 Removal of stopwords and lemmatization

1 library(textstem)
2 library(tm)
3
4 text.clean <- removeWords(dat$Description, stopwords("english"))
5 text.clean <- lemmatize_strings(text.clean, dictionary = lexicon::hash_lemmas)

Additionally, stopwords can be removed. We perform this removal below because
frequent stopwords like ‘and’ or ‘to’ may not essentially contribute to the under-
standing of the (short) claim descriptions; the code for the stopword removal is
provided on line 4 of Listing 10.4. Moreover, stemming can be performed which
means that inflectional forms are reduced to their stem by just truncating pre- and
suffixes, conjugations, declensions, etc. Lemmatization is a more sophisticated form
of reducing inflectional forms by using vocabularies and morphological analyses;
an example is provided on line 5 of Listing 10.4. If we perform these two steps
of removing stopwords and lemmatization to our example, the number of different
words is reduced from 2’237 to 1’982.

Another step that can be performed is tagging words with part-of-speech (POS)
attributes. These POS attributes indicate whether the corresponding words are used
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as nouns, adjectives, adverbs, etc., in the corresponding sentences. We then call the
resulting encoding bag-of-POS. We refrain from doing this because we will present
more sophisticated methods in the next sections.

10.2 Word Embeddings

The bag-of-words (10.1) can be interpreted as representing each word w ∈ W =
{1, . . . ,W } by a one-hot encoding in {0, 1}W , and then aggregating these one-hot
encodings over all words that appear in the given text = (w1, . . . , wT )

�. Bengio
et al. [28, 29] have introduced the technique of word embedding that maps words
to a lower dimensional Euclidean space R

b, b " W , such that proximity in R
b

is associated with similarity in the meaning of the word, e.g., ‘rain’, ‘water’ and
‘flood’ should be more close to each other in R

b than to ‘vandalism’ (in an insurance
context). This is exactly the idea promoted in the embedding mapping (7.31) using
the embedding layers. Thus, we are looking for an embedding mapping

e : W → R
b, w �→ e(w), (10.2)

that maps each word w (or rather its tokenization) to a b-dimensional vector e(w),
for a given embedding dimension b " W . The general idea now is that similarity in
the meaning of words can be learned from the context in which the words are used
in. That is, when we consider a text

text = (w1, . . . , wt−1, wt ,wt+1, . . . , wT )
� ,

then it might be possible to infer wt from its neighborswt−j and wt+j , j ≥ 1. This
explains the context of a word wt , and using suitable learning tools it should also be
possible to learn synonyms for wt as these synonyms will stand in similar contexts.

More mathematically speaking, we assume that there exists a probability distri-
bution p over the set of all texts of length T (using padding with zeros to common
length)

T =
{
text = (w1, . . . , wT )

�} ⊆ WT
0 ,

such that a randomly chosen text ∈ T appears with probability p(w1, . . . , wT ) ∈
[0, 1). Inference of a word wt from its context can then be obtained by studying the
conditional probablity of wt , given its context, that is

p (wt |w1, . . . , wt−1, wt+1, . . . , wT ) = p(w1, . . . , wT )

p(w1, . . . , wt−1, wt+1, . . . , wT )
.

(10.3)
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Since, typically, the probability distribution p is not known we aim at learning it
from the available data. This idea has been taken up by Mikolov et al. [275, 276]
who designed the word to vector (word2vec) algorithm. Pennington et al. [300]
designed an alternative algorithm called global vectors (GloVe); we also refer to
Chaubard et al. [68]. We describe these algorithms in the following sections.

10.2.1 Word to Vector Algorithms

There are two ways of estimating the probability p in (10.3). Either we can try to
predict the center word wt from its context as in (10.3) or we can try to predict the
context from the center word wt , which applies Bayes’s rule to (10.3). The latter
variant is called skip-gram and the former variant is called continuous bag-of-words
(CBOW), if we neglect the order of the words in the context. These two approaches
have been developed by Mikolov et al. [275, 276].

Skip-gram Approach

Typically, inferring a general probability distribution p over T is too complex.
Therefore, we make a simplifying assumption. This simplifying assumption is not
reasonable from a practical linguistic point of view, but it is sufficient to receive a
reasonable word embedding map e : W → R

b. We assume conditional i.i.d. of the
context words, given the center word wt . Choosing a fixed context (window) size
c ∈ N, we try to maximize the log-likelihood over all probabilities p satisfying this
conditional i.i.d. assumption

�W =
n∑

i=1

logp
(
wi,t−c, . . . , wi,t−1, wi,t+1, . . . , wi,t+c

∣
∣wi,t

)

=
n∑

i=1

∑

−c≤j≤c,j �=0

logp
(
wi,t+j

∣
∣wi,t

)
, (10.4)

having n independent rows in the observed data matrix W = (wi,t−c, . . . ,
wi,t+c)1≤i≤n ∈ Wn×(2c+1). Thus, under the conditional i.i.d. of the context words,
given the center word, the probabilities (10.4) infer the occurrence of (individual)
context words of a given center word wi,t within a symmetric window of fixed size
c. In the sequel we directly work with the log-likelihood (10.4), supposed that a
context word wi,t+j exists for index j , otherwise the corresponding term is just
dropped from the sum in (10.4).

The remaining step is to estimate the conditional probabilities p(wt+j |wt) from
the data matrix W . This step will provide us with the embeddings (10.2). This
estimation step is received by considering an approach similar to a GLM for
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categorical responses, see Sect. 5.7. We make the following ansatz for the context
word ws and the center word wt (for all j )

p (ws |wt) = exp 〈̃e(ws), e(wt )〉
∑W
w=1 exp 〈̃e(w), e(wt )〉

∈ (0, 1), (10.5)

where e and ẽ are two (different) embedding maps (10.2) that have the same
embedding dimension b ∈ N. Thus, we construct two different embeddings e and ẽ

for the center words and for the context words, respectively, and these embeddings
(embedding weights) are chosen such that the log-likelihood (10.4) is maximized
for the given observations W . These assumptions give us a minimization problem
for the negative log-likelihood in the embedding mappings, i.e., we minimize over
the embeddings e and ẽ

− �W = −
n∑

i=1

∑

−c≤j≤c,j �=0

log

(
exp

〈
ẽ(wi,t+j ), e(wi,t )

〉

∑W
w=1 exp

〈
ẽ(w), e(wi,t )

〉

)

(10.6)

= −
n∑

i=1

⎛

⎝
∑

−c≤j≤c,j �=0

〈
ẽ(wi,t+j ), e(wi,t )

〉− 2c log

(
W∑

w=1

exp
〈
ẽ(w), e(wi,t )

〉
)⎞

⎠ .

These optimal embeddings are learned using a variant of the gradient descent
algorithm. This often results in a very high-dimensional optimization problem as
we have 2bW parameters to learn, and the calculation of the last (normalization)
term in (10.6) can be very expensive in gradient descent algorithms. For this reason
we present the method of negative sampling below.

Continuous Bag-of-Words

For the CBOW method we start from the log-likelihood for a context size c ∈ N and
given the observations W

n∑

i=1

logp
(
wi,t
∣
∣wi,t−c, . . . , wi,t−1, wi,t+1, . . . , wi,t+c

)
.

Again we need to reduce the complexity which requires an approximation to the
above. Assume that the embedding map of the context words is given by ẽ : W →
R
b. We then average over the embeddings of the context words in order to predict

the center word. Define the average embedding of the context words of wi,t (with a
fixed window size c) by

ẽi,t = 1

2c

∑

−c≤j≤c,j �=0

ẽ(wi,t+j ).
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Making an ansatz similar to (10.5), the full log-likelihood is approximated by

n∑

i=1

logp
(
wi,t
∣∣ ẽi,t

) =
n∑

i=1

log

(
exp

〈
ẽi,t , e(wi,t )

〉

∑W
w=1 exp

〈
ẽi,t , e(w)

〉

)

(10.7)

=
n∑

i=1

〈
ẽi,t , e(wi,t )

〉− log

(
W∑

w=1

exp
〈
ẽi,t , e(w)

〉
)

.

Again the gradient descent method is applied to the negative log-likelihood to learn
the optimal embedding maps e and ẽ.

Remark 10.1 In both cases, skip-gram and CBOW, we estimate two separate
embeddings e and ẽ for the center word and the context words. Typically, CBOW is
faster but skip-gram is better on words that are less frequent.

Negative Sampling

There is a computational issue in (10.6) and (10.7) because the probability normal-
izations in (10.6) and (10.7) aggregate over all available words w ∈ W . This can
be computationally demanding because we need to perform this calculation in each
gradient descent step. For this reason, Mikolov et al. [276] turn the log-likelihood
optimization problem (10.6) into a binary classification problem. Consider a pair
(w, w̃) ∈ W × W of center word w and context word w̃. We introduce a binary
response variable Y ∈ {1, 0} that indicates whether an observation (W, W̃ ) =
(w, w̃) is coming from a true center-context pair (from our texts) or whether
we have a fake center-context pair (that has been generated randomly). Choosing
the canonical link of the Bernoulli EF (logistic/sigmoid function) we make the
following ansatz (in the skip-gram approach) to test for the authenticity of a center-
context pair (w, w̃)

P [Y = 1|w, w̃] = 1

1 + exp {−〈̃e(w̃), e(w)〉} . (10.8)

The recipe now is as follows: (1) Consider for a given window size c all center-
context pairs (wi, w̃i ) ∈ W×W of our texts, and equip them with a response Yi = 1.
Assume we have N such observations. (2) Simulate N i.i.d. pairs (WN+k, W̃N+k),
1 ≤ k ≤ N , by randomly choosing WN+k and W̃N+k , independent from each
other (by performing independent re-sampling with or without replacements from
the data (wi)1≤i≤N and (w̃i )1≤i≤N , respectively). Equip these (false) pairs with the
response YN+k = 0. (3) Maximize the following log-likelihood as a function of the
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embedding maps e and ẽ

�Y =
2N∑

i=1

logP [Y = Yi |wi, w̃i ] (10.9)

=
N∑

i=1

log

(
1

1 + exp〈−̃e(w̃i), e(wi)〉
)

+
2N∑

k=N+1

log

(
1

1 + exp〈̃e(w̃k), e(wk)〉
)
.

This approach is called negative sampling because we sample false or negative
pairs (WN+k, W̃N+k) that should not appear in our texts (as WN+k and W̃N+k have
been generated independently from each other). The binary classification (10.9)
aims at detecting the negative pairs be letting the scalar products 〈̃e(w̃i), e(wi)〉
be large for the true pairs and letting the scalar products 〈̃e(w̃k), e(wk)〉 be small
for the false pairs. The former means that ẽ(w̃i) and e(wi) should point into the
same direction in the embedding space R

b. The same should apply for a synonym
ofwi and, thus, we receive the desired behavior that synonyms or words with similar
meanings tend to cluster.

Example 10.2 (word2vec with Negative Sampling) We provide an example by
constructing a word2vec embedding based on negative sampling. For this we aim
at maximizing the log-likelihood (10.9) by finding optimal embedding maps e and
ẽ : W → R

b. To construct these embedding maps we use the Wisconsin LGPIF
data described in Sect. 13.3. The first decision (hyper-parameter) is the choice of the
embedding dimension b. English language has millions of different words, and these
words should be (in some sense) densely embedded into a b-dimensional Euclidean
space. Typical choices of b vary between 50 and 300. Our LGPIF data vocabulary is
much smaller, and for this example we choose b = 2 because this allows us to nicely
illustrate the learned embeddings. However, apart from illustration, we should not
choose such a small dimension as it does not allow for a sufficient flexibility in
discriminating the words, as we will see.

We consider all available claim texts described in Sect. 13.3. These are 6’031
texts coming from the training and validation data sets (we include the validation
data here to have more texts for learning the embeddings; this is different from
Sect. 10.1). We extract the claim descriptions from these two data sets and we apply
some pre-processing to the texts. This involves transforming all letters to lower case,
removing the special characters like !”/&, and removing the stopwords. Moreover,
we remove the words ‘damage’ and ‘damaged’ as these two words are very common
in our insurance claim descriptions, see Fig. 10.1, but they do not further specify
the claim type. Then we apply lemmatization, see Listing 10.4, and we adjust the
vocabulary with the GloVe database,3 see also Example 10.4. The latter step is

3 https://nlp.stanford.edu/projects/glove/.
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(tedious) manual work, and we do this step to be able to compare our results to
pre-trained word2vec versions.

After this pre-processing we apply the tokenizer, see line 4 of Listing 10.2. This
gives us 1′829 different words. To construct our (illustrative) embedding we only
consider the words that appear at least 20 times over all texts, these are W = 142
words. Thus, the following analysis is only based on the W = 142 most frequent
words. Of course, we could increase our vocabulary by considering any text that can
be downloaded from the internet. Since we would like to perform an insurance claim
analysis, these texts should be related to an insurance context so that the learned
embeddings reflect an insurance experience; we come back to this in Remark 10.4,
below. We refrain here from doing so and embed these W = 142 words into the
Euclidean plane (b = 2).

Listing 10.5 Tokenization of the most frequent words

1 ## applying the tokenizer to the cleaned texts
2 tokenizer <- text_tokenizer(num_words=142+1) %>% fit_text_tokenizer(dat$clean)
3
4 seqs <- texts_to_sequences(tokenizer, dat$clean)
5
6 ## skip-gram of text 1 using a window of size 2
7 skipgrams(sequence=unlist(seqs[[1]]),
8 vocabulary_size=142, window_size=2, negative_samples=0)

Listing 10.5 shows the tokenization of the most frequent words, and on line 4 we
build the (shortened) texts w1, w2, . . . , only considering these most frequent words
w ∈ W = {1, . . . ,W }. In total we receive 4’746 texts that contain at least two words
from W and, hence, can be used for the skip-gram building of center-context pairs
(w, w̃) ∈ W ×W . Lines 7–8 give the code for building these pairs for a window of
size c = 2. In total we receive N = 23′952 center-context pairs (wi, w̃i ) from our
texts. We equip these pairs with a response Yi = 1. For the false pairs, we randomly
permute the second component of the true pairs (WN+i , W̃N+i ) = (wi, w̃τ(i)),
where τ is a random permutation of {1, . . . , N}. These false pairs are equipped
with a response YN+i = 0. Thus, altogether we have 2N = 47′904 observations
(Yi, wi, w̃i ), 1 ≤ j ≤ 2N , that can be used to learn the embeddings e and ẽ.
Listing 10.6 shows the R code to perform the embedding learning using the negative
sampling (10.9). This network has 2bW = 568 embedding weights that need to
be learned from the data. There are two more parameters involved on line 10 of
Listing 10.6. These two parameters shift the scalar products by an intercept β0 and
scale them by a constant β1. We could set (β0, β1) = (0, 1), however, keeping
these two parameters trainable has led to results that are better centered around the
origin. Of course, these two parameters do not harm the arguments as they only
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Listing 10.6 R code for negative sampling

1 center = layer_input(shape = c(1), dtype = ’int32’)
2 context = layer_input(shape = c(1), dtype = ’int32’)
3 #
4 centerEmb = center %>%
5 layer_embedding(input_dim=142,output_dim=2,input_length=1) %>% layer_flatten()
6 contextEmb = context %>%
7 layer_embedding(input_dim=142,output_dim=2,input_length=1) %>% layer_flatten()
8 #
9 response = list(centerEmb, contextEmb) %>% layer_dot(axes = 1) %>%

10 layer_dense(units=1, activation=’sigmoid’, name=’response’)
11 #
12 model = keras_model(inputs = c(center, context), outputs = c(response))

replace (10.8) by a slightly different model

P [Y = 1|w, w̃] = 1

1 + exp {−β0 − β1〈̃e(w̃), e(w)〉} = eβ0

eβ0 + e−β1 〈̃e(w̃),e(w)〉 ,

and

P [Y = 0|w, w̃] = 1 − eβ0

eβ0 + e−β1 〈̃e(w̃),e(w)〉 = e−β0

e−β0 + eβ1〈̃e(w̃),e(w)〉 .

We fit this model using the nadam version of the gradient descent algorithm, and
the fitted embedding weights can be extracted with get_weights(model).
Figure 10.2 shows the learned embedding weights e(w) ∈ R

2 of all words w ∈ W .
We highlight the words that coincide with the insured hazards in red color, see line
10 of Listing 10.1. The word ‘vehicle’ is in the first quadrant and it is surrounded
by ‘pole’, ‘truck’, ‘garage’, ‘car’, ‘traffic’. The word ‘vandalism’ is in the third
quadrant surrounded by ‘graffito’, ‘window’, ‘pavilion’, names of cites and parks,
‘ms’ for middle school. Finally, the words ‘fire’, ‘wind’, ‘lightning’ and ‘hail’ are
in the first and fourth quadrant, close to ‘water’; these words are surrounded by
‘bldg’ (building), ‘smoke’, ‘equipment’, ‘alarm’, ‘safety’, ‘power’, ‘library’, etc. We
conclude that these embeddings make perfect sense in an insurance claim context.
Note that we have applied some pre-processing, and embeddings could even be
improved by further pre-processing, e.g., ‘vandalism’ and ‘vandalize’ or ‘hs’ and
‘high school’ are used.

Another nice observation is that the embeddings tend to build a circle around the
origin, see Fig. 10.2. This is enforced by embeddingW = 142 different words into
a b = 2 dimensional space so that dissimilar words optimally repulse each other. �
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2−dimensional embedding of center word
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Fig. 10.2 Two-dimensional skip-gram embedding using negative sampling; in red color are the
insured hazards ‘vehicle’, ‘fire’, ‘lightning’, ‘wind’, ‘hail’, ‘water’ and ‘vandalism’

10.2.2 Global Vectors Algorithm

A second popular word embedding approach is global vectors (GloVe) developed
by Pennington et al. [300], we also refer to Chaubard et al. [68]. GloVe is an
unsupervised learning method that performs a word-word clustering (center-context
pairs) over all available texts. Assume that the tokenization of all texts provides us
with the words w ∈ W . Choose a fixed context window size c ∈ N and define the
matrix

C = (C(w, w̃))
w,w̃∈W ∈ N

W×W
0 ,

with C(w, w̃) counting the number of co-occurrences of w and w̃ over all available
texts where the word w̃ appears as a context word of the center word w (for the
given window size c). We note that C is a symmetric matrix that is typically sparse
as many words do not appear in the context of other words (on finitely many
texts). Figure 10.3 shows the center-context pairs (w, w̃) co-occurrence matrix C
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Fig. 10.3 Center-context
pairs (w, w̃) co-occurrence
matrix C of Example 10.2;
the color scale gives the
observed frequencies
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of Example 10.2 which is based on W = 142 words and 23’952 center-context
pairs. The color pixels indicate the pairs that occur in the data, C(w, w̃) > 0, and
the white space corresponds to the pairs that have not been observed in the texts,
C(w, w̃) = 0. This plot confirms the sparsity of the center-context pairs; the words
are ordered w.r.t. their frequencies in the texts.
In an empirical analysis Pennington et al. [300] have observed that the crucial
quantities to be considered are the ratios for fixed context words. That is, for a
context word w̃ study a function of the center words w and v (subject to existence
of the right-hand side)

(w, v, w̃) �→ F(w, v, w̃) = C(w, w̃)/
∑
ũ∈W C(w, ũ)

C(v, w̃)/
∑
ũ∈W C(v, ũ)

= p̂(w̃|w)
p̂(w̃|v) ,

p̂ denoting the empirical probabilities. An empirical analysis suggests that such an
approach seems to lead to a good discrimination of the meanings of the words, see
Sect. 3 in Pennington et al. [300]. Further simplifications and assumptions provide
the following ansatz, for details we refer to Pennington et al. [300],

logC(w, w̃) ≈ 〈̃e(w̃), e(w)〉 + β̃w̃ + βw,

with intercepts β̃w̃, βw ∈ R. There is still one issue, namely, that logC(w, w̃) may
not be well-defined as certain pairs (w, w̃) are not observed. Therefore, Pennington
et al. [300] propose to solve a weighted squared error loss function problem to find
the embedding mappings e, ẽ and intercepts β̃w̃, βw ∈ R. Their objective function
is given by

∑

w,w̃∈W
χ(C(w, w̃))

(
logC(w, w̃)− 〈̃e(w̃), e(w)〉 − β̃w̃ − βw

)2
, (10.10)
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with weighting function

x ≥ 0 �→ χ(x) =
(
x ∧ xmax

xmax

)α
,

for xmax > 0 and α > 0. Pennington et al. [300] state that the model depends
weakly on the cutoff point xmax, they propose xmax = 100, and a sub-linear
behavior seems to outperform a linear one, suggesting, e.g., a choice of α = 3/4.
Under these choices the embeddings e and ẽ are found by minimizing the objective
function (10.10) for the given data. Note that limx↓0 χ(x)(log x)2 = 0.

Example 10.3 (GloVe Word Embedding) We provide an example using the GloVe
embedding model, and we revisit the data of Example 10.2; we also use exactly the
same pre-processing as in that example. We start from N = 23′952 center-context
pairs.

In a first step we count the number of co-occurrences C(w, w̃). There are only
4’972 pairs that occur, C(w, w̃) > 0, this corresponds to the colors in Fig. 10.3.
With these 4’972 pairs we have to fit 568 embedding weights (for the embedding
dimension b = 2) and 284 intercepts β̃w̃, βw , thus, 852 parameters in total. The
results of this fitting are shown in Fig. 10.4.
The general picture in Fig. 10.4 is similar to Fig. 10.2, e.g., ‘vandalism’ is
surrounded by ‘graffito’, ‘window’, ‘pavilion’, names of cites and parks, ‘ms’
and ‘es’; or ‘vehicle’ is surrounded by ‘pole’, ‘traffic’, ‘street’, ‘signal’. However,
the clustering of the words around the origin shows a crucial difference between
GloVe and the negative sampling of word2vec. The problem here is that we do
not have sufficiently many observations. We have 4’972 center-context pairs that
occur, C(w, w̃) > 0. 2’396 of these pairs occur exactly once, C(w, w̃) = 1, this is
almost half of the observations with C(w, w̃) > 0. GloVe (10.10) considers these
observations on the log-scale which provides logC(w, w̃) = 0 for the pairs that
occur exactly once. The weighted square loss for these pairs is minimized by either
setting ẽ(w̃) = 0 or e(w) = 0, supposed that the intercepts are also set to 0. This
is exactly what we observe in Fig. 10.4 and, thus, successfully fitting GloVe would
require much more (frequent) observations. �

Remark 10.4 (Pre-trained Word Embeddings) In practical applications we rely on
pre-trained word embeddings. For GloVe there are pre-trained versions that can be
downloaded.4 These pre-trained versions comprise a vocabulary of 400K words,
and they exist for the embedding dimensions b = 50, 100, 200, 300. These GloVe’s
have been trained on Wikipedia 2014 and Gigaword 5 which provided roughly 6B
tokens. Another pre-trained open-source model that can be downloaded is spaCy.5

4 https://nlp.stanford.edu/projects/glove/.
5 https://spacy.io/models/en#en_core_web_md.
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Fig. 10.4 Two-dimensional GloVe embedding; in red color are the insured hazards ‘vehicle’,
‘fire’, ‘lightning’, ‘wind’, ‘hail’, ‘water’ and ‘vandalism’

Pre-trained embeddings can be problematic if we work in very specific settings.
For instance, the Wisconsin LGPIF data contains the word ‘Lincoln’ in the claim
descriptions. Now, Lincoln is a county in Wisconsin, it is town in Kewaunee County
in Wisconsin, it is a former US president, there are Lincoln memorials, it is a
common street name, it is a car brand and there are restaurants with this name.
In our context, Lincoln is most commonly used w.r.t. the Lincoln Elementary and
Middle Schools. On the other hand, it is likely that in pre-trained embeddings a
different meaning of Lincoln is predominant, and therefore the embedding may not
be reasonable for our insurance problem.
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10.3 Lab: Predictive Modeling Using Word Embeddings

This section gives an example of applying the word embedding technique to a
predictive modeling setting. This example is based on the Wisconsin LGPIF data
set illustrated in Listing 10.1. Our goal is to predict the hazard types on line 10
of Listing 10.1 from the claim descriptions on line 11. We perform the same data
cleaning process as in Example 10.2. This provides us with W = 1′829 different
words, and the resulting (short) claim descriptions have a maximal length of T = 9.
After padding with zeros we receive n = 6′031 claim descriptions given by texts
(w1, . . . , wT )

� ∈ WT
0 ; we apply the padding to the left end of the sentences.

Word2vec Using Negative Sampling We start by the word2vec embedding tech-
nique using the negative sampling. We follow Example 10.2, and to successfully
embed the available words w ∈ W we restrict the vocabulary to the words that are
used at least 20 times. This reduces the vocabulary from 1’892 different words to
142 different words. The number of claim descriptions are reduced to 5’883 because
148 claim descriptions do not contain any of these 142 different words and, thus,
cannot be classified as one of the hazard types (based on this reduced vocabulary).

In a first analysis we choose the embedding dimension b = 2, and this provides
us with the word2vec embedding map that is illustrated in Fig. 10.2. Based on these
embeddings we aim at predicting the hazard types from the claim descriptions. We
have 9 different hazard types: Fire, Lightning, Hail, Wind, WaterW, WaterNW,
Vehicle, Vandalism and Misc.6 Therefore, we design a categorical classification
model that has 9 different labels, we refer to Sect. 2.1.4.

Listing 10.7 R code for the hazard type prediction based on a word2vec embedding

1 input = layer_input(shape = list(T), name = "input")
2 #
3 word2vec = input %>%
4 layer_embedding(input_dim = W+1, output_dim = b, input_length = T,
5 weights=list(wordEmb), trainable=FALSE) %>%
6 layer_flatten()
7 # response = word2vec %>%
8 layer_dense(units=20, activation=’tanh’, name=’FNLayer1’) %>%
9 layer_dense(units=15, activation=’tanh’, name=’FNLayer2’) %>%

10 layer_dense(units=9, activation=’softmax’, name=’output’)
11 #
12 model = keras_model(inputs = c(input), outputs = c(response))

The R code for the hazard type prediction is presented in Listing 10.7. The crucial
part is shown on line 5. Namely, the embedding map e(w) ∈ R

b, w ∈ W is
initialized with the embedding weights wordEmb received from Example 10.2, and

6 WaterW relates to weather related water claims, and WaterNW relates to non-weather related
water claims.
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confusion matrix word2vec with b=10
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Fig. 10.5 Confusion matrices of the hazard type prediction using a word2vec embedding based on
negative sampling (lhs) b = 2 dimensional embedding and (rhs) b = 10 dimensional embedding;
columns show the observations and rows show the predictions

these embedding weights are declared to be non-trainable.7 These features are then
inputted into a FN network with two FN layers having (q1, q2) = (20, 15) neurons,
and as output activation we choose the softmax function. This model has 286 non-
trainable embedding weights, and r = (9 ·2+1)20+ (20+1)15+ (15+1)9 = 839
trainable parameters.
We fit this network using the nadam version of the gradient descent method, and
we exercise an early stopping on a 20% validation data set (of the entire data). This
network is fitted in a few seconds, and the results are presented in Fig. 10.5 (lhs).
This figure shows the confusion matrix of prediction vs. observed (row vs. column).
The general results look rather good, there are only difficulties to distinguish WaterN
from WaterNW claims.

In a second analysis, we increase the embedding dimension to b = 10 and
we perform exactly the same procedure as above. A higher embedding dimension
allows the embedding map to better discriminate the words in their meanings.
However, we should not go for a too high b because we have only 142 different
words and 47’904 center-context pairs (w, w̃) to learn these embeddings e(w) ∈ R

b.
A higher embedding dimension also increases the number of network weights in
the first FN layer on line 9 of Listing 10.7. This time, we need to train r =
(9 · 10 + 1)20 + (20 + 1)15 + (15 + 1)9 = 2′279 parameters. The results are
presented in Fig. 10.5 (rhs). We observe an overall improvement compared to the
2-dimensional embeddings. This is also confirmed by Table 10.1 which gives the
deviance losses and the misclassification rates.

7 The zeros from padding are mapped to the origin.
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Table 10.1 Hazard prediction results summarized in deviance losses and misclassification rates

Number of parameters Deviance Misclassification

Embedding Network loss rate

word2vec negative sampling, b = 2 286 839 0.1442 19.9%

word2vec negative sampling, b = 10 1’430 2’279 0.0912 13.7%

FN GloVe using all words, b = 50 91’500 9’479 0.0802 11.7%

LSTM GloVe using all words, b = 50 91’500 3’369 0.0802 12.1%

Word similarity embedding, b = 7 12’810 1’739 0.1396 21.1%

Pre-trained GloVe Embedding In a next analysis we use the pre-trained GloVe
embeddings, see Remark 10.4. This allows us to use all W = 1′892 words that
appear in the n = 6′031 claim descriptions, and we can also classify all these
claims. I.e., we can classify more claims, here, compared to the 5’883 claims we
have classified based on the self-trained word2vec embeddings. Apart from that, all
modeling steps are chosen as above. Only the higher embedding dimension b = 50
from the pre-trained glove.6B.50d increases the size of the network parameter
to r = (9 · 50 + 1)20 + (20 + 1)15 + (15 + 1)9 = 9′479 parameters; remark that
the 91’500 embedding weights are not trained as they come from the pre-trained
GloVe embeddings. Using the nadam optimizer with an early stopping provides us
with the results in Fig. 10.6 (lhs). Using this pre-trained GloVe embedding leads to a
further improvement, this is also verified by Table 10.1. Using the pre-trained GloVe
is two-fold. On the one hand, it allows us to use all words of the claim descriptions,
which improves the prediction accuracy. On the other hand, the embeddings are
not adapted to insurance problems, as these have been trained on Wikipedia and
Gigaword texts. The former advantage overrules the latter shortcoming in our
example.

All the results above have been using the FN network of Listing 10.7. We made
this choice because our texts have a maximal length of T = 9, which is very
short. In general, texts should be understood as time-series, and RN networks are
a canonical choice to analyze these time-series. Therefore, we study again the pre-
trained GloVe embeddings, but we process the texts with a LSTM architecture, we
refer to Sect. 8.3.1 for LSTM layers.
Listing 10.8 shows the LSTM architecture used. On line 9 we set the variable
return_sequences to true which implies that all intermediate steps z

[1]
t , 1 ≤

t ≤ T , are outputted to a time-distributed FN layer on line 10, see Sect. 8.2.4 for
time-distributed layers. This LSTM network has r = 4(50 + 1 + 10)10 + (10 +
1)10 + (90 + 1)9 = 3′369 parameters. The flatten layer on line 11 of Listing 10.8
turns the T = 9 outputs z

[2]
t ∈ R

q2 , 1 ≤ t ≤ T , of dimension q2 = 10 into a vector
of size T q2 = 90. This vector is then fed into the output layer on line 12. At this
stage, one could reduce the dimension of the parameter by setting a max-pooling
layer in between the flatten and the output layer.
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confusion matrix GloVe with LSTM and b=50
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Fig. 10.6 Confusion matrices of the hazard type prediction using the pre-trained GloVe with b =
50 (lhs) FN network and (rhs) LSTM network; columns show the observations and rows show the
predictions

Listing 10.8 R code for the hazard type prediction using a LSTM architecture

1 input = layer_input(shape = list(T), name = "input")
2 #
3 word2vec = input %>%
4 layer_embedding(input_dim = W+1, output_dim = b, input_length = T,
5 weights=list(wordEmb), trainable=FALSE) %>%
6 layer_flatten()
7 #
8 response = word2vec %>%
9 layer_lstm(units=10, activation=’tanh’, return_sequences=TRUE,

10 name=’LSTM’) %>%
11 time_distributed(layer_dense(units=10, activation=’tanh’, name=’FNLayer’)) %>%
12 layer_flatten() %>%
13 layer_dense(units=9, activation=’softmax’, name=’output’)
14 #
15 model = keras_model(inputs = c(input), outputs = c(response))

We fit this LSTM architecture to the data using the pre-trained GloVe embed-
dings. The results are presented in Fig. 10.6 (rhs) and Table 10.1. We receive the
same deviance loss, and the misclassification rate is slightly worse than in the
FN network case (with the same pre-trained GloVe embeddings). Note that the
deviance loss is calculated on the estimated classification probabilities p̂(x) =
(p̂1(x), . . . , p̂9(x))

�, and the labels are received by

Ŷ = Ŷ (x) = arg max
k=1,...,9

p̂k(x).

Thus, it may happen that the improvements on the estimated probabilities are not
fully reflected on the predicted labels.
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Word (Cosine) Similarity In our final analysis we work with the pre-trained GloVe
embeddings e(w) ∈ R

50 but we first try to reduce the embedding dimension b. For
this we follow Lee et al. [236], and we consider a word similarity. We can define
the similarity of the words w and w′ ∈ W by considering the scalar product of their
embeddings

sim(u)(w,w′) = 〈e(w), e(w′)
〉

or sim(n)(w,w′) =
〈
e(w), e(w′)

〉

‖e(w)‖2‖e(w′)‖2
.

(10.11)

The first one is an unweighted version and the second one is a nor-
malized version scaling with the corresponding Euclidean norms so that
the similarity measure is within [−1, 1]. In fact, the latter is also called
cosine similarity. To reduce the embedding dimension and because we
have a classification problem with hazard names, we can evaluate the
(cosine) similarity of all used words w ∈ W to the hazards h ∈ H =
{fire,lightning,hail,wind,water,vehicle,vandalism}. Observe
that water is further separated into weather related and non-weather related claims,
and there is a further hazard type called misc, which collects all the rest. We could
choose more words in H to more precisely describe these water and other claims. If
we just use H we obtain a b = |H| = 7 dimensional embedding mapping

w ∈ W0 �→ e(a)(w) =
(

sim(a)(w,fire), . . . , sim(a)(w,vandalism)
)� ∈ R

b=7,

(10.12)

for a ∈ {u, n}. This gives us for every text = (w1, . . . , wT )
� ∈ WT

0 the pre-
processed features

text �→
(
e(a)(w1), . . . , e

(a)(wT )
)� ∈ R

T×b. (10.13)

Lee et al. [236] apply a max-pooling layer to these embeddings which are then
inputted into GAM classification model. We use a different approach here, and
directly use the unweighted (a = u) text representations (10.13) as an input to a
network, either of FN network type of Listing 10.7 or of LSTM type of Listing 10.8.
If we use the FN network type we receive the results on the last line of Table 10.1
and Fig. 10.7.

Comparing the results of the word similarity through the embeddings (10.12)
and (10.13) to the other prediction results, we conclude that this word similarity
approach is not fully competitive compared to working directly with the word2vec
or GloVe embeddings. It seems that the projection (10.12) does not discriminate
sufficiently for our classification task.
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Fig. 10.7 Confusion matrix
of the hazard type prediction
using the word
similarity (10.12)–(10.13) for
a = u; columns show the
observations and rows show
the predictions

confusion matrix word similarity with b=7
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10.4 Lab: Deep Word Representation Learning

All examples above have been relying on embedding the words w ∈ W into
a Euclidean space e(w) ∈ R

b by performing a sort of unsupervised learning
that provided word similarity clusters. The advantage of this approach is that
the embedding is decoupled from the regression or classification task, this is
computationally attractive. Moreover, once a suitable embedding has been learned,
it can be used for several different tasks (in the spirit of transfer learning). The
disadvantage of the pre-trained embeddings is that the embedding is not targeted to
the regression task at hand. This has already been discussed in Remark 10.4 where
we have highlighted that the meaning of some words (such as Lincoln) depends very
much on its context.

Recent NLP aims at pre-processing a text as little as necessary, but tries
to directly feed the raw sentences into RN networks such as LSTM or GRU
architectures. Computationally this is much more demanding because we have
to learn the embeddings and the network weights simultaneously, we refer to
Table 10.1 to indicate the number of parameters involved. The purpose of this short
section is to give an example, though our NLP database is rather small; this latter
approach usually requires a huge database and the corresponding computational
power. Ferrario–Nägelin [126] provide a more comprehensive example on the
classification of movie reviews. For their analysis they evaluated approximately
50’000 movie reviews each using between 235 and 2’498 words. Their analysis
was implemented on the ETH High Performance Computing (HPC) infrastructure
Euler8, and their run times have been between 20 and 30 minutes, see Table 8 of
Ferrario–Nägelin [126].

8 https://scicomp.ethz.ch/wiki/Euler
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Since we neither have the computational power nor the big data to fit such
a NLP application, we start the gradient descent fitting in the initial embedding
weights e(w) ∈ R

b that either come from the word2vec or the GloVe embeddings.
During the gradient descent fitting, we allow these weights to change w.r.t. the
regression task at hand. In comparison to Sect. 10.3, this only requires minor
changes to the R code, namely, the only modification needed is to change from
FALSE to TRUE on lines 5 in Listings 10.7 and 10.8. This change allows us to
learn adapted weights during the gradient descent fitting. The resulting classification
models are now very high-dimensional, and we need to carefully assess the
early stopping rule, otherwise the model will (in-sample) over-fit to the learning
data.
In Fig. 10.8 we provide the results that correspond to the self-trained word2vec
embeddings given in Fig. 10.5, and the corresponding numerical results are given
in Table 10.2. We observe an improvement in the prediction accuracy in both cases
by letting the embedding weights being learned during the network fitting, and we
receive a misclassification rate of 11.6% and 11.0% for the embedding dimensions
b = 2 and b = 10, respectively, see Table 10.2.
Figure 10.8 (rhs) illustrates how the embeddings have changed from the initial (pre-
trained) embeddings e(0)(w) (coming from the word2vec negative sampling) to the
learned embeddings ê(w). We measure these changes in terms of the unweighted
similarity measure defined in (10.11), and given by

〈
e(0)(w), ê(w)

〉
. (10.14)

The upper horizontal line is a manually set threshold to identify the words w that
experience a major change in their embeddings. These are the words ‘vandalism’,
‘lightning’, ‘grafito’, ‘fence’, ‘hail’, ‘freeze’, ‘blow’ and ‘breakage’. Thus, these
words receive a different embedding location/meaning which is more favorable for
our classification task.

A similar analysis can be performed for the pre-trained GloVe embeddings. There
we expected bigger changes to the embeddings since the GloVe embeddings have
not been learned in an insurance context, and the embeddings will be adapted to
the insurance prediction problem. We refrain from giving an explicit analysis, here,
because to perform a thorough analysis we would need (much) more data.

We conclude this example with some remarks. We emphasize once more that
our available data is minimal, and we expect (even much) better results for longer
claim descriptions. In particular, our data is not sufficient to discriminate the weather
related from the non-weather related water claims, as the claim descriptions seem
to focus on the water claim itself and not on its cause. In a next step, one should use
claim descriptions in order to predict the claim sizes, or to improve their predictions
if they are based on classical tabular features, only. Here, we see some potential, in
particular, w.r.t. medical claims, as medical reports may clearly indicate the severity
of the claim as well as these reports may give some insight into the recovery process.
Thus, our small example may only give some intuition of what is possible with
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Fig. 10.8 Confusion matrices and the changes in the embeddings compared to the pre-trained
word2vec embeddings of Fig. 10.5 for the dimensions b = 2 and b = 10

Table 10.2 Hazard prediction results summarized in deviance losses and misclassification rates:
pre-trained embeddings vs. network learned embeddings

Number of parameters Deviance Misclass.

Non-trainable Trainable loss rate

word2vec negative sampling, b = 2 286 839 0.1442 19.9%

word2vec improved embedding, b = 2 1’125 0.0814 11.7%

word2vec negative sampling, b = 10 1’430 2’279 0.0912 13.7%

word2vec improved embedding, b = 10 3’709 0.0714 10.5%
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(unstructured) text data. Unfortunately, the LGPIF data of Listing 10.1 did not give
us any satisfactory results for the claim size prediction, this for several reasons.
Firstly, the data is rather heterogeneous ranging from small to very large claims
and any member of the EDF struggles to model this data; we come back to a
different modeling proposal of heterogeneous data in Sect. 11.3.2. Secondly, the
claim descriptions are not very explanatory as they are too short for a more detailed
information. Thirdly, the data has only 5’424 claims which seems small compared
to the complexity of the problem that we try to solve.

10.5 Outlook: Creating Attention

In text recognition problems, obviously, not all the words in a sentence have the
same importance. In the examples above, we have removed the stopwords as they
may disturb the key understanding of our texts. Removing the stopwords means that
we pay more attention to the remaining words. RN networks often face difficulty
in giving the right recognition to the different parts of a sentence. For this reason,
attention layers have gained more popularity recently. Attention layers are special
modules in network architectures that allow the network to impose more weight
on certain parts of the information in the features to emphasize their importance.
The attention mechanism has been introduced in Bahdanau et al. [21]. There are
different ways of modeling attention, the most popular one is the so-called dot-
product attention, we refer to Vaswani et al. [366], and in the actuarial literature we
mention Kuo–Richman [231] and Troxler–Schelldorfer [354].

We start by describing a simple attention mechanism. Consider a sentence
text = (w1, . . . , wT ) ∈ WT

0 that provides, under an embedding map e : W0 →
R
b, the embedded sentence (e(w1), . . . , e(wT ))

� ∈ R
T×b. We choose a weight

matrix UQ ∈ R
b×b and an intercept vector uQ ∈ R

b. Based on these choices we
consider for each word wt of our sentence the score, called query,

q t = tanh
(
uQ + UQe(wt )

) ∈ (−1, 1)b. (10.15)

Matrix Q = (q1, . . . , qT )
� ∈ R

T×b collects all queries. It is obtained by
applying a time-distributed FN layer with b neurons to the embedded sentence
(e(w1), . . . , e(wT ))

�.
These queries q t are evaluated with a so-called key k ∈ R

b giving us the attention
weights

αt = exp
〈
k, q t

〉

∑T
s=1 exp

〈
k, qs

〉 ∈ (0, 1) for 1 ≤ t ≤ T . (10.16)
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Using these attention weights α = (α1, . . . , αT )
� ∈ (0, 1)T we encode the sentence

text as

text = (w1, . . . , wT ) �→ w∗ =
T∑

t=1

αte(wt ) (10.17)

= (e(w1), . . . , e(wT ))α ∈ R
b.

Thus, to every sentence text we assign a categorical probability vector α =
α(text) ∈ �T , see Sect. 2.1.4, (6.22) and (5.69), which is encoding this sentence
text to a b-dimensional vector w∗ ∈ R

b. This vector is then further processed
by the network. Such a construction is called a self-attention mechanism because
the text (w1, . . . , wT ) ∈ WT

0 is used to formulate the queries in (10.15), but, of
course, these queries could also be coming from a completely different source.
In the above set-up we have to learn the following parameters UQ ∈ R

b×b and
uQ, k ∈ R

b, assuming that the embedding map e : W0 → R
b has already been

specified.
There are several generalizations and modifications to this self-attention mech-

anism. The most common one is to expand the vector w∗ ∈ R
b in (10.17) to a

matrix W∗ = (w∗
1, . . . ,w

∗
q) ∈ R

b×q . This matrix W∗ can be interpreted as having

q neurons w∗
j ∈ R

b, 1 ≤ j ≤ q . For this, one replaces the key k ∈ R
b by a matrix-

valued key K = (k1, . . . , kq) ∈ R
b×q . This allows one to calculate the attention

weight matrix

A = (
αt,j
)

1≤t≤T ,1≤j≤q =
(

exp
〈
kj , q t

〉

∑T
s=1 exp

〈
kj , qs

〉

)

1≤t≤T ,1≤j≤q

= softmax (QK) ∈ (0, 1)T×q ,

where the softmax function is applied column-wise. I.e., the attention weight matrix
A ∈ (0, 1)T×q has columns αj = (α1,j , . . . , αT ,j )

� ∈ �T , 1 ≤ j ≤ q , which are
normalized to total weight 1, this is equivalent to (10.16). This is used to encode the
sentence text

(e(w1), . . . , e(wT )) ∈ R
b×T �→ W∗ = (e(w1), . . . , e(wT ))A (10.18)

=
(
T∑

t=1

αt,je(wt )

)

1≤j≤q
∈ R

b×q .

Mapping (10.18) is called an attention layer. Let us give some remarks.

Remarks 10.5

• Encoding (10.18) gives a natural multi-dimensional extension of (10.17). The
crucial parts are the attention weights αj ∈ �T which weigh the different words
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(wt )1≤t≤T . In the multi-dimensional case, we perform this weighting mechanism
multiple times (in different directions), allowing us to extract different features
from the sentences. In contrast, in (10.17) we only do this once. This is similar
as going form one neuron to a layer of q neurons.

• The above structure uses a self-attention mechanism because the queries involve
the words themselves, and the weight matrixUQ ∈ R

b×b and the intercept vector
uQ ∈ R

b are learned with gradient descent. Concerning the key K ∈ R
b×q

one often chooses another self-attention mechanism by choosing a (non-linear)
functionK = K(w1, . . . , wT ) to infer optimal keys.

• These attention layers are also the building blocks of transformer models.
Transformer models use attention layers (10.18) of dimension W∗ ∈ R

b×T and
skip connections to transform the input

W = (e(w1), . . . , e(wT )) ∈ R
b×T �→ W +W∗

2
∈ R

b×T . (10.19)

Stacking multiple of these layers (10.19) transforms the original input W by
weighing the important information in featureW for the prediction task at hand.
Compared to LSTM layers this no longer sequentially screens the text but it
directly acts on the part of the text that seems important.

• The attention mechanism is applied to a matrix (e(w1), . . . , e(wT ))
� ∈ R

T×b
which presents a numerical encoding of the sentence (w1, . . . , wT )

� ∈ WT
0 .

Kuo–Richman [231] propose to apply this attention mechanism more generally
to categorical feature components. Assume that we have T categorical feature
components x1, . . . , xT , after embedding them into b-dimensional Euclidean
spaces we receive a representation (e(x1), . . . , e(xT ))

� ∈ R
T×b , see (7.31).

Naturally, this can now be further processed by putting different attention on
the components of this embedding exactly using an attention layer (10.18),
alternatively we can use transformer layers (10.19).

Example 10.6 We revisit the hazard type prediction example of Sect. 10.3. We
select the b = 10 word2vec embedding (using negative sampling) and the
pre-trained GloVe embedding of Table 10.1. These embeddings are then further
processed by applying the attention mechanism (10.15)–(10.17) on the embeddings
using one single attention neuron. Listing 10.9 gives the corresponding implemen-
tation. On line 9 we have the query (10.15), on lines 10–13 the key and the attention
weights (10.16), and on line 15 the encodings (10.17). We then process these
encodings through a FN network of depth d = 2, and we use the softmax output
activation to receive the categorical probabilities. Note that we keep the learned
word embeddings e(w) as non-trainable on line 5 of Listing 10.9.
Table 10.3 gives the results, and Fig. 10.9 shows the confusion matrix. We conclude
that the results are rather similar, this attention mechanism seems to work quite well,
and with less parameters, here. �



10.5 Outlook: Creating Attention 451

Listing 10.9 R code for the hazard type prediction using an attention layer with q = 1

1 input = layer_input(shape = list(T), name = "input")
2 #
3 word2vec = input %>%
4 layer_embedding(input_dim = W+1, output_dim = b, input_length = T,
5 weights=list(wordEmb), trainable=FALSE) %>%
6 layer_flatten()
7 #
8 attention = word2vec %>%
9 time_distributed(layer_dense(units=b, activation=’tanh’)) %>%

10 time_distributed(layer_dense(units=1, activation=’linear’,
11 use_bias=FALSE)) %>%
12 layer_flatten() %>%
13 layer_dense(unit=T, activation=’softmax’, weights=list(diag(T)),
14 use_bias=FALSE, trainable=FALSE)
15 #
16 response = list(attention, word2vec) %>% layer_dot(axes=1) %>%
17 layer_dense(units=20, activation=’tanh’) %>%
18 layer_dense(units=15, activation=’tanh’) %>%
19 layer_dense(units=9, activation=’softmax’)
20 #
21 model = keras_model(inputs = c(input), outputs = c(response))

Table 10.3 Hazard prediction results summarized in deviance losses and misclassification
rates

Number of parameters Deviance Misclassification

Embedding Network loss rate

word2vec negative sampling, b = 10 1’430 2’279 0.0912 13.7%

word2vec attention, b = 10 1’430 799 0.0784 12.0%

FN GloVe using all words, b = 50 91’500 9’479 0.0802 11.7%

GloVe attention, b = 50 91’500 4’079 0.0824 12.6%
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Fig. 10.9 Confusion matrices of the hazard type prediction (lhs) using an attention layer on the
word2vec embeddings with b = 10, and (rhs) using an attention layer on the pre-trained GloVe
embeddings with b = 50; columns show the observations and rows show the predictions
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Chapter 11
Selected Topics in Deep Learning

11.1 Deep Learning Under Model Uncertainty

We revisit claim size modeling in this section. Claim size modeling is challenging
because often there is no (simple) off-the-shelf distribution that allows one to
appropriately describe all claim size observations. E.g., the main body of the claim
size data may look like gamma distributed, and, at the same time, large claims seem
to be more heavy-tailed (contradicting a gamma model assumption). Moreover,
different product and claim types may lead to multi-modality in the claim size
densities. In Sects. 5.3.7 and 5.3.8 we have explored a gamma and an inverse
Gaussian GLM to model a motorcycle claims data set. In that example, the results
have been satisfactory because this motorcycle data is neither multi-modal nor does
it have heavy tails. These two GLM approaches have been based on the EDF (2.14),
modeling the mean x �→ μ(x) with a regression function and assuming a constant
dispersion parameter ϕ > 0. There are two natural ways to extend this approach.
One considers a double GLM with a dispersion submodel x �→ ϕ(x), see Sect. 5.5,
the other explores multi-parameter extensions like the generalized inverse Gaussian
model, which is a k = 3 vector-valued EF, see (2.10), or the GB2 family that
involves 4 parameters, see (5.79). These extensions provide more complexity, also in
MLE. In this section, we are not going to consider multi-parameter extensions, but
in a first step we aim at robustifying (mean) parameter estimation within the EDF.
In a second step we are going to analyze the resulting dispersion ϕ(x). For these
steps, we perform representation learning and parameter estimation under model
uncertainty by simultaneously considering multiple models from Tweedie’s family.
These considerations are closely related to Tweedie’s forecast dominance given in
Definition 4.22.

© The Author(s) 2023
M. V. Wüthrich, M. Merz, Statistical Foundations of Actuarial Learning and its
Applications, Springer Actuarial, https://doi.org/10.1007/978-3-031-12409-9_11
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We emphasize that we remain within a single distribution function choice in this
section, i.e., we neither consider mixture distributions nor composite models in this
section. Mixture density networks are going to be considered in Sect. 11.6, below,
and a composite model approach is studied in Sect. 11.3, below. These mixture
density networks and composite models allow us to model the body and the tail
of the data with different distribution functions by either mixing or concatenating
suitable distributions.

11.1.1 Recap: Tweedie’s Family

Tweedie’s family with power variance function V (μ) = μp, p ≥ 2, provides us
with a rich model class for claim size modeling if the claim sizes are strictly positive,
a.s., and extending top ∈ (1, 2) allows us to model claims with a positive point mass
in 0. This class of distribution functions contains the gamma case (p = 2) and the
inverse Gaussian case (p = 3). In general, p > 2 provides us with positive stable
generated distributions and p ∈ (1, 2) gives Tweedie’s CP models, see Table 2.1.
Tweedie’s family has cumulant function for p > 1

κ(θ) = κp(θ) =
{

1
2−p ((1 − p)θ) 2−p

1−p for p > 1 and p �= 2,

−log(−θ) for p = 2,
(11.1)

on the effective domain θ ∈ � ∈ (−∞, 0) for p ∈ (1, 2], and θ ∈ � ∈ (−∞, 0]
for p > 2. The mean and the power variance function are for p > 1 given by

θ �→ μ = μ(θ) = ((1 − p)θ) 1
1−p and μ �→ V (μ) = μp.

The unit deviance takes the following form for p > 1 and p �= 2, see (4.18),

dp(y, μ) = 2

(
y
y1−p − μ1−p

1 − p − y2−p − μ2−p

2 − p
)

≥ 0, (11.2)

and in the gamma case p = 2 we have, see Table 4.1,

d2(y, μ) = 2

(
y

μ
− 1 + log

(
μ

y

))
≥ 0. (11.3)

Figure 11.1 (lhs) shows the unit deviances y �→ dp(y, μ) for fixed mean parameter
μ = 2 and power variance parameters p ∈ {0, 2, 2.5, 3, 3.5}; the case p = 0
corresponds to the symmetric Gaussian case d0(y, μ) = (y − μ)2. We observe
that with an increasing power variance parameter p large claims Y = y receive a
smaller loss punishment (if we interpret the unit deviance as a loss function). This
is the situation where we have a fixed mean μ and where we assess claim sizes
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Fig. 11.1 (lhs) Unit deviances y �→ dp(y, μ) ≥ 0 for fixed mean μ = 2 and (rhs) unit
deviances μ �→ dp(y, μ) ≥ 0 for fixed observation y = 2 for power variance parameters
p ∈ {0, 2, 2.5, 3, 3.5}

Y = y relative to this mean. For estimation purposes we have fixed observations
Y = y and we study the sensitivities in μ. Note that, in general, the unit deviances
dp(y, μ) are not symmetric in y and μ. This second case is shown in Fig. 11.1 (rhs),
and the general behavior in p is similar. As a result, by selecting different hyper-
parameters p > 1, we can control the influence of large (and small) claims on
parameter estimation, because the unit deviances dp(y, ·) have different slopes for
different p’s. Basically, the choice of the loss function (unit deviance) determines
the choice of the underlying distributional model, which then assesses the claim
observations Y = y according to their sizes and how these sizes match the model
assumptions made.

In Lemma 2.22 we have seen that the unit deviances dp (y, μ) ≥ 0 are zero if and
only if y = μ. The second derivatives given in Lemma 2.22 allow us to consider a
second order Taylor expansion around a minimum μ0 = y0

dp (y0 + εy,μ0 + εμ) = ε2

μ
p

0

(y − μ)2 + o(ε2) as ε → 0.

Thus, locally around the minimum the unit deviances behave symmetric and like
Gaussian squares, but this is only a local approximation around a minimumμ0 = y0
as can be seen from Fig. 11.1. I.e., in general, model fitting turns out to be rather
different from the Gaussian square loss if we have small and large claim sizes under
choices p > 1.
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Remarks 11.1

• Since unit deviances are Bregman divergences, we know that every unit deviance
gives us a strictly consistent scoring function for the mean functional, see
Theorem 4.19. Therefore, the specific choice of the power variance parameter p
seems less relevant. However, strict consistency is an asymptotic statement, and
choosing a unit deviance that matches the property of the data has better finite
sample properties, i.e., a smaller variance in asymptotic normality; we come back
to this in Sect. 11.1.4, below.

• A function (y, μ) �→ ψ(y,μ) is called b-homogeneous if there exists b ∈ R

such that for all (y, μ) and all λ > 0 we have ψ(λy, λμ) = λbψ(y,μ). Unit
deviances dp are b-homogeneous with b = 2 − p. This b-homogeneity has
the nice consequence that the decisions taken are independent of the scale, i.e.,
we have an invariance under changes of currencies. On the other hand, such a
scaling influences the estimation of the dispersion parameter, i.e., if we scale the
observation and the mean with λ we have unit deviance

dp(λy, λμ) = λ2−p dp(y, μ). (11.4)

This influences the dispersion estimation for the cases different from the gamma
case p = 2, see, e.g., saddlepoint approximation (5.60)–(5.62). This also relates
to the different parametrizations in Sect. 5.3.8 where we study the inverse
Gaussian model p = 3, which has a dispersion ϕi = 1/αi in the reproductive
form and ϕi = 1/α2

i in parametrization (5.51).
• We only consider power variance parameters p > 1 in this section for non-

negative claim size modeling. Technically, this analysis could be extended to
p ∈ {0, 1}. We do not consider the Gaussian case p = 0 to exclude negative
claims, and we do not consider the Poisson case p = 1 because this is used for
claim counts modeling.

We recall that unit deviances of the EDF are equal to twice the corresponding
KL divergences, which in turn are special cases of Bregman divergences. From
Theorem 4.19 we know that Bregman divergences Dψ are the only strictly
consistent loss/scoring functions for mean estimation.

Lemma 11.2 Choose p > 1. The scaled unit deviance dp(y, μ)/2 is a Bregman
divergence Dψp(y,μ) on R+ × R+ with strictly decreasing and strictly convex
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function on R+

ψp(y) = yhp(y)− κp(hp(y)) =
{

1
(2−p)(1−p)y

2−p for p > 1 and p �= 2,

−1 − log(y) for p = 2,

for canonical link hp(y) = (κ ′
p)

−1(y) = y1−p/(1 − p).
Proof of Lemma 11.2 The Bregman divergence property follows from (2.29). For
p > 1 and y > 0 we have the strictly decreasing property

ψ ′
p(y) = hp(y) = y1−p/(1 − p) < 0.

The second derivative is ψ ′′
p(y) = h′

p(y) = y−p = 1/V (y) > 0 which provides the
strict convexity. �

In the Gaussian case we have ψ0(y) = y2/2, and ψ ′
0(y) > 0 on R+ implies

that this is a strictly increasing convex function for positive claims y > 0. This is
different to Lemma 11.2.

Assume we have independent observations (Yi , xi ) following the same
Tweedie’s distribution, and with means given by μϑ (xi ) for some parameter ϑ .
The M-estimator of ϑ using this Bregman divergence is given by

ϑ̂ = arg max
ϑ

�Y (ϑ) = arg min
ϑ

n∑

i=1

vi

ϕ
Dψp (Yi, μϑ (xi )) .

If we turn this M-estimator into a Z-estimator (supposed we have differentiability),
the parameter estimate ϑ̂ is found as a solution of the score equations

0
!= −∇ϑ

n∑

i=1

vi

ϕ
Dψp (Yi, μϑ (xi ))

=
n∑

i=1

vi

ϕ
ψ ′′
p(μϑ (xi )) (Yi − μϑ (xi ))∇ϑμϑ (xi )

=
n∑

i=1

vi

ϕ

Yi − μϑ (xi )

V (μϑ (xi ))
∇ϑμϑ (xi ) (11.5)

=
n∑

i=1

vi

ϕ

Yi − μϑ (xi )

μϑ (xi )p
∇ϑμϑ (xi ).

In the GLM case this exactly corresponds to (5.9). To determine the Z-estimator
from (11.5), we scale the residuals Yi − μi inversely proportional to the variances
V (μi) = μ

p

i of the chosen Tweedie’s distribution. It is a well-known result that
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if we scale individual unbiased estimators inversely proportional to their variances,
we receive the unbiased estimator with minimal variance, we come back to this
in (11.16), below. This gives us the intuition behind a specific choice of the power
variance parameter for mean estimation, as the sizes of the variances μpi scale
(weight) the observed residuals Yi − μi , and balance potential outliers in the
observations correspondingly.

11.1.2 Lab: Claim Size Modeling Under Model Uncertainty

We present a proposal for deep learning under model uncertainty in this section. We
explain this on an explicit example within Tweedie’s distributions. We emphasize
that this methodology can be applied in more generality, but it is beneficial here to
have an explicit example in mind to illustrate the different phenomena.

Generalized Linear Models

We analyze a Swiss accident insurance claims data set. This data is illustrated in
Sect. 13.4, and an excerpt of the data is given in Listing 13.7. In total we have
339’500 claims with positive payments. We choose this data set because it ranges
from very small claims of 1 CHF to very large claims, the biggest one exceeding
1’300’000 CHF. These claims are supported by feature information such as the labor
sector, the injury type or the injured body part, see Listing 13.7 and Fig. 13.25. For
our analysis, we partition the data into a learning data set L and a test data set T .
We do this partition stratified w.r.t. the claim sizes and in a ratio of 9 : 1. This
results in a learning data set L of size n = 305′550 and in a test data set T of
size T = 33′950.

We consider three Tweedie’s distributions with power variance parameters p ∈
{2, 2.5, 3}, the first one is the gamma model, the last one the inverse Gaussian model,
and the power variance parameter p = 2.5 gives a model in between. In a first step
we consider GLMs, this requires feature engineering. We have three categorical
features, one binary feature and two continuous ones. For the categorical and binary
features we use dummy coding, and the continuous features Age and AccQuart
are just included in its raw form. As link function g we choose the log-link which
respects the positivity of the dual mean parameter space M, see Table 2.1, but
this is not the canonical link of the selected models. In the gamma GLM this
leads to a convex minimization problem, but in Tweedie’s GLM with p = 2.5
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Table 11.1 In-sample and out-of-sample losses (gamma loss, power variance case p = 2.5 loss
(in 10−2) and inverse Gaussian (IG) loss (in 10−3)) and AIC values; the losses use unit dispersion
ϕ = 1, AIC relies on the MLE of ϕ

In-sample loss on L Out-of-sample loss on T AIC

dp=2 dp=2.5 dp=3 dp=2 dp=2.5 dp=3 value

Null model 3.0094 10.2208 4.6979 3.0240 10.2420 4.6931 4’707’115 (IG)

Gamma GLM 2.0695 7.7127 3.9582 2.1043 7.7852 3.9763 4’741’472

p = 2.5 GLM 2.0744 7.6971 3.9433 2.1079 7.7635 3.9580 4’648’698

IG GLM 2.0865 7.7069 3.9398 2.1191 7.7730 3.9541 4’653’501

and in the inverse Gaussian GLM we have non-convex minimization problems, see
Example 5.6. Therefore, we initialize Fisher’s scoring method (5.12) in the latter two
GLMs with the solution of the gamma GLM. The gamma and the inverse Gaussian
cases can directly be fitted with the R command glm [307], for the power variance
parameter case p = 2.5 we have coded our own MLE routine using Fisher’s scoring
method.
Table 11.1 shows the in-sample losses on the learning data L and the corresponding
out-of-sample losses on the test data T . The fitted GLMs (gamma, power variance
parameter p = 2.5 and inverse Gaussian) are always evaluated on all three unit
deviances dp=2(y, μ), dp=2.5(y, μ) and dp=3(y, μ), respectively. We give some
remarks. First, we observe that the in-sample loss is always minimized for the
GLM with the same power variance parameter p as the loss dp studied (2.0695,
7.6971 and 3.9398 in bold face). This result simply states that the parameter
estimates are obtained by minimizing the in-sample loss (or maximizing the
corresponding in-sample log-likelihood). Second, the minimal out-of-sample losses
are also highlighted in bold face. From these results we cannot give any preference
to a single model w.r.t. Tweedie’s forecast dominance, see Definition 4.20. Third,
we calculate the AIC values for all models. The gamma and the inverse Gaussian
cases have a closed-form solution for the normalizing term a(y; v/ϕ) in the EDF
density, and we can directly calculate AIC. The case p = 2.5 is more difficult
and we use the saddlepoint approximation of Sect. 5.5.2. Considering AIC we give
preference to Tweedie’s GLM with p = 2.5. Note that the AIC values use the
MLE for ϕ which is obtained from a general purpose optimizer, and which uses
the saddlepoint approximation in the power variance case p = 2.5. Fourth, under
a constant dispersion parameter ϕ, the mean estimation μ̂i can be done without
explicitly specifying ϕ because it cancels in the score equations. In fact, we perform
this mean estimation in the additive form and not in the reproductive form, see (2.13)
and the discussions in Sects. 5.3.7–5.3.8.
Figure 11.2 plots the deviance residuals (for unit dispersion) against the logged
fitted means μ̂(xi ) for p ∈ {2, 2.5, 3} for 2’000 randomly selected claims; this
is the Tukey–Anscombe plot. The green line has been obtained by a spline fit
to the deviance residuals as a function of the fitted means μ̂(xi ), and the cyan



460 11 Selected Topics in Deep Learning

5 6 7 8 9 10

−
5

0
5

Tukey−Anscombe plot: gamma

logged fitted means

de
vi

an
ce

 r
es

id
ua

ls

residuals
average
dispersion

5 6 7 8 9 10

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

Tukey−Anscombe plot: p=2.5

logged fitted means
de

vi
an

ce
 r

es
id

ua
ls

residuals
average
dispersion

5 6 7 8 9 10

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Tukey−Anscombe plot: inverse Gaussian

logged fitted means

de
vi

an
ce

 r
es

id
ua

ls

residuals
average
dispersion

Fig. 11.2 Tukey–Anscombe plots showing the deviance residuals against the logged GLM fitted
means μ̂(xi ): (lhs) gamma GLM p = 2, (middle) power variance case p = 2.5, (rhs) inverse
Gaussian GLM p = 3; the cyan lines show twice the estimated standard deviation of the deviance
residuals as a function of the size of the logged estimated means μ̂

lines give twice the estimated standard deviation of the deviance residuals as
a function of the fitted means (also obtained from spline fits). This estimated
standard deviation corresponds to the square-rooted deviance dispersion estimate
ϕ̂D, see (5.30), however, in the additive form because we work with unscaled claim
size observations. A constant dispersion assumption is supported by cyan lines of
roughly constant size. In the gamma case the dispersion seems increasing in the
mean estimate, and in the inverse Gaussian case it is decreasing, thus, the power
variance parameters p = 2 and p = 3 do not support a constant dispersion in this
example. Only the choice p = 2.5 may support a constant dispersion assumption
(because it does not have an obvious trend). This says that the variance should scale
as V (μ) = μ2.5 as a function of the mean μ, see also (11.5).

Deep FN Networks

We compare the above GLMs to FN networks of depth d = 3 with (q1, q2, q3) =
(20, 15, 10) neurons. The categorical features are modeled with embedding layers
of dimension b = 2. We fit this network architecture with Tweedie’s deviances
losses having power variance parameters p ∈ {2, 2.5, 3}. Moreover, we use 20%
of the learning data L as validation data V to explore the early stopping rule.1 To
reduce the randomness coming from early stopping with different seeds, we average
the deviance losses over 20 runs (this is not the nagging predictor: we only average
the deviance losses to have stable conclusions concerning forecast dominance). The
results are presented in Table 11.2.

1 In the standard implementation of SGD with early stopping, the learning and validation data
partition is done non-stratified. If necessary, this can be changed manually.
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Table 11.2 In-sample and out-of-sample losses (gamma loss, power variance case p = 2.5 loss
(in 10−2) and inverse Gaussian (IG) loss (in 10−3)) and average claim amounts; the losses use unit
dispersion ϕ = 1 and the network losses are averaged deviance losses over 20 runs with different
seeds

In-sample loss on L Out-of-sample loss on T Average

dp=2 dp=2.5 dp=3 dp=2 dp=2.5 dp=3 claim

Null model 3.0094 10.2208 4.6979 3.0240 10.2420 4.6931 1’774

Gamma GLM 2.0695 7.7127 3.9582 2.1043 7.7852 3.9763 1’701

p = 2.5 GLM 2.0744 7.6971 3.9433 2.1079 7.7635 3.9580 1’652

IG GLM 2.0865 7.7069 3.9398 2.1191 7.7730 3.9541 1’614

Gamma network 1.9738 7.4556 3.8693 2.0543 7.6478 3.9211 1’748

p = 2.5 network 1.9712 7.4128 3.8458 2.0654 7.6551 3.9178 1’739

IG network 1.9977 7.4568 3.8525 2.0762 7.6682 3.9188 1’712

First, we observe that the networks outperform the GLMs, saying that the feature
engineering has not been done optimally for GLMs. Second, in-sample we no longer
receive the lowest deviance loss in the model with the same p. This comes from the
fact that we exercise early stopping, and, for instance, the gamma in-sample loss of
the gamma network (p = 2) 1.9738 is bigger than the corresponding gamma loss
of 1.9712 from the network with p = 2.5. Third, considering forecast dominance,
preference is given either to the gamma network or to the power variance parameter
p = 2.5. In general, it seems that fitting with higher power variance parameters
leads to less stable results, but this statement needs more analysis. The disadvantage
of this fitting approach is that we independently fit the models with the different
power variance parameters to the observations, and, thus, the learned representations
z(d :1)(xi ) are rather different for different p’s. This makes it difficult to compare
these models. This is exactly the point that we address next.

Robustified Representation Learning

To deal with the drawback of missing comparability of the network approaches
with different power variance parameters, we can try to learn a representation
that simultaneously fits different models. The implementation of this idea is rather
straightforward in network modeling. We choose the above network of depth d = 3,
which gives us the new (learned) representation zi = z(d :1)(xi ) in the last FN
layer. The general idea now is that we design multiple outputs for this learned
representation to fit the different distributional models. That is, in the case of
three Tweedie’s loss functions with power variance parameters p ∈ {2, 2.5, 3} we
consider a three-dimensional output mapping

x �→ (
μp=2(x), μp=2.5(x), μp=3(x)

)� (11.6)

=
(
g−1〈β2, z

(d :1)(x)〉, g−1〈β2.5, z
(d :1)(x)〉, g−1〈β3, z

(d :1)(x)〉
)� ∈ R

3,
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for different output parameters β2,β2.5,β3 ∈ R
qd+1. These three expected

responses (11.6) share the network parameters w = (w
(1)
1 , . . . ,w

(d)
qd ) in the FN

layers, and the network fitting should learn these parameters such that zi =
z(d :1)(xi ) gives a good representation for all considered loss functions. Choose
positive weights ηp > 0, and define the combined deviance loss function

D
(
Y , (w,β2,β2.5,β3)

) =
∑

p∈{2,2.5,3}

ηp

ϕp

n∑

i=1

vi dp
(
Yi, μp(xi )

)
, (11.7)

for the given observations (Yi, x i , vi ), 1 ≤ i ≤ n. Note that the unit deviances
dp live on different scales for different p’s. We use the (constant) weights ηp > 0
to balance these scales so that all power variance parameters p roughly equally
contribute to the total loss, while setting ϕp ≡ 1 (which can be done for a constant
dispersion). This approach is now fitted to the available learning data L. The
corresponding R code is given in Listing 11.1. Note that the fitting also requires that
we triplicate the observations (Yi, Yi , Yi) so that we can simultaneously evaluate the
three chosen power variance deviance losses, see lines 18–21 of Listing 11.1. We
fit this model to the Swiss accident insurance data, and the results are presented in
Table 11.3 on the lines called ‘multi-out’.

Listing 11.1 FN network with multiple output

1 Design = layer_input(shape = c(q0), dtype = ’float32’, name = ’Design’)
2 #
3 Network = Design %>%
4 layer_dense(units=20, activation=’tanh’, name=’FNLayer1’) %>%
5 layer_dense(units=15, activation=’tanh’, name=’FNLayer2’) %>%
6 layer_dense(units=10, activation=’tanh’, name=’FNLayer3’)
7 #
8 Output1 = Network %>%
9 layer_dense(units=1, activation=’exponential’, name=’Output1’)

10 #
11 Output2 = Network %>%
12 layer_dense(units=1, activation=’exponential’, name=’Output2’)
13 #
14 Output3 = Network %>%
15 layer_dense(units=1, activation=’exponential’, name=’Output3’)
16
17 #
18 keras_model(inputs = c(Design), outputs = c(Output1, Output2, Output3))
19 #
20 model %>% compile(loss = list(loss1, loss2, loss3),
21 loss_weights=list(eta1, eta2, eta3), optimizer = ’nadam’)

This simultaneous representation learning across different loss functions leads to
more stability in the results between the different loss function choices, i.e., there
is less variability between the losses of the different outputs compared to fitting the
three different models independently. The predictive performance seems slightly
better in this robustified vs. the independent case (see bold face out-of-sample
figures). The similarity of the results across the different loss functions (using the
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Table 11.3 In-sample and out-of-sample losses (gamma loss, power variance case p = 2.5 loss
(in 10−2) and inverse Gaussian (IG) loss (in 10−3)) and average claim amounts; the losses use unit
dispersion ϕ = 1 and the network losses are averaged deviance losses over 20 runs with different
seeds

In-sample loss on L Out-of-sample loss on T Average

dp=2 dp=2.5 dp=3 dp=2 dp=2.5 dp=3 claim

Null model 3.0094 10.2208 4.6979 3.0240 10.2420 4.6931 1’774

Gamma network 1.9738 7.4556 3.8693 2.0543 7.6478 3.9211 1’748

p = 2.5 network 1.9712 7.4128 3.8458 2.0654 7.6551 3.9178 1’739

IG network 1.9977 7.4568 3.8525 2.0762 7.6682 3.9188 1’712

Gamma multi-output (11.6) 1.9731 7.4275 3.8519 2.0581 7.6422 3.9146 1’745

p = 2.5 multi-output (11.6) 1.9736 7.4281 3.8522 2.0576 7.6407 3.9139 1’732

IG multi-output (11.6) 1.9745 7.4295 3.8525 2.0576 7.6401 3.9134 1’705

Multi-loss fitting (11.8) 1.9677 7.4118 3.8468 2.0580 7.6417 3.9144 1’744
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Fig. 11.3 Ratios μ̂p=2(xi )/μ̂p=2.5(xi ) (black color) and μ̂p=3(xi )/μ̂p=2.5(xi ) (blue color) of the
three predictors (lhs) in-sample figures ordered on the x-axis w.r.t. the logged observed claims Yi ,
darkgray and cyan lines give spline fits, (rhs) out-of-sample figures ordered on the x-axis w.r.t. the
logged average size of the three predictors

jointly learned representation zi) allows us to directly compare the corresponding
predictors μ̂p(xi ) for the different p’s.
Figure 11.3 compares the three predictors by considering the ratios
μ̂p=2(xi )/μ̂p=2.5(xi ) in black color and μ̂p=3(xi )/μ̂p=2.5(xi ) in blue color, i.e.,
we divide by the (middle) predictor with power variance parameter p = 2.5.
The figure on the left-hand side shows these ratios in-sample and ordered on
the x-axis w.r.t. the observed claim sizes Yi , and the darkgray and cyan lines
give spline fits to these ratios. The figure on the right-hand side shows these
ratios out-of-sample and ordered on the x-axis w.r.t. the average predictors
μ̄i = (μ̂p=2(xi )+ μ̂p=2.5(xi )+ μ̂p=3(xi ))/3. In view of (11.5) we expect that the
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models with a smaller power variance parameter p over-fit more to large claims.
From Fig. 11.3 (lhs) we can observe that, indeed, this is the case (see gray and cyan
spline fits which bifurcate for large claims). That is, models with a smaller power
variance parameter react more sensitively to large observations Yi . The ratios in
Fig. 11.3 provide differences of up to 7% for large claims.

Remark 11.3 The loss function (11.7) can also be interpreted as regularization.
For instance, if we choose η2 = 1, and if we assume that this is our preferred
model, then we can regularize this model with further models, and their weights
ηp > 0 determine the degree of regularization. Thus, in contrast to ridge and
LASSO regularization of Sect. 6.2, regularization does not directly act on the
model parameters, here, but rather on what we learn in terms of the representation
zi = z(d :1)(xi ).

Using Forecast Dominance to Deal with Model Uncertainty

In GLMs, the power variance parameter p typically acts as a hyper-parameter, i.e.,
one fits different GLMs for different choices of p. Model selection is then done, e.g.,
by analyzing the Tukey–Anscombe plot, AIC, cross-validation or by studying out-
of-sample forecast dominance. In networks we should not use AIC as we neither
have a parsimonious network parameter nor do we use the MLE. Here, we focus
on forecast dominance for the network predictors (based on the different chosen
power variance parameters). If we are mainly interested in receiving a model that
provides optimal forecast dominance, we should not consider three different outputs
as in (11.7), but rather fit the same output to different loss functions; the required
changes are minimal, see Listing 11.2. Namely, consider one FN network with one
output μ(xi ), but evaluate this output simultaneously on the different chosen loss
functions

D (Y ,ϑ) =
∑

p∈{2,2.5,3}

ηp

ϕp

n∑

i=1

vi dp (Yi, μ(xi )) . (11.8)

In contrast to (11.7), we only have one FN network regression function xi �→ μ(xi ),
here.
We present the results on the last line of Table 11.3, called ‘multi-loss’. In our
case, this approach is slightly less competitive (out-of-sample), however, it is less
sensitive to outliers since we need to have a good regression function simultaneously
for multiple loss functions. Of course, this multiple loss fitting approach is not
restricted to different power variance parameters. As stated in Theorem 4.19,
Bregman divergences are the only consistent loss functions for mean estimation,
and the unit deviances are examples of Bregman divergences. Forecast dominance
now suggests that we may choose any Bregman divergence as a loss function in
Listing 11.2 as long as it reflects the expected properties of the model (and of
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Listing 11.2 FN network with a single output for multiple losses

1 Design = layer_input(shape = c(q0), dtype = ’float32’, name = ’Design’)
2 #
3 Network = Design %>%
4 layer_dense(units=20, activation=’tanh’, name=’FNLayer1’) %>%
5 layer_dense(units=15, activation=’tanh’, name=’FNLayer2’) %>%
6 layer_dense(units=10, activation=’tanh’, name=’FNLayer3’)
7 #
8 Output = Network %>%
9 layer_dense(units=1, activation=’exponential’, name=’Output’)

10 #
11 keras_model(inputs = c(Design), outputs = c(Output, Output, Output))
12 #
13 model %>% compile(loss = list(loss1, loss2, loss3),
14 loss_weights=list(eta1, eta2, eta3), optimizer = ’nadam’)

the observed data), otherwise we will receive bad convergence properties, see also
Sect. 11.1.4, below. For instance, we can robustify the Poisson claim counts model
by additionally considering the deviance loss of the negative binomial model that
also assesses over-dispersion.

Nagging Predictor

The loss figures in Table 11.3 are averaged deviance losses over 20 different runs of
the gradient descent algorithm with different seeds (to receive stable results). Rather
than averaging over the losses, we should improve the models by averaging over the
predictors and, then, calculate the losses on these averaged predictors; this is exactly
the proposal of the nagging predictor (7.44). We calculate the nagging predictor of
the models that are simultaneously fit to the different loss functions (lines ‘multi-
output’ and ‘multi-loss’ of Table 11.3). The resulting nagging predictors are reported
in Table 11.4. This table shows that we give a clear preference to the nagging
predictors. The simultaneous loss fitting (11.8) gives the best out-of-sample results
for the nagging predictor, see the last line of Table 11.4.
Figure 11.4 shows the Tukey–Anscombe plot of the multi-loss nagging predictor for
the different deviance losses (for unit dispersion). Again, the case p = 2.5 is closest
to having a constant dispersion, and the other cases will require dispersion modeling
ϕ(x).
Figure 11.5 shows the empirical auto-calibration property of the multi-loss nagging
predictor. This auto-calibration property is calculated as in Listing 7.8. We observe
that the auto-calibration property holds rather accurately. Only for claim predictors
μ̂(xi ) above 10’000 CHF (vertical dotted line in Fig. 11.5) the fitted means under-
estimate the observed average claim sizes. This affects (only) 1.7% of all claims and
it could be corrected as described in Example 7.19.
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Table 11.4 In-sample and out-of-sample losses (gamma loss, power variance case p = 2.5 loss
(in 10−2) and inverse Gaussian (IG) loss (in 10−3)) and average claim amounts; the losses use unit
dispersion ϕ = 1

In-sample loss on L Out-of-sample loss on T Average

dp=2 dp=2.5 dp=3 dp=2 dp=2.5 dp=3 claim

Null model 3.0094 10.2208 4.6979 3.0240 10.2420 4.6931 1’774

Gamma multi-output (11.6) 1.9731 7.4275 3.8519 2.0581 7.6422 3.9146 1’745

p = 2.5 multi-output (11.6) 1.9736 7.4281 3.8522 2.0576 7.6407 3.9139 1’732

IG multi-output (11.6) 1.9745 7.4295 3.8525 2.0576 7.6401 3.9134 1’705
Multi-loss fitting (11.8) 1.9677 7.4118 3.8468 2.0580 7.6417 3.9144 1’744

Gamma multi-out & nagging 1.9486 7.3616 3.8202 2.0275 7.5575 3.8864 1’745

p = 2.5 multi-out & nagging 1.9496 7.3640 3.8311 2.0276 7.5578 3.8864 1’732

IG multi-out & nagging 1.9510 7.3666 3.8320 2.0281 7.5583 3.8865 1’705

Multi-loss with nagging 1.9407 7.3403 3.8236 2.0244 7.5490 3.8837 1’744
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Fig. 11.4 Tukey–Anscombe plots giving the deviance residuals of the multi-loss nagging predic-
tor of Table 11.4 for different power variance parameters: (lhs) gamma deviances p = 2, (middle)
power variance deviances p = 2.5, (rhs) inverse Gaussian deviances p = 3; the cyan lines show
twice the estimated standard deviation of the deviance residuals as a function of the size of the
logged estimated means μ̂

11.1.3 Lab: Deep Dispersion Modeling

From the Tukey–Anscombe plots in Fig. 11.4 we conclude that the dispersion
requires regression modeling, too, as the dispersion does not seem to be constant
over the whole range of the expected claim sizes. We therefore explore a double FN
network model, in spirit this is similar to the double GLM of Sect. 5.5. We therefore
assume to work within Tweedie’s family with power variance parametersp ≥ 2, and
with unit deviances given by (11.2)–(11.3). The saddlepoint approximation (5.59)
gives us

f (y; θ, v/ϕ) ≈
(

2πϕ

v
V (y)

)−1/2

exp

{
− 1

2ϕ/v
dp(y, μ)

}
,
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Fig. 11.5 Empirical
auto-calibration property of
the claim size predictor; the
blue curve shows the
empirical density of the
multi-loss nagging predictor
μ̂(xi )
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with power variance function V (y) = yp. This saddlepoint approximation is
formulated in the reproductive form for Y = X/ω = Xϕ/v. This requires scaling of
the observations X with the unknown ϕ to receive Y . In Sect. 5.5.4 we have shown
how this problem can be solved. In this section we give a different proposal which
is more robust in network fitting, and which benefits from the b-homogeneity of dp,
see (11.4).

We consider the variable transformation y �→ x = yω = yv/ϕ. In the absolutely
continuous case p ≥ 2 this gives us the approximation

f (x; θ, v/ϕ) ≈
(

2πϕ1+p

v1+p V (x)

)−1/2

exp

{
− 1

2ϕ/v
dp

(
xϕ

v
,
μϕv

ϕv

)}
ϕ

v

=
(

2πϕp−1

vp−1 V (x)

)−1/2

exp

{
− 1

2ϕp−1/vp−1 dp
(
x,μp

)
}
,

with mean μp = μv/ϕ of X = Yv/ϕ. We set φ = −1/ϕp−1 < 0. This gives us the
approximation

�X(μp, φ) ≈ vp−1dp(X,μp)φ − (−log (−φ))
2

−1

2
log

(
2π

vp−1 V (X)

)
. (11.9)

For given mean μp we again have a gamma approximation on the right-hand side,
but we scale the dispersion differently. This gives us the approximate first moment

Eφ

[
vp−1dp(X,μp)

∣
∣∣μp

]
≈ κ ′

2(φ) = − 1/φ = ϕp−1 def.= ϕp.

The remainder of this modeling is similar to the residual MLE approach in
Section 5.5.3. Namely, we set up two FN network regression functions

x �→ μp(x) and x �→ ϕp(x) = κ ′
2(φ(x)) = −1/φ(x).
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Parameter fitting is achieved by alternating the network parameter fitting of μp(x)
and ϕp(x) see also Section 5.5.4. We start the iteration by setting the dispersion

constant to ϕ̂(0)p (x) ≡ const. In this case, the dispersion cancels in the score

equations and the mean μ̂(1)p (x) can be estimated without the explicit knowledge

of the (constant) dispersion parameter ϕ̂(0)p ; this exactly provides the results of the
previous Sect. 11.1.2. Then, we iterate this procedure for t ≥ 1. For given mean
estimate μ̂(t)p (x) we receive deviances vp−1dp(X, μ̂

(t)
p (x)), and this allows us to

estimate ϕ̂(t)p (x) from the approximate gamma model (11.9), and for given disper-

sion parameters ϕ̂(t)p (x) we estimate μ̂(t+1)
p (x) from the corresponding Tweedie’s

model for the observationX.

Example 11.4 We revisit the Swiss accident insurance data example of Sect. 11.1.2,
and we use the robustified representation learning approach (11.7) that simulta-
neously fits Tweedie’s models for the power variance parameters p = 2, 2.5, 3.
The initial calibration step is done for constant dispersions ϕ̂(0)p (x) ≡ const, and

it provides us with the estimated means μ̂(1)p (x) as illustrated in Fig. 11.3. For
stability reasons we choose the nagging predictor averaging over 20 different SGD
runs with 20 different seeds. These estimated means μ̂(1)p (x) give us the deviances

vp−1dp(X, μ̂
(1)
p (x)).

Using these deviances allows us to alternate the dispersion and mean estimation
for t ≥ 1. For given means μ̂(t)p (x), p = 2, 2.5, 3, we set up a deep FN network
x �→ z(d :1)(x) that allows for a robustified deep dispersion learning ϕp(x), for
p = 2, 2.5, 3. Under the log-link choice we consider the regression function with
multiple outputs

x �→ (
ϕp=2(x), ϕp=2.5(x), ϕp=3(x)

)� (11.10)

=
(

exp〈α2, z
(d :1)(x)〉, exp〈α2.5, z

(d :1)(x)〉, exp〈α3, z
(d :1)(x)〉

)� ∈ R
3+,

for different output parameters α2,α2.5,α3 ∈ R
qd+1. These three dispersion

responses (11.10) share the common network parameter w̃ = (w̃
(1)
1 , . . . , w̃

(d)
qd ) in

the FN layers of z(d :1). The network fitting learns these parameters simultaneously
for the different power variance parameters. Choose positive weights η̃p > 0, and
define the combined deviance loss function (based on the gamma model κ2 and
having dispersion parameter 2)

D
(
d(X, μ̂(t)), (w̃,α2,α2.5,α3)

)
=

∑

p∈{2,2.5,3}

η̃p

2

n∑

i=1

d2

(
v
p−1
i dp(Xi, μ̂

(t)
p (xi )), ϕp(xi )

)
,

(11.11)
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where X = (X1, . . . , Xn) collects the unscaled observations Xi = Yivi/ϕi . Thus,
for all power variance parameters p = 2, 2.5, 3 we fit a gamma model d2(·, ·)/2
to the observed deviances (observations) vp−1

i dp(Xi, μ̂
(t)
p (xi )) providing us with

the estimated dispersions ϕ̂(t)p (xi ). This fitting step is received by the R code
of Listing 11.1, where the losses on line 20 are all given by gamma deviance
losses (11.11) and the deviances vp−1

i dp(Xi, μ̂
(t)
p (xi )) play the role of the responses

(observations).
In the next step we update the mean estimates μ̂(t+1)

p (xi ), given the estimated

dispersions ϕ̂(t)p (xi ) from the previous step. This requires that we optimize the
expected responses (11.6) for given heterogeneous dispersion parameters. We
therefore consider the loss function for positive weights ηp > 0, see (11.7),

D
(
X, ϕ̂(t), (w,β2,β2.5,β3)

)
=

∑

p∈{2,2.5,3}
ηp

n∑

i=1

v
p−1
i

ϕ̂
(t)
p (xi )

dp
(
Xi,μp(xi )

)
.

(11.12)

We fit this model by iterating this approach for t ≥ 1: we start from the predictors
of Sect. 11.1.2 providing us with the first mean estimates μ̂(1)p (xi ). Based on these

mean estimates we iterate this robustified estimation of ϕ̂(t)p (xi ) and μ̂(t)p (xi ). We
give some remarks:

1. We use the robustified versions (11.11) and (11.12), respectively, where we
simultaneously fit all power variance parameters p = 2, 2.5, 3 on the commonly
learned representations zi = z(d :1)(xi ) in the last FN layer of the mean and the
dispersion network, respectively.

2. For both FN networks of mean μ and dispersion ϕ modeling we use the same
network architecture of depth d = 3 having (q1, q2, q3) = (20, 15, 10) neurons
in the FN layers, the hyperbolic tangent activation function, and the log-link
for the output. These two networks only differ in their network parameters
(w,β2,β2.5,β3) and (w̃,α2,α2.5,α3), respectively.

3. For fitting we use the nadam version of SGD. For the early stopping we use a
training data U to validation data V split of 8 : 2.

4. To ensure consistency within the individual SGD runs across t ≥ 1, we use the
learned network parameter of loop t as initial value for loop t + 1. This ensures
monotonicity across the iterations in the log-likelihood and the loss function,
respectively, up to the fact that the random mini-batches in SGD may distort this
monotonicity.

5. To reduce the elements of randomness in SGD fitting we run this iteration
procedure 20 times with different seeds, and we output the nagging predictors
for μ̂(t)p (xi ) and ϕ̂(t)p (xi ) averaged over the 20 runs for every t in Table 11.5.

We iterate this algorithm over two loops, and the results are presented in Table 11.5.
We observe a decrease of −2�X(μ̂

(t)
p , ϕ̂

(t)
p ) by iterating the fitting algorithm for t ≥

1. For AIC, we would have to correct twice the negative log-likelihood by twice
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Table 11.5 Iteration of mean μ̂(t)p and dispersion ϕ̂(t)p estimation for the gamma model p = 2,
the power variance parameter p = 2.5 model and the inverse Gaussian model p = 3: the numbers
correspond to −2�X(μ̂

(t)
p , ϕ̂

(t)
p ); the last line corrects −2�X(μ̂

(t)
p , ϕ̂

(t)
p ) by 2·2·812 = 3′248 (twice

the number of parameters used in the mean and dispersion FN networks)

Iteration −2· log-likelihood

t Gamma p = 2 Power variance p = 2.5 Inverse Gaussian p = 3

(μ̂(1), ϕ̂(0)) 4’722’961 4’635’038 4’644’869

(μ̂(1), ϕ̂(1)) 4’702’247 4’622’097 4’617’593

(μ̂(2), ϕ̂(1)) 4’701’234 4’621’123 4’616’869

(μ̂(2), ϕ̂(2)) 4’700’686 4’620’845 4’616’588

“AIC” 4’703’978 4’624’137 4’619’880

the number of MLE estimated parameters. We also adjust here correspondingly,
though the correction is not justified by any theory, because we do not work with
the MLE nor do we have a parsimonious model for mean and dispersion estimation.
Nevertheless, we receive smaller values than in Table 11.1 which supports the use
of this more complex double FN network model.

Comparing the three power variance parameter models, we now give preference
to the inverse Gaussian model, as it has the biggest log-likelihood. Note that we
directly compare all power variance models as the complexity is equal in all models
(they only differ in the chosen power variance parameter) and the joint robustified
fitting applies the same stopping rule to all power variance parameter models. The
same result is obtained by comparing the out-of-sample log-likelihoods. Note that
we do not compare the deviance losses, here, because the unit deviances are not
designed to estimate parameters in vector-valued parameter families; we model
dispersion as a second parameter.

Next, we study the estimated dispersions ϕ̂p(xi ) as a function of the estimated
means μ̂p(xi ). We fit a spline to ϕ̂p(xi ) as a function of μ̂p(xi ), and we receive
estimates that almost perfectly match the cyan lines in Fig. 11.4. This provides
a proof of concept that the dispersion regression model finds the right level of
dispersion as a function of the expected means.

Using the mean and dispersion estimates, we can calculate the dispersion scaled
deviance residuals

rD
i = sign(Xi − μ̂p(xi ))

√
v
p−1
i d

(
Xi, μ̂p(xi )

)
/ϕ̂p(xi ). (11.13)

This then allows us to give the Tukey–Anscombe plots for the three considered
power variance parameters.
The corresponding plots are given in Fig. 11.6; the difference to Fig. 11.4 is that
the latter considers unit dispersion whereas the former scales the residuals with
the rooted dispersion

√
ϕ̂p(xi ); note that vi ≡ 1 in this example. By scaling with

the rooted dispersion the resulting deviance residuals rD
i should roughly have unit

standard deviation. From Fig. 11.6 we observe that indeed this is the case, the cyan
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Fig. 11.6 Tukey–Anscombe plots giving the dispersion scaled deviance residuals rD
i (11.13) of

the models jointly fitting the mean parameters μ̂p(xi ) and the dispersion parameters ϕ̂p(xi ): (lhs)
gamma model, (middle) power variance parameter p = 2.5 model, and (rhs) inverse Gaussian
models; the cyan lines correspond to 2 standard deviations
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Fig. 11.7 (lhs) Gamma model: observations vs. simulations on log-scale, (middle) gamma model:
estimated shape parameters α̂†

t = 1/ϕ̂2(x
†
t ) < 1, 1 ≤ t ≤ T , and (rhs) inverse Gaussian model:

observations vs. simulations on log-scale

line shows a spline fit of twice the standard deviation of the deviance residuals rD
i .

These splines are of magnitude 2 which verifies the unit standard deviation property.
Moreover, the cyan lines are roughly horizontal which indicates that the dispersion
estimation and the scaling works across all expected claim sizes μ̂p(xi ). The three
different power variance parameters p = 2, 2.5, 3 show different behaviors in the
lower and upper tails in the residuals (centering around the orange horizontal zero
line in Fig. 11.6) which corresponds to the different distributional properties of the
chosen models.
We further analyze the gamma and the inverse Gaussian models. Note that the
analysis of the power variance models for general power variance parameters p �=
0, 1, 2, 3 is more difficult because neither the EDF density nor the EDF distribution
function have a closed form. To analyze the gamma and the inverse Gaussian models
we simulate observationsXsim

t , t = 1, . . . , T , from the estimated models (using the
out-of-sample features x

†
t of the test data T ), and we compare them against the

true out-of-sample observations X†
t . Figure 11.7 shows the results for the gamma

model (lhs) and the inverse Gaussian model (rhs) on the log-scale. A good fit has



472 11 Selected Topics in Deep Learning

been achieved if the black dots lie on the red diagonal line (in the colored version),
because then the simulated data shares similar features as the observed data. The fit
of the inverse Gaussian model seems reasonably good.

On the other hand, we see that the gamma model gives a poor fit, especially
in the lower tail. This supports the AIC values of Table 11.5. The problem with
the gamma model is that the data is more heavy-tailed than the gamma model can
accomplish. As a consequence, the dispersion parameter estimates ϕ̂2(x

†
t ) in the

gamma model are compensating for this by taking values bigger than 1. A dispersion
parameter bigger than 1 implies a shape parameter in the gamma model of α̂†

t =
1/ϕ̂2(x

†
t ) < 1, and the resulting gamma density is strictly decreasing, see Fig. 2.1. If

we simulate from this model we receive many observationsXsim
t close to zero (from

the strictly decreasing density). This can be seen from the lower-left part of the graph
in Fig. 11.7 (lhs), suggesting that we have many observations withX†

t ∈ (0, 1), or on
the log-scale log(X†

t ) < 0. However, the graph shows that this is not the case in the
real data. Figure 11.7 (middle) shows the boxplot of the estimated shape parameters
α̂

†
t on the test data, 1 ≤ t ≤ T , verifying that most insurance policies of the test data

T receive a shape parameter α̂†
t less than 1.

We conclude that the inverse Gaussian double FN network model seems to work
well for this data, and we give preference to this model. �

11.1.4 Pseudo Maximum Likelihood Estimator

This short section gives a mathematical foundation to parameter estimation under
model uncertainty and model misspecification. We summarize the results of
Gourieroux et al. [168], and we refrain from giving any proofs in this section.
Assume that the real-valued observations Yi , 1 ≤ i ≤ n, have been generated by the
model

Yi = μζ0(xi )+ εi, (11.14)

with (true) parameter ζ0 ∈  ⊂ R
r , feature xi ∈ X ⊆ {1} × R

q , and where
the conditional distribution of the noise random variables (εi)1≤i≤n satisfies the
conditional independence property pε(ε1, . . . , εn|x1, . . . , xn) = ∏n

i=1 pε(εi |xi ).
Denote by px(x) the portfolio distribution of the features x. Thus, under (11.14), the
claim Y of a randomly selected policy is generated by the joint probability measure
pε,x(ε, x) = pε(ε|x)px(x). The technical assumptions under which the following
statements hold are given in Assumption 11.9 at the end of this section.

Let F0(·|xi ) denote the true conditional distribution of Yi , given xi . Typically,
this (true) conditional distribution is unknown. It is assumed to provide the first two
conditional moments

Eζ0 [Yi |xi ] = μζ0(xi ) and Varζ0 (Yi | xi ) = σ 2
0 (xi ).
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Thus, εi |xi is assumed to be centered with conditional variance σ 2
0 (xi ), see (11.14).

Our goal is to estimate the (true) parameter ζ0 ∈  , based on the fact that the
conditional distribution F0(·|x) of the observations is unknown. Throughout we
assume parameter identifiability, i.e., if μζ1(x) = μζ2(x), px-a.s., then ζ1 = ζ2.
The following estimator is called pseudo maximum likelihood estimator (PMLE)

ζ̂ PMLE
n = arg min

ζ∈ 
1

n

n∑

i=1

d(Yi , μζ (xi )), (11.15)

where d(y, μ) is the unit deviance of a (pre-chosen) single-parameter linear EDF
being parametrized by the same parameter space  ⊂ R

r as the original random
variables (11.14); note that  is not the effective domain � of the chosen EDF.
ζ̂ PMLE
n is called PMLE because it is a MLE for ζ0 ∈  , but not in the right

model, because the pre-chosen EDF in (11.15) typically differs from the (unknown)
true conditional distribution F0(·|x). Nevertheless, we may hope to find the true
parameter ζ0, but possibly at a slower asymptotic rate. This is exactly what is going
to be stated in the next theorems.

Theorem 11.5 (Theorem 1 of Gourieroux et al. [168]) Denote by M = κ ′(�̊)
the dual mean parameter space of the pre-chosen EDF (having cumulant function
κ), and assume that μζ (x) ∈ M for all x ∈ X and ζ ∈  . Let Assumption 11.9,
below, hold. The PMLE ζ̂ PMLE

n is strongly consistent for ζ0, i.e., it converges a.s. as
n→ ∞.

This theorem tells us that we can perform MLE in a pre-chosen EDF (which may
differ from the true data model), and asymptotically we find the true parameter ζ0
of the data model F0(·|x). Of course, this uses the fact that any unit deviance d is
a strictly consistent loss function for mean estimation, see Theorem 4.19. We do
not only receive consistency, but the following theorem also gives us the rate of
convergence.

Theorem 11.6 (Theorem 3 of Gourieroux et al. [168]) Set the same assumptions
as in Theorem 11.5. The PMLE ζ̂ PMLE

n has the following asymptotic behavior

√
n
(
ζ̂ PMLE
n − ζ0

)
�⇒ N

(
0,I∗(ζ0)−1�(ζ0)I∗(ζ0)−1

)
for n→ ∞,

with the following matrices evaluated in ζ = ζ0

I∗(ζ ) = Ex

[
I∗(ζ ; x)

] = Ex

[
J (ζ ; x)�κ ′′(h(μζ (x)))J (ζ ; x)

]
∈ R

r×r ,

�(ζ ) = Ex

[
J (ζ ; x)�σ 2

0 (x)J (ζ ; x)
]

∈ R
r×r ,
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where h = (κ ′)−1 is the canonical link of the pre-chosen EDF, and with the change
of variable ζ �→ θ = θ(ζ ) = h(μζ (x)) ∈ �, for given feature x, having Jacobian

J (ζ ; x) =
(
∂

∂ζk
h(μζ (x))

)

1≤k≤r
= 1

κ ′′(h(μζ (x))
(∇ζ μζ (x)

)� ∈ R
1×r .

Remark that I∗(ζ ) averages Fisher’s information I∗(ζ ; x) (of the chosen EDF)
over the feature distribution px . This theorem can be seen as a modification of (3.36)
to the regression case. Theorem 11.6 gives us the asymptotic normality of the
PMLE, and the resulting asymptotic variance depends on how well the pre-chosen
EDF matches the true data distribution F0(·|x). The following lemma corresponds
to Property 5 in Gourieroux et al. [168].

Lemma 11.7 The asymptotic variance in Theorem 11.6 has the lower bound, set
ζ = ζ0 and σ 2(x) = σ 2

0 (x),

I∗(ζ )−1�(ζ)I∗(ζ )−1 ≥ H(ζ ) = Ex

[
∇ζ μζ (x)σ−2(x)

(∇ζ μζ (x)
)�]−1 ∈ R

r×r .

Proof We set τ 2(x) = κ ′′(h(μζ (x))). We have J (ζ ; x)� = ∇ζ μζ (x)τ−2(x). The
following matrix is positive semi-definite and it satisfies

Ex

[ [
I∗(ζ )−1J (ζ ;x)� − H(ζ )J (ζ ;x)�τ2(x)σ−2(x)

]
σ 2(x)

×
[
I∗(ζ )−1J (ζ ;x)� − H(ζ )J (ζ ;x)�τ2(x)σ−2(x)

]� ]

= I∗(ζ )−1�(ζ )I∗(ζ )−1 − H(ζ )I∗(ζ )I∗(ζ )−1 − I∗(ζ )−1I∗(ζ )H(ζ ) + H(ζ )H(ζ )−1H(ζ )

= I∗(ζ )−1�(ζ )I∗(ζ )−1 − H(ζ ).

This proves the claim. �
Theorem 11.6 and Lemma 11.7 tell us that if we estimate the parameter ζ0 of

the unknown model F0(·|x) with PMLE based on a single-parameter linear EDF,
we receive minimal asymptotic variance if we can match the variance V (μζ0(x)) =
κ ′′(h(μζ0(x))) of the chosen EDF with the variance σ 2

0 (x) of the true data model.
E.g., if we know that the variance in the true model behaves as σ 2

0 (x) = μ3
ζ0
(x)

we should select the inverse Gaussian model with variance function V (μ) = μ3 for
PMLE.

If the members of the single-parameter linear EDF do not fully match the
variance structure of the true data, we can turn our attention to a dispersion submodel
as in Sect. 5.5.1. Assume for the variance structure of the true data

Varζ0(Yi |xi ) = σ 2
0 (xi ) =

1

vi
s2
α0
(xi ),
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for a regression function x �→ s2
α0
(x) involving the (true) regression parameter α0

and exposures vi > 0. If we choose a fixed EDF, we have the log-likelihood function

(μ, ϕ) �→ �Y (μ, ϕ; v) = v

ϕ
[Yh(μ)− κ(h(μ))] + a(y; v/ϕ).

Equating the variance structure of the true data model with the variance in this pre-
specified EDF, we obtain feature-dependent dispersion parameter

ϕ(xi ) =
s2
α0
(xi )

V (μζ0(xi ))
, (11.16)

with variance function V (μ) = (κ ′′ ◦ h)(μ). The following theorem proposes a
two-step procedure for this estimation problem.

Theorem 11.8 (Theorem 4 of Gourieroux et al. [168]) Assume ζ̃n and α̃n are
strongly consistent estimators for ζ0 and α0, as n→ ∞, such that

√
n(̃ζn− ζ0) and√

n(̃αn − α0) are bounded in probability. The quasi-generalized pseudo maximum
likelihood estimator (QPMLE) of ζ0 is obtained by

ζ̂QPMLE
n = arg max

ζ∈ 

n∑

i=1

�Yi

(

μζ (xi ),
s2
α̃n
(xi )

V (μζ̃n(xi ))
; vi
)

.

Under Assumption 11.9, below, ζ̂QPMLE
n is strongly consistent and best asymptoti-

cally normal, i.e.,

√
n
(
ζ̂QPMLE
n − ζ0

)
�⇒ N (0,H(ζ0)) for n→ ∞.

This justifies the approach(es) in the previous chapters and sections, though,
not fully, because we neither work with the MLE in FN networks nor do we
care about identifiability in parameters. Nevertheless, this short section suggests
to find strongly consistent estimators ζ̃n and α̃n for ζ0 and α0. This gives us a first
model calibration step that allows us to specify the dispersion structure x �→ ϕ(x)

via (11.16). Using this dispersion structure and the deviance loss function (4.9) for
a variable dispersion parameter ϕ(x), the QPMLE is obtained in the second step by,
we replace the likelihood maximization by the deviance loss minimization,

ζ̂QPMLE
n = arg min

ζ∈ 
1

n

n∑

i=1

vi

s2
α̃n
(xi )/V (μζ̃n(xi ))

d(Yi , μζ (xi )).

This QPMLE is best asymptotically normal, thus, asymptotically optimal within the
EDF. There might still be better estimators for ζ0, but these are outside the EDF.
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If we turn M-estimation into Z-estimation we have the requirement for ζ , see
also (11.5),

1

n

n∑

i=1

vi
V (μζ̃n(xi ))

s2
α̃n
(xi )

Yi − μζ (xi )
V (μζ (xi ))

∇ζ μζ (xi ) != 0.

Thus, it all boils down to find the right variance structure to receive the optimal
asymptotic behavior.

The previous statements hold true under the following technical assumptions.
These are taken from Appendix 1 of Gourieroux et al. [167], and they are an adapted
version of the ones in Burguete et al. [61].

Assumption 11.9

(i) μζ (x) and d(y, μζ (x)) are continuous w.r.t. all variables and twice continu-
ously differentiable in ζ ;

(ii)  ⊂ R
r is a compact set and the true parameter ζ0 is in the interior of  ;

(iii) almost every realization of (εi, xi ) is a Cesàro sum generator w.r.t. the
probability measure pε,x(ε, x) = pε(ε|x)px(x) and to a dominating function
b(ε, x);

(iv) the sequence (xi )i is a Cesàro sum generator w.r.t. px and b(x) =∫
R
b(ε, x)dpε(ε|x);

(v) for each x ∈ {1} ×R
q , there exists a neighborhoodNx ⊂ {1} × R

q such that

∫

R

sup
x′∈Nx

b(ε, x′) dpε(ε|x) <∞;

(vi) the functions d(Y, μζ (x)), ∂d(Y, μζ (x))/∂ζk, ∂2d(Y, μζ (x))/∂ζk∂ζl are dom-
inated by b(ε, x).

11.2 Deep Quantile Regression

So far, in network regression modeling, we have not addressed the question of
prediction uncertainty. As mentioned in Remarks 4.2 on forecast evaluation, there
are different sources that contribute to prediction uncertainty. There is the model
and parameter estimation uncertainty, which may result in an inappropriate model
choice, and there is the irreducible risk which comes from the fact that we forecast
random variables which inherit a natural randomness that cannot be controlled.

We have discussed methods of evaluating model and parameter estimation error,
such as the asymptotic normality of MLEs within GLMs, and we have discussed
forecast dominance, the bootstrap method or the nagging predictor that allow
one to assess the different sources of prediction uncertainty. However, we have
not explicitly quantified these sources of uncertainty within the class of network
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regression models. We do an attempt in Sect. 11.4, below, by considering the
fluctuations generated by bootstrap simulations. The irreducible risk can be assessed
once we have a suitable statistical model; in Example 11.4 we have studied a
gamma and an inverse Gaussian model on an explicit data set, and these models
can be used, e.g., to calculate quantiles. In this section we consider a distribution-
free approach that directly estimates these quantiles. Recall from Section 5.8.3 that
quantiles are elicitable with the pinball loss as a strictly consistent loss function, see
Theorem 5.33. This allows us to directly estimate the quantiles from the data.

11.2.1 Deep Quantile Regression: Single Quantile

In this section we present a way of assessing the irreducible risk which does not
require a sophisticated model evaluation of distributional assumptions. Quantile
regression is increasingly used in the machine learning community because it is
a robust way of quantifying the irreducible risk, we refer to Meinshausen [270],
Takeuchi et al. [350] and Richman [314]. We recall that quantiles are elicitable
having the pinball loss as a strictly consistent loss function, see Theorem 5.33.
We define a FN network regression model that allows us to directly estimate the
quantiles based on the pinball loss. We therefore use an adapted version of the
R code of Listing 9 in Richman [314], this adapted version has been proposed in
Fissler et al. [130] to ensure that different quantiles respect monotonicity. For any
two quantile levels 0 < τ1 < τ2 < 1 we have

F−1(τ1) ≤ F−1(τ2), (11.17)

where F−1 denotes the generalized inverse of distribution function F , see (5.80).
If we simultaneously learn these quantiles for different quantile levels τ1 < τ2,
we need to enforce the network to respect this monotonicity (11.17). This can be
achieved by exploring a special network architecture in the output layer, and this is
going to be presented in the next section.

We start by considering a single deep τ -quantile regression for a quantile level
τ ∈ (0, 1). For datum (Y, x) we consider the regression function

x �→ F−1
Y |x(τ ) = g−1〈βτ , z(d :1)(x)〉, (11.18)

for a strictly monotone and smooth link function g, output parameter βτ ∈ R
qd+1,

and where x �→ z(d :1)(x) is a deep network. We add a lower index Y |x to the
generalized inverse F−1

Y |x to highlight that we consider the conditional distribution
of Y , given feature x ∈ X . In the case of a deep FN network, (11.18) involves
a network parameter ϑ = (w

(1)
1 , . . . ,w

(d)
qd ,βτ )

� that needs to be estimated. Of
course, the deep network architecture x �→ z(d :1)(x) could also involve any other
feature, such as CN or LSTM layers, embedding layers or a NLP text recognition
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feature. This would change the network architecture, but it would not change
anything from a methodological viewpoint.

To estimate this regression parameter ϑ from independent data (Yi, xi ), 1 ≤ i ≤
n, we consider the objective function

ϑ �→
n∑

i=1

Lτ

(
Yi, g

−1〈βτ , z(d :1)(xi )〉
)
,

with the strictly consistent pinball loss function Lτ for the τ -quantile. Alternatively,
we could choose any other loss function satisfying Theorem 5.33, and we may try
to find the asymptotically optimal one (similarly to Theorem 11.8). We refrain from
doing so, but we mention Komunjer–Vuong [222]. Fitting the network parameter
ϑ is then done in complete analogy to finding an optimal network parameter for
network mean modeling. The only change is that we replace the deviance loss
function by the pinball loss, e.g., in Listing 7.3 we have to exchange the loss function
on line 5 correspondingly.

11.2.2 Deep Quantile Regression: Multiple Quantiles

We now turn our attention to the multiple quantile case that should satisfy the
monotonicity requirement (11.17) for any quantile levels 0 < τ1 < τ2 < 1.
A separate deep quantile estimation for both quantile levels, as described in the
previous section, may violate the monotonicity property, at least, in some part of
the feature space X , especially if the two quantile levels are close. Therefore, we
enforce the monotonicity by a special choice of the network architecture.

For simplicity, in the remainder of this section, we assume that the response Y is
positive, a.s. This implies for the quantiles τ �→ F−1

Y |x(τ ) ≥ 0, and we should choose

a link function with g−1 ≥ 0 in (11.18). To ensure the monotonicity (11.17) for the
quantile levels 0 < τ1 < τ2 < 1, we choose a second positive link function with
g−1+ ≥ 0, and we set for multi-task forecasting

x �→
(
F−1
Y |x(τ1), F

−1
Y |x(τ2)

)�
(11.19)

=
(
g−1〈βτ1, z(d:1)(x)〉, g−1〈βτ1 , z(d:1)(x)〉 + g−1+ 〈βτ2 , z(d:1)(x)〉

)� ∈ R
2+,

for a regression parameter ϑ = (w(1)1 , . . . ,w
(d)
qd ,βτ1 ,βτ2)

�. The positivity g−1+ ≥ 0
enforces the monotonicity in the two quantiles. We call (11.19) an additive approach
as we start from a base level characterized by the smaller quantile F−1

Y |x(τ1), and any
bigger quantile is modeled by an additive increment. To ensure monotonicity for
multiple quantiles we proceed recursively by choosing the lowest quantile as the
initial base level.
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We can also consider the upper quantile as the base level by multiplicatively
lowering this upper quantile. Choose the (sigmoid) function g−1

σ ∈ (0, 1) and set
for the multiplicative approach

x �→
(
F−1
Y |x(τ1), F

−1
Y |x(τ2)

)�
(11.20)

=
(
g−1
σ 〈βτ1 , z(d :1)(x)〉 g−1〈βτ2 , z(d :1)(x)〉, g−1〈βτ2 , z(d :1)(x)〉

)� ∈ R
2+.

Remark 11.10 In (11.19) and (11.20) we directly enforce the monotonicty by a
corresponding regression function choice. Alternatively, we can also design a (plain-
vanilla) multi-output network

x �→
(
F−1
Y |x(τ1), F

−1
Y |x(τ2)

)�
(11.21)

=
(
g−1〈βτ1, z(d :1)(x)〉, g−1〈βτ2, z(d :1)(x)〉

)� ∈ R
2+.

If we just use a classical SGD fitting algorithm, we will likely result in a situation
where the monotonicity will be violated in some part of the feature space. Kellner
et al. [211] consider this problem. They add a penalization (regularization term) that
punishes during SGD training network parameters that violate the monotonicity.
Such a penalization can be constructed, e.g., with the ReLU function.

11.2.3 Lab: Deep Quantile Regression

We revisit the Swiss accident insurance data of Sect. 11.1.2, and we provide an
example of a deep quantile regression using both the additive approach (11.19) and
the multiplicative approach (11.20).
We select 5 different quantile levels Q = (τ1, τ2, τ3, τ4, τ5) = (10%, 25%, 50%,
75%, 90%). We start with the additive approach (11.19). It requires to set τ1 =
10% as the base level, and the remaining quantile levels are modeled additively in
a recursive way for τj < τj+1, 1 ≤ j ≤ 4. The corresponding R code is given on
lines 8–20 of Listing 11.3, and this compiles to the 5-dimensional output on line 22.
For the multiplicative approach (11.20) we set τ5 = 90% as the base level, and the
remaining quantile levels are received multiplicatively in a recursive way for τj+1 >

τj , 4 ≥ j ≥ 1, see Listing 11.4. The additive and the multiplicative approaches take
the extreme quantiles as initialization. One may also be interested in initializing the
model in the median τ3 = 50%, the smaller quantiles can then be received by the
multiplicative approach and the bigger quantiles by the additive approach. We also
explore this case and we call it the mixed approach.
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Listing 11.3 Multiple FN quantile regression: additive approach

1 Design = layer_input(shape = c(q0), dtype = ’float32’, name = ’Design’)
2 #
3 Network = Design %>%
4 layer_dense(units=20, activation=’tanh’, name=’FNLayer1’) %>%
5 layer_dense(units=15, activation=’tanh’, name=’FNLayer2’) %>%
6 layer_dense(units=10, activation=’tanh’, name=’FNLayer3’)
7 #
8 q1 = Network %>% layer_dense(units=1, activation=’exponential’)
9 #

10 q20 = Network %>% layer_dense(units=1, activation=’exponential’)
11 q2 = list(q1,q20) %>% layer_add()
12 #
13 q30 = Network %>% layer_dense(units=1, activation=’exponential’)
14 q3 = list(q2,q30) %>% layer_add()
15 #
16 q40 = Network %>% layer_dense(units=1, activation=’exponential’)
17 q4 = list(q3,q40) %>% layer_add()
18 #
19 q50 = Network %>% layer_dense(units=1, activation=’exponential’)
20 q5 = list(q4,q50) %>% layer_add()
21 #
22 model = keras_model(inputs = list(Design), outputs = c(q1,q2,q3,q4,q5))

Listing 11.4 Multiple FN quantile regression: multiplicative approach

1 q5 = Network %>% layer_dense(units=1, activation=’exponential’)
2 #
3 q40 = Network %>% layer_dense(units=1, activation=’sigmoid’)
4 q4 = list(q5,q40) %>% layer_multiply()
5 #
6 q30 = Network %>% layer_dense(units=1, activation=’sigmoid’)
7 q3 = list(q4,q30) %>% layer_multiply()
8 #
9 q20 = Network %>% layer_dense(units=1, activation=’sigmoid’)

10 q2 = list(q3,q20) %>% layer_multiply()
11 #
12 q10 = Network %>% layer_dense(units=1, activation=’sigmoid’)
13 q1 = list(q2,q10) %>% layer_multiply()

Listing 11.5 Fitting a multiple FN quantile regression

1 Q_loss1 = function(y_true, y_pred){k_mean(k_maximum(y_true - y_pred, 0) * 0.1
2 + k_maximum(y_pred - y_true, 0) * (1 - 0.1))}
3 Q_loss2 = function(y_true, y_pred){k_mean(k_maximum(y_true - y_pred, 0) * 0.25
4 + k_maximum(y_pred - y_true, 0) * (1 - 0.25))}
5 Q_loss3 = function(y_true, y_pred){k_mean(k_maximum(y_true - y_pred, 0) * 0.5
6 + k_maximum(y_pred - y_true, 0) * (1 - 0.5))}
7 Q_loss4 = function(y_true, y_pred){k_mean(k_maximum(y_true - y_pred, 0) * 0.75
8 + k_maximum(y_pred - y_true, 0) * (1 - 0.75))}
9 Q_loss5 = function(y_true, y_pred){k_mean(k_maximum(y_true - y_pred, 0) * 0.9

10 + k_maximum(y_pred - y_true, 0) * (1 - 0.9))}
11 #
12 model %>% compile(loss = list(Q_loss1,Q_loss2,Q_loss3,Q_loss4,Q_loss5),
13 optimizer = ’nadam’)
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These network architectures are fitted to the data using the pinball loss (5.81) for the
quantile levels of Q; note that the pinball loss requires the assumption of having a
finite first moment. Listing 11.5 shows the choice of the pinball loss functions. We
then fit the three architectures (additive, multiplicative and mixed) to our learning
data L, and we apply early stopping to prevent from over-fitting. Moreover, we
consider the nagging predictor over 20 runs with different seeds to reduce the
randomness coming from SGD fitting.
In Table 11.6 we give the out-of-sample pinball losses on the test data T of the three
considered approaches, and illustrating the 5 quantile levels of Q. The losses of the
three approaches are rather close, giving a slight preference to the mixed approach,
but the other two approaches seem to be competitive, too. We further analyze these
quantile regression models by considering the empirical coverage ratios defined by

τ̂j = 1

T

T∑

t=1

1{
Y

†
t ≤F̂−1

Y |x†
t

(τj )

}, (11.22)

where F̂−1
Y |x†

t

(τj ) is the estimated quantile for level τj and feature x
†
t . Remark that the

coverage ratios (11.22) correspond to the identification functions that are essentially
the derivatives of the pinball losses, we refer to Dimitriadis et al. [106]. Table 11.7
reports these out-of-sample coverage ratios on the test data T . From these results
we conclude that on the portfolio level the quantiles are matched rather well.
In Fig. 11.8 we illustrate the estimated out-of-sample quantiles F̂−1

Y |x†
t

(τj ) for

individual claims on the quantile levels τj ∈ {10%, 25%, 50%, 75%, 90%} (cyan,
blue, black, blue, cyan colors) using the mixed approach. The x-axis considers
the logged estimated medians F̂−1

Y |x†
t

(50%). We observe heteroskedasticity resulting

in quantiles that are not ordered w.r.t. the median (black line). This supports the
multiple deep quantile regression model because we cannot (simply) extrapolate the
median to receive the other quantiles.
In the final step we compare the estimated quantiles F̂−1

Y |x(τj ) from the mixed deep
quantile regression approach to the ones that can be calculated from the fitted
inverse Gaussian model using the double FN network approach of Example 11.4.
In the latter model we estimate the mean μ̂(x) and the dispersion ϕ̂(x) with two
FN networks, which then allow us to calculate the quantiles using the inverse
Gaussian distributional assumption. Note that we cannot calculate the quantiles
in Tweedie’s family with power variance parameter p = 2.5 because there is no

Table 11.6 Out-of-sample pinball losses of quantile regressions using the additive, the multi-
plicative and the mixed approaches; nagging predictors over 20 different seeds

Out-of-sample losses on T
10% 25% 50% 75% 90%

Additive approach 171.20 412.78 765.60 988.78 936.31

Multiplicative approach 171.18 412.87 766.04 988.59 936.57

Mixed approach 171.15 412.55 764.60 988.15 935.50
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Table 11.7 Out-of-sample coverage ratios τ̂j below the estimated deep FN quantile estimates
F̂−1
Y |x†

t

(τj )

Out-of-sample coverage ratios

10% 25% 50% 75% 90%

Additive approach 10.27% 25.30% 50.19% 75.08% 90.03%

Multiplicative approach 10.18% 25.15% 49.64% 75.14% 90.22%

Mixed approach 10.13% 25.03% 50.32% 75.20% 90.08%

Fig. 11.8 Estimated
out-of-sample quantiles
F̂−1
Y |x†

t

(τj ) of 2’000 randomly

selected individual claims on
the quantile levels τj ∈
{10%, 25%, 50%, 75%, 90%}
(cyan, blue, black, blue, cyan
colors) using the mixed
approach, the red dots are the
out-of-sample observations
Y

†
t ; the x-axis gives

logF̂−1
Y |x†

t

(50%) (also

corresponding to the black
diagonal line) 5 6 7 8 9
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closed form of the distribution function. Figure 11.9 compares the two approaches
on the quantile levels of Q. Overall we observe a reasonably good match though it is
not perfect. The small quantiles for level τ1 = 10% seem slightly under-estimated
by the inverse Gaussian approach (see Fig. 11.9 (top-left)), whereas big quantiles
τ4 = 75% and τ5 = 90% seem more conservative in the inverse Gaussian approach
(see Fig. 11.9 (bottom)). This may indicate that the inverse Gaussian distribution
does not fully fit the data, i.e., that one cannot fully recover the true quantiles
from the mean μ̂(x), the dispersion ϕ̂(x) and an inverse Gaussian assumption.
There are two ways to further explore these issues. One can either choose other
distributional assumptions which may better match the properties of the data, this
further explores the distributional approach. Alternatively, Theorem 5.33 allows us
to choose loss functions different from the pinball loss, i.e., one could consider
different increasing functions G in that theorem to further explore the distribution-
free approach. In general, any increasing choice of the functionG leads to a strictly
consistent quantile estimation (this is an asymptotic statement), but these choices
may have different finite sample properties. Following Komunjer–Vuong [222], we
can determine asymptotically efficient choices for G. This would require feature
dependent choices Gxi (y) = FY |xi (y), where FY |x i is the (true) distribution of
Yi , conditionally given xi . This requires the knowledge of the true distribution,
and Komunjer–Vuong [222] derive asymptotic efficiency when replacing this true
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Fig. 11.9 Inverse Gaussian quantiles vs. deep quantile regression estimates of 2’000 randomly
selected claims on the quantile levels of Q = (10%, 25%, 50%, 75%, 90%)

distribution by a non-parametric estimator, this is in spirit similar to Theorem 11.8.
We refrain from giving more details but refer to the corresponding paper.

11.3 Deep Composite Model Regression

We have established a deep quantile regression in the previous section. Next we
jointly estimate quantiles and conditional tail expectations (CTEs), leading to a
composite regression model that has a splicing point determined by a quantile level;
for composite models we refer to Sect. 6.4.4. This is exactly the proposal of Fissler et
al. [130] which we are going to present in this section. Note that having a composite
model allows us to have different distributions and regression structures below and
above the splicing point, e.g., we can have a more heavy-tailed model in the upper
tail using a different feature engineering from the main body of the data.

11.3.1 Joint Elicitability of Quantiles and Expected Shortfalls

In the previous examples we have seen that the distributional models may misesti-
mate the true tail of the data because model fitting often pays more attention to an
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accurate model fit in the main body of the data. An idea is to directly estimate this
tail in a distribution-free way by considering the (upper) CTE

CTE+
τ (Y |x) = E

[
Y

∣
∣
∣Y > F−1

Y |x(τ ), x
]
, (11.23)

for a given quantile level τ ∈ (0, 1). The problem with (11.23) is that this is not an
elicitable quantity, i.e., there is no loss/scoring function that is strictly consistent for
the CTE functional.

If the distribution function FY |x is continuous, we can rewrite the upper CTE as
follows, see Lemma 2.16 in McNeil et al. [268] and (11.35) below,

CTE+
τ (Y |x) = ES+

τ (Y |x) = 1

1 − τ
∫ 1

τ

F−1
Y |x(p) dp ≥ F−1

Y |x(τ ). (11.24)

This second object ES+
τ (Y |x) is called the upper expected shortfall (ES) of Y , given

x, on the security level τ . Fissler–Ziegel [131] and Fissler et al. [132] have proved
that ES+

τ (Y |x) is jointly elicitable with the τ -quantile F−1
Y |x(τ ). That is, there is a

strictly consistent bivariate loss function that allows one to jointly estimate the τ -
quantile and the corresponding ES. In fact, Corollary 5.5 of Fissler–Ziegel [131]
give the full characterization of the strictly consistent bivariate loss functions for
the joint elicitability of the τ -quantile and the ES; note that Fissler–Ziegel [131]
use a different sign convention. This result is used in Guillén et al. [175] for the
joint estimation of the quantile and the ES within a GLM. Guillén et al. [175] use a
two-step approach to fit the quantile and the ES.

Fissler et al. [130] extend the results of Fissler–Ziegel [131], allowing for the
joint estimation of the composite triplet consisting of the lower ES, the τ -quantile
and the upper ES. This gives us a composite model that has the τ -quantile as splicing
point. The beauty of this approach is that we can fit (in one step) a deep learning
model to the upper and the lower ES, and perform a (potentially different) regression
in both parts of the distribution. The lower CTE and the lower ES are defined by,
respectively,

CTE−
τ (Y |x) = E

[
Y

∣
∣∣Y ≤ F−1

Y |x(τ ), x
]
,

and

ES−
τ (Y |x) = 1

τ

∫ τ

0
F−1
Y |x(p) dp ≤ F−1

Y |x(τ ).

Again, in case of a continuous distribution function FY |x we have the following
identity CTE−

τ (Y |x) = ES−
τ (Y |x). From the lower and upper CTEs we receive the

mean of Y , given x, by

μ(x) = E[Y |x] = τ CTE−
τ (Y |x)+ (1 − τ )CTE+

τ (Y |x). (11.25)
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We introduce the auxiliary scoring functions

S−
τ (y, a) = (

1{y≤a} − τ ) a − 1{y≤a}y,

S+
τ (y, a) = (

1 − τ − 1{y>a}
)
a + 1{y>a}y = S−

τ (y, a)+ y,

for y, a ∈ R and for τ ∈ (0, 1). These auxiliary functions consider only the part
of the pinball loss (5.81) that depends on action a, and we get the pinball loss as
follows

Lτ (y, a) = S−
τ (y, a)+ τy = S+

τ (y, a)− (1 − τ )y.

Therefore, all three functions provide strictly consistent scoring functions for the
τ -quantile, but only the pinball loss satisfies the calibration property (L0) on page
92.

For the following theorem we recall the general definition of the τ -quantile
Qτ(FY |x) of a distribution function FY |x , see (5.82).

Theorem 11.11 (Theorem 2.8 of Fissler et al. [130], Without Proof) Choose τ ∈
(0, 1) and let F contain only distributions with a finite first moment, and being
supported in the interval C ⊆ R. The loss function L : C × C3 → R+ of the form

L(y; e−, q, e+) = (G(y)−G(q)) (τ − 1{y≤q}
)

(11.26)

+
〈

∇�(e−, e+),
(
e− + 1

τ
S−
τ (y, q)

e+ − 1
1−τ S

+
τ (y, q)

)〉

−�(e−, e+)+�(y, y),

is strictly consistent for the composite triplet (ES−
τ ,Qτ ,ES+

τ ) relative to the class
F , if � is strictly convex with (sub-)gradient ∇� such that for all (e−, e+) ∈ C2

the function

q �→ Ge−,e+(q) = G(q)+ 1

τ

∂

∂e−
�(e−, e+)q − 1

1 − τ
∂

∂e+
�(e−, e+)q,

(11.27)

is strictly increasing, and if EF [|G(Y)|] < ∞, EF [|�(Y, Y )|] < ∞ for all Y ∼
F ∈ F .

This opens the door for regression modeling of CTEs for continuous distribution
functions FY |x , x ∈ X . Namely, we can choose a regression function ξϑ with a
three-dimensional output

x ∈ X �→ ξϑ (x) ∈ C3,
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depending on a regression parameter ϑ . This regression function is now used to
describe the composite triplet (ES−

τ (Y |x), F−1
Y |x(τ ),ES+

τ (Y |x)). Having i.i.d. data
(Yi, x i ), 1 ≤ i ≤ n, it can be fitted by solving

ϑ̂ = arg min
ϑ

1

n

n∑

i=1

L (Yi; ξϑ (xi )) , (11.28)

with loss function L given by (11.26). This then provides us with the estimates for
the composite triplet

x �→ ξϑ̂ (x) =
(

ÊS
−
τ (Y |x), F̂−1

Y |x(τ ), ÊS
+
τ (Y |x)

)
.

There remains the choice of the functions G and � , such that � is strictly convex
and Ge−,e+ , defined in (11.27), is strictly increasing. Section 2.3 in Fissler et
al. [130] discusses possible choices. A simple choice is to select the identity function
G(y) = y (which gives the pinball loss on the first line of (11.26)) and

�(e−, e+) = ψ1(e
−)+ ψ2(e

+),

with ψ1 and ψ2 strictly convex and with (sub-)gradients ψ ′
1 > 0 and ψ ′

2 < 0.
Inserting this choice into (11.26) provides the loss function

L(y; e−, q, e+) =
[

1 + ψ ′
1(e

−)
τ

+ −ψ ′
2(e

+)
1 − τ

]
Lτ (y, q)+Dψ1(y, e

−)+Dψ2 (y, e
+),

(11.29)

where Lτ (y, q) is the pinball loss (5.81) and Dψ1 and Dψ2 are Bregman diver-
gences (2.28). There remains the choices of ψ1 and ψ2 which should be strictly
convex, the first one being strictly increasing and the second one being strictly
decreasing.

We restrict ourselves to strictly convex functions ψ on the positive real line R+,
i.e., for positive claims Y > 0, a.s. For b ∈ R, we consider the following functions
on R+

ψ(b)(y) =

⎧
⎪⎪⎨

⎪⎪⎩

1
b(b−1)y

b for b �= 0 and b �= 1,

−1 − log(y) for b = 0,

ylog(y)− y for b = 1.

(11.30)
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We compute the first and second derivatives. These are for y > 0 given by

∂

∂y
ψ(b)(y) =

{
1
b−1y

b−1 for b �= 1,

log(y) for b = 1,
and

∂2

∂y2ψ
(b)(y) = yb−2 > 0.

Thus, for any b ∈ R we have a convex function, and this convex function is
decreasing on R+ for b < 1 and increasing for b > 1. Therefore, we have to select
b > 1 for ψ1 and b < 1 for ψ2 to get suitable choices in (11.29). Interestingly,
these choices correspond to Lemma 11.2 with power variance parameters p =
2 − b, i.e., they provide us with Bregman divergences from Tweedie’s distributions.
However, (11.30) is more general, because it allows us to select any b ∈ R,
whereas for power variance parameters p ∈ (0, 1) there do not exist any Tweedie’s
distributions, see Theorem 2.18.

In view of Lemma 11.2 and using the fact that unit deviances dp are Bregman
divergences, we select a power variance parameter p = 2 − b > 1 for ψ2 and we
select the Gaussian model p = 2 − b = 0 for ψ1. This gives us the special choice
for the loss function (11.29) for strictly positive claims Y > 0, a.s.,

L(y; e−, q, e+) =
[

1 + η1 e
−

τ
+ η2 (e

+)1−p

(1 − τ )(p − 1)

]
Lτ (y, q)+ η1

2
d0(y, e

−)+ η2

2
dp(y, e

+),

(11.31)

with the Gaussian unit deviance d0(y, e
−) = (y−e−)2 and Tweedie’s unit deviance

dp with power variance parameter p > 1, see Sect. 11.1.1. The additional constants
η1, η2 > 0 are used to balance the contributions of the individual terms to the total
loss. Typically, we choose p ≥ 2 for the upper ES reflecting claim size models.
This choice for ψ2 implies that the residuals are weighted inversely proportional
to the corresponding variances μp within Tweedie’s family, see (11.5). Using
this loss function (11.31) in (11.28) allows us to estimate the composite triplet
(ES−

τ (Y |x), F−1
Y |x(τ ),ES+

τ (Y |x)) with a strictly consistent loss function.

11.3.2 Lab: Deep Composite Model Regression

The joint elicitability of Theorem 11.11 allows us to directly estimate these
functionals for a fixed quantile level τ ∈ (0, 1). In a similar way to quantile
regression we set up a FN network that respects the monotonicity ES−

τ (Y |x) ≤
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F−1
Y |x(τ ) ≤ ES+

τ (Y |x). We set for the regression function in the additive approach
for multi-task learning

x �→
(

ES−
τ (Y |x), F−1

Y |x (τ ), ES+
τ (Y |x)

)�

=
(
g−1〈β1, z

(d:1)(x)〉, g−1〈β1, z
(d:1)(x)〉 + g−1+ 〈β2, z

(d:1)(x)〉, (11.32)

g−1〈β1, z
(d:1)(x)〉 + g−1+ 〈β2, z

(d:1)(x)〉 + g−1+ 〈β3, z
(d:1)(x)〉

)� ∈ A,

for link functions g and g+ with g−1+ ≥ 0, deep FN network z(d :1) : R
q0+1 →

R
qd+1, regression parameters β1,β2,β3 ∈ R

qd+1, and with the action space
A = {(e−, q, e+) ∈ R

3+; e− ≤ q ≤ e+} for positive claims. We also remind of
Remark 11.10 for a different way of modeling the monotonicity.

Fitting this model is similar to the multiple deep quantile regression presented
in Listings 11.3 and 11.5. There is one important difference though. Namely, we
do not have multiple outputs and multiple loss functions, but we have a three-
dimensional output with a single loss function (11.31) simultaneously evaluating all
three components of the output (11.32). Listing 11.6 gives this loss for the inverse
Gaussian case p = 3 in (11.31).

Listing 11.6 Loss function (11.31) for p = 3

1 Bregman_IG = function(y_true, y_pred){
2 k_mean( (k_maximum(y_true[,1]-y_pred[,2],0)*tau0 +
3 k_maximum(y_pred[,2]-y_true[,1],0)*(1-tau0) ) *
4 ( 1 + eta1*y_pred[,1]/tau0 + eta2*y_pred[,3]^(-2)/(2*(1-tau0)) ) +
5 eta1*(y_true[,1]-y_pred[,1])^2/2 +
6 eta2*((y_true[,1]-y_pred[,3])^2/(y_pred[,3]^2*y_true[,1]))/2 )}

We revisit the Swiss accident insurance data of Sect. 11.2.3. We again use a FN
network of depth d = 3 with (q1, q2, q3) = (20, 15, 10) neurons, hyperbolic
tangent activation, two-dimensional embedding layers for the categorical features,
exponential output activations for g−1 and g−1+ , and the additive structure (11.32).
We implement the loss function (11.31) for quantile level τ = 90% and with power
variance parameter p = 3, see Listing 11.6. This implies that for the upper ES
estimation we scale residuals with V (μ) = μ3, see (11.5). We then run an initial
calibration of this FN network. Based on this initial calibration we can calculate
the three loss contributions in (11.31) coming from the composite triplet. Based on
these figures we choose the constants η1, η2 > 0 in (11.31) so that all three terms
of the composite triplet contribute equally to the total loss. For the remainder of our
calibration we hold on to these choices of η1 and η2.

We calibrate this deep FN architecture to the learning data L, using the strictly
consistent loss function (11.31) for the composite triplet (ES−

90%(Y |x), F−1
Y |x(90%),

ES+
90%(Y |x)), and to reduce the randomness in prediction we average over 20 early

stopped SGD calibrations with different seeds (nagging predictor).
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Fig. 11.10 Comparison of
the estimated lower
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Figure 11.10 shows the estimated lower and upper ES against the corresponding
90%-quantile estimates for 2’000 randomly selected insurance claims x

†
t . The

diagonal orange line shows the estimated 90%-quantiles F̂−1
Y |x†

t

(90%), and the cyan

lines give spline fits to the estimated lower and upper ES. It is clearly visible that
these respect the ordering

ÊS
−
90%(Y |x†

t ) ≤ F̂−1
Y |x†

t

(90%) ≤ ÊS
+
90%(Y |x†

t ),

for fixed features x
†
t ∈ X .

The deep quantile regression has been back-tested using the coverage
ratios (11.22). Back-testing the ES is more difficult, the standalone ES is not
elicitable, and the ES can only be back-tested jointly with the corresponding
quantile. The part of the joint identification function that corresponds to the ES is
given by, see (4.2)–(4.3) in Fissler et al. [130],

v̂− = 1

T

T∑

t=1

ÊS
−
τ (Y |x†

t )−
Y

†
t 1
{
Y

†
t ≤F̂−1

Y |x†
t

(τ )

} + F̂−1
Y |x†

t

(τ )

(
τ − 1{

Y
†
t ≤F̂−1

Y |x†
t

(τ )

}
)

τ
,

(11.33)

and

v̂+ = 1

T

T∑

t=1

ÊS
+
τ (Y |x†

t )−
Y

†
t 1
{
Y

†
t >F̂

−1

Y |x†
t

(τ )

} + F̂−1
Y |x†

t

(τ )

(
1{
Y

†
t ≤F̂−1

Y |x†
t

(τ )

} − τ
)

1 − τ .

(11.34)
These (empirical) identifications should be close too zero if the model fits the data.
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Remark that the latter terms in (11.33)–(11.34) describe the lower and upper
ES also in the case of non-continuous distribution functions because we have the
identity

ES−
τ (Y |x) = 1

τ

(
E

[
Y1{

Y≤F−1
Y |x(τ )

}
∣
∣
∣∣ x
]

+ F−1
Y |x(τ )

(
τ − FY |x

(
F−1
Y |x(τ )

)))
,

(11.35)

the second term being zero for a continuous distribution FY |x , but it is needed for
non-continuous distribution functions.

We compare the deep composite regression results of this section to the deep
gamma and inverse Gaussian models using a double FN network for dispersion
modeling, see Sect. 11.1.3. This requires to calculate the ES in the gamma and the
inverse Gaussian models. This can be done within the EDF, see Landsman–Valdez
[233]. The upper ES in the gamma model Y ∼ (α, β) is given by, see (6.47),

E

[
Y

∣
∣
∣Y > F−1

Y (τ )
]

= α

β

⎛

⎝
1 − G

(
α + 1, βF−1

Y (τ )
)

1 − τ

⎞

⎠ ,

where G is the scaled incomplete gamma function (6.48) and F−1
Y (τ ) is the τ -

quantile of (α, β).
Example 4.3 of Landsman–Valdez [233] gives the inverse Gaussian case (2.8)

with α, β > 0

E

[
Y

∣
∣
∣Y > F−1

Y (τ )
]

= α

β

(
1 + 1/α

1 − τ
√
F−1
Y (τ )ϕ(z(1)τ )

)

+ α

β

1/α

1 − τ e
2αβ
(

2α!(−z(2)τ )−
√
F−1
Y (τ )ϕ(−z(2)τ )

)
,

where ϕ and ! are the standard Gaussian density and distribution, respectively,
F−1
Y (τ ) is the τ -quantile of the inverse Gaussian distribution and

z(1)τ = α
√
F−1
Y (τ)

(
F−1
Y (τ)

α/β
− 1

)

and z(2)τ = α
√
F−1
Y (τ)

(
F−1
Y (τ)

α/β
+ 1

)

.

This now allows us to calculate the identifications (11.33)–(11.34) in the fitted
deep double networks using the gamma and the inverse Gaussian distributions of
Sect. 11.1.3.
Table 11.8 shows the out-of-sample coverage ratios and the identifications of the
deep composite regression and the two distributional approaches. These figures
suggest that the gamma model is not competitive; the deep composite model has
the most precise coverage ratio. In terms of the ES identification terms, the deep
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Table 11.8 Out-of-sample coverage ratios τ̂ and identifications v̂− and v̂+ of the deep composite
regression model and the deep double networks in the gamma and inverse Gaussian cases

Coverage Lower ES Upper ES

ratio identification identification

τ = 90% v̂− v̂+
Deep composite model 90.12% 32.9 -143.5

Deep double network gamma 93.51% 356.6 -2’409.0

Deep double network inverse Gaussian 92.56% −13.0 115.1

Fig. 11.11 Comparison of
the estimated means from the
deep double inverse Gaussian
model and the deep
composite model (11.25)
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composite model and the double network with inverse Gaussian claim sizes are
comparably accurate (out-of-sample) determining the lower and upper 90% ES.
Finally, we paste the lower and upper ES from the deep composite regression
model according to (11.25). This gives us an estimated mean (under a continuous
distribution function)

μ̂(x) = Ê[Y |x] = τ ÊS
−
τ (Y |x)+ (1 − τ ) ÊS

+
τ (Y |x).

Figure 11.11 compares these estimates of the deep composite regression model
to the deep double inverse Gaussian model estimates. The black dots show 2’000
randomly selected claims x

†
t , and the cyan line gives a spline fit to all out-of-sample

claims in T . The body of the estimates is rather similar in both approaches but the
deep composite approach provides more large estimates, the dotted orange lines
show the maximum estimate from the deep double inverse Gaussian model.

We conclude that in the case where no member of the EDF reflects the properties
of the data in the tail, the deep composite regression approach presented in this
section provides an alternative method for mean estimation that allows for separate
models in the main body and the tail of the data. Fixing the quantile level allows
for a straightforward fitting in one step, this is in contrast to the composite models
where we fix the splicing point. The latter approaches are more difficult in fitting,
e.g., using the EM algorithm.



492 11 Selected Topics in Deep Learning

11.4 Model Uncertainty: A Bootstrap Approach

As described in Sect. 4, there are different sources of prediction uncertainty when
forecasting random variables. There is the irreducible risk that comes from the fact
that we try to predict random variables. This source of uncertainty is always present,
even if we know the true data generating mechanism, i.e., it is irreducible. In most
applied situations we do not know the true data generating mechanism which results
in additional prediction uncertainty. Within GLMs this source of uncertainty has
mainly been allocated to parameter estimation uncertainty deriving from the fact that
we estimate the parameters from a finite sample, we refer to Sects. 3.4 and 11.1.4
on asymptotic results. In network modeling, the situation is more complicated.
Firstly, we have seen that there is no best network regression model even if the
architecture and the hyper-parameters are fully specified. In Fig. 7.18 we have seen
that in a claim frequency context the different solutions from an early stopped SGD
fitting can have a coefficient of variation of up to 40% on the individual policy
level, on average these coefficients of variation were around 10%. This has led to
the consideration of network ensembling and the nagging predictor in Sect. 7.4.4.
These considerations have been based on a fixed learning data set L. In this section,
we assume that also the learning data set L may look differently by considering
different realizations of the (randomly generated) observations Yi . To reflect this
source of randomness in outcomes we bootstrap new data from L by exploring
a non-parametric bootstrap with random drawings with replacements from L, see
Sect. 4.3.1. This will allow us to study the volatility implied in estimation by
considering a different set of observations, i.e., a different sample.

Ideally we would like to generate new observations from the true data generating
mechanism, but, since this mechanism is not known, we can at best generate data
from an estimated model. If we rely on a distributional model, we may suffer from
model error, e.g., in Sect. 11.3 we have seen that it is rather difficult to specify a
distributional regression model that has the right tail behavior. Therefore, we may
give preference to a distribution-free approach. Non-parametric bootstrapping is
such a distribution-free approach, the disadvantage being that we cannot enrich the
existing observations by new observations, but we can only rearrange the available
observations.

We revisit the robust representation learning approach of Sect. 11.1.2 on the
same Swiss accident insurance data as explored in that section. In particular,
we reconsider the deep multi-output models introduced in (11.6) and studied in
Table 11.3 for power variance parameters p = 2, 2.5, 3 (and constant dispersion
parameter). We perform exactly the same analysis, here, however we consider for
this analysis bootstrapped data L∗ for model fitting.
First, we fit 100 times the same deep FN network architecture as in (11.6)
with different seeds (on identical learning data L). From this we calculate the
nagging predictor. Second, we generate 100 different bootstrap samples L∗ =
L∗(s), 1 ≤ s ≤ 100, from L (having an identical sample size) with random
drawings with replacements, and we fit the same network architecture to these 100
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Table 11.9 Out-of-sample losses (gamma loss, power variance case p = 2.5 loss (in 10−2) and
inverse Gaussian (IG) loss (in 10−3)) and average claim amounts; the losses use unit dispersion
ϕ = 1

Out-of-sample loss on T Average

dp=2 dp=2.5 dp=3 claim

Null model 4.6979 10.2420 4.6931 1’774

Gamma multi-output of Table 11.3 2.0581 7.6422 3.9146 1’745

p = 2.5 multi-output of Table 11.3 2.0576 7.6407 3.9139 1’732

IG multi-output of Table 11.3 2.0576 7.6401 3.9134 1’705

Gamma multi-output: nagging 100 2.0280 7.5582 3.8864 1’752

p = 2.5 multi-output: nagging 100 2.0282 7.5586 3.8865 1’739

IG multi-output: nagging 100 2.0286 7.5592 3.8865 1’711

Gamma multi-output: bootstrap 100 2.0189 7.5301 3.8745 1’803

p = 2.5 multi-output: bootstrap 100 2.0191 7.5305 3.8746 1’790

IG multi-output: bootstrap 100 2.0194 7.5309 3.8746 1’756

bootstrap samples. We then also average over these 100 predictors obtained from
the different bootstrap samples. Table 11.9 provides the resulting out-of-sample
deviance losses on the test data T . We always hold on to the same test data T
which is disjoint/independent from the learning data L and the bootstrap samples
L∗ = L∗(s), 1 ≤ s ≤ 100.

The nagging predictors over 100 seeds are roughly the same as over 20 seeds
(see Table 11.3), which indicates that 20 different network fits suffice, here.
Interestingly, the average bootstrapped version generally improves the nagging
predictors. Thus, here the average bootstrap predictor provides a better balance
among the observations to receive superior predictive power on the test data T ,
compare lines ‘nagging 100’ vs. ’bootstrap 100’ of Table 11.9.
The main purpose of this analysis is to understand the volatility involved in nagging
and bootstrap predictors. We therefore consider the coefficients of variation Vcot
introduced in (7.43) on individual policies 1 ≤ t ≤ T . Figure 11.12 shows these
coefficients of variation on the individual predictors, i.e., for the individual claims
x

†
t and the individual network calibrations with different seeds. The left-hand side

gives the coefficients of variation based on 100 bootstrap samples, the right-hand
side gives the coefficients of variation of 100 predictors fitted on the same data L
but with different seeds for the SGD algorithm; the y-scale is identical in both plots.
We observe that the coefficients of variation are clearly higher under the bootstrap
approach compared to holding on to the same data L for SGD fitting with different
seeds. Thus, the nagging predictor averages over the randomness in different seeds
for network calibrations, whereas bootstrapping additionally considers possible
different samples L∗ for model learning. We analyze the difference in magnitudes
in more detail.
Figure 11.13 compares the two coefficients of variation for different claim sizes. The
average coefficient of variation for fixed observations L is 15.9% (cyan columns).
This average coefficient of variation is increased to 24.8% under bootstrapping
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Fig. 11.12 Coefficients of variation in individual estimators (lhs) bootstrap 100, and (rhs) nagging
100; the y-scale is identical in both plots
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Fig. 11.13 Coefficients of variation in individual predictors of the bootstrap and the nagging
approaches (ordered w.r.t. estimated claim sizes)

(orange columns). The blue line shows the average relative increase for the different
claim sizes (right axis), and the blue dotted line is at a relative increase of 40%. From
Fig. 11.13 we observe that this spread (relative increase) is rather constant across all
claim predictions; we remark that 93.5% of all claim predictions are below 5’000.
Thus, most claims are at the left end of Fig. 11.13.

From this small analysis we conclude that there is substantial model and
estimation uncertainty involved, recall that we fit the deep network architecture to
305’550 individual claims having 7 feature components, this is a comparably large
portfolio. On average, we have a coefficient of variation of 15% implied by SGD
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fitting with different seeds, and this coefficient of variation is increased to roughly
25% under additionally bootstrapping the observations. This is considerable, and
it requires that we ensemble these predictors to receive more robust predictions.
The results of Table 11.9 support this re-sampling and ensembling approach as we
receive a better out-of-sample performance.

11.5 LocalGLMnet: An Interpretable Network Architecture

Network architectures are often criticized for not being (sufficiently) explainable.
Of course, this is not fully true as we have gained a lot of insight about the
data examples studied in this book. This criticism of non-explainability has led to
the development of the post-hoc model-agnostic tools studied in Sect. 7.6. This
approach has been questioned at many places, and it is not clear whether one
should try to explain black box models, or whether one should rather try to make
the models interpretable in the first place, see, e.g., Rudin [322]. In this section
we take this different approach by working with a network architecture that is
(more) interpretable. We present the LocalGLMnet proposal of Richman–Wüthrich
[317, 318]. This approach allows for interpreting the results, and it allows for
variable selection either using an empirical Wald test or LASSO regularization.

There are different other proposals that try to achieve similar explainability in
specific network architectures. There is the explainable neural network of Vaughan
et al. [367] and the neural additive model of Agarwal et al. [3]. These proposals
rely on parallel networks considering one single variable at a time. Of course,
this limits their performance because of a missing interaction potential. This has
been improved in the Combined Actuarial eXplainable Neural Network (CAXNN)
approach of Richman [314], which requires a manual specification of parallel
networks for potential interactions. The LocalGLMnet, proposed in this section,
does not require any manual engineering, and it still possesses the universal
approximation property.

11.5.1 Definition of the LocalGLMnet

Starting point of the LocalGLMnet is a classical GLM. Choose a strictly monotone
and smooth link function g. A GLM is received by considering the regression
function

x �→ g(μ(x)) = β0 + 〈β, x〉 = β0 +
q∑

j=1

βjxj , (11.36)
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for features x ∈ X ⊂ R
q , intercept β0 ∈ R and regression parameter β ∈

R
q . Compared to (5.5) we change the notation in this section by excluding the

intercept component from the feature x = (x1, . . . , xq)
�, because this will be

more convenient for the LocalGLMnet proposal. The beauty of this GLM regression
function is that we obtain a linear function after applying the link function g. This
linear function is considered to be explainable as we can precisely quantify how
much the expected response will change by slightly changing one of the feature
components xj . In particular, this holds true for the log-link which leads to a
multiplicative structure in the expected response.

The idea is to hold on to this additive structure (11.36) as far as possible, still
trying to benefit from the universal approximation property of network architectures.
Richman–Wüthrich [317] propose the following regression structure.

Definition 11.12 (LocalGLMnet) Choose a FN network architecture z(d :1) :
R
q → R

q of depth d ∈ N with equal input and output dimensions to model
the regression attention

β : Rq → R
q

x �→ β(x)
def.= z(d :1)(x) =

(
z(d) ◦ · · · ◦ z(1)

)
(x).

The LocalGLMnet is defined by the generalized additive decomposition

x �→ g (μ(x)) = β0 + 〈β(x), x〉 = β0 +
q∑

j=1

βj (x)xj ,

for a strictly monotone and smooth link function g.

This architecture is called LocalGLMnet because locally, around a given feature
value x, it can be understood as a GLM, supposed that β(x) does not change too
much in the environment of x. In the GLM context β is called regression parameter,
and in the LocalGLMnet context β(x) is called regression attention because the
components βj (x) determine how much attention there should be given to a specific
value xj . We highlight this in the following discussion. Select one component 1 ≤
j ≤ q and study the individual term

x �→ βj (x)xj . (11.37)

(1) If βj (x) ≡ 0, we should drop the term βj (x)xj from the regression function.
(2) If βj (x) ≡ βj ( �= 0) is not feature dependent (and different from zero), we

receive a GLM term in xj with regression parameter βj .
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(3) Property βj (x) = βj (xj ) implies that we have a term βj (xj )xj that does not
interact with any other term xj ′ , j ′ �= j .

(4) Sensitivities of βj (x) in the components of x can be obtained by the gradient

∇xβj (x) =
(
∂

∂x1
βj (x), . . . ,

∂

∂xq
βj (x)

)�
∈ R

q . (11.38)

The j -th component of ∇xβj (x) determines the (non-)linearity in term xj , the
components different from j describe the interactions of term xj with the other
components.

(5) These interpretations need some care because we do not have identifiability. For
the special regression attention βj (x) = xj ′/xj we have

βj (x)xj = xj ′ . (11.39)

Therefore, we talk about terms in items (1)–(4), e.g., item (1) means that the
term βj (x)xj can be dropped, however, the feature component xj may still
play a significant role in some of the regression attentions βj ′(x), j ′ �= j .
In practical applications we have not experienced identifiability issue (11.39).
Having already the linear terms in the LocalGLMnet regression structure
and starting the SGD fitting in the GLM gives already quite pre-determined
regression functions, and the LocalGLMnet is built around this initialization,
hardly falling into a completely different model (11.39).

(6) The LocalGLMnet architecture has the universal approximation property dis-
cussed in Sect. 7.2.2, because networks can approximate any continuous
function arbitrarily well on a compact support for sufficiently large networks.
We can then select one component, say, x1 and let β1(x) = z

(d :1)
1 (x)

approximate a given continuous function f (x)/x1, i.e., f (x) ≈ β1(x)x1
arbitrarily well on the compact support.

11.5.2 Variable Selection in LocalGLMnets

The LocalGLMnet allows for variable selection through the regression attentions
βj (x). Roughly speaking, if the estimated regression attentions β̂j (x) ≈ 0, then the
term βj (x)xj can be dropped. We can also explore whether the entire variable xj
should be dropped (not only the corresponding term βj (x)xj ). For this, we have to
refit the LocalGLMnet excluding the feature component xj . If the out-of-sample
performance on validation data does not change, then xj also does not play an
important role in any other regression attention βj ′(x), j ′ �= j , and it should be
completely dropped from the model.

In GLMs we can either use the Wald test or the LRT to test a null hypothesisH0 :
βj = 0, see Sect. 5.3. We explore a similar idea in this section, however, empirically.
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We therefore first need to ensure that all feature components live on the same scale.
We consider standardization with the empirical mean and the empirical standard
deviation, see (7.30), and from now on we assume that all feature components are
centered and have unit variance. Then, the main problem is to determine whether an
estimated regression attention β̂j (x) is significantly different from 0 or not.

We therefore extend the features x+ = (x1, . . . , xq, xq+1)
� ∈ R

q+1 by an addi-
tional independent and purely random component xq+1 that is also standardized.
Since this additional component is independent of all other components it cannot
have any predictive power for the response under consideration, thus, fitting this
extended model should result in a regression attention β̂q+1(x

+) ≈ 0. The estimate
will not be exactly zero, because there is noise involved, and the magnitude of this
fluctuation will determine the rejection/acceptance region of the null hypothesis of
not being significant.

We fit the LocalGLMnet to the learning data L with features x+
i ∈ R

q+1

extended by the standardized i.i.d. component xi,q+1 being independent of (Yi, x i ).
This gives us the estimated regression attentions β̂1(x

+
i ), . . . , β̂q(x

+
i ), β̂q+1(x

+
i ).

We compute the empirical mean and standard deviation of the attention weight of
the additional component xq+1

b̄q+1 = 1

n

n∑

i=1

β̂q+1(x
+
i ) and ŝq+1 =

√√√
√ 1

n− 1

n∑

i=1

(
β̂q+1(x

+
i )− b̄q+1

)2
.

(11.40)

We expect approximate centering b̄q+1 ≈ 0 because this additional component xq+1
does not enter the true regression function, and the empirical standard deviation ŝq+1
quantifies the expected fluctuation around zero of insignificant components.

We can now test the null hypothesis H0 : βj (x) = 0 of component j on
significance level α ∈ (0, 1/2). We define centered interval

Iα =
[
!−1(α/2) · ŝq+1, !

−1(1 − α/2) · ŝq+1

]
, (11.41)

where !−1(p) denotes the standard Gaussian quantile for p ∈ (0, 1). H0 should be
rejected if the coverage ratio of this centered interval Iα is substantially smaller than
1 − α, i.e.,

1

n

n∑

i=1

1{β̂j (x+
i )∈Iα} < 1 − α.

This proposal is designed for continuous feature components, and categorical
variables are discussed in Sect. 11.5.4, below. For xq+1 we can choose a standard
Gaussian distribution, a normalized uniform distribution or we can randomly
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permute one of the feature components xi,j across the entire portfolio 1 ≤ i ≤ n.
Usually, the resulting empirical standard deviations ŝq+1 are rather similar.

11.5.3 Lab: LocalGLMnet for Claim Frequency Modeling

We revisit the French MTPL data example. We compare the LocalGLMnet approach
to the deep FN network considered in Sect. 7.3.2, and we benchmark with the results
of Table 7.3; we benchmark with the crudest FN network from above because, at
the current stage, we need one-hot encoding for the LocalGLMnet approach. The
analysis in this section is the same as in Richman–Wüthrich [317].

The French MTPL data has 6 continuous feature components (we treat Area as
a continuous variable), 1 binary component and 2 categorical components. We pre-
process the continuous and binary variables to centering and unit variance using
standardization (7.30). This will allow us to do variable selection as presented
in (11.41). The categorical variables with more than two levels are more difficult.
In a first attempt we use one-hot encoding for the categorical variables. We prefer
one-hot encoding over dummy coding because this ensures that for all levels there
is a component xj with xj �= 0. This is important because the terms βj (x)xj are
equal to zero for the reference level in dummy coding (since xj = 0). This does
not allow us to study interactions with other variables for the term corresponding to
the reference level. Remark that one-hot encoding and dummy coding do not lead
to centering and unit variance.

This feature pre-processing gives us a feature vector x ∈ R
q of dimension

q = 40. For variable selection of the continuous and binary components we extend
the feature x by two additional independent components xq+1 and xq+2. We select
two components to explore whether the particular distributional choice has some
influence on the choice of the acceptance/rejection interval Iα in (11.41). We choose
for policies 1 ≤ i ≤ n

xi,q+1
i.i.d.∼ Uniform

[
−√

3,
√

3
]

and xi,q+2
i.i.d.∼ N (0, 1),

these two sets of variables being mutually independent, and being inde-
pendent from all other variables. We define the extended features x+

i =
(xi,1, . . . , xi,q , xi,q+1, xi,q+2)

� ∈ R
q0 with q0 = q + 2, and we consider the

LocalGLMnet regression function

x+ �→ log
(
μ(x+)

) = β0 +
q0∑

j=1

βj (x
+)xj .

We choose the log-link for Poisson claim frequency modeling. The time exposure
v > 0 can either be integrated as a weight to the EDF or as an offset on the canonical
scale resulting in the same Poisson model, see Sect. 5.2.3.
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Listing 11.7 LocalGLMnet architecture

1 Design = layer_input(shape = c(42), dtype = ’float32’, name = ’Design’)
2 Vol = layer_input(shape = c(1), dtype = ’float32’, name = ’Vol’)
3 #
4 Attention = Design %>%
5 layer_dense(units=20, activation=’tanh’, name=’FNLayer1’) %>%
6 layer_dense(units=15, activation=’tanh’, name=’FNLayer2’) %>%
7 layer_dense(units=10, activation=’tanh’, name=’FNLayer3’) %>%
8 layer_dense(units=42, activation=’linear’, name=’Attention’)
9 #

10 LocalGLM = list(Design, Attention) %>% layer_dot(name=’LocalGLM’, axes=1) %>%
11 layer_dense(units=1, activation=’exponential’, name=’Balance’)
12 #
13 Response = list(LocalGLM, Vol) %>% layer_multiply(name=’Multiply’)
14 #
15 keras_model(inputs = c(Design, Vol), outputs = c(Response))

We are now ready to define the LocalGLMnet architecture. We choose a network
z(d :1) : R

q0 → R
q0 of depth d = 4 with (q1, q2, q3, q4) = (20, 15, 10, 42)

neurons. The R code is given in Listing 11.7. We note that this is not much more
involved than a plain-vanilla FN network. Slightly special in this implementation is
the integration of the intercept β0 on line 11. Naturally, we would like to add this
intercept, however, there is no simple code for doing this. For that reason, we model
the additive decomposition by

x+ �→ log
(
μ(x+)

) = α0 + α1

q0∑

j=1

βj (x
+)xj ,

with real-valued parameters α0 and α1 being estimated on line 11 of Listing 11.7.
Thus, in this implementation the regression attentions are obtained by α1βj (x

+).
Of course, there are also other ways of implementing this. This LocalGLMnet
architecture has 1’799 network weights to be fitted.
We fit this LocalGLMnet using a training to validation data split of 8 : 2 and a batch
size of 5’000. We initialize the gradient descent algorithm such that we exactly start
in the GLM with βj (x+) ≡ β̂MLE

j . For this we set all weights in the last layer

on line 8 of Listing 11.7 to zero, w(d)l,j = 0, and the corresponding intercepts to

the MLEs of the GLM, i.e., w(d)0,j = β̂MLE
j . This gives us the GLM initialization

∑q0
j=1 β̂

MLE
j xj on line 10 of Listing 11.7. Moreover, on line 11 of that listing, we

initialize α1 = 1 and α0 = β̂MLE
0 . This implies that the gradient descent algorithm

starts in the MLE estimated GLM. The SGD fitting turns out to be faster than in
the plain-vanilla FN case, probably, because we start in the GLM having already
the reasonable linear terms xj in the model, and we only need to find the regression
attentions βj (x+) around these linear terms. The results are presented on the second
last line of Table 11.10. The out-of-sample results are slightly worse than in the
plain-vanilla FN case. There are many reasons for that, for instance, many levels in
one-hot encoding may lead to more potential for over-fitting, and hence to an earlier
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Table 11.10 Run times, number of parameters, in-sample and out-of-sample deviance losses
(units are in 10−2) and in-sample average frequency of the Poisson regressions, see also Table 7.3

Run # In-sample Out-of-sample Aver.

time param. loss on L loss on T freq.

Poisson null – 1 25.213 25.445 7.36%

Poisson GLM3 15s 50 24.084 24.102 7.36%

One-hot FN (q1, q2, q3) = (20, 15, 10) 51s 1’306 23.757 23.885 6.96%

LocalGLMnet on x+ 20s 1’799 23.728 23.945 7.46%

LocalGLMnet on x+ bias regularized – – 23.727 23.943 7.36%

stopping, here. The same applies if we add too many purely random components
xq+l , l ≥ 1. Since the balance property will not hold, in general, we apply the bias
regularization step (7.33) to adjust α0 and α1, the results are presented on the last
line of Table 11.10; in Remark 3.1 of Richman–Wüthrich [317] a more sophisticated
balance property correction is presented. Our goal now is to analyze this solution.

Listing 11.8 Extracting the regression attentions from the LocalGLMnet architecture

1 zz <- keras_model(inputs=model$input,
2 outputs=get_layer(model, ’Attention’)$output)
3 beta <- data.frame(zz %>% predict(list(Xlearn, Vlearn)))
4 alpha1 <- as.numeric(get_weights(model)[[9]])
5 beta <- beta * alpha1

We start by analyzing the two additional components xi,q+1 and xi,q+2 being
uniformly and Gaussian distributed, respectively. Listing 11.8 shows how to extract
the estimated regression attentions β̂(x+

i ). We calculate the means and standard
deviations of the estimated regression attentions of the two additional components

b̄q+1 = 0.0042 and b̄q+2 = 0.0213,

and

ŝq+1 = 0.0516 and ŝq+2 = 0.0482.

From these numbers we see that the regression attentions β̂q+2(xi ) are slightly
biased, whereas β̂q+1(xi ) are fairly centered compared to the magnitudes of the
standard deviations. If we select a significance level of α = 0.1%, we receive a
two-sided standard normal quantile of |!−1(α/2)| = 3.29. This provides us for
interval (11.41) with

Iα =
[
!−1(α/2) · ŝq+1, !

−1(1 − α/2) · ŝq+1

]
= [−0.17, 0.17].
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Fig. 11.14 Estimated regression attentions β̂j (x
+
i ) of the continuous and binary feature compo-

nents Area, BonusMalus, log-Density, DrivAge, VehAge, VehGas, VehPower and the
two random features xi,q+1 and xi,q+2 of 2’000 randomly selected policies x+

i ; the orange area
shows the interval Iα for dropping term βj (x)xj on significance level α = 0.1%

Figure 11.14 shows the estimated regression attentions β̂j (x
+
i ) of the continuous

and binary feature components for 2’000 randomly selected policies x+
i , and the

orange area shows the acceptance region Iα on significance level α = 0.1%.
Focusing on the figures of the two additional variables xi,q+1 and xi,q+2, Fig. 11.14
(bottom, middle and right), we observe that the estimated regression attentions are
mostly within the confidence bounds of Iα . This says that we should drop these
two terms (of course, this is clear since we have set the bounds according to these
regression attentions). Focusing on the other variables, we question the inclusion
of the term VehPower as it seems concentrated within Iα , and hence we cannot
reject the null hypothesis H0 : βVehPower(x) = 0. Moreover, the inclusion of the
term Area needs further exploration.
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Table 11.11 Run times, number of parameters, in-sample and out-of-sample deviance losses
(units are in 10−2) and in-sample average frequency of the Poisson regressions, see also Table 7.3

Run # In-sample Out-of-sample Aver.

time param. loss on L loss on T freq.

Poisson null – 1 25.213 25.445 7.36%

Poisson GLM3 15s 50 24.084 24.102 7.36%

One-hot FN (q1, q2, q3) = (20, 15, 10) 51s 1’306 23.757 23.885 6.96%

LocalGLMnet on x+ 20s 1’799 23.728 23.945 7.46%

LocalGLMnet on x+ bias regularized – – 23.727 23.943 7.36%

LocalGLMnet on x− 20s 1’675 23.715 23.912 7.30%

LocalGLMnet on x. bias regularized – – 23.714 23.911 7.36%

We remind that dropping a term βj (x)xj does not necessarily imply that we
have to completely drop xj because it may still play an important role in one of the
other regression attentions βj ′(x), j ′ �= j . Therefore, we re-run the whole fitting
procedure, but we drop the purely random feature components xi,q+1 and xi,q+2,
and we also drop VehPower and Area to see whether we receive a model with a
similar predictive power. This then would imply that we can drop these variables, in
the sense of variable selection similar to the LRT and the Wald test of Sect. 5.3. We
denote the feature where we drop these components by x− ∈ R

q−2.
We re-fit the LocalGLMnet on the reduced features x−

i , and the results are presented
in Table 11.11. We observe that the loss figures decrease. Indeed, this supports the
null hypothesis of dropping VehPower and Area. The reason for being able to
drop VehPower is that it does not contribute (sufficiently) to explain the systematic
effects in the responses. The reason for being able to drop Area is slightly different:
we have seen that Area and log-Density are highly correlated, see Fig. 13.12
(rhs), and it turns out that it is sufficient to only keep the Density variable (on the
log-scale) in the model.

In a next step, we should analyze the robustness of these results by exploring the
nagging predictor and/or bootstrapping as described in Sect. 11.4. We refrain from
doing so, but we illustrate the LocalGLMnet solution of Table 11.11 in more detail.
Figure 11.15 shows the feature contributions β̂j (x

−
i )xi,j of 2’000 randomly selected

policies on the significant continuous and binary feature components. The magenta
line gives a spline fit, and the more the black dots spread around these splines, the
more interactions we have; for instance, higher bonus-malus levels interact with the
age of driver which explains the scattering of the black dots. On average, frequencies
are increasing in bonus-malus levels and density, decreasing in vehicle age, and for
the driver’s age variable it is important to understand the interactions. We observe
that the spline fit for the log-Density is close to a linear function, this reflects
that the regression attentions β̂Density(xi ) in Fig. 11.14 (top-right) are more or less
constant. This is also confirmed by the marginal plot in Fig. 5.4 (bottom-rhs) which
has motivated the choice of a linear term for the log-Density in model Poisson
GLM1 of Table 5.3.
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Fig. 11.16 Importance
measure IMj of the
continuous and binary
variables
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Using the regression attentions we define an importance measure. We consider
the extended features x+ in the following numerical analysis. We set

IMj = 1

n

n∑

i=1

∣
∣β̂j (x+

i )
∣
∣ ,

for 1 ≤ j ≤ q + 2, and where we aggregate over all policies 1 ≤ i ≤ n.
Figure 11.16 shows the importance measures IMj of the continuous and binary vari-
ables j . The bars are ordered w.r.t. these importance measures. The graph confirms
our previous conclusion, the least important variables are the two additional purely
random components xi,q+1 and xi,q+2, followed by Area and VehPower. These
are exactly the components that have been dropped going from the full model x+ to
the reduced model x−.
Next, we analyze the interactions by studying the gradients (11.38). Figure 11.17
illustrates spline fits to the components ∂β̂j (x

−
i )/∂xk w.r.t. xj of the continuous

variables BonusMalus, log-Density, DrivAge and VehAge over all policies
i = 1, . . . , n. The components ∂β̂j (x

−
i )/∂xj show the non-linearity in xj . We

conclude that BonusMalus, DrivAge and VehAge should be non-linear, and
log-Density is linear because ∂β̂j (x

−
i )/∂xj ≈ 0. The components ∂β̂j (x

−
i )/∂xk,

k �= j , determine the interactions. We have the strongest interactions between
BonusMalus and DrivAge, and BonusMalus has interactions with all vari-
ables. On the other hand, the log-Density only interacts with BonusMalus.
The reader will have noticed that we have excluded the categorical components
VehBrand and Region from all model discussions. Firstly, these components are
not standardized to zero mean and unit variance, and, secondly, we cannot study one
level in isolation to be able to decide to keep or drop that variable. I.e., similar to
group LASSO we need to study all levels simultaneously of each categorical feature
component. We do this in the next section, and we conclude with the regression
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Fig. 11.17 Spline fits to the derivatives ∂β̂j (x
−
i )/∂xk w.r.t. xj of the continuous variables

BonusMalus, log-Density, DrivAge and VehAge over all policies i = 1, . . . , n

attentions β̂j (x) of the categorical feature components in Fig. 11.18, which seem to
be significantly different from zero (VehBrands B10, B11, and Regions R22,
R43, R82, R93), but which do not allow for variable selection as just described.

Remark 11.13 The bias regularization in Table 11.11 has simply been obtained by
applying an additional MLE step to α0 and α1. Alternatively, we can also define
the new features ẑi = (̂α1β̂1(xi )xi,1, . . . , α̂1β̂q0(xi )xi,q0)

� ∈ R
q0 , and then apply

a proper GLM step to these newly (learned) features ẑ1, . . . , ẑn. Working with the
canonical link will give us the balance property. This is discussed in more detail in
Remark 3.1 of Richman–Wüthrich [317].
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Fig. 11.18 Boxplot of the regression attentions β̂j (x) of the categorical feature components
VehBrand and Region; the y-scale is the same as in Fig. 11.15

11.5.4 Variable Selection Through Regularization of the
LocalGLMnet

A natural next step is to introduce regularization on the regression attentions
β(x); this is the proposal suggested in Richman–Wüthrich [318]. We choose the
LocalGLMnet architecture x �→ μ(x) of Definition 11.12 having an intercept
parameter β0 ∈ R and the network weights w. For fitting, we consider a loss
function L and we add a regularization term to this loss function penalizing large
regression attentions. That is, we aim at minimizing

arg min
β0,w

1

n

n∑

i=1

L (Yi, μ(xi ))− R(β(xi )), (11.42)

with a penalty term (regularizer) R(·) ≥ 0. For the penalty term R we can choose
different forms, e.g., the elastic net regularizer of Zou–Hastie [409] is obtained by,
see Remark 6.3,

arg min
β0,w

1

n

n∑

i=1

L (Yi, μ(xi ))+ η
(
(1 − α)‖β(xi )‖2

2 + α‖β(xi )‖1

)
, (11.43)

for a regularization parameter η ≥ 0 and weight α ∈ [0, 1]. For α = 0 we receive
ridge regularization, and for α = 1 we get LASSO regularization of β(·).
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For variable selection of categorical feature components we should rather use the
group LASSO penalization of Yuan–Lin [398], see also (6.5). Assume the features
x have a natural group structure x = (x�

1 , . . . , x
�
K)

� ∈ R
q . We consider the

optimization

arg min
β0,w

1

n

n∑

i=1

L (Yi, μ(xi ))+
K∑

k=1

ηk‖βk(xi )‖2, (11.44)

for regularization parameters ηk ≥ 0, and where βk(x) collects all components
βj (x) of β(x) that belong to the k-th group xk of x. Yuan–Lin [398] propose to
scale the regularization parameters as ηk = √

qkη ≥ 0, where qk is the size of group
k. Remark that if every group has size one we exactly obtain LASSO regularization.

Solving the optimization problem (11.44) poses some challenges because the
regularizer is not differentiable in zero. In Sect. 6.2.5 we have presented the
generalized projection operator (using the soft-thresholding operator) to solve
the group LASSO regularization within GLMs. However, this proposal will not
work here: the generalized projection operator may help to project the regression
attentions β(xi ) back to the constraint set C. However, this does not tell us anything
about how to choose the network parameters w and, therefore, will not work
here. In a different setting, Oelker–Tutz [288] propose to use a differentiable ε-
approximation to the terms in (11.44). Choose ε > 0 and define for βk ∈ R

qk

‖βk‖2,ε =
√

‖βk‖2
2 + ε =

√
β�
k βk + ε → ‖βk‖2 as ε ↓ 0. (11.45)

This motivates to study the optimization problem for a fixed (small) ε > 0

arg min
β0,w

1

n

n∑

i=1

L (Yi, μ(xi ))+
K∑

k=1

ηk‖βk(xi )‖2,ε. (11.46)

In Fig. 11.19 we plot these ε-approximations for ε ∈ {10−1, 10−2, 10−3, 10−4,

10−5}. The plot on the left-hand side gives β ∈ R �→ ‖β‖2,ε = √β2 + ε → |β| for
ε ↓ 0, and the plot on the right-hand side gives the unit ball

Bε =
{
β = (β1, β2)

� ∈ R
2; ‖β1‖2,ε + ‖β2‖2,ε = 1

}
.

For the last two ε choices there is no visible difference to the �1-norm.
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Fig. 11.19 (lhs) Comparison of |β| and ‖β‖2,ε = √β2 + ε for β ∈ R, and (rhs) unit balls Bε for
ε ∈ {10−1, 10−2, 10−3, 10−4, 10−5} compared to the Manhattan unit ball

The main disadvantage of the ε-approximation is that it does not shrink unimportant
components βj (x) exactly to zero. But it allows us to identify unimportant (small)
components, which can then be removed manually. As mentioned in Lee et al. [237],
LASSO regularization needs a second model calibration step only fitting the model
on the selected components (and without regularization) to receive an optimal
predictive power and a minimal bias. Thus, we need a second calibration step after
the removal of the unimportant components anyway.

11.5.5 Lab: LASSO Regularization of LocalGLMnet

We revisit the LocalGLMnet architecture applied to the French MTPL claim fre-
quency data, see Sect. 11.5.3. The goal is to perform a group LASSO regularization
so that we can also study the importance of the terms coming from the categorical
feature components VehBrand and Region. We first pre-process all feature
components as follows. We apply dummy coding to the categorical variables, and
then we standardize all components to centering and unit variance, this includes the
dummy coded components.
In a next step we need to define the natural groups x = (x�

1 , . . . , x
�
K)

� ∈ R
q . We

have 7 continuous and binary components which give us dimensions qk = 1 for
1 ≤ k ≤ 7. VehBrand provides us with a group of size q8 = 10, and Region
gives us a group of size q9 = 21. We set K = 9 and q = ∑9

k=1 qk = 38. We code
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Listing 11.9 Group LASSO regularization design

1 group.lasso.grouping <- function(xx){
2 pp <- array(0, dim=c(length(xx),sum(xx)))
3 for (k in 1:length(xx)){
4 if (k==1){pp[k,1:xx[k]] <- 1
5 }else{
6 pp[k,(sum(xx[1:(k-1)])+1):sum(xx[1:k])] <- 1
7 }}
8 t(pp)
9 }

10 #
11 ww <- group.lasso.grouping(c(rep(1,7),10,21)) 12 etaK <- eta
12 etaK <- eta * sqrt(c(rep(1,7),10,21))

a (sort of) regularization design matrix to encode the K groups and weights
√
qk

for the q components of x. This is done in Listing 11.9 providing us with a matrix
of size 38 × 9 and the weights

√
qk . This regularization design matrix enters the

penalty term on lines 13 and 16 of Listing 11.10 which weights the penalizations
‖ · ‖2,ε .

Listing 11.10 LocalGLMnet with group LASSO regularization

1 Design = layer_input(shape = c(38), dtype = ’float32’)
2 LogVol = layer_input(shape = c(1), dtype = ’float32’)
3 Bias1 = layer_input(shape = c(1), dtype = ’float32’)
4 #
5 Attention = Design %>%
6 layer_dense(units=15, activation=’tanh’) %>%
7 layer_dense(units=10, activation=’tanh’) %>%
8 layer_dense(units=38, activation=’linear’, name=’Attention’)
9 #

10 Penalty = Attention %>%
11 layer_lambda(function(x) k_square(x)) %>%
12 layer_dense(units=9, activation=’linear’,
13 weights=list(ww), use_bias=FALSE, trainable=FALSE) %>%
14 layer_lambda(function(x) k_sqrt(x+epsilon)) %>%
15 layer_dense(units=1, activation=’linear’,
16 weights=list(array(etaK, dim=c(9,1))), use_bias=FALSE, trainable=FALSE)
17 #
18 LocalGLM = list(Design, Attention) %>% layer_dot(axes=1)
19 #
20 Bias = Bias1 %>%
21 layer_dense(units=1, activation=’linear’, use_bias=FALSE)
22 #
23 Response = list(LocalGLM, Bias, LogVol) %>% layer_add() %>%
24 layer_lambda(function(x) k_exp(x))
25 #
26 Output = list(Response, Penalty) %>% layer_concatenate()
27 #
28 keras_model(inputs = c(Design, LogVol, Bias1), outputs = c(Output))
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The entire group LASSO regularized LocalGLMnet is depicted in Listing 11.10,
showing the regression attentions on lines 5–8, the regularization on lines 10–16,
and the output on line 26 returns the expected response viμ(xi ) and the regularizer∑K
k=1 ηk‖βk(xi )‖2,ε , we choose ε = 10−5 for our example.

Listing 11.11 Group LASSO regularized Poisson deviance loss

1 Poisson.reg <- function(y_true, y_pred){k_mean(
2 y_pred[,1]-y_true[,1] + y_true[,1]*k_log((y_true[,1]/y_pred[,1]+.00000001))
3 + y_pred[,2] )}

Finally, we need to code the loss function (11.42). This is done in Listing 11.11. We
combine the Poisson deviance loss function with the group LASSO ε-approximation∑K
k=1 ηk‖βk(xi )‖2,ε , the latter being outputted by Listing 11.10. We fit this

network to the French MTPL data (as above) for regularization parameters η ∈
{0, 0.0025, 0.005}. Firstly, we note that the resulting networks are not fully compet-
itive, this is probably due to the fact that the high-dimensional dummy coding leads
to too much over-fitting potential which leads to a very early stopping in gradient
descent fitting. Thus, this approach may not be useful to directly receive a good
predictive model, but it may be helpful to select the right feature components to
design a good predictive model.
Figure 11.20 gives the importance measures of the estimated regression attentions

IMj = 1

n

n∑

i=1

∣
∣β̂j (xi )

∣
∣ ,

of all components 1 ≤ j ≤ q = 38. The red color corresponds to regularization
parameter η = 0.005, red + yellow colors to η = 0.0025, and red + yellow + green
colors to η = 0 (no regularization). Figure 11.20 (lhs) shows the results on the
original (standardized) features x. By far the smallest red + yellow column among
the continuous features is observed for VehPower which confirms the variable
selection of Sect. 11.5.3. Among the categorical variables Region seems more
important (on average) than VehBrand because the red and yellow columns are
generally bigger for Region. All these red and yellow columns of VehBrand and
Region are bigger than the ones of VehPower which supports the inclusion of
the two categorical variables.

Figure 11.20 (rhs) verifies this decision of keeping the categorical variables. For
this latter graph we randomly permute Region across the entire portfolio, and we
run the same group LASSO regularized fitting procedure again on this modified
data. The vertical black line shows the average importance of the permuted Region
variable for η = 0.0025. We see that only VehPower has a smaller importance
measure, and all other variables dominate the permuted Region variable. This
confirms our conclusions above.
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Fig. 11.20 Importance measures IMj of the group LASSO regularized LocalGLMnet for variable
selection with different regularization parameters η ∈ {0, 0.0025, 0.005}: (lhs) original data, and
(rhs) randomly permuted Region labels; the x-scale is the same in both plots

We conclude that the LocalGLMnet architecture with a group LASSO regular-
ization is helpful for variable selection, and, more generally, the LocalGLMnet
architecture is useful for model interpretation, finding interactions and functional
forms of the features entering the regression function. In examples that have
categorical variables with many levels, the LocalGLMnet approach may not lead
to a regression model that is fully competitive. In this case, the LocalGLMnet can
be used for variable selection, and an other network architecture should then be fitted
on the selected variables. Alternatively, we can embed the categorical variables in a
preparatory network step, and then work with these embeddings of the categorical
variables (kept fixed within the LocalGLMnet).
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11.6 Selected Applications

11.6.1 Mixture Density Networks

In Sect. 6.3 we have introduced mixture distributions and we have presented the EM
algorithm for fitting these mixture distributions. The EM algorithm considers two
steps, an expectation step (E-step) and a maximization step (M-step). The E-step is
motivated by (6.34). In this step the posterior distribution of the latent variable Z

is determined, given the observation Y and the parameter estimates for the model
parameters θ and p. The M-step (6.35) determines the optimal model parameters
θ and p, based on the observation Y and the posterior distribution of Z. Typically,
we explore MLE in the M-step. However, for the EM algorithm to function it is not
important that we really work with the maximum in the M-step, but monotonicity
in (6.38) is sufficient. Thus, if at algorithmic time t − 1 we have a parameter

estimate (̂θ
(t−1)

, p̂(t−1)), it suffices that the next estimate (̂θ
(t)
, p̂(t)) increases the

log-likelihood, without necessarily being the MLE; this latter approach is called
generalized EM (GEM) algorithm. Exactly this point makes it feasible to also use
the EM algorithm in cases where we model the parameters through networks which
are fit using gradient descent (ascent) algorithms. These methods go under the name
of mixture density networks (MDNs).

MDNs have been introduced by Bishop [35], who explores MDNs on Gaussian
mixtures, and using SGD and quasi-Newton methods for model fitting. MDNs have
also started to gain more popularity within the actuarial community, recent papers
include Delong et al. [95], Kuo [230] and Al-Mudafer et al. [6], the latter two
considering MDNs for claims reserving.

We recall the mixture density for a selected member of the EDF. The incomplete
log-likelihood of the data (Yi , xi , vi )1≤i≤n is given by, see (6.24),

(θ ,ϕ,p) �→ �Y (θ,ϕ,p) =
n∑

i=1

�Yi (θ(xi ),ϕ(xi ),p(xi ))

=
n∑

i=1

log

(
K∑

k=1

pk(xi )fk

(
Yi; θk(xi ), vi

ϕk(xi )

))

,

for canonical parameter θ = (θ1, . . . , θK)
� ∈ � = �1 × · · · × �K , dispersion

parameter ϕ = (ϕ1, . . . , ϕK)
� ∈ R

K+ , mixture probability p ∈ �K , and K denotes
the number of mixture components. MDNs model these parameters with networks.
Choose a FN network z(d :1) : Rq+1 → {1}×R

qd of depth d , with input dimension q
being equal to the dimension of the features x ∈ X ⊆ {1}×R

q and output dimension
qd + 1. This gives us the learned representations zi = z(d :1)(xi ). These learned



514 11 Selected Topics in Deep Learning

representations are used to model the parameters. For the mixture probability p we
build a logistic categorical GLM, based on zi . For the (canonical) link h, we set
linear predictor, see (5.72),

h(p(zi )) = h
(
p
(
z(d :1)(xi )

))
= (〈βp

1 , zi〉, . . . , 〈βp
K, zi〉

)� ∈ R
K, (11.47)

with regression parameter βp = ((β
p
1 )

�, . . . , (βp
K)

�)� ∈ R
K(qd+1). For the

canonical parameter θ , the mean parameter μ, respectively, and the dispersion
parameter ϕ we proceed analogously. Choose strictly monotone and smooth link
functions gμ and gϕ , and consider the double GLMs, for 1 ≤ k ≤ K , on the learned
representations zi

gμ(μk(zi )) = 〈βμk , zi〉 and gϕ(ϕk(zi )) = 〈βϕk , zi〉, (11.48)

with regression parameters βμ = ((β
μ
1 )

�, . . . , (βμK)�)� ∈ R
K(qd+1) for the

mean parameters and βϕ = ((β
ϕ
1 )

�, . . . , (βϕK)�)� ∈ R
K(qd+1) for the dispersion

parameters. Thus, altogether this gives us a network parameter of dimension, set
q0 = q ,

r =
d∑

m=1

qm(qm−1 + 1)+ 3K(qd + 1).

Remarks 11.14

• The regression functions (11.47)–(11.48) use a slight abuse of notation, because,
strictly speaking, these should be functions w.r.t. the features xi ∈ X , i.e.,
we should understand the learned representations zi as a short form for xi �→
z(d :1)(xi ).

• It is not fully correct to say that (11.47) is the logistic categorical GLM
of formula (5.72), because (11.47) does not lead to identifiable regression
parameters. In fact, we should reduce the dimension of the categorical GLM to
K − 1, by setting β

p
K = 0, see (5.70), because the probability of the last label

K is fully determined if we know the probabilities of all other labels; this would
also justify to say that h is the canonical link. Since in FN network modeling we
do not have identifiability anyway, we neglect this normalization (redundancy),
see line 16 of Listing 11.12, below.

• The above proposal (11.47)–(11.48) suggests to use the same network z(d :1)
for all mixture parameters involved. This requires that the chosen network is
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sufficiently large, so that it can comply simultaneously with these different tasks.
Alternatively, we could choose three separate (parallel) networks for p, μ and
ϕ, respectively. This second proposal does not (easily) allow for (non-trivial)
interactions between the parameters, and it may also suffer from less robustness
in fitting.

• Proposal (11.48) defines double GLMs for the mixture components fk , 1 ≤ k ≤
K . If we decide to not model the dispersion parameters feature dependent, i.e., if
we set ϕk(z) ≡ ϕk ∈ R+, then the mixture components are modeled with GLMs
on the learned representations zi = z(d :1)(xi ). Nevertheless, this latter approach
still requires that the dispersion parameters ϕk are set to reasonable values, as
they enter the score equations, this can be seen from (6.29) adapted to MDNs.
Thus, in MDNs, the dispersion parameters do not cancel in the score equations,
which is different from the single distribution case. The dispersion parameter can
either be estimated (updated) during the M-step of the EM algorithm (supposed
we use the EM algorithm), or it can be pre-specified as a given hyper-parameter.

• As mentioned in Sect. 6.3, mixture density fitting can be challenging because,
in general, mixture density log-likelihoods are unbounded. Therefore, a suitable
initialization of the EM algorithm is important for a successful model fitting.
This problem is less pronounced in MDNs as we use early stopping in SGD
fitting that prevents the fitted parameters to depend on a small set of observations.
For instance, Example 6.13 cannot occur because an individual observation Y1
enters at most one (mini-)batch of SGD, and the SGD algorithm will provide
a good balance across all batches. Moreover, early stopping will imply that the
selected parameters must also be good on the validation data being disjoint (and
independent) from the training data.

• Delong et al. [95] present two different ways of fitting such MDNs. The crucial
property in EM fitting is to preserve the monotonicity in the M-step. For MDNs
this can either be achieved by using the parameters as offsets for the next EM
iteration (this is called ‘EM network boosting’ in Delong et al. [95]) or to forward
the network weights from one to the next loop (called ‘EM forward network’
in Delong et al. [95]). We are going to present the second option in the next
example.

Example 11.15 (Gamma Claim Size Modeling and MDNs) We revisit Exam-
ple 6.14 which models the claim sizes of the French MTPL data. For the modeling
of these claim sizes we choose the mixture distribution (6.39) which has four
gamma components f1, . . . , f4 and one Lomax component f5. In a first step we
again model these five mixture components independent of the feature information
x, and the feature information only enters the mixture probabilities p(x) ∈ �5.
This modeling approach has been motivated by Fig. 13.17 which suggests that
the features mainly result in systematic effects on the mixture probabilities. We
choose the same model and feature information as in Example 6.14. We only
replace the logistic categorical GLM part (6.40) for modeling p(x) by a depth
d = 2 FN network with (q1, q2) = (20, 10) neurons. Area, VehAge, DrivAge
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and BonusMalus are modeled as continuous variables, and for the categorical
variables VehBrand and Region we choose two-dimensional embedding layers.

Listing 11.12 R code of the MDN for modeling the mixture probability p(x)

1 Design = layer_input(shape = c(4), dtype = ’float32’)
2 VehBrand = layer_input(shape = c(1), dtype = ’int32’)
3 Region = layer_input(shape = c(1), dtype = ’int32’)
4 Bias = layer_input(shape = c(1), dtype = ’float32’)
5 #
6 BrandEmb = VehBrand %>%
7 layer_embedding(input_dim = 11, output_dim = 2, input_length = 1) %>%
8 layer_flatten()
9 RegionEmb = Region %>%

10 layer_embedding(input_dim = 22, output_dim = 2, input_length = 1) %>%
11 layer_flatten()
12 #
13 pp = list(Design, BrandEmb, RegionEmb) %>% layer_concatenate() %>%
14 layer_dense(units=20, activation=’tanh’) %>%
15 layer_dense(units=10, activation=’tanh’) %>%
16 layer_dense(units=5, activation=’softmax’)
17 #
18 mu = Bias %>% layer_dense(units=4, activation=’exponential’,
19 use_bias=FALSE)
20 #
21 tail = Bias %>% layer_dense(units=1, activation=’sigmoid’,
22 use_bias=FALSE)
23 #
24 shape = Bias %>% layer_dense(units=4, activation=’exponential’,
25 use_bias=FALSE)
26 #
27 Response = list(pp, mu, tail, shape) %>% layer_concatenate()
28 #
29 keras_model(inputs = c(Design, VehBrand, Region, Bias), outputs = c(Response))

Listing 11.12 shows the chosen network. Lines 13–16 model the mixture probability
p(x). We also integrate the modeling of the (homogeneous) parameters of the
mixture densities f1, . . . , f5. Lines 18 and 24 of Listing 11.12 consider the mean
and shape parameter of the gamma components, and line 21 the tail parameter 1/β5
of the Lomax component. Note that we use the sigmoid activation for this Lomax
parameter. This implies 1/β5 ∈ (0, 1) and, thus, β5 > 1, which enforces a finite
mean model. The exponential activations on lines 18 and 24 ensure positivity of
these parameters. The input Bias to these variables is simply the constant 1, which
is the homogeneous case not differentiating w.r.t. the features.
Observe that in most of the networks so far, the output of the network was
equal to an expected response of a random variable that we try to predict. In
this MDN we output the parameters of a distribution function, see line 27 of
Listing 11.12. In our case this output has dimension 14, which then enters the score
in Listing 11.13. In a first attempt we fit this MDN brute-force by just implementing
the incomplete log-likelihood received from (6.39). Since the gamma function
(·) is not easily available in keras [77], we replace the gamma density by its
saddlepoint approximation, see Sect. 5.5.2. Listing 11.13 shows the negative log-
likelihood of the mixture density that is used to perform the brute-force SGD fitting.
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Listing 11.13 Mixture density negative incomplete log-likelihood

1 mixture_LogLikeli <- function(true, pred){ - k_mean(k_log(
2 pred[,1]*k_exp(-k_log(2*pi*true[,1]^2/pred[,11])/2 -
3 pred[,11]*(true[,1]/pred[,6]-1+k_log(pred[,6]/true[,1]))) +
4 pred[,2]*k_exp(-k_log(2*pi*true[,1]^2/pred[,12])/2 -
5 pred[,12]*(true[,1]/pred[,7]-1+k_log(pred[,7]/true[,1]))) +
6 pred[,3]*k_exp(-k_log(2*pi*true[,1]^2/pred[,13])/2 -
7 pred[,13]*(true[,1]/pred[,8]-1+k_log(pred[,8]/true[,1]))) +
8 pred[,4]*k_exp(-k_log(2*pi*true[,1]^2/pred[,14])/2 -
9 pred[,14]*(true[,1]/pred[,9]-1+k_log(pred[,9]/true[,1]))) +

10 pred[,5]*k_exp(k_log(1/(pred[,10]*M))-(1/pred[,10]+1)
11 *k_log(true[,1]/M+1))))
12 }

Lines 2–9 give the saddlepoint approximations to the four gamma components, and
line 10 the Lomax component for the scale parameterM . Note that this brute-force
approach is based only on the incomplete observation Y encoded in true[,1],
see Listing 11.13.
We fit this logistic categorical FN network of Listing 11.12 under the score function
of Listing 11.13 using the nadam version of SGD. Moreover, we use a stratified
training-validation split, otherwise we did not obtain a competitive model. The
results are presented in Table 11.12 on line ‘logistic FN network: brute-force fitting’.
We observe a slightly worse performance (in-sample) than in the logistic GLM. This
does not justify the use of the more complex network architecture. Or in other words,
feature pre-processing seems to been done suitably in Example 6.14.

In a next step, we fit this MDN with the (generalized) EM algorithm. The E-
step is exactly the same as in Example 6.14. For the M-step, having knowledge of
the (latent mixture component) variables Ẑi , 1 ≤ i ≤ n, implies that the mixture
probability estimation and the mixture density estimation completely decouples. As
a consequence, the parameters of the density components f1, . . . , f5 can directly
be estimated using univariate MLEs, this is the same as in Example 6.14. The
only part that needs further explanation is the estimation of the logistic categorical
FN network for p(x). In each loop of the EM iteration we would like to find the
optimal network parameter for p(x), and at the same time we have to ensure the
monotonicity (6.38). Following the ‘EM forward network’ approach of Delong et

Table 11.12 Mixture models for French MTPL claim size modeling; we setM = 2′000

# Param. �Y (̂θ, p̂) μ̂ = Eθ̂ ,p̂[Y ]
Empirical 2’266

Null model 13 −199’306 2’381

Logistic GLM, Example 6.14 193 −198’404 2’176

Logistic FN network: brute-force fitting 520 −198’623 2’003

Logistic FN network: EM fitting 520 −198’449 2’119

MDN: brute-force fitting 825 −198’178 2’144

MDN: EM fitting 825 −198’085 2’240
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al. [95], this is most easily achieved by just initializing the FN network in loop t of
the algorithm with the optimal network parameter of the previous loop t − 1. Thus,
the starting parameter of SGD reflects the optimal parameter from the previous
step, and since SGD generally decreases losses, the monotonicity (6.38) holds. The
latter statement is not strictly true, SGD introduces additional randomness through
the building of (mini-)batches, therefore, monotonicity should be traced explicitly
(which also ensures that the early stopping rule is chosen suitably). We have
implemented such an EM-SGD algorithm, essentially, we just have to drop lines
17–28 of Listing 11.12 and lines 13–16 provide the entire response. As loss function
we choose the categorical (multi-class) cross-entropy loss, see (4.19). The results in
Table 11.12 on line ‘logistic FN network: EM fitting’ indicate a superior fitting
behavior compared to the brute-force fitting. Nevertheless, this network approach
is still not outperforming the GLM approach, saying that we should stay with the
simpler GLM.

In a final step, we also model the mean parameters μk(x), 1 ≤ k ≤ 4, of the
gamma components feature dependent, to see whether we can gain predictive power
from this additional flexibility or whether our initial model choice is sufficient. For
robustness reasons we neither model the shape parameters βk , 1 ≤ k ≤ 4, of
the gamma components feature dependent nor the tail parameter β5 of the Lomax
component. The implementation only requires small changes to Listing 11.12, see
Listing 11.14.
A brute-force fitting of the MDN architecture of Listing 11.14 can directly be based
on the score function (negative incomplete log-likelihood) of Listing 11.13. In the
case of the EM algorithm we need to change the score function to the complete
log-likelihood accounting for the variables Ẑi ∈ �5. This is done in Listing 11.15
where Ẑi is encoded in the variables true[,2] to true[,6].
We fit this MDN using the two different fitting approaches, and the results are given
on the last two lines of Table 11.12. Again the performance of the EM fitting is
slightly better than the brute-force fitting, and the bigger log-likelihoods indicate
that we can gain predictive power by also modeling the means of the gamma
components feature dependent.
Figure 11.21 compares the QQ plot of the resulting MDN with EM fitting to the
one received from the logistic categorical GLM of Example 6.14. These graphs are
very similar. We conclude that in this particular example it seems that the simpler
proposal of Example 6.14 is sufficient. �

In a next step, we try to understand which feature components influence the mix-
ture probabilities p(x) = (p1(x), . . . , pK(x))

� most. Similarly to Examples 6.14
and 11.15, we therefore use a MDN where we only fit the mixture probability
p(x) with a network and the mixture components f1, . . . , fK are assumed to be
homogeneous.

Example 11.16 (MDN with LocalGLMnet) We revisit Example 11.15. We choose
the mixture distribution (6.39) which has four gamma components f1, . . . , f4 and
a Lomax component f5. We select their parameters independent of the features.
The feature information x should only enter the mixture probability p(x) ∈ �5,
similarly to the first part of Example 11.15. We replace the logistic FN network of
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Listing 11.14 R code of the MDN for modeling the mixture probability p(x) and the gamma
means μk(x)

1 Design = layer_input(shape = c(4), dtype = ’float32’)
2 VehBrand = layer_input(shape = c(1), dtype = ’int32’)
3 Region = layer_input(shape = c(1), dtype = ’int32’)
4 Bias = layer_input(shape = c(1), dtype = ’float32’)
5 #
6 BrandEmb = VehBrand %>%
7 layer_embedding(input_dim = 11, output_dim = 2, input_length = 1) %>%
8 layer_flatten()
9 RegionEmb = Region %>%

10 layer_embedding(input_dim = 22, output_dim = 2, input_length = 1) %>%
11 layer_flatten()
12 #
13 Network = list(Design, BrandEmb, RegionEmb) %>% layer_concatenate() %>%
14 layer_dense(units=20, activation=’tanh’) %>%
15 layer_dense(units=15, activation=’tanh’) %>%
16 layer_dense(units=10, activation=’tanh’)
17 #
18 pp = Network %>% layer_dense(units=5, activation=’softmax’)
19 #
20 mu = Network %>% layer_dense(units=4, activation=’exponential’,
21 use_bias=FALSE)
22 #
23 tail = Bias %>% layer_dense(units=1, activation=’sigmoid’,
24 use_bias=FALSE)
25 #
26 shape = Bias %>% layer_dense(units=4, activation=’exponential’,
27 use_bias=FALSE)
28 #
29 Response = list(pp, mu, tail, shape) %>% layer_concatenate()
30 #
31 keras_model(inputs = c(Design, VehBrand, Region, Bias), outputs = c(Response))

Listing 11.15 Mixture density negative complete log-likelihood

1 mixture_LogLikeli_Complete <- function(true, pred){ - k_mean(
2 true[,2]*(k_log(pred[,1])-k_log(2*pi*true[,1]^2/pred[,11])/2 -
3 pred[,11]*(true[,1]/pred[,6]-1+k_log(pred[,6]/true[,1]))) +
4 true[,3]*(k_log(pred[,2])-k_log(2*pi*true[,1]^2/pred[,12])/2 -
5 pred[,12]*(true[,1]/pred[,7]-1+k_log(pred[,7]/true[,1]))) +
6 true[,4]*(k_log(pred[,3])-k_log(2*pi*true[,1]^2/pred[,13])/2 -
7 pred[,13]*(true[,1]/pred[,8]-1+k_log(pred[,8]/true[,1]))) +
8 true[,5]*(k_log(pred[,4])-k_log(2*pi*true[,1]^2/pred[,14])/2 -
9 pred[,14]*(true[,1]/pred[,9]-1+k_log(pred[,9]/true[,1]))) +

10 true[,6]*(k_log(pred[,5])+k_log(1/(pred[,10]*M))-
11 (1/pred[,10]+1)*k_log(true[,1]/M+1)))
12 }

Example 11.15 for modeling p(x) by a LocalGLMnet such that we can analyze the
importance of the variables, see Sect. 11.5.

For the feature information we choose the continuous variables Area,
VehPower, VehAge, DrivAge and BonusMalus, the binary variable VehGas
and the categorical variables VehBrand and Region, thus, we extend by
VehPower and VehGas compared to Example 11.15. These latter two variables
have not been included previously, because they did not seem to be important
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Fig. 11.21 QQ plots of mixture models: (lhs) logistic categorical GLM for mixture probabilities
and (rhs) for MDN with EM fitting

w.r.t. Fig. 13.17. The continuous and binary variables are centered and normalized
to unit variance. For the categorical variables we use two-dimensional embedding
layers, and afterwards they are concatenated with the continuous variables with
a subsequent normalization layer (to ensure that all components live on the same
scale). This provides us with a 10-dimensional feature vector. This feature vector
is complemented with an i.i.d. standard Gaussian component, called Random,
to perform an empirical Wald type test. We call this pre-processed feature (after
embedding and normalization of the categorical variables) x ∈ R

q0 with q0 = 11.
We design a LocalGLMnet that acts on this feature x ∈ R

q0 for modeling
a categorical multi-class output with K = 5 levels. Therefore, we choose the
regression attentions

z(d :1) : Rq0 → R
q0×K, x �→ β(x) = (β1(x), . . . ,βK(x)

) = z(d :1)(x),

where z(d :1) is a network of depth d having a matrix-valued output of dimension
q0 ×K . For the (canonical) link h, this gives us the predictor, see (5.72),

h(p(x)) = (β1,0 + 〈β1(x), x〉, . . . , βK,0 + 〈βK(x), x〉)� ∈ R
K, (11.49)

with intercepts βk,0 ∈ R, and where βk(x) ∈ R
q0 is the k-th column of regression

attention β(x) = z(d :1)(x) ∈ R
q0×K . We also refer to the second item of

Remarks 11.14 concerning a possible dimension reduction in (11.49), i.e., in fact we
apply the softmax activation function to the right-hand side of (11.49), neglecting
the identifiability issue. Moreover, as in the introduction of the LocalGLMnet, we
separate the intercept components from the remaining features in (11.49).

We fit this LocalGLMnet-MDN with the EM version presented in Exam-
ple 11.15. We apply early stopping based on the same stratified training-validation
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split as in the aforementioned example, and this provides us with a log-likelihood
of -198’290, thus, slightly bigger than the corresponding numbers in Table 11.12.
More interestingly, our goal is to understand the regression attentions given by
β(xi ) = (β1(xi ), . . . ,β5(xi )) ∈ R

11×5 over all claims 1 ≤ i ≤ n. Figure 11.22
shows the resulting boxplots, where each of the five graphs corresponds to one
mixture component 1 ≤ k ≤ 5, and the different colors illustrate the 11 feature
components providing the attention weights βk,j (xi ), 1 ≤ j ≤ 11. The red boxplots
show the purely random component Random for 1 ≤ k ≤ 5, which provides
the acceptance region of an empirical Wald test for the null hypothesis that the
corresponding term should be dropped. This is highlighted by the orange shaded
area (at a significance level of 0.1%). Thus, whenever a boxplot lies within this
orange shaded area we may consider dropping this term, e.g., for k = 2 (top-right),
this is the case for Area, VehPower and Region2 (being the second component
of the two-dimensional region embedding). Note that this interpretation needs some
care because we do not have identifiability in the class probabilities.

The first observation is that, indeed, VehPower is mostly in the orange
confidence area and, thus, may be dropped. This does not apply to the other feature
components, and, thus, we should keep them in the model. The three gamma mixture
components f1, f2 and f3 correspond to the three modes at 75, 600 and 1’175
in Fig. 13.17. Component f4 is a gamma component covering the whole range
of claims, and f5 is the Lomax component modeling the regular variation in the
tail. Interestingly, DrivAge and BonusMalus seem very important for mixture
components k = 1, k = 3 and k = 4 (with different signs), this is supported
by Fig. 13.17. The Lomax component seems mostly impacted by DrivAge,
VehBrand and Region. Only mixture component k = 2 is more difficult to
interpret. This component seems influenced by most the feature components, in
particular, the combination of VehAge, VehGas and VehBrand seems important.
This could mean that mixture component k = 2 belongs to a certain type of vehicle.

In a next step we could study interactions and their impact on the mixture
components, and LASSO regularization would provide us with another method of
variable selection, see Sect. 11.5.4. We refrain from doing so and close the example.

�

11.6.2 Estimation of Conditional Expectations

FN networks have also found their way into solving risk management problems.
We briefly introduce a valuation problem and then describe a way of solving
this problem. Assume we have a liability cash flow Y1:T = (Y1, . . . , YT ) with
(random) payments Yt at time points t = 1, . . . , T . We assume that this liability
cash flow Y1:T is adapted to a filtration (At )1≤t≤T on the underlying probability
space (�,A,P). Moreover, we assume to have a pricing kernel (state price deflator)
ψ1:T = (ψ1, . . . , ψT ) on that probability space which is an (At )1≤t≤T -adapted
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Fig. 11.22 Boxplot of regression attentions β(xi ) = (β1(xi ), . . . ,β5(xi )) ∈ R
11×5 over all

claims 1 ≤ i ≤ n for the different mixture components f1, . . . , f5
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random vector with strictly positive components ψt > 0, a.s., for all 1 ≤ t ≤ T . A
no-arbitrage value of the outstanding liability cash flow at time 1 ≤ τ < T can be
defined by (we assume existence of all second moments)

Rτ =
T∑

s=τ+1

1

ψτ
E [ψsYs |Aτ ] . (11.50)

For the mathematical background on no-arbitrage pricing using state price deflators
we refer to Wüthrich–Merz [393]. The Aτ -measurable quantity Rτ is called
reserves of the outstanding liabilities at time τ . From a risk management and
solvency point of view we would like to understand the volatility in the reserves
Rτ seen from time 0, i.e., we try to model the random variable Rτ seen from time
0 (based on the trivial σ -algebra A0 = {∅,�}). In applied problems, the difficulty
often is that the conditional expectations under the summation in (11.50) cannot be
computed in closed form. Therefore the law of Rτ cannot be determined explicitly.

We provide a numerical solution to the calculation of the conditional expectations
in (11.50). Assume that the information set Aτ can be described by a random vector
Xτ , i.e., Aτ = σ(Xτ ). In that case we rewrite (11.50) as follows

Rτ =
T∑

s=τ+1

1

ψτ
E [ψsYs |Xτ ] . (11.51)

The latter now indicates that we can determine the conditional expectations
in (11.51) as regression functions in features Xτ , and we try to understand for s > τ

xτ �→ E

[
ψs

ψτ
Ys

∣
∣
∣
∣Xτ = xτ

]
. (11.52)

The random variable Rτ can then be determined empirically by simulation. This
requires two steps: (1) We have to be able to simulate ψsYs/ψτ , conditionally given
Xτ = xτ . This allows us to estimate the conditional expectation (11.52) with a
regression function. (2) We need to be able to simulate Xτ . This provides us with
the empirical occurrence probabilities of specific choices Xτ = xτ in (11.52) which
then gives an empirical version of Rτ .

In theory, this problem can be approached by nested simulations which is
a two-stage procedure that first performs step (2), and then calculates step (1)
empirically with Monte Carlo simulations for every realization of step (2), see,
e.g., Lee [242] and Glynn–Lee [161]. The disadvantage of this two-stage nested
simulation procedure is that it is computationally demanding. Building upon the
work on valuation of American options by Carriere [65], Tsitsiklis–Van Roy [356]
and Longstaff–Schwartz [257], the papers of Broadie et al. [55] and Ha–Bauer [177]
propose to regress future cash flows on finitely many basis functions depending on
the state variable Xτ . More recently, machine learning tools such as FN networks
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have been proposed to determine these basis and regression functions, see, e.g.,
Cheridito et al. [74] or Krah et al. [224].

In the following, we assume that all random variables considered are square-
integrable and, thus, we can work in a Hilbert space with the scalar product
〈X,Z〉 = E[XZ] for X,Z ∈ L2(�,A,P). Moreover, for simplicity, we drop the
time indices and we also drop the stochastic discounting in (11.52) by assuming
ψs/ψτ ≡ 1. These simplifications are not essential technically and simplify our
outline. The conditional expectation μ(X) = E[Y |X] can then be found by the
orthogonal projection of Y onto the sub-space σ(X), generated by X, in the Hilbert
space L2(�,A,P). That is, the conditional expectation is the measurable function
μ : Rq → R, X �→ μ(X), that minimizes the mean squared error

E

[
(Y − μ(X))2

] != min, (11.53)

among all measurable functions on X. In Example 3.7, we have seen that μ(·) is the
minimizer of this problem if and only if

μ(x) = arg min
m∈R

∫

R

(y −m)2 dFY |x(y), (11.54)

for px-a.e. x ∈ R
q , where px is the distribution of X, and where FY |x is the

conditional distribution of Y , given feature X = x; we also refer to (3.6).
Under the assumption that we can simulate observations (Y,X) under P, we can

solve (11.53)–(11.54) approximately by restricting to a sufficiently rich family of
regression functions. Choose a FN network z(d :1) : Rq → R

qd of depth d and the
identity link g(x) = x. An optimal network parameter ϑ̂ is found by minimizing

ϑ̂ = arg min
ϑ∈Rr

1

n

n∑

i=1

(
Yi −

〈
β, z(d :1)(Xi )

〉)2
, (11.55)

where (Yi ,Xi ), 1 ≤ i ≤ n, are i.i.d. copies of (Y,X). This provides us with the
fitted FN network ẑ(d :1)(·) and the fitted output parameter β̂. These can be used to
receive an approximation to the conditional expectation, solution of (11.54),

x �→ μ̂(x) =
〈
β̂, ẑ(d :1)(x)

〉
≈ μ(x) = E [Y |X = x] . (11.56)

This then allows us to approximate the random variable in (11.51) empirically by
simulating features X and inserting them into left-hand side of (11.56).

Remarks 11.17

• There are different types of errors involved. First, there is an irreducible
approximation error if the chosen family of FN networks is not sufficiently
rich to approximate the conditional expectation well. For example, if we choose
the hyperbolic tangent activation function, then, naturally, z(d :1)(·) is uniformly
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bounded for a fixed network parameter ϑ . This does not necessarily apply to
the conditional expectation E[Y |X = ·] and, thus, the approximation in the tail
may be poor. Second, we consider an approximation based on a finite sample
in (11.55). However, this error can be made arbitrarily small by letting n → ∞.
In-sample over-fitting should not be an issue as we may generate samples of
arbitrary large sample sizes. Third, having the approximation (11.56), we still
need to simulate i.i.d. samples Xk , k ≥ 1, having the same distribution as X to
empirically approximate the distribution of the random variable Rτ in (11.51).
Also in this step we benefit from the fact that we can simulate infinitely many
samples to mitigate this approximation error.

• To fit the network parameter ϑ in (11.55) we use i.i.d. copies (Yi ,Xi ), 1 ≤ i ≤ n,
that have the same distribution as (Y,X) under P. However, to receive a good
approximation to regression function x �→ μ(x) we only need to simulate
Yi |{Xi=xi} from FY |xi (·) = P[·|Xi = xi ], and Xi can be simulated from an
arbitrary equivalent distribution to px , and we still get the right conditional
expectation in (11.54). This is worth mentioning because if we need a higher
precision in some part of the feature space of X, we can apply a sort of
importance sampling by choosing a distribution for X that generates more
samples in the corresponding part of the feature space compared to the original
(true) distribution px of X; this proposal has been emphasized in Cheridito et
al. [74].

We study the example presented in Ha–Bauer [177] and Cheridito et al. [74].
This example considers a variable annuity (VA) with a guaranteed minimum income
benefit (GMIB), and we revisit the network approach of Cheridito et al. [74].

Example 11.18 (Approximation of Conditional Expectations) We consider the VA
example with a GMIB introduced and studied in Ha–Bauer [177]. This example
involves a 3-dimensional stochastic process, for t ≥ 0,

Xt = (qt , rt ,mx+t ),

with qt being the log-value of the VA account at time t , rt is the short rate at time t ,
and mx+t is the force of mortality at time t of a person aged x at time 0. The payoff
at fixed maturity date T > 1 of this insurance contract is given by

S = S(XT ) = max
{
eqT , b ax+T (rT ,mx+T )

}
,

where eqT is the VA account value at time T , and b ax+T (rT ,mx+T ) is the GMIB at
time T consisting of a face value b > 0 and with ax+T (rT ,mx+T ) being the value
of an immediate annuity at time T of a person aged x + T . Our goal is to model the
conditional expectation

μ(Xτ ) = D(τ, T ;Xτ ) E [S(XT )|Xτ ] (11.57)

= D(τ, T ;Xτ ) E
[

max
{
eqT , b ax+T (rT ,mx+T )

}∣∣Xτ
]
,
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for a fixed valuation time point 0 < τ < T , and where D(τ, T ) = D(τ, T ;Xτ )

is a σ(Xτ )-measurable discount factor. This requires the explicit specification of
the GMIB term as a function of (rT ,mx+T ), the modeling of the stochastic process
(Xt )0≤t≤T , and the specification of the discount factor D(τ, T ;Xτ ). In financial
and actuarial valuation the regression function μ(·) in (11.57) should reflect a no-
arbitrage price. Therefore, P in (11.57) should be an equivalent martingale measure
w.r.t. the selected numéraire. In our case, we choose a force of mortality (mx+t )t -
adjusted zero-coupon bond price as numéraire. This implies that P is a mortality-
adjusted forward measure; for details and its explicit derivation we refer to Sect. 5.1
of Ha–Bauer [177]. In particular, Ha–Bauer [177] introduce a three-dimensional
Brownian motion based model for (Xt )t from which they deduce all relevant terms
explicitly. We skip these calculations here, because, once the GMIB term and the
discount factor are determined, everything boils down to knowing the distribution
of the random vector (Xτ ,XT ) under the corresponding probability measure P. We
choose initial age x = 55, maturity T = 15 and (solvency) time horizon τ = 1.
Under the model and parametrization of Ha–Bauer [177] we receive a multivariate
Gaussian distribution under P given by

(Xτ ,XT )
� = (qτ , rτ ,mx+τ , qT , rT ,mx+T )� (11.58)

∼ N

⎛

⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎝

4.64
0.02
0.01
4.71
0.02
0.03

⎞

⎟
⎟
⎟
⎠
,

⎛

⎜
⎜
⎜
⎝

3.2 · 10−2 −4.8 · 10−4 1.3 · 10−5 3.1 · 10−2 −1.4 · 10−5 3.6 · 10−5

−4.8 · 10−4 7.9 · 10−5 −4.4 · 10−7 −1.7 · 10−4 2.4 · 10−6 −1.2 · 10−6

1.3 · 10−5 −4.4 · 10−7 1.5 · 10−6 1.2 · 10−5 −1.3 · 10−8 4.1 · 10−6

3.1 · 10−2 −1.7 · 10−4 1.2 · 10−5 4.5 · 10−1 −1.3 · 10−3 3.0 · 10−4

−1.4 · 10−5 2.4 · 10−6 −1.3 · 10−8 −1.3 · 10−3 2.0 · 10−4 −2.5 · 10−6

3.6 · 10−5 −1.2 · 10−6 4.1 · 10−6 3.0 · 10−4 −2.5 · 10−6 7.4 · 10−5

⎞

⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎠
.

Under the model specification of Ha–Bauer [177], one can furthermore work out the
discount factor and the annuity. Define for t ≥ 0 and k > 0 the affine term structure

F(t, k; rt ,mx+t ) = exp {A(t, t + k)− B(t, t + k; α)rt − B(t, t + k; −κ)mx+t} ,

with deterministic functions

B(t, t + k;α) = 1 − e−αk
α

,

A(t, t + k) = γ̄ (B(t, t + k;α)− k)+ σ 2
r

2α2 (k − 2B(t, t + k;α)+ B(t, t + k; 2α))

+ ψ2

2κ2 (k − 2B(t, t + k;−κ)+ B(t, t + k;−2κ))

+ �2,3σrψ

ακ
(B(t, t + k;−κ)− k + B(t, t + k;α)− B(t, t + k;α − κ)) ,

with parameters for the short rate process α = 25%, σr = 1%, for the force of
mortality κ = 7%, ψ = 0.12%, the correlation between the short rate and the force
of mortality �2,3 = −4%, and with market-price of the risk-adjusted mean reversion
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Fig. 11.23 Marginal
densities of the VA account
value eqT and the GMIB
value b ax+T (rT ,mx+T )
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level γ̄ = 1.92% of the short rate process. These formulas can be retrieved because
we work under an affine Gaussian structure. The discount factor is then given by

D(τ, T ;Xτ ) = F(τ, T − τ ; rτ ,mx+τ ),

and the annuity is determined by (we cap at age 55 + 50 = 105)

ax+T (rT ,mx+T ) =
50∑

k=1

F(T , k; rT ,mx+T ).

Moreover, we set for the face value b = 10.79205. This parametrization implies that
the VA account value eqT exceeds the GMIB b ax+T (rT ,mx+T ) with a probability
of roughly 40%, i.e., in roughly 60% of the cases we exercise the GMIB option.
Figure 11.23 shows the marginal densities of these two variables, moreover, their
correlation is close to 0.
The model is now fully specified so that we can estimate the conditional expectation
in (11.57) as a function of Xτ . We therefore simulate n = 3′000′000 i.i.d. Gaussian
observations (X(i)τ ,X

(i)
T ), 1 ≤ i ≤ n, from (11.58). This provides us with the

observations

Yi = D(τ, T ;X(i)τ ) S(X
(i)
T )

= F(τ, T − τ ; r(i)τ ,m(i)x+τ ) max

{

eq
(i)
T , b

50∑

k=1

F(T , k; r(i)T ,m(i)x+T )
}

.

The resulting data (Yi ,X
(i)
τ )1≤i≤n is used for determining the regression function

μ(·) in (11.57). We choose n = 3′000′000 samples in line with the least squares
Monte Carlo approximation of Ha–Bauer [177].
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We choose a FN network of depth d = 3 for approximatingμ(·). For the three FN
layers we choose (q1, q2, q3) = (20, 15, 10) neurons with the hyperbolic tangent
activation function, and as output activation we choose the identity function; we
choose a more complex network compared to Cheridito et al. [74] because it seems
that this gives us more accurate results. We fit this FN network using the square loss
function. The square loss is motivated by (11.55). Furthermore, we average over 20
runs with different seeds. Thus, we receive 20 fitted FN networks μ̂k(·) for the 20
different seeds 1 ≤ k ≤ 20 and the nagging predictor is obtained by averaging

μ̂(·) = 1

20

20∑

k=1

μ̂k(·).

We then generate new i.i.d. samples X
(l)
τ , 1 ≤ l ≤ L, from the multivariate Gaussian

distribution (11.58), where this time we only need the first 3 components. This gives
us the empirical samples

μ̂(X(l)τ ) for 1 ≤ l ≤ L, (11.59)

providing an empirical distribution F̂μ(Xτ ) that approximates the distribution of
μ(Xτ ), given in (11.57). In risk management and solvency analysis, this empirical
distribution can be used to estimate the Value-at-Risk (VaR) and the (upper)
conditional tail expectation (CTE) in valuation μ(Xτ ), seen from time 0, on
different safety levels p ∈ (0, 1)

V̂aRp = F̂−1
μ(Xτ )

(p) = inf
{
y ∈ R; F̂μ(Xτ )(y) ≥ p

}
,

and

ĈTEp = EF̂μ(Xτ )

[
μ̂(Xτ )

∣
∣ μ̂(Xτ ) > V̂aRp

]
.

We also refer to Sect. 11.3. The VaR and the CTE are two commonly used risk
measures in insurance practice that determine the necessary risk bearing capital to
run the corresponding insurance business. Typically, the VaR is evaluated on p =
99.5%, i.e., we allow for a default probability of 0.5% of not being able to cover
the changes in valuation over a τ = 1 year time horizon. Alternatively, the CTE is
considered on p = 99% which means that we need sufficient capital to cover on
average the 1% worst changes in valuation over a 1 year time horizon.
Figure 11.24 shows our FN network approximations. The boxplots shows the
individual results of the estimates μ̂k(·) with 20 different seeds, and the horizontal
lines show the results of the nagging predictor (11.59). The red line at 140.97
gives the estimated VaR for p = 99.5%, this value is slightly bigger than the best
estimate of 139.47 (orange line) in Ha–Bauer [177] which is based on a functional
approximation involving 37 monomials and 40’000’000 simulated samples. CTEs
on p = 99.5% and p = 99% are given by 145.09 and 141.49. We conclude that in
the present example V̂aR99.5% (used in Europe) and ĈTE99% (used in Switzerland)
are approximately of the same size for this VA with a GMIB.
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Fig. 11.24 Resulting
V̂aR99.5% (red), ĈTE99.5%
(green) and ĈTE99% (blue);
the orange line gives the
result of Ha–Bauer [177] for
the 99.5% VaR
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This example shows how problems can be solved that require the computation
of a conditional expectation. Alternatively, we could explore the LocalGLMnet
architecture, which would allow us to explain the conditional expectation more
explicitly in terms of the information Xτ available at time τ . This may also be
relevant in practice because it allows to determine the main risk drivers of the
underlying insurance business.
Figure 11.25 shows the marginal densities of the components of Xτ =
(qτ , rτ ,mx+τ ) in blue color. In red color we show the corresponding conditional
densities of Xτ , conditioned on μ̂(Xτ ) > V̂aR99.5%, thus, these are the feature
values Xτ that lead to a shortfall beyond the 99.5% VaR of μ̂(Xτ ). From this
figure we conclude that the main driver of VaR is the VA account variable qτ ,
whereas the short rate rτ and the force of mortality mx+τ are slightly lower beyond
the VaR compared to their unconditioned counterparts. The explanation for these
smaller values is that they lead to less discounting and, henceforth, to bigger GMIB
values. This is useful information for exploring importance sampling as mentioned
in Remarks 11.17. This closes the example. �
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Fig. 11.25 Feature values Xτ triggering VaR on the 99.5% level: (lhs) VA account log-value qτ ,
(middle) short rate rτ , and (rhs) force of mortality mx+τ , blue color shows the full density and red
color shows the conditional density conditioned on being above the 99.5% VaR of μ̂(Xτ )
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11.6.3 Bayesian Networks: An Outlook

This section provides a short introduction to Bayesian networks and to variational
inference. We see this section as a motivation for doing more research in that
direction. In Sect. 11.4 we have assessed model uncertainty through bootstrapping.
Alternatively, we could take a Bayesian viewpoint. We start from a fixed network
architecture that involves a network parameter ϑ . The Bayesian approach consid-
ered in Section 6.1 selects a prior density π(ϑ) on the space of network parameters
(w.r.t. a measure ν). For given data (Y, x)we can then calculate the posterior density
of ϑ by

π (ϑ| Y, x) ∝ f (Y,ϑ |x) = f (Y |ϑ, x) π(ϑ). (11.60)

A new data point Y † with feature x† has conditional density, given observation
(Y, x),

f
(
y†
∣∣
∣x†; Y, x

)
=
∫

ϑ

f
(
y†
∣∣
∣ϑ, x†

)
π (ϑ| Y, x) dν(ϑ),

supposed that (Y, x) and (Y †, x†) are conditionally independent, given ϑ . Thus,
there only remains to determine the posterior density (11.60) of the network
parameter ϑ . Unfortunately, this is a rather challenging problem because of the
curse of dimensionality, and even advanced MCMC methods, such as HMC, often
do not lead to satisfactory results (convergence), for MCMC we refer to Section 6.1.
For this reason one often explores approximate inference methods, see, e.g.,
Chapter 10 of Bishop [36] or the tutorial of Jospin et al. [205]. A scalable version
is to approximate the posterior density using the so-called method of variational
inference. This is presented in the following.

Choose a family F = {q(·; θ); θ ∈ �} of (more tractable) densities that have
the same support as the prior π(·), and being parametrized by θ ∈ � ⊂ R

K . This
family F is called the set of variational distributions, and the goal is to find the
variational density q(·; θ) ∈ F that is closest to the posterior density (11.60).

To evaluate the similarity between two densities, we use the KL divergence which
analyzes the divergence from π ( ·|Y, x) to q(·; θ) given by

DKL

(
q(·; θ)

∣∣
∣
∣∣
∣π ( ·|Y, x)

)
=
∫

ϑ

q(ϑ; θ)log

(
q(ϑ; θ)
π (ϑ| Y, x)

)
dν(ϑ).

The optimal approximation within F , for given data (Y, x), is found by solving

θ̂ = θ̂ (Y, x) = arg min
θ∈�

DKL

(
q(·; θ)

∣
∣
∣
∣
∣
∣π ( ·|Y, x)

)
;

for the moment we neglect existence and uniqueness questions. A main difficulty is
the computation of this KL divergence because it involves the intractable posterior
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density of ϑ , given (Y, x). We modify the optimization problem such that we can
circumvent the explicit calculation of this KL divergence.

Lemma 11.19 We have the following identity

logf (Y |x) = E(θ |Y, x)+DKL

(
q(·; θ)

∣
∣∣
∣
∣∣π ( ·| Y, x)

)
,

for the (unconditional) density f (y|x) = ∫
ϑ f (y|ϑ, x)π(ϑ)dν(ϑ) and the so-

called evidence lower bound (ELBO)

E(θ |Y, x) =
∫

ϑ

q(ϑ; θ)log

(
f (Y,ϑ |x)
q(ϑ; θ)

)
dν(ϑ).

Observe that the left-hand side in the statement of Lemma 11.19 is independent of
θ ∈ �. Therefore, minimizing the KL divergence in θ is equivalent to maximizing
the ELBO in θ . This follows exactly the same philosophy as the EM algorithm,
see (6.32), in fact, the ELBO E plays the role of functional Q defined in (6.33).
Proof of Lemma 11.19 We start from the left-hand side of the statement

logf (Y |x) =
∫

ϑ

q(ϑ; θ)logf (Y |x) dν(ϑ) =
∫

ϑ

q(ϑ; θ)log

(
f (Y,ϑ |x)
π(ϑ |Y, x)

)
dν(ϑ)

=
∫

ϑ

q(ϑ; θ)log

(
f (Y,ϑ |x)/q(ϑ; θ)
π(ϑ |Y, x)/q(ϑ; θ)

)
dν(ϑ)

= E(θ |Y, x)+DKL

(
q(·; θ)

∣
∣
∣
∣
∣
∣π ( ·|Y, x)

)
.

This proves the claim. �
The ELBO provides the lower bound (also called variational lower bound)

logf (Y |x) ≥ sup
θ∈�

E(θ |Y, x).

Interestingly, the ELBO does not include the posterior density, but only the joint
density of Y and ϑ , given x, which is assumed to be known (available). It can be
rewritten as

E(θ |Y, x) =
∫

ϑ

q(ϑ; θ)logf (Y,ϑ |x) dν(ϑ)−
∫

ϑ

q(ϑ; θ)logq(ϑ; θ) dν(ϑ)

= Eq(·;θ)
[
logf (Y,ϑ |x)

∣
∣
∣Y, x

]
− Eq(·;θ)

[
logq(ϑ; θ)

]
,

the first term being the expected joint log-likelihood of (Y,ϑ) under the variational
density ϑ ∼ q(·; θ), and the second term being the entropy of the variational density.
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The optimal approximation within F for given data (Y, x) is then found by
solving

θ̂ = θ̂ (Y, x) = arg max
θ∈�

E(θ |Y, x).

That is we try to simultaneously maximize the expected joint log-likelihood of
(Y,ϑ) and the entropy over all variational densities q(·; θ) in F .

If we have multiple observations D = {(Yi , xi ); 1 ≤ i ≤ n}, that are
conditionally i.i.d., given ϑ , we have to solve (we use conditional independence)

θ̂ = arg max
θ∈�

E(θ |D)

= arg max
θ∈�

Eq(·;θ)

[

log

(

π(ϑ)

n∏

i=1

f (Yi |ϑ, xi )
)∣∣
∣
∣
∣
D
]

− Eq(·;θ)
[
logq(ϑ; θ)

]

= arg max
θ∈�

(
n∑

i=1

Eq(·;θ)
[
logf (Yi |ϑ, x i )

∣
∣
∣Yi, x i

]
)

− Eq(·;θ)
[

log

(
q(ϑ; θ)
π(ϑ)

)]

= arg max
θ∈�

(
n∑

i=1

Eq(·;θ)
[
logf (Yi |ϑ, x i )

∣
∣
∣Yi, x i

]
)

−DKL (q(·; θ)‖π) .

Typically, one solves this problem with gradient ascent methods which requires
calculation of the gradient ∇θ of the objective function on the right-hand side. This
is more difficult than plain vanilla gradient descent in network fitting because θ
enters the expectation operator Eq(·;θ).

Kingma–Welling [217] propose to use the following reparametrization trick.
Assume that we can receive the random variable ϑ ∼ q(·; θ) by a reparametrization

ϑ
(d)= t (ε, θ) for some smooth function t and where ε ∼ p does not depend on θ .

E.g., if ϑ is multivariate Gaussian with mean μ and covariance matrix AA�, then

ϑ
(d)= μ+Aε for ε being standard multivariate Gaussian. Under the assumption that

the reparametrization trick works for the family F = {q(·; θ); θ ∈ �} we arrive at,
for ε ∼ p,

θ̂ = arg max
θ∈�

E(θ |D) (11.61)

= arg max
θ∈�

n∑

i=1

(
Ep

[
logf (Yi | t (ε, θ), xi )

∣∣
∣Yi, xi

]
− 1

n
Ep

[
log

(
q(t (ε, θ); θ)
π(t (ε, θ))

)])

= arg max
θ∈�

n∑

i=1

Ep

[

log

(
f (Yi |t (ε, θ), xi ) π (t (ε, θ))1/n

q (t (ε, θ); θ)1/n
)∣∣
∣
∣
∣
Yi, xi

]

.
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The gradient of the ELBO is then given by (supposed we can exchange Ep and ∇θ )

∇θ E(θ |D) =
n∑

i=1

Ep

[

∇θ log

(
f (Yi |t (ε, θ), x i ) π (t (ε, θ))1/n

q (t (ε, θ); θ)1/n
)∣∣
∣
∣
∣
Yi, x i

]

.

These expected gradients are calculated empirically using Monte Carlo methods.
Sample i.i.d. observations ε(i,j) ∼ p, 1 ≤ i ≤ n and 1 ≤ j ≤ m, and consider the
empirical approximation

∇θE(θ |D) ≈
n∑

i=1

1

m

m∑

j=1

∇θ log

(
f
(
Yi
∣
∣t (ε(i,j), θ), xi

)
π
(
t (ε(i,j), θ)

)1/n

q
(
t (ε(i,j), θ); θ)1/n

)

.

(11.62)

Using this empirical approximation we can use gradient ascent methods to estimate
θ , known as stochastic gradient variational Bayes (SGVB) estimator, see Sect. 2.4.3
of Kingma–Welling [217], or as Bayes by Backprop, see Blundell et al. [41] and
Jospin et al. [205].

Example 11.20 We consider the gradient (11.62) for an example from the EDF.
First, if n is sufficiently large, it often suffices to set m = 1, and we still receive
an accurate estimate. In that case we drop index j giving ε(i). Assume that the
(conditionally independent) observations Yi belong to the same member of the EDF
having cumulant function κ . Moreover, assume that the (conditional) mean of Yi ,
given xi , can be described by a FN network and a link function g such that, see (7.8),

μi = μ(xi ) = μϑ (xi ) = g−1
〈
β, z(d :1)w (xi )

〉
,

for network parameter ϑ = (β,w) ∈ R
r . In a Bayesian FN network this network

parameter is not fixed but rather acts as a latent variable. In (11.62) this latent
variable is for realization i given by (and using the reparametrization trick) ϑ =
t (ε(i); θ) ∈ R

r ; θ is not the canonical parameter, here. Thus, we receive conditional
mean of Yi , given ε(i) and xi ,

μi = μt(ε(i);θ)(xi ) = g−1
〈
β(ε(i); θ), z(d :1)

w(ε(i);θ)(xi )
〉
,

with network parameter ϑ(ε(i); θ) = (β(ε(i); θ),w(ε(i); θ)) = t (ε(i), θ) ∈ R
r .

Maximizing the ELBO implies that we need to calculate the gradients w.r.t. θ . First,
we calculate the gradient w.r.t. the network parameter ϑ of the data log-likelihood

∇ϑ logf (Yi |ϑ, xi ) = ∇ϑ�Yi (ϑ) ∈ R
r .

This gradient is calculated with back-propagation, we refer to (7.16) and Proposi-
tion 7.5. There remains the chain rule for evaluating the inner derivative coming
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from the reparametrization trick θ ∈ � ⊂ R
K �→ ϑ = t (ε(i); θ) ∈ R

r . Consider
the Jacobian matrix

J (θ; ε(i)) =
(
∂

∂θk
tj (ε

(i); θ)
)

1≤j≤r,1≤k≤K
∈ R

r×K.

This gives us the gradient w.r.t. θ

∇θ logf
(
Yi

∣
∣
∣t (ε(i), θ), xi

)
= J (θ; ε(i))�

(
∇ϑ�Yi (ϑ)

∣
∣
∣
ϑ=t (ε(i),θ)

)
∈ R

K.

(11.63)

The prior distribution is often taken to be the multivariate Gaussian with prior mean
τ ∈ R

r and (symmetric and positive definite) prior covariance matrix T ∈ R
r×r ,

thus,

π(ϑ) = ((2π)r/2|T |1/2)−1 exp

{
−1

2
(ϑ − τ )�T −1(ϑ − τ )

}
.

This implies for the gradient w.r.t. θ for the prior

∇θ logπ(t (ε(i), θ)) = −J (θ; ε(i))�T −1
(
t (ε(i), θ)− τ

)
∈ R

K.

There remains the choice of the family F = {q(·; θ); θ ∈ �} of variational densities
such that the reparametrization trick works. This is discussed in the remainder. �

We briefly discuss the most popular and simplest family chosen for the varia-
tional distributions F . This family is the so-called mean field Gaussian variational
family, meaning that all components of ϑ ∈ R

r are assumed to be independent
Gaussian, that is,

q(ϑ; θ) =
r∏

j=1

1√
2πσj

exp

{

− 1

2σ 2
j

(ϑj − μj)2
}

,

for θ = (μ1, σ1, . . . , μr , σr )
� ∈ R

K with K = 2r and with σj > 0 for all 1 ≤ j ≤
r . This allows us to apply the reparametrization trick

ϑ
(d)= t (ε, θ) = μ + diag(σ1, . . . , σr )ε =

⎛

⎜
⎝

μ1 + σ1ε1
...

μr + σrεr

⎞

⎟
⎠ ,
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with r-dimensional standard Gaussian variable ε ∼ N (0,1). The Jacobian matrix
is

J (θ; ε) =

⎛

⎜
⎜⎜
⎝

1 ε1 0 0 · · · 0 0
0 0 1 ε2 · · · 0 0
...

. . .
...

0 0 0 0 · · · 1 εr

⎞

⎟
⎟⎟
⎠

∈ R
r×K.

The mean field Gaussian case provides the entropy of the variational distribution

−Eq(·;θ)
[
logq(ϑ; θ)

]
=

r∑

j=1

1

2
log(2πσ 2

j )+
1

2
=

r∑

j=1

log(
√

2πeσj ).

This mean field Gaussian variational inference can be implemented with the R
package tfprobability of Keydana et al. [212] and an explicit example is
given in Kuo [230].

Example 11.20, Revisited Working under the assumptions of Example 11.20 and
additionally assuming that the family of variational distributions F is multivariate

Gaussian q(·; θ) (d)= N (μ,�) leads us after some calculation to (the well-known
formula)

DKL

(
q(·; θ)

∣
∣∣
∣
∣∣π
)

= 1

2

[
log

( |T |
|�|
)

− r + trace
(
T −1�

)
+ (τ − μ)�T −1(τ − μ)

]
.

This further simplifies if T and � are diagonal, the latter being the mean field
Gaussian case. The remaining terms of the ELBO are treated empirically as
in (11.63). �

This section has provided a short introduction to uncertainty estimation in
networks using Bayesian methods. We believe that this gives a promising outlook
that certainly needs more theoretical and practical work to become useful in
practical applications.
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Chapter 12
Appendix A: Technical Results on
Networks

The reader may have noticed that for GLMs we have developed an asymptotic
theory that allowed us to assess the quality of predictors as well as it allowed us to
validate the fitted models. For networks there does not exist such a theory, yet, and
the purpose of this appendix is to present more technical results on the asymptotic
behavior of FN networks and their estimators that may lead to an asymptotic
theory. This appendix hopefully stimulates further research in this field of statistical
modeling.

12.1 Universality Theorems

We present a specific version of the universality theorems for shallow FN networks;
we refer to the discussion in Sect. 7.2.2. This section follows Hornik et al. [192].
Choose an input dimension q0 ∈ N and consider the set of all affine functions

Aq0 =
{
A : {1} × R

q0 → R; x �→ A(x) = 〈w, x〉, w ∈ R
q0+1

}
,

we add a 0th component in feature x = (x0 = 1, x1, . . . , xq0)
� ∈ {1} × R

q0 for the
intercept. Choose a measurable (activation) function φ : R → R and define

�q0(φ) =
⎧
⎨

⎩
f : {1} × R

q0 → R; x �→ f (x) =
q1∑

j=0

βjφ(Aj (x)), Aj ∈ Aq0 , βj ∈ R, q1 ∈ N

⎫
⎬

⎭
.
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This is the set of all shallow FN networks f (x) = 〈β, z(1:1)(x)〉 with activation
function φ and the linear output activation, see (7.8); the intercept component of
the output is integrated into the 0th component j = 0. Moreover, we define the
networks

�%q0(φ) =
{
f : {1} × R

q0 → R;x �→ f (x) =
q1∑

j=0

βj

lj∏

k=1

φ(Aj,k(x)),

Aj,k ∈ Aq0 , βj ∈ R, lj ∈ N, q1 ∈ N

}
.

The latter networks contain the former �q0(φ) ⊂ �%q0(φ), by setting lj = 1 for
all 0 ≤ j ≤ q1. We are going to prove a universality theorem first for the networks
�%q0(φ), and afterwards for the shallow FN networks�q0(φ).

Definition 12.1 The function φ : R → [0, 1] is called a squashing function if it is
non-decreasing with limx→−∞ φ(x) = 0 and limx→∞ φ(x) = 1.

Since squashing functions can have at most countably many discontinuities,
they are measurable; a continuous and a non-continuous example are given by the
sigmoid and by the step function activation, respectively, see Table 7.1.

Lemma 12.2 The sigmoid activation function is Lipschitz with constant 1/4.

Proof The derivative of the sigmoid function is given by φ′ = φ(1 − φ). This
provides for the second derivative φ′′ = φ′ − 2φφ′ = φ′(1 − 2φ). The latter is zero
for φ(x) = 1/2. This says that the maximal slope of φ is attained for x = 0 and it
is φ′(0) = 1/4. �

We denote by C(Rq0) the set of all continuous functions from {1} × R
q0 to

R, and by M(Rq0) the set of all measurable functions from {1} × R
q0 to R. If

the measurable activation function φ is continuous, we have �%q0(φ) ⊂ C(Rq0),
otherwise �%q0(φ) ⊂ M(Rq0).

Definition 12.3 A subset S ⊂ M(Rq0) is said to be uniformly dense on compacta
in C(Rq0) if for every compact subsetK ⊂ {1}×R

q0 the set S is ρK -dense in C(Rq0)

meaning that for all ε > 0 and all g ∈ C(Rq0) there exists f ∈ S such that

ρK(g, f ) = sup
x∈K

|g(x)− f (x)| < ε.

Theorem 12.4 (Theorem 2.1 in Hornik et al. [192]) Assume φ is a non-constant
and continuous activation function. �%q0(φ) ⊂ C(Rq0) is uniformly dense on
compacta in C(Rq0).

Proof The proof is based on the Stone–Weierstrass theorem. We briefly recall the
Stone–Weierstrass theorem. Assume A is a family of real functions defined on a set
E. A is called an algebra if it is closed under addition, multiplication and scalar
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multiplication. A family A separates points in E, if for every x, z ∈ E with x �= z

there exists a function A ∈ A with A(x) �= A(z). The family A does not vanish at
any point of E if for all x ∈ E there exists a function A ∈ A such that A(x) �= 0.

Let A be an algebra of continuous real functions on a compact setK . The Stone–
Weierstrass theorem says that if A separates points in K and if it does not vanish at
any point of K , then A is ρK -dense in the space of all continuous real functions on
K .

Choose any compact setK ⊂ {1}×R
q0 . For any activation function φ,�%q0(φ)

is obviously an algebra. So there remains to prove that this algebra separates points
and does not vanish at any point. Firstly, choose x, z ∈ K such that x �= z. Since
φ is non-constant we can choose a, b ∈ R such that φ(a) �= φ(b). Next choose
A ∈ Aq0 such that A(x) = a and A(z) = b. Then, φ(A(x)) �= φ(A(z)) and
�%q0(φ) separates points. Secondly, since φ is non-constant, we can choose a ∈ R

such that φ(a) �= 0. Moreover, choose weight w = (a, 0, . . . , 0)� ∈ R
q0+1. Then

for this A ∈ Aq0 , A(x) = 〈w, x〉 = a for any x ∈ K . Henceforth, φ(A(x)) �= 0,
therefore �%q0(φ) does not vanish at any point of K . The claim then follows from
the Stone–Weierstrass theorem and using that φ is continuous by assumption. �

For Theorem 12.4 to hold, the activation function φ can be any continuous and
non-constant function, i.e., it does not need to be a squashing function. This is
fairly general, but it rules out the step function activation as it is not continuous.
However, for squashing functions continuity is not needed and one still receives
the uniformly dense on compacta property of �%q0(φ) in C(Rq0), this has been
proved in Theorem 2.3 of Hornik et al. [192]. The following theorem also does not
need continuity, i.e., we do not require �q0(φ) ⊂ C(Rq0) as φ only needs to be
measurable (and squashing).

Theorem 12.5 (Universality, Theorem 2.4 in Hornik et al. [192]) Assume φ is a
squashing activation function. �q0(φ) is uniformly dense on compacta in C(Rq0).

Sketch of Proof For the (continuous) cosine activation function choice cos(·),
Theorem 12.4 applies to�%q0(cos). Repeatedly applying the trigonometric identity
cos(a) cos(b) = cos(a + b) − cos(a − b) allows us to rewrite any trigonometric

polynomial
∏lj
k=1 cos(Aj,k(x)) as

∑T
t=1 αt cos(At (x)) for suitable At ∈ Aq0 ,

αt ∈ R and T ∈ N. This allows us to identify �q0(cos) = �%q0(cos). As a
consequence of Theorem 12.4, shallow FN networks �q0(cos) are uniformly dense
on compacta in C(Rq0).

The remaining part relies on approximating the cosine activation function.
Firstly, Lemma A.2 of Hornik et al. [192] says that for any continuous squashing
function ψ and any ε > 0 there exists Hε(x) = ∑q1

j=1 βjφ(w
j

0 + wj1x) ∈ �1(φ),
x ∈ R, such that

sup
x∈R

|ψ(x)−Hε(x)| < ε. (12.1)

For the proof we refer to Lemma A.2 of Hornik et al. [192], it uses that ψ is a
continuous squashing function, implying that for every δ ∈ (0, 1) there existsm > 0
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such that ψ(−m) < δ and ψ(m) > 1 − δ. ApproximationHε ∈ �1(φ) of ψ is then
constructed on (−m,m) so that the error bound holds (and for δ sufficiently small).

Secondly, choose ε > 0 andM > 0, there exists cosM,ε ∈ �1(φ) such that

sup
x∈[−M,M]

∣∣cos(x)− cosM,ε(x)
∣∣ < ε. (12.2)

This is Lemma A.3 of Hornik et al. [192]; to prove this, we consider the cosine
squasher of Gallant–White [150], for x ∈ R

χ(x) = 1

2

(
1 + cos

(
x + 3π

2

))
1{−π/2≤x≤π/2} + 1{x>π/2} ∈ [0, 1].

This is a continuous squashing function. Adding, subtracting and scaling a finite
number of affinely shifted versions of the cosine squasher χ can exactly replicate
the cosine on [−M,M]. Claim (12.2) then follows from the fact that we need a
finite number of cosine squashers χ to replicate the cosine on [−M,M], the triangle
equality, and the fact that the (continuous) cosine squasher can be approximated
arbitrarily well in �1(φ) using (12.1).

The final step is to patch everything together. Consider
∑T
t=1 αt cos(At (x))

which approximates on the compact set K ⊂ {1} × R
q0 a given continuous

function g ∈ C(Rq0) with a given tolerance ε/2. Choose M > 0 such that
At(K) ⊂ [−M,M] for all 1 ≤ t ≤ T . Note that this M can be found because
K is compact, At are continuous and T is finite. Define T ′ = T

∑T
t=1 |αt | < ∞.

By (12.2) we can then choose cosM,ε/(2T ′) ∈ �1(φ) such that

sup
x∈K

∣
∣
∣
∣
∣

T∑

t=1

αt cos(At (x))−
T∑

t=1

αt cosM,ε/(2T ′)(At (x))

∣
∣
∣
∣
∣
< ε/2.

This completes the proof. �

12.2 Consistency and Asymptotic Normality

Universality Theorem 12.5 tells us that we can approximate any compactly sup-
ported continuous function arbitrarily well by a sufficiently large shallow FN
network, say, with sigmoid activation function φ. The next natural question is
whether we can learn these approximations from data (Yi , xi )i≥1 that follow the true
but unknown regression function x �→ μ0(x), or in other words whether we have
consistency for a certain class of learning methods. This is the question addressed,
e.g., in White [379, 380], Barron [26], Chen–Shen [73], Döhler–Rüschendorf [109]
and Shen et al. [336]. This turns the algebraic universality question into a statistical
question about consistency.
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Assume that the true data model satisfies

Y = μ0(x)+ ε = E[Y |x] + ε, (12.3)

for a continuous regression function μ0 : X → R on a compact set X ⊂ {1}×R
q0 ,

and with a centered error ε satisfying E[|ε|2+δ] < ∞ for some δ > 0 and being
independent of x. The question now is whether we can learn this (true) regression
function μ0 from independent data (Yi , xi ), 1 ≤ i ≤ n, obeying (12.3). Throughout
this section we use the square error loss function L(y, a) = (y − a)2. For given
data, this results in solving

μ̃n = arg min
μ∈C(X )

1

n

n∑

i=1

L (Yi, μ(xi )) = arg min
μ∈C(X )

1

n

n∑

i=1

(Yi − μ(xi ))2 , (12.4)

where C(X ) denotes the set of continuous functions on the compact set X ⊂
{1}×R

q0. The main question is whether estimator μ̃n approaches the true regression
function μ0 for increasing sample size n.

Typically, the family of continuous functions C(X ) is much too rich to be able to
solve optimization problem (12.4), and the solution may have undesired properties.
In particular, the solution to (12.4) will over-fit to the data for any sample size
n, and consistency will not hold, see, e.g., Section 2.2.1 in Chen [72]. Therefore,
the optimization needs to be done over (well-chosen) smaller sets Sn ⊂ C(X ).
For instance, Sn can be the set of shallow FN networks having a maximal width
q1 = q1(n), depending on the sample size n of the data. Considering this regression
problem in a non-parametric sense, we let grow these sets Sn with the sample size
n. This idea is attributed to Grenander [172] and it is called the method of sieve
estimators of μ0. We define for d ∈ N, � > 0, �̃ > 0 and activation function φ

S(d,�, �̃, φ) =
⎧
⎨

⎩
f ∈ �q0(φ); q1 = d,

q1∑

j=0

|βj | ≤ �, max
1≤j≤q1

q0∑

l=0

|wl,j | ≤ �̃
⎫
⎬

⎭
.

These sets S(d,�, �̃, φ) are shallow FN networks of a given width q1 = d and with
some restrictions on the network parameters.1 We then choose increasing sequences

1 The bound
∑q1
j=0 |βj | ≤ � in S(d,�, �̃, φ) allows us to view this set of shallow FN networks

as a symmetric convex hull of the family of functions S0(φ) = {x �→ φ(A(x)); A ∈ Aq0 }, see
Sect. 2.6.3 in Van der Vaart–Wellner [364]. If we choose an increasing activation function φ, this
family of functions φ ◦A is a composition of a fixed increasing function φ and a finite dimensional
vector space Aq0 of functions A. This implies that S0(φ) is a VC-class saying that it has a finite
Vapnik–Chervonenkis (VC) dimension [365]; see also Condition A and Theorem 2.1 in Döhler–
Rüschendorf [109]. This VC-class is an important property in many proofs as it leads to a finite
covering (metric entropy) of function spaces, and this allows to apply limit theorems to point
processes, we refer to Van der Vaart–Wellner [364].



542 12 Appendix A: Technical Results on Networks

(dn)n≥1, (�n)n≥1 and (�̃n)n≥1 which provides us with an increasing sequence of
sieves (becoming finer as n increases)

. . . ⊆ Sn(φ)
def.= S(dn,�n, �̃n, φ) ⊆ Sn+1(φ)

def.= S(dn+1,�n+1, �̃n+1, φ) ⊆ . . . .

The following corollary is a simple consequence of Theorem 12.5.

Corollary 12.6 Assume φ is a squashing activation function, and let the increasing
sequences (dn)n≥1, (�n)n≥1 and (�̃n)n≥1 tend to infinity for n → ∞. Then⋃
n≥1 Sn(φ) is uniformly dense in C(X ).

This corollary says that for any regression functionμ0 ∈ C(X )we can find n ∈ N

and μn ∈ Sn(φ) such that μn is arbitrarily close to μ0; remark that all functions are
continuous on the compact set X , and uniformly dense means ρX -dense in that case.
Corollary 12.6 does not hold true if�n ≡ � > 0, for all n. In that case we can only
approximate the smaller function class

⋃
n≥1 Sn(φ) ⊂ C(X ). This is going to be

used in one of the cases, below.
For increasing sequences (dn)n≥1, (�n)n≥1 and (�̃n)n≥1 we define the sieve

estimator (μ̂n)n≥1 by

μ̂n = arg min
μ∈Sn(φ)

1

n

n∑

i=1

L (Yi, μ(xi )) . (12.5)

Under the following assumptions one can prove a consistency theorem.

Assumption 12.7 Choose a complete probability space (�,A,P)2 and X = {1}×
[0, 1]q0.

(1) Assume μ0 ∈ C(X ). Assume (Yi ,Xi )i≥1 are i.i.d. on (�,A,P) following the
regression structure (12.3) with εi being centered, having E[|εi |2+δ] < ∞ for
some δ > 0 and being independent of Xi . Set σ 2 = Var(εi) <∞.

(2) The activation function φ is the sigmoid function.
(3) The sequences (dn)n≥1, (�n)n≥1 and (�̃n)n≥1 are increasing and tending to

infinity as n→ ∞ with dn�2
n log(dn�n) = o(n).

Most results that we are going to present below hold for activation functions that
are Lipschitz. The sigmoid activation function is Lipschitz, see Lemma 12.2.

The following considerations are based on the pseudo-norm, given (Xi )1≤i≤n,

‖μ‖n =
√√
√
√ 1

n

n∑

i=1

(μ(Xi ))
2 for μ ∈ C(X ).

2 A probability space (�,A,P) is complete if for any P-null set B ∈ A with P[B] = 0 and every
subset A ⊂ B it follows that A ∈ A.
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This is a pseudo-norm because it is positive ‖μ‖n ≥ 0, absolutely homogeneous
‖aμ‖n = |a| ‖μ‖n and the triangle inequality holds, but it is not definite because
‖μ‖n = 0 does not imply that μ is the zero function (i.e. it is not point-separating).
This pseudo-norm ‖·‖n depends on the (random) features (Xi )1≤i≤n and, therefore,
the subsequent statements involving this pseudo-norm hold in probability. The
following result provides consistency, and that the true regression function μ0,
indeed, can be learned from i.i.d. data.

Theorem 12.8 (Consistency, Theorem 3.1 of Shen et al. [336]) Under Assump-
tion 12.7, the sieve estimator (μ̂n)n≥1 in (12.5) exists. We have consistency
‖μ̂n − μ0‖n → 0 in probability as n→ ∞, i.e., for all ε > 0

lim
n→∞P

[‖μ̂n − μ0‖n > ε
] = 0.

Remarks 12.9

• Such a consistency result for FN networks has first been proved in Theorem 3.3
of White [380], however, on slightly different spaces and under slightly different
assumptions. Similar consistency results have been obtained for related point
process situations by Döhler–Rüschendorf [109] and for time-series in White
[380] and Chen–Shen [73].

• Item (3) of Assumption 12.7 gives upper complexity bounds on shallow FN
networks as a function of the sample size n of the data, so that asymptotically
they do not over-fit to the data. These bounds allow for much freedom in the
choice of the growth rates, and different choices may lead to different speeds of
convergence. The conditions of Assumption 12.7 are, e.g., satisfied for �n =
O(logn) and dn = O(n1−δ′), for any small δ′ > 0. Under these choices, the
complexity dn of the shallow FN network grows rather quickly. Table 1 of White
[380] gives some examples, for instance, if for n = 100 data points we have a
shallow FN network with 5 neurons, then these magnitudes support 477 neurons
for n = 10′000 and 45’600 neurons for n = 1′000′000 data points (for the
specific choice δ′ = 0.01). Of course, these numbers do not provide any practical
guidance on the selection of the (shallow) FN network size.

• Theorem 12.8 requires that we can explicitly calculate the sieve estimator
μ̂n, i.e., the global minimizer of the objective function in (12.5). In practical
applications, relying on gradient descent algorithms, typically, this is not the case.
Therefore, Theorem 12.8 is mainly of theoretical value saying that learning the
true regression function μ0 is possible within FN networks.

Sketch of Proof of Theorem 12.8 The proof of this theorem is based on a theorem
in White–Woolridge [381] which states that if we have a sequence (Sn(φ))n≥1 of
compact subsets of C(X ), and if Ln : � × Sn(φ) → R is a A ⊗ B(Sn(φ))/B(R)-
measurable sequence, n ≥ 1, with Ln(ω, ·) being lower-semicontinuous on Sn(φ)
for all ω ∈ �. Then, there exists μ̂n : � → Sn(φ) being A/B(Sn(φ))-measurable
such that for each ω ∈ �, Ln(ω, μ̂n(ω)) = min

μ∈Sn(φ)
Ln(ω,μ). For the proof of the
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compactness of Sn(φ) in C(X ) we need that dn and �n are finite for any n. This
then provides the existence of the sieve estimator, for details we refer Lemma 2.1
and Corollary 2.1 in Shen et al. [336]. The proof of the consistency result then uses
the growth rates on (dn)n≥1 and (�n)n≥1, for the details of the proof we refer to
Theorem 3.1 in Shen et al. [336]. �

The next step is to analyze the rates of convergence of the sieve estimator
μ̂n → μ0, as n → ∞. These rates heavily depend on (additional) regularity
assumptions on the true regression function μ0 ∈ C(X ); we refer to Remark 3
in Sect. 5 of Chen–Shen [73]. Here, we present some results of Shen et al. [336].
From the proof of Theorem 12.8 we know that Sn(φ) is a compact set in C(X ). This
motivates to consider the closest approximation πnμ ∈ Sn(φ) to μ ∈ C(X ). The
uniform denseness of

⋃
n≥1 Sn(φ) in C(X ) implies that πnμ converges to μ. The

aforementioned rates of convergence of the sieve estimators will depend on how fast
πnμ0 ∈ Sn(φ) converges to the true regression function μ0 ∈ C(X ).

If one cannot determine the global minimum of (12.5), then often an accurate
approximation is sufficient. For this one introduces an approximate sieve estimator.
A sequence (μ̂n)n≥1 is called an approximate sieve estimator if

1

n

n∑

i=1

(Yi − μ̂n(Xi ))2 ≤ inf
μ∈Sn(φ)

1

n

n∑

i=1

(Yi − μ(Xi ))2 +OP (ηn), (12.6)

where (ηn)n≥1 is a positive sequence converging to 0 as n → ∞. The last term
OP (ηn) denotes stochastic boundedness meaning that for all ε > 0 there exitsKε >
0 such that for all n ≥ 1

P

[
1

n

n∑

i=1

(Yi − μ̂n(Xi ))2 − inf
μ∈Sn(φ)

1

n

n∑

i=1

(Yi − μ(Xi ))2 > Kεηn
]

< ε.

Theorem 12.10 (Theorem 4.1 of Shen et al. [336], Without Proof) Set Assump-
tion 12.7. If

ηn = O
(

min

{
‖πnμ0 − μ0‖2

n,
dn log(dn�n)

n
,
dn logn

n

})
,

the following stochastic boundedness holds for n ≥ 1

‖μ̂n − μ0‖n = OP
(

max

{

‖πnμ0 − μ0‖n,
√
dn logn

n

})

.

Remarks 12.11

• Assumption 12.7 implies that dn log(dn�n) = o(n) as n→ ∞. Therefore, ηn →
0 as n→ ∞.
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• The statement in Theorem 4.1 of Shen et al. [336] is more involved because it
is stated under slightly different assumptions. Our assumptions are sufficient for
having consistency of the sieve estimator, see Theorem 12.8, and making these
assumptions implies that the rate of convergence in Theorem 12.10 is determined
by the rate of convergence of ‖πnμ0−μ0‖n and (n−1dn logn)1/2, see Remark 4.1
in Shen et al. [336].

• The rate of convergence in Theorem 12.10 crucially depends on the rate
‖πnμ0 − μ0‖n, as n → ∞. If μ0 lies in the (sub-)space of functions with
finite first absolute moments of the Fourier magnitude distributions, denoted by
F(X ) ⊂ C(X ), Makavoz [262] has shown that ‖πnμ0 − μ0‖n decays at least as
d

−(q0+1)/(2q0)
n = d

−1/2−1/(2q0)
n , this has improved the rate of d−1/2

n obtained by
Barron [25]. This space F(X ) allows for the choices dn = (n/ logn)q0/(2+q0),
�n ≡ � > 0 and �̃n ≡ �̃ > 0 to receive consistency and the following rate of
convergence, see Chen–Shen [73] and Remark 4.1 in Shen et al. [336],

‖μ̂n − μ0‖n = OP (r−1
n ),

for

rn =
(
n

logn

)(q0+1)/(4q0+2)

n ≥ 2. (12.7)

Note that 1/4 ≤ (q0 + 1)/(4q0 + 2) ≤ 1/2. Thus, this is a slower rate than the
square root rule of typical asymptotic normality, for instance, for q0 = 1 we get
1/3. Interestingly, Barron [26] proposes the choice dn ∼ (n/ logn)1/2 to receive
an approximation rate of (n/ logn)−1/4.

Also note that the space F(X ) allows us to choose a finite �n ≡ � > 0
in the sieves, thus, here we do not receive denseness of the sieves in the space
of continuous functions C(X ), but only in the space of functions with finite first
absolute moments of the Fourier magnitude distributions F(X ).

The last step is to establish the asymptotic normality. For this we have to define
perturbations of shallow FN networks μ ∈ Sn(φ). Choose ηn ∈ (0, 1) and define
the function

μ̃n(μ) = (1 − η1/2
n )μ+ η1/2

n (μ0 + 1).

This allows us to state the following asymptotic normality result.

Theorem 12.12 (Theorem 5.1 of Shen et al. [336], Without Proof) Set Assump-
tion 12.7. We make the following additional assumptions: suppose ηn = o(n−1) and
choose �n such that we have stochastic boundedness �n‖μ̂n − μ0‖n = OP (1). Let
the following conditions hold:

(C1) dn�n log(dn�n) = o(n1/4);
(C2) n�−2

n /�
δ
n = o(1);
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(C3) sup
μ∈Sn(φ):‖μ−μ0‖n≤�−1

n
‖πnμ̃n(μ)− μ̃n(μ)‖n = OP (�nηn);

(C4) sup
μ∈Sn(φ):‖μ−μ0‖n≤�−1

n

1
n

∑n
i=1 εi (πnμ̃n(μ)(Xi )− μ̃n(μ)(Xi )) = OP (ηn).

We have the following asymptotic normality for n→ ∞

1√
n

n∑

i=1

(μ̂n(Xi )− μ0(Xi )) ⇒ N
(

0, σ 2
)
.

The assumptions of Theorem 12.12 require a slower growth rate dn on the
shallow FN network compared to the consistency results. Shen et al. [336] bring
forward the argument that for the asymptotic normality result to hold, the shallow
FN network should grow slower in order to get the Gaussian property, otherwise the
sieve estimator may skew towards the true function μ0. Conditions (C3)–(C4) on
the other side give lower growth rates on the networks such that the approximation
error decreases sufficiently fast.

If the variance parameter σ 2 = Var(εi) is not known, we can empirically estimate
it

σ̂ 2
n = 1

n

n∑

i=1

(Yi − μ̂n(Xi ))2 .

Theorem 5.2 in Shen et al. [336] proves that this estimator is consistent for
σ 2, and the asymptotic normality result also holds true under this estimated
variance parameter (using Slutsky’s theorem), and under the same assumptions as
in Theorem 12.12.

12.3 Functional Limit Theorem

Horel–Giesecke [190] push the above asymptotic results even one step further. Note
that the asymptotic normality of Theorem 12.12 is not directly useful for variable
selection, since the asymptotic result integrates over the feature space X . Horel–
Giesecke [190] prove a functional limit theorem which we briefly review in this
section.

A q0-tuple α = (α1, . . . , αq0)
� ∈ N

q0
0 is called a multi-index, and we set |α| =

α1 + . . .+ αq0 . Define the derivative operator

∇α = ∂ |α|

∂x
α1
1 · · · ∂xαq0q0

.
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Consider the compact feature space X = {1} × [0, 1]q0 with q0 ≥ 3. Choose a
distribution ν on this feature space X and define the L2-space

L2(X , ν) =
{
μ : X → R measurable; Eν[μ(X)2] =

∫

X
μ(x)2dν(x) <∞

}
.

Next, define the Sobolev space for k ∈ N

Wk,2(X , ν) =
{
μ ∈ L2(X , ν); ∇αμ ∈ L2(X , ν) for all α ∈ N

q0
0 with |α| ≤ k

}
,

where ∇αμ is the weak derivative of μ. The motivation for studying Sobolev
spaces is that for sufficiently large k and the existence of weak derivatives ∇αμ ∈
L2(X , ν), |α| ≤ k, we eventually receive a classical derivative of μ, see below. We
define the Sobolev norm for μ ∈ Wk,2(X , ν) by

‖μ‖k,2 =
⎛

⎝
∑

|α|≤k
Eν

[(∇αμ(X))2
]
⎞

⎠

1/2

.

The normed Sobolev space (Wk,2(X , p), ‖·‖k,2) is a Hilbert space. Since we would
like to consider gradient-based methods, we consider the following space

C1
B(X , ν) = {μ : X → R continuously differentiable; ‖μ‖'q0/2(+2,2 ≤ B} ,

(12.8)

for some positive constantB <∞. We will assume that the true regression function
μ0 ∈ C1

B(X , ν), thus, the true regression function has a bounded Sobolev norm
‖·‖'q0/2(+2,2 of maximal size B. Assume that X̊ ⊂ R

q0 is the open interior of X
(excluding the intercept component), and that ν is absolutely continuous w.r.t. the
Lebesgue measure with a strictly positive and bounded density on X (excluding
the intercept component). The Sobolev number of the space W 'q0/2(+2,2(X̊ , ν) is
given by m = 'q0/2( + 2 − q0/2 ≥ 1.5 > 1. The Sobolev embedding theorem
then tells us that for any function μ ∈ W 'q0/2(+2,2(X̊ , ν), there exists an 'm(-
times continuously differentiable function on X̊ that is equal to μ a.e., thus, the
class of equivalent functions μ ∈ W 'q0/2(+2,2(X̊ , ν) has a representative in C1(X̊ ),
'm( = 1, this motivates the consideration of the space in (12.8).

In practice, the bound B needs a careful consideration because the true μ0 is
unknown. Therefore, B should be sufficiently large so that μ0 is contained in the
space C1

B(X , ν) and, on the other hand, it should not be too large as this will weaken
the power of the tests, below.
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We choose the sigmoid activation function for φ and we consider the approximate
sieve estimators (μ̂n)n≥1 for given data (Yi ,Xi )i obtained by a solution to

1

n

n∑

i=1

(Yi − μ̂n(Xi ))2 ≤ inf
μ∈Sn(φ)

1

n

n∑

i=1

(Yi − μ(Xi ))2 + oP (1), (12.9)

where we allow for an error term oP (1) that converges in probability to zero as
n→ ∞. In contrast to (12.6) we do not specify the error rate, here.

Assumption 12.13 Choose a complete probability space (�,A,P) andX = {1}×
[0, 1]q0.

(1) Assume μ0 ∈ C1
B(X , ν) for some B > 0, and (Yi,Xi )i≥1 are i.i.d. on

(�,A,P) following regression structure (12.3) with εi being centered, having
E[|εi |2+δ] <∞ for some δ > 0, being absolutely continuousw.r.t. the Lebesgue
measure, and being independent of Xi; the features Xi ∼ ν are absolutely
continuous w.r.t. the Lebesgue measure having a bounded and strictly positive
density on X (excluding the intercept component). Set σ 2 = Var(εi) <∞.

(2) The activation function φ is the sigmoid function.
(3) The sequence (dn)n≥1 is increasing and going to infinity satisfying

d
2+1/q0
n log(dn) = O(n) as n → ∞, and �n ≡ � > 0, �̃n ≡ �̃ > 0

for n ≥ 1.
(4) Define Lμ(X, ε) = −2ε(μ(X)−μ0(X))+ (μ(X)− μ0(X))

2, and it holds for
n ≥ 2

1√
n

n∑

i=1

(
Lμ̂n (Xi , εi)− Eν

[
Lμ̂n (X1, ε1)

])

≤ inf
h∈C1

B(X ,ν)
1√
n

n∑

i=1

(
Lμ0+h/rn (Xi , εi )− Eν

[
Lμ0+h/rn (X1, ε1)

])+ oP (r−1
n ),

for rn being the rate defined in (12.7).

The first three items of this assumption are rather similar to Assumption 12.7
which provides consistency in Theorem 12.8 and the rates of convergence in
Theorem 12.10. Item (4) of Assumption 12.13 needs to be compared to (C3)–
(C4) of Theorem 12.12 which is used for getting the asymptotic normality. (rn)n
is the rate that provides convergence in probability of the sieve estimator to the true
regression function, and this magnitude is used for the perturbation, see also (C3)–
(C4) in Theorem 12.12.

Theorem 12.14 (Asymptotics, Theorem 1 of Horel–Gisecke [190], Without
Proof) Under Assumption 12.13 the approximate sieve estimator (μ̂n)n≥1 (12.9)
converges weakly in the metric space (C1

B(X , ν), dν) with dν(μ,μ′) = Eν[(μ(X)−
μ′(X))2]:

rn (μ̂n − μ0) ⇒ μ# as n→ ∞,
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where μ# is the arg max of the Gaussian process {Gμ; μ ∈ C1
B(X , ν)} with mean

zero and covariance function Cov(Gμ,Gμ′ ) = 4σ 2
Eν[μ(X)μ′(X)].

Remarks 12.15 We highlight the differences between Theorems 12.12 and 12.14.

• Theorem 12.12 provides a convergence in distribution to a Gaussian random
variable, whereas the limit in Theorem 12.14 is a random function x �→ μ#(x) =
μ#ω(x), ω ∈ �, thus, the former convergence result integrates over the (empirical)
feature distribution, whereas the latter also allows for a point-wise consideration
in feature x.

• The former theorem does not allow for variable selection in X whereas the latter
does because the limiting function still discriminates different feature values.

• For the proof of Theorem 12.14 we refer to Horel–Giesecke [190]. It is based
on asymptotic results on empirical point processes; we refer to Van der Vaart–
Wellner [364]. The Gaussian process {Gμ; μ ∈ C1

B(X , ν)} is parametrized by the
(totally bounded) space C1

B(X , ν), and it is continuous over this compact index
space. This implies that it takes its maximum. Uniqueness of the maximum then
gives us the random functionμ# which exactly describes the limiting distribution
of rn(μ̂n − μ0) as n→ ∞.

12.4 Hypothesis Testing

Theorem 12.14 can be used to provide a significance test for feature component
selection, similarly to the LRT and the Wald test presented in Sect. 5.3.2 on GLMs.
We define gradient-based test statistics, for 1 ≤ j ≤ q0, and w.r.t. the approximate
sieve estimator μ̂n ∈ Sn(φ) given in (12.9),

 
(n)
j =

∫

X

(
∂μ̂n(x)

∂xj

)2

dν(x) and  ̂
(n)
j = 1

n

n∑

i=1

(
∂μ̂n(Xi )

∂xj

)2

.

The test statistics (n)j integrates the squared partial derivative of the sieve estimator

μ̂n w.r.t. the distribution ν, whereas  ̂(n)j can be considered as its empirical
counterpart if X ∼ ν. Note that both test statistics depend on the data (Yi ,Xi )1≤i≤n
determining the sieve estimator μ̂n, see (12.9). These test statistics are used to test
the following null hypothesis H0 against the alternative hypothesis H1 for the true
regression function μ0 ∈ C1

B(X , ν)

H0 : λj = Eν

[(
∂μ0(X)

∂xj

)2
]

= 0 against H1 : λj �= 0. (12.10)
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We emphasize that the expression λj in (12.10) is a deterministic number, for this

reason we use the expected value notation Eν[·]. This in contrast to  (n)j , which is
only a conditional expectation, conditionally given the data (Yi ,Xi )1≤i≤n.

Proposition 12.16 (Theorem 2 and Proposition 3 of Horel–Giesecke [190],
Without Proof) Under Assumption 12.13 and under the null hypothesis H0 we
have for n→ ∞

r2
n 

(n)
j , r

2
n ̂

(n)
j ⇒ �j

def.=
∫

X

(
∂μ#(x)

∂xj

)2

dν(x). (12.11)

In order to use this proposition we need to be able to calculate the limiting
distribution characterized by random variable �j . The maximal argument μ# of
the Gaussian process {Gμ; μ ∈ C1

B(X , ν)} is given by a random function such that
for all ω ∈ �, μ#ω(·) fulfills

Gμ#ω(·)(ω) ≥ Gμ(ω) for all μ ∈ C1
B(X , ν).

A discretization and simulation approach can be explored to approximate this
maximal argumentμ# for differentω ∈ �, see Section 5.7 in Horel–Giesecke [190].

1. Sample random functions fk from C1
B(X , ν), k ≥ 1. The universality the-

orems suggest that we sample these random functions fk from the sieves
(Sn ∩ C1

B(X , ν))n≥1. This requires sampling dimension q1 of the shallow FN
network and the corresponding network weights. This provides us with candidate
functions f1, . . . , fK ∈ C1

B(X , ν), these candidate functions can be understood
as a random covering of the (totally bounded) index space C1

B(X , ν).
2. Simulate K-dimensional multivariate Gaussian random variables G(t) (i.i.d.)

with mean zero and (empirical) covariance matrix

�̂ =
(

1

n

n∑

i=1

fk(Xi )fl(Xi )

)

1≤k,l≤K
.

These random variables G(1), . . . ,G(T ) play the role of discretized random
samples of the Gaussian process {Gμ; μ ∈ C1

B(X , ν)}.
3. The empirical arg max of the sampleG(t), 1 ≤ t ≤ T , is obtained by

μ̂#t = arg max
fk : 1≤k≤K

G
(t)
fk
,

where G(t)fk is the k-th component of G(t).
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4. The empirical distribution of the following sample �̂(t)j , 1 ≤ t ≤ T , gives us an
approximation to the limiting distribution in Proposition 12.16

�̂
(t)
j = 1

n

n∑

i=1

(
∂μ̂#t (Xi )

∂xj

)2

,

i.e., under the null hypothesis H0 we approximate the right-hand side of (12.11)
by the empirical distribution of (�̂(t)j )1≤t≤T .

We close this section we some remarks.

Remarks 12.17

• The quality of the empirical approximation (�̂(t)j )1≤t≤T to the limiting distribu-

tion of �j will depend on how well we cover the index set C1
B(X , ν). We could

try to use covering theorems to control the accuracy. However, this is often too
challenging. The simulation approach presented above suffers from not giving
us any control on the quality of this covering, nor is it clear how the Sobolev
norm condition for B in (12.8) can efficiently be checked during the simulation
approach. We highlight that this Sobolev norm bound ‖fk‖'q0/2(+2,2 ≤ B is
crucial when we want to empirically estimate the distribution of �j ; under
special assumptions Horel–Giesecke [190] prove in their Theorem 4 that �j
scales as B2. Thus, if we do not have any control over the Sobolev norm of the
sampled shallow FN networks fk , the above simulation algorithm is not useful to
approximate the limiting distribution in Proposition 12.16.

• The assumptions of Proposition 12.16 require that X ∼ ν has a strictly positive
density over the entire feature space X (excluding the intercept component). This
is necessary to be able to capture any non-zero partial derivative ∂μ0(x)/∂xj over
the entire feature space X . In practical applications, where we rely on a finite
sample (Xi )1≤i≤n, this may be problematic and needs some care. For instance,
there may be the situation where the samples cluster in two disjoint regions, say
C1 ⊂ X and C2 ⊂ X , because we may have ν(C1 ∪ C2) ≈ 1. That is, in that
case we rarely have observations Xi not lying in one of these two clusters. If
∂μ0(x)/∂xj = 0 on these two clusters x ∈ C1 ∪ C2, but if μ0 has a very steep
slope between the two clusters (i.e., if they are really different in terms of μ0),
then the test on this finite sample will not find the significant slope.

• The distribution X ∼ ν of the features is assumed to be absolutely continuous on
the hypercube [0, 1]q0, this is not fulfilled for binary and categorical features.

• Another question is how the test of Proposition 12.16 is affected by collinearity in
feature components. Note that we only test one component at a time. Moreover,
we would like to highlight the j -dependency in the limiting random variable�j .
This dependency is induced by the properties of the feature distribution ν that
may not be exchangeable in the components of x.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
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Chapter 13
Appendix B: Data and Examples

This appendix presents and describes the data sets used.

13.1 French Motor Third Party Liability Data

We consider a French motor third party liability (MTPL) claims data set. This data
set is available through the R library CASdatasets1 being hosted by Dutang–
Charpentier [113]. The specific data sets chosen from CASdatasets are called
FreMTPL2freq and FreMTPL2sev, the former contains the insurance policy
and claim frequency information and the latter the corresponding claim severity
information.2

Before we can work with this data set we perform data cleaning. It has been
pointed out by Loser [259] that the claim counts on the insurance policies with
policy IDs ≤ 24500 in FreMTPL2freq do not seem to be correct because these
claims do not have claim severity counterparts in FreMTPL2sev. For this reason
we work with the claim counts extracted from the latter file. In Listing 13.1 we give
the code used for data cleaning.3 In this code we merge FreMTPL2freq with the
aggregated severities on each insurance policy and the corresponding claim counts
are received from FreMTPL2sev, this is done on lines 2–11 of Listing 13.1. A

1 CASdatasets website: http://cas.uqam.ca/.
2 We use CASdatasets version 1.0–8 which has been packaged on 2018-05-20. This version
uses for the 22 French regions the labels R11, . . . ,R94. In later versions of CASdatasets these
labels have been replaced by the region names, in this transformation the labels R31 (Nord-Pas-
de-Calais) and R41 (Lorraine) have been merged to one region called Nord-Pas-de-Calais. We
believe that this is an error and therefore prefer to work with an older version of CASdatasets.
This older version can be downloaded in R with library(OpenML), library(farff),
freMTPL2freq <- getOMLDataSet(data.id = 41214)$data
3 The code in Listing 13.1 is a modified version of the R code provided by Loser [259].

© The Author(s) 2023
M. V. Wüthrich, M. Merz, Statistical Foundations of Actuarial Learning and its
Applications, Springer Actuarial, https://doi.org/10.1007/978-3-031-12409-9_13
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further inspection of the data indicates that policies with more than 5 claims may be
data error because they all seem to belong to the same driver (and they have very
short exposures).4 For this reason we drop these records on line 12. On line 13 we
censor exposures at one accounting year (since these policies are active within one
calendar year). Finally, on lines 15–16 we re-level the VehBrands.5 All subsequent
analysis is based on this cleaned data set.

Listing 13.1 Data cleaning applied to the French MTPL data set

1 #
2 data(freMTPL2freq)
3 dat <- freMTPL2freq[, -2]
4 dat$VehGas <- factor(dat$VehGas)
5 data(freMTPL2sev)
6 sev <- freMTPL2sev
7 sev$ClaimNb <- 1
8 dat0 <- aggregate(sev, by=list(IDpol=sev$IDpol), FUN = sum)[c(1,3:4)]
9 names(dat0)[2] <- "ClaimTotal"

10 dat <- merge(x=dat, y=dat0, by="IDpol", all.x=TRUE)
11 dat[is.na(dat)] <- 0
12 dat <- dat[which(dat$ClaimNb <=5),]
13 dat$Exposure <- pmin(dat$Exposure, 1)
14 sev <- sev[which(sev$IDpol %in% dat$IDpol), c(1,2)]
15 dat$VehBrand <- factor(dat$VehBrand, levels=c("B1","B2","B3","B4","B5","B6",
16 "B10","B11","B12","B13","B14"))

Listing 13.2 Excerpt of the French MTPL data set

1 ’data.frame’: 678007 obs. of 13 variables:
2 $ IDpol : num 1 3 5 10 11 13 15 17 18 21 ...
3 $ Exposure : num 0.1 0.77 0.75 0.09 0.84 0.52 0.45 0.27 0.71 0.15 ...
4 $ Area : Factor w/ 6 levels "A","B","C","D",..: 4 4 2 2 2 5 5 3 3 2 ...
5 $ VehPower : int 5 5 6 7 7 6 6 7 7 7 ...
6 $ VehAge : int 0 0 2 0 0 2 2 0 0 0 ...
7 $ DrivAge : int 55 55 52 46 46 38 38 33 33 41 ...
8 $ BonusMalus: int 50 50 50 50 50 50 50 68 68 50 ...
9 $ VehBrand : Factor w/ 11 levels "B1","B2","B3",..: 9 9 9 9 9 9 9 9 9 9 ...

10 $ VehGas : Factor w/ 2 levels "Diesel","Regular": 2 2 1 1 1 2 2 1 1 1 ...
11 $ Density : int 1217 1217 54 76 76 3003 3003 137 137 60 ...
12 $ Region : Factor w/ 22 levels "R11","R21","R22",..: 18 18 3 15 15 8 8 ...
13 $ ClaimTotal: num 0 0 0 0 0 0 0 0 0 0 ...
14 $ ClaimNb : num 0 0 0 0 0 0 0 0 0 0 ...
15 ####
16 ’data.frame’: 26383 obs. of 2 variables:
17 $ IDpol : int 1552 1010996 4024277 4007252 4046424 4073956 4012173 ...
18 $ ClaimAmount: num 995 1128 1851 1204 1204 ...

Listing 13.2 gives an excerpt of the cleaned French MTPL data set, lines 2–
14 give the insurance policy and claim counts information, and lines 17–18

4 Short exposure policies may also belong to a commercial car rental company.
5 The data set FreMTPLfreq of CASdatasets is a subset of FreMTPL2freq with slightly
changed feature components, for instance, the former data set contains car brand names in a more
aggregated version than the latter, see Table 13.2, below.
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display the individual claim amounts. We have 9 feature components on lines 4–
12 (1 component is binary, 3 components are categorical, and 5 components are
continuous), an exposure variable on line 3, and claim information on lines 13–14
and 18. In total we have 26’383 claims on 678’007 insurance policies.

We start by giving a descriptive analysis of the data, this closely follows Noll et
al. [287]. We have the following insurance policy information:

1. IDpol: policy number (unique identifier);
2. Exposure: total exposure in yearly units (years-at-risk) and within (0, 1];
3. Area: area code (categorical, ordinal with 6 levels);
4. VehPower: power of the car (continuous);
5. VehAge: age of the car in years;
6. DrivAge: age of the (most common) driver in years;
7. BonusMalus: bonus-malus level between 50 and 230 (with entrance level

100);
8. VehBrand: car brand (categorical, nominal with 11 levels), see also

Table 13.2;
9. VehGas: diesel or regular fuel car (binary);

10. Density: density of population per km2 at the location of the living place of
the driver;

11. Region: regions in France (prior to 2016), see also Fig. 13.1 (categorical).

We start by describing the Exposure. The Exposure measures the duration of
an insurance policy in yearly units; sometimes it is also called years-at-risk. The
shortest exposure in our data set is 0.0027 which corresponds to 1 day, and the
longest exposure is 1 which corresponds to 1 year. Figure 13.2 (lhs, middle) shows
a histogram and a boxplot of these exposures. In view of the histogram we conclude
that roughly 1/4 of all policies have a full exposure of 1 calendar year, and all
other policies are only partly exposed during the calendar year. From a practical
insurance point of view this high ratio of partly exposed policies seems rather

Fig. 13.1 The 22 regions in
France between 1982 and
2015

22 French regions from 1982−2015

Île−de−France R11
Champagne−Ardenne R21
Picardie R22
Haute−Normandie R23
Centre R24
Basse−Normandie R25
Bourgogne R26
Nord−Pas−de−Calais R31
Lorraine R41
Alsace R42
Franche−Comté R43
Pays de la Loire R52
Bretagne R53
Poitou−Charentes R54
Aquitaine R72
Midi−Pyrénées R73
Limousin R74
Rhône−Alpes R82
Auvergne R83
Languedoc−Roussillon R91
Provence−Alpes−Côte d'Azur R93
Corse R94
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Fig. 13.2 (lhs) Histogram of Exposure, (middle) boxplot of Exposure, (rhs) number of
observed claims ClaimNb of the French MTPL data

Table 13.1 Split of the
portfolio w.r.t. the number of
claims

Number of claims 0 1 2 3 4 5

Number of policies 653’069 23’571 1’298 62 5 2

Total exposure 341’090 16’315 909 42 2 1

unusual. A further inspection of the data indicates that policy renewals during the
year account for two separate records in the data set. Of course, such split policies
should be merged to one yearly policy. Unfortunately, we do not have the necessary
information to perform this merger, therefore, we need to work with the data as it is.
In Table 13.1 and Fig. 13.2 (rhs) we split the portfolio w.r.t. the number of claims.
On 653’069 insurance policies (amounting to a total exposure of 341’090 years-
at-risk) we do not have any claim, and on the remaining 24’938 policies (17’269
years-at-risk) we have at least one claim. The overall portfolio claim frequency
(w.r.t. Exposure) is λ = 7.35%.
We study the split of this overall frequency λ = 7.35% across the different
feature levels. This empirical analysis is crucial for the model choice in regression
modeling.6 For the empirical analysis we provide 3 different types of graphs for each
feature component (where applicable), these are given in Figs. 13.3, 13.4, 13.5, 13.6,
13.7, 13.8, 13.9, 13.10, and 13.11. The first graph (lhs) gives the split of the total
exposure to the different feature levels, the second graph (middle) gives the average
feature value in each French region (green meaning low and red meaning high),7

and the third graph (rhs) gives the observed average frequency per feature level. This
observed frequency is obtained by dividing the total number of claims by the total
exposure per feature level. The frequencies are complemented by confidence bounds
of two standard deviations (shaded area). These confidence bounds correspond to
twice the estimated standard deviations. The standard deviations are estimated under

6 The empirical analysis in these notes differs from Noll et al. [287] because data cleaning has been
done differently here, we refer to Listing 13.1.
7 We acknowledge the use of UNESCO (1987) database through UNEP/GRID-Geneva for the
French map.
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Fig. 13.3 (lhs) Histogram of exposures per Area code, (middle) average Area code per
Region, we map (A, . . . , F ) �→ (1, . . . , 6), (rhs) observed frequency per Area code
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Fig. 13.4 (lhs) Histogram of exposures per VehPower, (middle) average VehPower per
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Fig. 13.5 (lhs) Histogram of exposures per VehAge (censored at 20), (middle) average VehAge
per Region, (rhs) observed frequency per VehAge
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Fig. 13.6 (lhs) Histogram of exposures per DrivAge (censored at 90), (middle) average
DrivAge per Region, (rhs) observed frequency per DrivAge (y-scale is different compared
to the other frequency plots)
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Fig. 13.7 (lhs) Histogram of exposures per BonusMalus level (censored at 150), (middle)
average BonusMalus level per Region, (rhs) observed frequency per BonusMalus level (y-
scale is different compared to the other frequency plots)

a Poisson assumption, thus, they are obtained by ±2
√
λk/Exposurek , where

λk is the observed frequency and Exposurek is the total exposure for a given
feature level k. We note that in all frequency plots the y-axis ranges from 0% to
20%, except in the BonusMalus plot where the maximum is set to 60%, and the
DrivAge plot where the maximum is set to 40%. From these plots we conclude
that some levels have only a small underlying Exposure; BonusMalus leads to
the highest variability in frequencies followed by DrivAge; and there is quite some
heterogeneity.
Table 13.2 gives the assignment of the different VehBrand levels to car
brands. This list has been compiled from the two data sets FreMTPLfreq
and FreMTPL2freq contained in the R package CASdatasets [113], see
Footnote 5.
Next, we analyze collinearity between the feature components. For this we calculate
Pearson’s correlation and Spearman’s Rho for the continuous feature components,
see Table 13.3. In general, these correlations are low, except for DrivAge
vs. BonusMalus. Of course, the latter is very sensible because a BonusMalus
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Fig. 13.8 (lhs) Histogram of exposures per VehBrand, (rhs) observed frequency per
VehBrand; for VehBrand assignment we refer to Table 13.2
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Table 13.2 VehBrand
assignment

Renault, Nissan and Citroën B1 / B2

Volkswagen, Audi, Skoda and Seat B3

Opel, General Motors and Ford B4 / B5

Fiat B6

Mercedes, Chrysler and BMW B10 / B11

Japanese (except Nissan) and Korean cars B12

Other cars B13 / B14

Table 13.3 Correlations in feature components: top-right shows Pearson’s correlation; bottom-
left shows Spearman’s Rho; Density is considered on the log-scale; significant correlations are
boldface

VehPower VehAge DrivAge BonusMalus Density

VehPower −0.01 0.03 −0.08 0.01

VehAge 0.00 −0.06 0.08 −0.10

DrivAge 0.04 −0.08 −0.48 −0.05

BonusMalus −0.07 0.08 −0.57 0.13

Density −0.01 −0.10 −0.05 0.14

level below 100 needs a certain number of driving years without claims. We give the
corresponding boxplot in Fig. 13.12 (lhs) which confirms this negative correlation.
Figure 13.12 (rhs) gives the boxplot of log-Density vs. Area code. From this
plot we conclude that the area code has likely been set w.r.t. the log-Density.
For our regression models this means that we can drop the area code information,
and we should only work with Density. Nevertheless, we will use the area code
to show what happens in case of collinear feature components, i.e., if we replace
(A, . . . , F ) �→ (1, . . . , 6).
Figure 13.13 illustrates each continuous feature component w.r.t. the different
VehBrands. Vehicle brands B10 and B11 (Mercedes, Chrysler and BMW) have
more VehPower than other cars, B10 being more likely a diesel car, and vehicle
brand B12 (Japanese and Korean cars) has comparably new cars in more densely
populated French regions.
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Fig. 13.12 Boxplots (lhs) BonusMalus vs. DrivAge, (rhs) log-Density vs. Area code;
these plots are inspired by Fig. 2 in Lorentzen–Mayer [258]

More formally, the strength of dependence between categorical variables can be
measured by Cramér’s V . Cramér’s V is based on the χ2-test of independence
on contingency tables. We briefly explain this. Assume we have two-dimensional
categorical features x = (x1, x2) ∈ X havingm1 andm2 levels, respectively. Let px

describe the probability on X that a randomly chosen insurance policy takes feature
x, and let px1 and px2 be the marginal distributions of px . If the two components of
x are independent with these two marginals, then we have special (independence)
distribution

πx = px1px2 for all x = (x1, x2) ∈ X .

The χ2-test for independence now analyzes px vs. πx . Assume we have n
observations. Denote by nx = nx1,x2 the number of instances that have feature
x = (x1, x2), and let nx1,· and n·,x2 be the corresponding marginal observations.
The χ2-test statistics is given by

χ2 =
∑

x=(x1,x2)∈X

(
nx − nx1 ,· n·,x2

n

)2

nx1,· n·,x2
n

.

Under the null hypothesis of having independence between the components of x,
the test statistics χ2 converges in distribution to a χ2-distribution with (m1m2 − 1)
degrees of freedom if we let the number of independently drawn instances go to
infinity. Seven different proofs of this statement are given in Benhamou–Melot [30].
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Density, VehGas for each car brand VehBrand, individually
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Table 13.4 Cramér’s V for the categorical feature components vs. the categorized continuous
components

VehPower VehAge DrivAge BonusMalus log-Density VehGas Region

VehBrand 0.16 0.17 0.06 0.03 0.05 0.12 0.13

Region 0.04 0.09 0.05 0.04 0.24 0.09

Area 0.87

R11 R21 R22 R23 R24 R25 R26 R31 R41 R42 R43 R52 R53 R54 R72 R73 R74 R82 R83 R91 R93 R94

VehBrands in French Regions
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Fig. 13.14 VehBrands in the different French Regions

We scale the test statistics to the interval [0, 1] by dividing it by the comonotonic
(maximal dependent) case and by the sample size n. This motivates Cramér’s V

V =
√

χ2/n

min{m1 − 1,m2 − 1} ∈ [0, 1].

Section 7.2.3 of Cohen [78] gives a rule of thumb for small, medium
and large dependence. Cohen [78] calls the association between x1 and x2
small if V

√
min{m1 − 1,m2 − 1} is less 0.1, it is of medium strength for

V
√

min{m1 − 1,m2 − 1} of size 0.3, and it is a large effect if this value is around
0.5. Our results are presented in Table 13.4. Clearly, there is some association
between VehBrand and both VehPower and VehAge, this can also be seen
from Fig. 13.13, for the remaining variables the dependence is somewhat weaker.
Not surprisingly, Cramér’s V shows the largest value between Region and log-
Density.
In Fig. 13.14 we show the VehBrands in the different French Regions, Cramér’s
V is 0.13 for these two categorical variables, multiplying with

√
11 − 1 gives a

value bigger than 0.4 which is a considerable association according to Cohen [78].
We note that in some regions the French car brands B1 and B2 are very dominant,
whereas on the Isle of Corse (R94) 80% of the cars in our portfolio are Japanese
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Fig. 13.15 Empirical density and log-log plots of the observed claim amounts

or Korean cars B12. Our portfolio has its biggest exposure in Region R24, see
Fig. 13.11, in this region French cars are predominant.
Next, we study the claim sizes of this French MTPL example. Figure 13.15 shows
the empirical density plot and the log-log plot. These two plots already illustrate the
main difficulty we often face in claim size modeling. From the empirical density
plot we observe that there are many payments of fixed size (red vertical lines) which
do not match any absolutely continuous distribution function assumption. The log-
log plot shows heavy-tailedness because we observe asymptotically a straight line
with negative slope on the log-scale, this indicates regularly varying tails and, thus,
the EDF is not a suitable model on the original observation scale.
Figure 13.16 gives the boxplots of the claim sizes per feature level (we omit the
claims outside the whiskers because heavy-tailedness would distort the picture). The
empirical mean in orange is much bigger than the median in red color, which also
expresses the heavy-tailedness. From these plots we conclude that the claim sizes
seem less sensitive in feature values which may question the use of a regression
model for claim sizes.
Figure 13.17 shows the density plots for different feature levels. Interestingly, it
seems that the features determine the sizes of the modes, for instance, if we focus
on Area, Fig. 13.17 (top-left), we see that the area codes mainly influence the sizes
of the modes. This may be interpreted by modes corresponding to different claim
types which occur at different frequencies among the area codes.

13.2 Swedish Motorcycle Data

Our second example considers the Swedish motorcycle data which originally
has been used in Ohlsson–Johansson [290]. It is available through the R library
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Fig. 13.16 Boxplots of claim sizes per feature level: these plots omit the claims outside the
whiskers; red color shows the median and orange color the empirical mean

CASdatasets [113], and it is called swmotorcycle. Listing 13.3 shows the
data cleaning that we have used, and Listing 13.4 gives an excerpt of the cleaned
data.
We briefly describe the data. The data considers comprehensive insurance for
motorcycles. This covers loss or damage of motorcycles other than collision, e.g.,
caused by theft, fire or vandalism. The data considers aggregated claims on feature
levels for years 1994–1998. We have claims on 656 out of the 62’036 different
features, thus, only slightly more than 1% of all feature combinations suffer a claim
in the considered period.
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Fig. 13.17 Empirical claim size densities split w.r.t. the different levels of the feature components

We start by describing the available variables on lines 2–10 of Listing 13.4:

1. OwnerAge: age of motorcycle owner in {18, . . . , 70} years (we censor at 70
because of scarcity of data above);

2. Gender: gender of motorcycle owner either being Female or Male;
3. Area: 7 geographical Swedish zones being (1) central parts of Sweden’s three

largest cities, (2) suburbs and middle-sized towns, (3) lesser towns except those
in zones (5)–(7), (4) small towns and countryside except those in zones (5)–(7),
(5) Northern towns, (6) Northern countryside, and (7) Gotland (Sweden’s largest
island);

4. RiskClass: 7 ordered motorcycle classes received from the so-called EV ratio
defined as (Engine power in kW × 100) / (Vehicle weight in kg + 75kg);

5. VehAge: age of motorcycle in {0, . . . , 30} years (we censor at 30);
6. BonusClass: ordered bonus-malus class from 1 to 7, entry level is 1;
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Listing 13.3 Data cleaning applied to the Swedish motorcycle data set

1 library(CASdatasets)
2 data(swmotorcycle)
3 mcdata <- swmotorcycle
4 mcdata$Gender <- as.factor(mcdata$Gender)
5 mcdata$Area <- as.factor(mcdata$Area)
6 mcdata$Area <- factor(mcdata$Area,levels(mcdata$Area)[c(1,7,3,6,5,4,2)])
7 mcdata$Area <- c("Zone 1","Zone 2","Zone 3","Zone 4","Zone 5",
8 "Zone 6","Zone 7")[as.integer(mcdata$Area)]
9 mcdata$Area <- as.factor(mcdata$Area)

10 mcdata$RiskClass <- as.factor(mcdata$RiskClass)
11 mcdata$RiskClass <- factor(mcdata$RiskClass,
12 levels(mcdata$RiskClass)[c(1,6,7,3,4,5,2)])
13 mcdata$RiskClass <- as.integer(mcdata$RiskClass)
14 mcdata$BonusClass <- as.integer(as.factor(mcdata$BonusClass))
15 #
16 mcdata <- mcdata[which(mcdata$OwnerAge>=18),] # only minimal age 18
17 mcdata$OwnerAge <- pmin(70, mcdata$OwnerAge) # set maximal age 70
18 mcdata$VehAge <- pmin(30, mcdata$VehAge) # set maximal motorcycle age 30
19 mcdata <- mcdata[which(mcdata$Exposure>0),] # only positive exposures

Listing 13.4 Excerpt of the Swedish motorcycle data set

1 ’data.frame’: 62036 obs. of 9 variables:
2 $ OwnerAge : num 18 18 18 18 18 18 18 18 18 18 ...
3 $ Gender : Factor w/ 2 levels "Female","Male": 1 1 1 1 1 1 1 1 1 1 ...
4 $ Area : Factor w/ 7 levels "Zone 1","Zone 2",..: 1 1 1 1 2 2 2 3 ...
5 $ RiskClass : int 1 2 3 3 1 1 3 1 1 1 ...
6 $ VehAge : num 8 11 9 9 11 12 24 4 6 6 ...
7 $ BonusClass : int 2 2 3 4 1 1 2 1 1 2 ...
8 $ Exposure : num 1 0.778 0.499 0.501 0.929 ...
9 $ ClaimNb : int 0 0 0 0 0 0 0 0 0 0 ...

10 $ ClaimAmount: int 0 0 0 0 0 0 0 0 0 0 ...

7. Exposure: total exposure in yearly units, these exposures are aggregated for
given feature combinations, resulting in total exposures [0.0274, 31.3397], the
shortest entry referring to 10 days and the longest one to more than 31 years;

8. ClaimNb: number of claims Ni for a given feature;
9. ClaimAmount: total claim amount for a give feature (aggregated over all

claims).

We start with a descriptive and exploratory analysis of the Swedish motorcycle
data of Listing 13.4. We have n = 62′036 different feature combinations with
positive Exposure. This Exposure is aggregated over individual policies with a
fixed feature combination. We denote by Ni the number of claims on feature i, this
corresponds to ClaimNb, and the total claim amount ClaimAmount is denoted
by Si = ∑Ni

j=1 Zi,j , where Zi,j are the individual claim sizes on feature i (in case

of claims). The empirical claim frequency is λ̄ =∑n
i=1Ni/

∑n
i=1 vi = 1.05%, and

the average claim size is μ̄ =∑n
i=1 Si/

∑n
i=1Ni = 24′641 Swedish crowns SEK.



568 13 Appendix B: Data and Examples

−
6

−
4

−
2

0
2

boxplot of Exposure (62036 policies)
ex

po
su

re
 o

n 
lo

g 
sc

al
e

0 1 2

histogram number of claims per feature

number of claims
fr

eq
ue

nc
y

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0
Fig. 13.18 (lhs) Boxplot of Exposure on the log-scale (the horizontal line corresponds to 1
accounting year), (rhs) histogram of the number of observed claims ClaimNb per feature of the
Swedish motorcycle data

Figure 13.18 shows the boxplot over all Exposures and the claim counts on all
insurance policies. We note that insurance claims are rare events for this product,
because the empirical claim frequency is only λ̄ = 1.05%.
Figures 13.19 and 13.20 give the marginal total exposures (split by gender), the
marginal claim frequencies and the marginal average claim amounts for the covari-
ate components OwnerAge, Area, RiskClass, VehAge and BonusClass.
We observe that we have a very imbalanced portfolio between genders, only 11%
of the total exposure is coming from females. The empirical claim frequency of
females is 0.86% and the one of males is 1.08%. We note that the female claim
frequency comes from (only) 61 claims (based on an exposure for female of 7’094
accounting years, versus 57’679 for male). Therefore, it is difficult to analyze
females separately, and all marginal claim frequencies and claim sizes in Figs. 13.19
and 13.20 (middle and rhs) are analyzed jointly for both genders. If we run a simple
Poisson GLM that only involves Gender as feature component, it turns out that
the female frequency is 20% lower than the male frequency (remember we have
the balance property on each dummy variable, see Example 5.12), but this variable
should not be kept in the model on a 5% significance level. The same holds for claim
amounts.

The empirical marginal frequencies in Figs. 13.19 and 13.20 (middle) are
complemented with confidence bands of ±2 standard deviations. From the plots
we conclude that we should keep the explanatory variables OwnerAge, Area,
RiskClass and VehAge, but the variable BonusClass does not seem to have
any predictive power. At the first sight, this seems surprising because the bonus class
encodes the past claims history. The reason that the bonus class is not needed for our
claims is that we consider comprehensive insurance for motorcycles covering loss
or damage of motorcycles other than collision (for instance, caused by theft, fire or
vandalism), and the bonus class encodes collision claims.
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Fig. 13.19 (Top, middle and bottom rows) OwnerAge, Area, RiskClass: (lhs) histogram of
exposures (split by gender), (middle) observed claim frequency, (rhs) boxplot of observed average
claim amounts μ̄i = Si/Ni of features with Ni > 0 (on log-scale)

For a regression analysis Zones 5 to 7 should be merged because of small
exposures and a similar behavior, the same applies to RiskClass 6 and 7, and
VehAge above 20.
Figure 13.21 shows the correlations between the features: (top) correlations between
continuous features, (bottom), dependence between continuous features and the
categorical Area features. We have some dependence, for instance, in Zone 1
(three largest Swedish cities) the motorcycles are more light (RiskClass) and
less old. Older people drive less heavy motorcycles that are more old, and older
motorcycles are less heavy.
Figure 13.22 gives the empirical density, empirical distribution and log-log plot of
average claim amounts μ̄i = Si/Ni . From the log-log plot we conclude that the
average claim amounts are not heavy-tailed for this motorcycle insurance product.
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Fig. 13.20 (Top and bottom rows) VehAge, BonusClass: (lhs) histogram of exposures (split
by gender), (middle) observed claim frequency, (rhs) boxplot of observed average claim amounts
μ̄i = Si/Ni of features with Ni > 0 (on log-scale)

13.3 Wisconsin Local Government Property Insurance Fund

The third example considers property insurance claims of the Wisconsin Local
Government Property Insurance Fund (LGPIF). This data8 has been made available
through the book project of Frees [135],9 and is also used in Lee et al. [236]. The
Wisconsin LGPIF is an insurance pool that is managed by the Wisconsin Office
of the Insurance Commissioner. This fund provides insurance protection to local
governmental institutions such as counties, schools, libraries, airports, etc. It insures
property claims for buildings and motor vehicles, and it excludes certain natural and
man made perils like flood, earthquakes or nuclear accidents. We give a description
of the data (we have applied some data cleaning to the original data).
The special feature of this data is that we have a short claim description on line 11
of Listing 13.5. This description will allow us to better understand the claim type
beyond just knowing the hazard type that has been affected.
Figure 13.23 gives the empirical density (upper-truncated at 50’000) and the log-log
plot of the observed LGPIF claim amounts. Most claims are below 10’000, however,
the log-log plot shows clearly that the data is heavy-tailed, the largest claim being

8 https://github.com/OpenActTexts/Loss-Data-Analytics/tree/master/Data.
9 https://ewfrees.github.io/Loss-Data-Analytics/.
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Fig. 13.22 (lhs) Empirical density (middle) empirical distribution and (rhs) log-log plot of average
claim amounts μ̄i = Si/Ni of features with Ni > 0

12’922’218 and 13 claims being above 1 million. These claims are further described
by the features given in Listing 13.5.

In our example we will not focus on modeling the claim sizes, but we rather
aim at predicting the hazard types from the claim descriptions. There are 9 different
hazard types: Fire, Lightning, Hail, Wind, WaterW, WaterNW, Vehicle, Vandalism
and Misc. The last label contains all claims that cannot be allocated to one of
the previous hazard types, and WaterW refers to weather related water claims and
WaterNW to the non-weather related ones. If we only focus on this latter problem
we have more data available as there is a training data set and a validation data



572 13 Appendix B: Data and Examples

0 10000 20000 30000 40000 500000.
00

00
0

0.
00

00
5

0.
00

01
0

0.
00

01
5

0.
00

02
0

empirical density of claim amounts

claim amounts

em
pi

ric
al

 d
en

si
ty

0 5 10 15

−
8

−
6

−
4

−
2

0

log−log plot of claim amounts

logged claim amounts
lo

gg
ed

 s
ur

vi
va

l p
ro

ba
bi

lit
y

log 1K
log 10K
log 100K
log 1M

Fig. 13.23 (lhs) Empirical density (upper-truncated at 50’000), (rhs) log-log plot of the observed
LGPIF claim amounts

Listing 13.5 Excerpt of the Wisconsin LGPIF data set

1 ’data.frame’: 5424 obs. of 10 variables:
2 $ PolicyNum : int 120002 120003 120003 120003 120003 120003 120003 ...
3 $ Year : int 2010 2007 2008 2007 2009 2010 2007 2007 2009 2007 ...
4 $ Claim : num 6839 2085 8775 600 34610 ...
5 $ Deduct : int 1000 5000 5000 5000 5000 5000 5000 5000 5000 5000 ...
6 $ EntityType : Factor w/ 6 levels "City","County",..: 2 2 2 2 2 2 2 2 2 2 ...
7 $ CoverageCode: Factor w/ 13 levels "CE","CF","CS",..: 12 12 11 11 11 12 ...
8 $ Fire5 : int 4 0 0 0 0 0 0 0 0 0 ...
9 $ CountyCode : Factor w/ 72 levels "ADA","ASH","BAR",..: 2 3 3 3 3 3 3 3...

10 $ Hazard : Factor w/ 9 levels "Fire","Hail",..: 3 3 5 5 9 6 3 3 3 3 ...
11 $ Description : chr "lightning damage" "lightning damage at Comm. Center" ...

set with hazard types and claim descriptions.10 In total we have 6’031 such claim
descriptions, see Listing 13.6, which are studied in our text recognition Chap. 10.

Listing 13.6 Excerpt of the Wisconsin LGPIF claim descriptions

1 ’data.frame’: 6031 obs. of 2 variables:
2 Hazard : Factor w/ 9 levels "Fire","Hail",..: 1 3 3 5 5 9 3 6 ...
3 Description: chr "fire damage at Town Hall"
4 "lightning damage at water tower" ...

10 https://github.com/OpenActTexts/Loss-Data-Analytics/tree/master/Data.
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13.4 Swiss Accident Insurance Data

Our next example considers Swiss accident insurance data.11 This data set is not
publicly available. Swiss accident insurance is compulsory for employees, i.e., by
law each employer has to sign an insurance contract to protect the employees against
accidents. This insurance cover includes both work and leisure accidents, and it
covers medical expenses and daily allowance. Listing 13.7 gives an excerpt of the
data. Line BU indicates whether we have a workplace or a leisure accident, line
10 gives the medical expenses and line 12 shows the allowance expenses. In the
subsequent analysis we only consider medical expenses.

Listing 13.7 Excerpt of the Swiss accident insurance data set

1 ’data.frame’: 339500 obs. of 11 variables:
2 $ Id : int 1 2 3 4 5 6 7 8 9 10 ...
3 $ BU : Factor w/ 2 levels "1","2": 1 1 2 2 2 1 2 2 2 1 ...
4 $ Sector : Factor w/ 24 levels "5","12","13",..: 5 10 13 7 12 13 4 21 1 ...
5 $ AccQuart : int 3 2 1 3 4 4 1 2 1 3 ...
6 $ RepDel : num 0 0 0 0 1 0 0 0 0 0 ...
7 $ Age : num 45 20 20 20 60 55 30 25 20 20 ...
8 $ InjType : Factor w/ 19 levels "1","2","3","4",..: 7 6 4 13 16 2 6 4 4 ...
9 $ InjPart : Factor w/ 35 levels "1","2","3","4",..: 20 28 28 20 14 23 2 ...

10 $ Claim : num 562 6675 700 57 2382 ...
11 $ NumbPaym : num 2 2 2 1 1 3 1 1 1 1 ...
12 $ Allowance: num 2345 5554 21 0 395 ...

Sector indicates the labor sector of the insured company, AccQuart gives the
accident quarter since leisure claims have a seasonal component, RepDel gives the
reporting delay in yearly units, Age is the age of the injured (in 5 years buckets),
and InjType and InjPart denote the injury type and the injured body part.
Figure 13.24 gives the empirical density (upper-truncated at 10’000) and the log-
log plot of the observed Swiss accident insurance claim amounts. Most claims are
below 5’000, however, the log-log plot shows some heavy-tailedness, the largest
claim exceeding 1’300’000 CHF.
Figure 13.25 shows the average claim amounts split w.r.t. the different feature
components (top) Sector, AccQuart, RepDel, (bottom) Age, InjType,
InjPart, and moreover, split by work and leisure accidents (in cyan and gray
in the colored version). Typically, leisure accidents are more numerous and more
expensive on average than accidents at the work place. From Fig. 13.25 (top, left)
we observe considerable variability in average claim sizes between the different
labor sectors (cyan bars), whereas average leisure claim sizes (gray bars) are similar

11 https://www.unfallstatistik.ch/.
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Fig. 13.24 (lhs) Empirical density (upper-truncated at 10’000), (rhs) log-log plot of the observed
Swiss accident insurance claim amounts
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Fig. 13.25 Average claim amounts split w.r.t. the different feature components (top) Sector,
AccQuart, RepDel, (bottom) Age, InjType, InjPart, and split by work and leisure
accidents (cyan/gray in the colored version)

across the different labor sectors. Average claim sizes considerably differ between
injury types and injured body parts (bottom, middle and right), but they do not differ
between work and leisure claims.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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