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Joint Spatial Division and Multiplexing for FDD in Intelligent Reflecting

Surface-assisted Massive MIMO Systems
Anastasios Papazafeiropoulos, Pandelis Kourtessis, Konstantinos Ntontin, Symeon Chatzinotas

Abstract—Intelligent reflecting surface (IRS) is a promising
technology to deliver the higher spectral and energy requirements
in fifth-generation (5G) and beyond wireless networks while
shaping the propagation environment. Such a design can be
further enhanced with massive multiple-input-multiple-output
(mMIMO) characteristics towards boosting the network perfor-
mance. However, channel reciprocity, assumed in 5G systems
such as mMIMO, appears to be questioned in practice by recent
studies on IRS. Hence, contrary to previous works, we consider
frequency division duplexing (FDD) to study the performance of
an IRS-assisted mMIMO system. However, FDD is not suitable
for large number of antennas architectures. For this reason
we employ the joint spatial division and multiplexing (JSDM)
approach exploiting the structure of the correlation of the channel
vectors to reduce the channel state information (CSI) uplink
feedback, and thus, allowing the use even of a large number
of antennas at the base station. JSDM entails dual-structured
precoding and clustering the user equipments (UEs) with the
same covariance matrix into groups. Specifically, we derive the
sum spectral efficiency (SE) based on statistical CSI in terms
of large-scale statistics by using the deterministic equivalent
(DE) analysis while accounting for correlated Rayleigh fading.
Subsequently, we formulate the optimization problem concerning
the sum SE with respect to the reflecting beamforming matrix
(RBM) and the total transmit power, which can be performed at
every several coherence intervals by taking advantage of the slow-
time variation of the large-scale statistics. This notable property
contributes further to the decrease of the feedback overhead.
Numerical results, verified by Monte-Carlo (MC) simulations,
enable interesting observations by elucidating how fundamental
system parameters such as the rank of the covariance matrix and
the number of groups of UEs affect the performance. For example,
the selection of a high rank improves the channel conditioning
but increases the feedback overhead.

Index Terms—Intelligent reflecting surface (IRS), frequency
division duplexing (FDD), achievable spectral efficiency, deter-
ministic equivalents, beyond 5G networks.

I. INTRODUCTION

The stringent requirements of fifth-generation (5G) and
beyond wireless networks in terms of spectral efficiency (SE)
and energy efficiency (EE) could be achieved by relying on
disruptive technologies such as intelligent reflecting surface
(IRS) and massive multiple-input multiple-output (mMIMO)
systems [1]–[3]. In particular, IRS has been recently emerged
as a revolutionary solution supporting high data rates and low
energy consumption [4]–[12]. It consists of nearly passive
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elements, which can create favourable propagation conditions,
especially against obstacles, by a smart adjustment of the
elements’ phase shifts on the impinging waves. Besides IRS,
the mMIMO technology, which has been already deployed in
5G systems [13], assumes a large number of antennas at each
base station (BS) by applying low-complexity linear precoding
techniques. Among its benefits, we meet high directional
beamforming and multiplexing gains while almost cancelling
intra-cell interference in the large antenna regime due to channel
orthogonality.

With respect to IRS, previous works are classified in two
categories depending on whether the phase shifts optimization
relies on the instantaneous channel state information (I-CSI)
[4]–[6] or statistical CSI (S-CSI) [7], [8], [14]–[22]. For
example, in the first category, requiring optimization at each
coherence interval, active and passive beamforming were jointly
considered for single cell multi-antenna systems in [4] while
the EE maximization problem was addressed in [5].

In the other category, phase shifts, optimized based on S-CSI,
do not need to change at every coherence interval but every
several intervals. Compared to I-CSI, this method offers lower
feedback overhead due to less frequent phase optimization,
especially when the numbers of BS antennas and IRS elements
are large. Moreover, the feedback overhead reduction results in
less power consumption by the IRS controller and release of
the capacity requirement for the IRS control link. Furthermore,
a significant computational complexity reduction is achieved
at the BS, which needs to update the phase shift matrix at a
much larger time scale compared to phase shift matrix update
in I-CSI schemes that occurs at a much lower frequency. As
a result, I-CSI designs could be applied to scenarios with
low mobility or fixed location while, in the cases of short
coherence intervals such as high mobility environments, phase
shifts tuning based on S-CSI tends to be an advantageous
solution. On the ground of these benefits, S-CSI design has
attracted a lot of interest [7], [8], [14]–[22]. For instance, in
[8], optimal IRS phase shift design was presented based on
maximization of the ergodic rate. Further, in [14], the authors
studied IRS-assisted multi-pair systems and applied a genetic
algorithm during the phase shifts optimization. Taking into
account for random matrix theory, the authors in [18] studied
the minimum signal-to-interference-plus-noise ratio (SINR)
maximization. In [19], a novel two-timescale beamforming
optimization scheme was proposed, where first S-CSI was
used to optimize the passive beamforming, and then I-CSI was
used to design the active beamforming. In [20], both IRS and
additive transceiver hardware impairments (HIs) were studied.
Note that IRS HIs appear due to the lack of infinite precision
at the IRS phase shifts [23]. In [22], two insightful scenarios,
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namely, a finite number of large IRS and a large number of
finite size IRS were considered towards deriving the coverage
probability and it was shown that the latter implementation
method is more advantageous.

Although most works have relied on a time division duplex
(TDD) design, recent results regarding IRS showed that the
phase shifts depend on the angle of the impinging electro-
magnetic waves, which renders the assumption of channel
reciprocity questionable [24]–[26]. In particular, in [24], it was
shown that channel reciprocity holds only when the incident
angles are small while, in [26], several IRS-assisted approaches
such as the time-varying control and the structural asymmetries,
realizing non-reciprocal channels, were introduced. Hence,
the study of the design and the performance of IRS-assisted
systems, operating in frequency division duplexing (FDD), is
required and is the motivation for the work presented in this
paper.1 Note that many current wireless networks are based
on FDD systems, which contributes further to our interest in
such systems. Moreover, FDD operates more effectively in the
cases of symmetric traffic and delay-sensitive applications [27].
However, FDD cannot be easily deployed in 5G and beyond
systems such as mMIMO because the multi-antenna channel
acquisition makes their implementation prohibitive [28]. In
particular, FDD includes downlink training, which together
with the CSI feedback, present a significant bottleneck as the
number of BS antennas increases. Fortunately, the use of the
joint spatial division and multiplexing (JSDM) approach allows
achieving SE gains similar to mMIMO [29] while it has not
been applied yet in IRS systems.

The concept of JSDM relies on the clustering of UEs into
groups having approximately the same covariance matrix and
the application of dual structured precoding to reduce the
feedback overhead efficiently. The structure of the precoder
consists of a prebeamforming matrix minimizing the inter-
group interference and a linear precoding that depend on
large and small-scale fading, respectively. Specifically, the
large-scale fading is slowly varying because it depends on the
channel second-order statistics such as the channel covariance
matrices, which can be acquired accurately with a low feedback
overhead while the small-scale fading involves instantaneous
CSI. It is worthwhile to mention that the application of JSDM
is particularly justified in IRS-assisted systems since a large
number of IRS elements results in large dimensional channel
matrices that incur further high feedback overhead in FDD
IRS systems.

A. Contributions

The main contributions are summarized as follows.
• Contrary to existing works such as [14]–[22], which relied

on time division duplexing (TDD) transmission for IRS-
assisted systems, we consider FDD. To the best of our
knowledge, there are no prior works accounting for FDD
in IRS and studying its performance except of [30]–[32].
Especially, [30] proposed a cascaded codebook and an

1This observation has been also recognised in [25] as one of the most
interesting topics for future research.

adaptive bit partitioning strategy, [31] considered a two-
way passive beamforming design, and [32] proposed a
dimension reduced channel feedback scheme to reduce
the channel feedback overhead in RIS assisted systems.

• This is the first work applying the concept of JSDM
[29] on IRS-assisted systems to reduce the feedback
overhead being increasingly significant with the numbers
of antennas and IRS elements. In particular, not only do
we study the performance but we also provide system
guidelines concerning the choice of JSDM parameters.
Moreover, we have generalized [29] since we do not
assume equal power among the UEs but perform power
optimization.

• Although many previous works were based on I-CSI
knowledge and independent Rayleigh fading such as [4]–
[6], we move towards consideration of realistic conditions
and we hinge on S-CSI (more advantageous) and corre-
lated Rayleigh fading, which is unavoidable as shown
in [33]. Remarkably, based on the use of S-CSI and the
effective channel, consisting of the cascaded and direct
channels, we achieve to obtain the achievable SE of IRS-
assisted systems similar to conventional systems. Notably,
works considering S-CSI and correlated Rayleigh fading
exist (e.g., [18]–[20], [22]) but none of them has accounted
for the JSDM approach.

• By employing the per-group processing (PGP) method
of the JSDM approach to reduce the feedback overhead
[29], we derive the sum SE of the IRS-assisted mMIMO
systems based on FDD in closed-form by leveraging
results from the deterministic equivalent (DE) analysis
[34]–[36]. The importance of the results in terms of
DEs is noteworthy since DEs provide an analytical tool
resulting in a deterministic expression of the SE based
on a convergent system of fixed-point equations while
avoiding lengthy Monte Carlo simulations.

• We formulate the optimization problem concerning the
sum SE subject to reflecting beamforming matrix (RBM)
and total transmit power constraints. Note that the PGP
method includes the regularized zero-forcing (RZF) pre-
coding and this is the unique work providing RBM
optimization based on S-CSI with such a complex precoder.
Other works such as [18] considered a simple linear
precoding, e.g., maximum ratio transmission (MRT)
precoding. Furthermore, the proposed optimization is
based on deterministic expressions dependent only on
large-scale statistics, and thus, can be performed at every
several coherence intervals and reduce considerably the
signal overhead as required especially in FDD systems.

• We verify the results by Monte-Carlo (MC) simulations
and we shed light on the impact of the system parameters
on the sum SE such as the signal-to-noise ratio (SNR), the
effective covariance rank, the effective channel dimension,
and the number of IRS elements. Especially, the effective
covariance rank and effective channel dimension play
a prominent role by presenting a trade-off between the
feedback reduction and the performance.
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Intelligent reflecting surface IRS
Frequency division duplexing FDD

Time division duplexing TDD
Joint spatial division and multiplexing JSDM

Statistical CSI S-CSI
Instantaneous channel state information I-CSI
Joint spatial division and multiplexing JSDM

Per-group processing PGP
Joint-group processing JGP

Reflecting beamforming matrix RBM
Regularized zero-forcing RZF

Table I: Table of main abbreviations

B. Paper Outline

The remainder of this paper is organized as follows. Sec-
tion II presents the system model of an IRS-assisted massive
MIMO system with correlated Rayleigh fading operating in
FDD and employing the JSDM. Section III provides the
asymptotic performance analysis. Section IV presents the sum
SE maximization with respect to the IRS RBM and the transmit
power. The numerical results are placed in Section V, and
Section VI concludes the paper.

C. Notation

Vectors and matrices are denoted by boldface lower and
upper case symbols, respectively. The notations (·)T, (·)H, and
tr(·) represent the transpose, Hermitian transpose, and trace
operators, respectively. The expectation operator is denoted by
E [·] while diag (a) represents an n× n diagonal matrix with
diagonal elements being the elements of vector a. In the case
of a matrix A, diag (A) denotes a vector with elements the
diagonal elements of A. Also, we denote [x]+ = max(0, x) and
the notations a.s.−−−−→

M→∞
and an ≍ bn with an and bn being two

infinite sequences denote almost sure convergence as M → ∞.
The notations Span(X) and Span⊥(X) denote the column
space of X and its orthogonal complement, respectively. Also,
the notation X[k] denotes the matrix obtained upon removing
the kth column of X, while b ∼ CN (0,Σ) represents a
circularly symmetric complex Gaussian vector with zero mean
and covariance matrix Σ. Finally, Table I provides the main
abbreviations for the sake of convenience.

II. SYSTEM MODEL

We consider the downlink of an IRS-aided multi-user (MU)
multiple-input, single-output (MISO) system with one BS
deployed with M antennas that serve K single-antenna UEs as
shown in Fig. 1. Additionally to possibly existing direct links
between the BS and the UEs, one IRS, implemented with N
nearly passive reflecting elements introducing phase shifts onto
the impinging signal waves, assists the communication. The
size of each IRS element is dH×dV with dV and dH expressing
its vertical height and its horizontal width, respectively. The
management of the phase shifts takes place by a controller that
communicates with the BS through a perfect backhaul link.

As a reasonable design, we assume that the IRS has a line-
of-sight (LoS) with the BS. This assumption can be justified
by assuming that both the BS and IRS are deployed at high

altitude and their locations are fixed. Moreover, we assume that
the UEs are spatially clustered into G groups each having Kg

UEs with the same spatial covariance matrix. The UEs in the
same group are nearly co-located while different groups are
well-separated. Note that this is a practical assumption since
UEs tend to confine in small regions such as buildings. Hence,
there exist K =

∑G
g=1 Kg UEs in total, where the index g

refers to UEs in group g.

Figure 1: An IRS-assisted downlink MU-MISO communication
system with M BS antennas, N IRS elements, and K UEs
clustered into G groups.

A. Channel and Signal Models

Assuming a flat-fading channel, the received Kg×1 complex
baseband signal by the UEs at the gth group is given by

yg =
(
HH

d,g +HH

2,gΦH1

)
x+wg, (1)

where Hd,g = [hd,g1 , . . . ,hd,gKg
] ∈ CM×Kg is the channel

matrix describing the direct channels between the BS and
the UEs in group g with hd,gi ∈ CM×1, i = 1, . . . ,Kg

being the individual UEs channels. Note that the index gi
denotes UE i in group g. The subscripts 1 and 2 corre-
spond to the BS-IRS and IRS-UEs links, respectively. Hence,
H2,g = [h2,g1 , . . . ,h2,gKg

] ∈ CN×Kg describes the channel
between the IRS and the gth group with h2,gi ∈ CN×1,
i = 1, . . . ,Kg. Also, H1 = [h1,1, . . . ,h1,N ] ∈ CM×N

describes the LoS channel between the BS and the IRS with
h1,i ∈ CM×1, i = 1, . . . , N . Moreover, x =

∑G
g=1 Vgdg,

satisfying the power constraint E[∥x∥2] = tr (PVHV) ≤ Pmax,
is the M × 1 linearly precoded transmit signal vector, which
means that ρ = Pmax/σ

2 expresses the transmit SNR. Also,
dg = P

1/2
g sg ∈ CKg×1, where sg ∼ CN

(
0, IKg

)
∈ CKg×1

expresses the vector of data symbols in group g. Note that
V = [V1, . . . ,VG] ∈ CM×K and P = diag (P1, . . . ,PG)

with Pg = diag
(
pg1 , . . . , pgKg

)
for g = 1, . . . , G, where

Vg ∈ CM×Kg is the linear precoding matrix for group g

and Pg =
∑Kg

i=1 pgi is the total available transmit power
for group g with pgk ≥ 0 expressing the signal power
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of UE k. The vector wg ∼ CN
(
0, σ2IKg

)
expresses the

additive white Gaussian noise (AWGN) at the BS. Furthermore,
Φ = diag

(
α1e

jϕ1 , . . . , αNejϕN
)
∈ CN×N is the diagonal

RBM, which expresses the response of the N elements with
ϕn ∈ [0, 2π] and αn ∈ [0, 1] describing the phase and
amplitude coefficient for element n, respectively. Henceforth,
we make the common assumption of maximum reflection
(αn = 1 ∀n) based on recent advances in lossless metasurfaces
[37].

Despite the majority of existing works, e.g., [4], [5],
which assumed independent Rayleigh model, we consider the
practical effect of spatial correlation, which is unavoidable in
realistic IRS-assisted systems [33].2 Also, according to the
JSDM method, despite that the individual effects are different
across different UEs, the covariances matrices, describing the
aggregate result of path-loss and correlation, have been assumed
equal across different UEs of the same group since they are
clustered accordingly. Thus, hd,gk and h2,gk , concerning UE
k in group g, are expressed as

hd,gk = R
1/2
BS,gzd,gk , h2,gk = R

1/2
IRS,gz2,gk , (2)

where RBS,g = βd,gkRBS,gk ∈ CM×M and RIRS,g =
β2,gkRIRS,gk ∈ CN×N represent the deterministic Hermitian-
symmetric positive semi-definite aggregate covariance matrices
at the BS and the IRS respectively corresponding to group g
with tr (RBS,g) = M and tr (RIRS,g) = N . Note that βd,gk ,
RBS,gk and β2,gk , RIRS,gk are the path-losses, correlations of
the BS-UE k and IRS-UE k links in group g, respectively.
This channel modeling is very versatile since it can account for
both correlation (RBS,gk ,RIRS,gk ) and path loss (βd,gk , β2,gk )
simultaneously or either of the two. Certain estimation methods
(see e.g., [38], [39]) allow to obtain the correlation matrices and
the path-losses, which can, thus, be assumed known by the net-
work. Moreover, zd,gk ∼ CN (0, IM ) and z2,gk ∼ CN (0, IN )
express the corresponding fast-fading vectors.

Given that we have assumed that the link between the BS and
the IRS is LoS, H1 must obey the constraint rank (H1) ≥ K
to take advantage of the multi-user transmission. According to
[18], there are several ways to introduce high rank to H1, e.g.,
by deterministic scattering between the BS and the IRS. In
such case, the corresponding channel matrix can be expressed
as

[H1]m,n =
√
β1 exp

(
j
2π

λ
(m− 1) dBS sin θ1,n sinϕ1,n

+ (n− 1) dIRS sin θ2,m sinϕ2,m

)
. (3)

Here, λ is the carrier wavelength, β1 is the path-loss between
the BS and the IRS. Also, dBS and dIRS are the inter-antenna
separation at the BS and inter-element separation at the IRS,
respectively [40]. The elevation and azimuth LoS angles of
departure (AoD) at the BS with respect to IRS element n are
described by θ1,n and φ1,n. The elevation and azimuth LoS
angles of arrival (AoA) at the IRS are described by θ2,n and
φ2,n. The parameters θ1,n and ϕ1,n are generated uniformly

2Contrary to most works on IRS that model correlation by using models
for conventional antenna arrays, we adopt the recently presented correlation
model by the authors in [33], being more suitable for IRS.

between 0 to π and 0 to 2π, respectively, while θ2,n = π−θ1,n
and ϕ2,n = π + ϕ1,n.

Given the RBM, the overall channel vector between the BS
and UE k in group g is written according to (1) as hgk =
hd,gk +H1Φh2,gk , which is distributed as hgk ∼ CN (0,Rg)
with Rg = RBS,g +H1ΦRIRS,gΦ

HHH
1.

It is worthwhile to mention that according to the FDD design
with training for channel estimation in both the uplink and the
downlink, the following procedure takes place, which consists
of two frames. In the uplink frame, each UE first transmits
orthogonal pilot symbols to the BS, where these are used
to estimate the underlying channels. Following this, all the
UEs simultaneously transmit their data to the BS. The data
is detected at the BS using the CSI acquired during the pilot
transmission phase. During the downlink training frame, the
BS transmits orthogonal pilot symbols from its antennas which
are used by the UEs to estimate the corresponding downlink
channel. These channel estimates are then fed back to the BS
by the UEs, and are used by the latter to appropriately precode
the data symbols transmitted simultaneously to all the UEs
during the data transmission phase.

In terms of implementation, two approaches could be
used that present a trade-off between performance and cost.
The first approach assumes that makes no compromise on
the performance but has a higher cost. It requires 2N
IRS elements, where N elements are used for the uplink
transmission and N elements are used for the downlink
transmission. The downlink/uplink group of elements operates
at the corresponding uplink/downlink frequency. Note that
this approach requires all the corresponding hardware to be
doubled.3,4 Without significant performance loss, the whole
procedure can be facilitated by the use of diplexers that allow
the simultaneous processing of two different frequencies in
common FDD systems and also enable the separate phase

3It is true that the gap between the downlink and uplink in 4G/5G systems
is not big. It is even lower than 0.3 GHz. For instance, in LTE Band 1 the
uplink is defined in the range 1.92 − 1.98 GHz, whereas the downlink is
defined in the range 2.11−2.17 GHz [41]”. Hence the gap between the uplink
and downlink is only0.13 GHz. However, please have in mind that normally
the unit cells of the metasurface that a RIS consists of elements having a
narrowband frequency response, unless special designs are manufactured that
create a wideband response. For instance, in Section II of [42] it is stated that:
“For instance, reflective metasurfaces composed of microstrip patch resonators
typically exhibit a fractional bandwidth of less than 5%.” Even if we assume
the worst-case scenario of 5% fractional bandwidth, this would mean that the
frequency response in a downlink FR2 LTE case with carrier frequency 2.14
GHz is limited in the range 0.05 ∗ 2.14 GHz= 0.107 GHz, which is smaller
than the aforementioned 0.13 GHz gap between the uplink and downlink in
LTE. Hence, with the proper design of the intelligent surface unit cells, the
frequency response of the unit cells dedicated for the two bands, uplink and
downlink, can be such that there is no interference from one band to the other.

4The proposed design concerns 5G and beyond networks, where possibly
the frequency interval between the uplink and downlink will be greater than
0.3 GHz, which is in 4G/5G systems. Hence, there will be no coupling or
interference between the uplink and downlink. Despite this, even for smaller
intervals, there is no issue because of the following reasons. Doubling the
hardware means that there will be separated beamforming networks/control
circuits for the uplink RIS and downlink RIS; thus, the uplink RIS and
downlink RIS can operate independently. We would like to mention that
similar techniques have been well-developed for the phased array design. For
example, in [43], an architecture of using a separate transmitter and receiver
array operating at 94 GHz is presented. Second, RF filters with high selectivity
are used to suppress any unwanted signals from other channels belonging to
other frequencies.
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shifts optimizations that happen during the uplink and downlink
transmissions. In particular, the use of radio-frequency (RF)-
micro-electromechanical system (MEMS) single-pole double-
throw (SPDT) switches to realize phased array transceivers has
been well-developed in antenna engineering with applications
from microwave frequency to mm-wave frequency ranges. As
shown Fig. 2 in [44], the uplink/downlink links, can be realized
on a single monolithic microwave integrated circuit (MMIC)
with a shared vector modulator (where the phase shifter is
located). This well-developed technology is compatible with
IRS design and can be applied to IRS to support simultaneous
FDD channels. Notably, the switching time of modern SPDT
is in the scale of picoseconds. Thus, the uplink and downlink
signals can be recovered as far as the speed of the switch can
provide enough samples to recover the signals, which is possible
according to [44]. Moreover, another technique is through the
use of a microwave circulator [45], where the transmit signal
will be delivered to the antenna while the received signal from
the same antenna will only be delivered to the receiver port.

B. Advantages/disadvantages of FDD in IRS-assisted systems

FDD has several advantages over TDD that become more
pronounced in IRS-assisted systems. For example, FDD design
is accompanied with lower latency since communication takes
place simultaneously while in TDD there is a switching
between transmission and reception. Also, in IRS-assisted
systems, where the distance between the transmitter and
the receiver is increased, the guard period in TDD systems,
being proportional to the distance, increases and affects the
performance, while FDD does not appear a problem with large
distances. Furthermore, the medium access control (MAC) layer
of TDD systems is more complex because it requires accurate
time synchronization between uplink and downlink, while
FDD systems do not require any uplink/downlink switching
mechanism at timescale. However, FDD systems come with
higher implementation cost demands such as the diplexers that
are required to make the operation in different frequencies
possible. Moreover, given that in practical systems, most
network volume is consumed in the downlink, in TDD, it
is possible to balance the traffic between uplink and downlink
by utilising more time slots for downlink. In addition, FDD,
using two frequencies instead of one used in TDD, allocates
more spectrum.

C. PGP approach

The JSDM approach was presented in terms of two methods,
the joint-group processing (JGP) and PGP [29]. JGP can
be applied in the case that the estimation and feedback of
the whole matrix from all UEs in all groups are affordable.
Normally, the JGP method is accompanied by prohibitive
overhead for channel estimation and feedback while PGP is
more advantageous due to lower overhead. For this reason,
the PGP method, summarized below, is suggested as a more
practical approach and is employed in this work.

1) Signal model: PGP suggests a two-stage precoding
matrix for group g, resulting in feedback overhead and the

computational complexity reductions, expressed as

Vg = BgFg, (4)

where Bg ∈ CM×bg is the preprocessing matrix based on the
long-term channel statistics with bg ≥ Kg being an integer
parameter to be optimized. Also, Fg ∈ Cbg×Kg , g = 1, . . . , G
is the precoding matrix based on the instantaneous channel
(short-term CSI) of group g.

Hence, the received signal in (1) with dual precoding
described by (4) can be written as

yg =HH

gBgFgdg +

G∑
i ̸=g

HH

gBiFidi +wg, (5)

where Hg = [hg1 , . . . ,hgKg
] ∈ CM×Kg .

Based on the Karhunen-Loeve representation, the channel
vector hgk can be written as

hgk = UgΛ
1
2
g zgk , (6)

where Ug ∈ CM×rg is a tall unitary matrix including the
eigenvectors of Rg that correspond to the non-zero eigenvalues,
Λg is an rg × rg diagonal matrix with elements the non-zero
eigenvalues of Rg , and zgk ∈ Crg×1 ∼ CN

(
0, Irg

)
. Generally,

M ≫ rg . Thus, we have Rg = UgΛgU
H
g .

2) Imperfect CSI: Certain reasons such as quantization can
result in imperfect feedback of the CSI to the BS (see Rem.
1 below), which is accompanied with significant overhead.
Especially, the imperfect CSI at the BS from group g can be
expressed as

Ẑg =
√

1− τ2gZg + τgEg, (7)

where Zg = [zg1,..., zgKg
] ∈ CM×Kg is the perfect CSI

and Eg = [eg1,..., egKg
] ∈ CM×Kg with egk denoting the

corresponding error that consists of elements with zero mean
and unit variance. The parameter τg ∈ [0, 1] describes the
accuracy of the available CSI in group g. Hence, if τg = 0, we
obtain perfect CSI while τg = 1 implies no CSI knowledge.
Without loss of generality, we assume that the levels of CSI
accuracy for all groups are the same, i.e., τ1 = . . . = τG = τ .
From (7), Ĥg can be defined as the imperfect CSI knowledge
of Hg by using Ẑg. Note that the imperfect CSI Ĥg, given
in terms of Hg is based on a given RBM. The assumption
of a fixed RBM during one coherence interval is justified
based on the fact that RBM is expected to change according to
large-scale statistics expressed by Rg , which changes at every
several coherence intervals.

Remark 1: Having assumed that both the BS and UEs are
aware of large-scale statistics, the model in (7) can describe the
scenario, where the kth UE in the group g quantizes hgk with
the help of a random codebook and sends back the codeword
index to the BS [28]. We provide an example of the advantage
of using this method in Sec. V.

3) Design of pre-beamforming: Using block diagonalization
(BD) preprocessing to cancel out the inter-group interference,
we design the pre-beamforming matrix as

HH

gBi ≈ 0, for i ̸= g, (8)
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where the index i corresponds to group i. In the case of exact
BD, (5) becomes

yg =HH

gBgFgdg +wg. (9)

Exact BD can be achieved, if Span(Ug) ⊈ Span({Ui : i ̸=
g}) while the necessary multiplexing gain can be achieved
if dim

(
Span (Ug) ∩ Span⊥ ({Ui : i ̸= g})

)
≥ Kg for all

groups g = 1, · · · , G. In other words, for given sets of {bg}
and {Kg} satisfying Kg ≤ bg ≤ rg, Bg can be designed
if UH

iBg = 0 for all i ̸= g and rank(UH
gBg) ≥ Kg. If the

dimension of Span⊥({Ui : i ̸= g}) is less than Kg , the rank
condition is not fulfilled. In such case, there are two options:
i) reduction of Kg , or ii) resort to approximate BD.

Herein, we choose approximate BD to design {Bg}. For this
reason, we choose r⋆g ≤ rg dominant eigenvalues of Rg. On
this ground, we write Ug = [U⋆

g,U
′

g], where U⋆
g is the M×r⋆g

matrix consisted of the dominant eigenvectors and U
′

g is the
M× (rg−r⋆g) matrix including the eigenvectors corresponding
to the weakest eigenvalues. To achieve approximate BD, we
have to choose the dominant eigenmodes r⋆g for each group
g subject to the condition Span(U⋆

g) ⊈ Span({U⋆
i : i ̸= g})

for all groups g = 1, · · · , G. Notably, the design of {Bg} has
to take into account a feasible choice of the parameters {r⋆g},
{bg}, and {Kg} that should be optimized to maximize the SE
under a given system setup. The matrix Bg is constructed as
in [29]. Herein, we briefly summarize the main steps. Hence,
first, we define the matrix

U−g = [U⋆
1, . . . ,U

⋆
g−1,U

⋆
g+1, . . . ,U

⋆
G], (10)

whose size is M ×
∑

i ̸=g r
⋆
i and its rank is

∑
i ̸=g r

⋆
i . Based

on SVD, let a set of left eigenvectors of U−g denoted by
[E

(1)
g ,E

(0)
g ], where E

(1)
g expresses the left singular vectors

corresponding to the
∑

i̸=g r
⋆
i dominant singular values Λ

(1)
g

while E
(0)
g corresponds to the left singular vectors with M −∑

i̸=g r
⋆
i non-dominant singular values Λ

(0)
g . Now, we define

the matrix H̃g = (E
(0)
g )HHg, which has the property to be

orthogonal to the dominant eigenspace spanned by the channel
of other groups. The covariance matrix of H̃g is given by

R̃g = (E(0)
g )HRgE

(0)
g (11)

= (E(0)
g )HUgΛgU

H

gE
(0)
g (12)

= GgQgG
H

g, (13)

where (12) is based on (6) while (13) is the SVD of R̃g , i.e.,
Gg describes the eigenvectors of R̃g. The pre-beamforming
matrix Bg is obtained by setting Gg = [G

(1)
g ,G

(0)
g ], where

G
(1)
g corresponds to the dominant bg eigenmodes of R̃g. In

particular, we have that

Bg = E(0)
g G(1)

g , (14)

which means that Bg coincides with the bg dominant eigen-
modes of R̃g while it is orthogonal to the dominant r⋆i
eigenmodes of groups i ̸= g. Gathering all constraints,
the condition Kg ≤ bg ≤ rank(R̃g), where rank(R̃g) =
min{M −

∑
i ̸=g r

⋆
i , rg} should be satisfied.

III. ASYMPTOTIC PERFORMANCE ANALYSIS WITH DUAL
PRECODING

In this section, we first provide the analysis towards the
derivation of the downlink achievable SE of IRS-assisted
systems based on FDD while employing the JSDM method in
the case of the PGP approach.

The derivation of the DE SINR requires the following
assumptions concerning the correlation matrices and the power
allocation matrix as in [34].

Assumption 1: All correlation matrices, i.e., RIRS,g and
RBS,g, g = 1, . . . , G have uniformly bounded spectral norm
on N and M , respectively, i.e.,

lim
N,K→∞

sup sup
1≤k≤K

∥RIRS,g∥ < ∞, lim
M,K→∞

sup sup
1≤k≤K

∥RBS,g∥ < ∞

(15)

Assumption 2: The maximum power of group g, i.e.,
max

(
pg1, . . . , pgKg

)
is of the order O (1/Kg), being equiva-

lent to

∥Pg∥ = O (1/Kg) . (16)

According to (5), the effective channel of group g is
H̄g = BH

gHg with covariance matrix for UE gk being
R̄g = BH

gRgBg. For the sake of exposition, we assume the
same number of dominant eigenvalues per group, the same
number of UEs per group, and the same dimension of the
pre-beamforming matrix per group, i.e., r⋆1 = . . . = r⋆G = r̄,
K1 = . . . = Kg = K̄, and b1 = . . . = bg = b̄. The extension
to the general case is immediate and straightforward. Hence,
the dimensions of H̄g are b̄ × K̄. The precoding matrix for
group g is designed in terms of the instantaneous imperfect
CSI to cancel out the intra-group interference on that group as

Fg =
√
λgΣg

ˆ̄Hg, (17)

where Σg =
(
ˆ̄Hg

ˆ̄HH
g + b̄αIb̄

)−1

with ˆ̄Hg = BH
gĤg being the

effective channel estimate at the BS while Ĥg is the imperfect
CSI knowledge of Hg. Also α, selected as α = M

b̄Pmax
to be

equivalent with the RZF linear filter [46], is a regularization
factor that makes expressions converge to a constant, and λg

is the normalization parameter that fulfils the power constraint
for group g. In particular, the normalization parameter becomes

λg =
Pmax

tr
(
PĤH

gΣgBH
gBgΣgĤg

)
=

Pmax

tr
(
PgĤH

gΣ
2
gĤg

) (18)

=
Pmax

Ψg
, (19)

where (18) is obtained because BH
gBg = Ib̄ as the product of

two tall matrices. Hence, based on (5) and (19), the SINR of
the kth UE in group g with perfect receiver CSI is given by

γgk,PGP =
DSgk

SGIgk + IGIgk + σ2
, (20)
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where

DSgk = pgkλg|hH

gk
BgΣg

ˆ̄hgk |2, (21)

SGIgk = λg

∑
j ̸=k

pgj |hH

gk
BgΣg

ˆ̄hgj |2, (22)

IGIgk =
∑
l ̸=g

∑
j

λlplj |hH

gk
BlΣl

ˆ̄hlj |2 (23)

with the numerator expressing the desired signal power while
the first and second terms in the denominator express the
self-group and inter-group interferences, respectively.

Under the Assumptions 1-2 and by assuming that M → ∞
while K̄, r̄, and b̄ also go to infinity by keeping their ratio
with M fixed, the DE SINR γ̄gk,PGP fulfils

γgk,PGP − γ̄gk,PGP
a.s.−−−−→

M→∞
0. (24)

Theorem 1: The DE of the downlink SINR of UE gk with
PGP in IRS-assisted mMIMO systems with FDD, accounting
for imperfect CSI, is given by

γ̄gk,PGP =
S̄gk

Īgk
(25)

where S̄gk = pgk
(
1− τ2

)
δ̄2g and Īgk =

Ȳgg

(
1− τ2

(
1−

(
1 + δ̄2g

)2))
+
(
1 +

∑
l ̸=g λ̄lȲgl

)
(1+δ̄g)

2

λ̄g

with λ̄g = ρ
Ψ̄g

. The expressions of δ̄g, Ψ̄g, Ȳgg, Ȳgl are the
unique solutions of

δ̄g =
1

b̄
tr
(
R̄gTg

)
, Tg =

(
K̄

b̄

R̄g

1 + δ̄g
+ αIb

)−1

, (26)

Ψ̄g =
Pg

b̄

m̄g(
1 + δ̄g

)2 , Ȳgg=
Pg

b̄

(
1− pgk

Pg

)
m̄gg(

1 + δ̄g
)2 , (27)

Ȳgl =
1

b̄

K̄∑
k=1

plk
mgl(

1 + δ̄l
)2 , m̄g =

1
b̄
tr
(
R̄gTgB

H
gBgTg

)
1−

K̄
b̄

tr(R̄gTgR̄gTg)
b̄(1+δ̄g)

2

,

(28)

m̄gg=
1
b̄
tr
(
R̄gTgR̄gTg

)
1−

K̄
b̄

tr(R̄gTgR̄gTg)
b̄(1+δ̄g)

2

, m̄gl=
1
b̄
tr
(
R̄lTlB

H

lRgBlTl

)
1−

K̄
b̄

tr(R̄lTlR̄lTl)
b̄(1+δ̄l)

2

.

(29)

Proof: The proof is provided in Appendix A.
Notably, Assumption 2 allows the omission of term pgk

P in
Ȳgg since the convergence in (24) is still true.

Based on the dominated convergence [47] and the con-
tinuous mapping theorem [48], the DE of the sum-rate∑G

g=1

∑K
k=1 log2(1 + γgk,PGP) is given by

SRPGP =

G∑
g=1

K∑
k=1

log2(1 + γ̄gk,PGP), (30)

where
∑G

g=1

∑K
k=1 log2(1 + γgk,PGP)− SRPGP

a.s.−−−−→
M→∞

0.

The nature of the multicast mechanism indicates that the
DE sum-rate of group g, allocated with total power Pg

such that
∑G

g=1 Pg = Pmax, is determined by SRPGP,g =

∑K
k=1 SRPGP,gk , where SRPGP,gk = log2(1 + γ̄gk,PGP) is

the DE rate of UE k in group g.
Proposition 1: In IRS-assisted mMIMO systems with PGP,

all UEs in group g are allocated with equal power Pg/K̄ and
the DE sum-rate of group g is SRPGP,g = K̄R⋆

g since all these
UEs have equal achievable rate R⋆

g .
Proof: The proof is provided in Appendix B.

Remark 2: The results, presented by Prop. 1, rely on the fact
that all UEs in the group g have the same covariance matrix.

Corollary 1: Based on Proposition 1, the DE rate of UE k
in group g can be written as

γ̄g,PGP =
S̄g

Īg
, (31)

where S̄g =
Pg

K̄

(
1− τ2

)
δ̄2g and Īg = Ȳgg

(
1 − τ2

(
1 −(

1 + δ̄2g
)2 ))

+
(
1 +

∑
l ̸=g λ̄lȲgl

) (1+δ̄g)
2

λ̄g
with Ȳgg =

Pg

b̄

(
1− 1

K̄

) m̄gg

(1+δ̄g)
2 and Ȳgl = 1

b̄
Pl

K̄

mgl

(1+δ̄l)
2 while all other

variables, given by Theorem 1, remain the same.

IV. SUM SE MAXIMIZATION DESIGN

In this section, we perform optimization of sum SE of the
overall IRS-assisted mMIMO system. In particular, the sum-rate
maximization problem is expressed as follows

(P2) max
Φ,p≥0

SRPGP = max
Φ,p

K̄

G∑
g=1

log2(1 + γ̄g,PGP) (32a)

s.t

G∑
g=1

Pg ≤ Pmax, (32b)

|ϕ̃n| = 1, n = 1, . . . , N, (32c)

where constraint (32b) guarantees that the BS transmit power
is kept below the maximum power Pmax and constraint (32c)
expresses that each IRS element results in only a phase shift
without any amplification of the incoming signal. Note that
for the sake of exposition, we have defined the vector p =
[P1, . . . , PG]

T and ϕ̃n = exp (jϕn) for all n corresponding to
the elements of Φ.

Corollary 2: Let RIRS,g = IN , then Rg does not depend on
Φ. Equivalently, R̄g is independent on the phase shifts, and
thus, γ̄g,PGP cannot be optimized in this case.

The optimization problem (P2) is non-convex and subject to
a unit-modulus constraint regarding ϕ̃n, which make its solution
challenging. To address this, we rely on the common approach
in IRS literature, being the application of the alternating
optimization (AO) technique, where Φ and p are going to
be solved separately and iteratively. Hence, first, we solve for
Φ given a fixed p. Next, we focus on finding the optimum
p with Φ fixed. The iteration of this process achieves the
increase of SRPGP at each iteration step until convergence of
the objective to its optimum value since it is upper-bounded
due to the power constraint (32b).

A. IRS Design

So far, we have considered the RBM fixed. However,
to exploit the IRS towards the maximization of the sum
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SE, the RBM has to be optimized. Notably, we observe its
presence inside the covariance matrices that appear in the DE
expression of the SE with PGP. By assuming infinite resolution
phase shifters and under imperfect CSI conditions, the RBM
optimization problem for single-cell FDD systems employing
the JSDM method is formulated as

(P3) max
Φ

SRPGP

s.t |ϕ̃n| = 1, n = 1, . . . , N,
(33)

where SRPGP is given by (32a). The maximization problem
(P3) is non-convex with respect to Φ while it is subject to a
unit-modulus constraint regarding ϕ̃n. A local optimal solution
to this problem can be obtained by applying the projected
gradient ascent algorithm until converging to a stationary point,
which means that, at every step, we project the solution onto
the closest feasible point satisfying the unit-modulus constraint
concerning ϕ̃n [18]. Specifically, at step l, the phases are
included in the vectors sl = [ϕ̃l,1, . . . , ϕ̃l,N ]T. The next step
of the iteration towards convergence increases SRgk,l, and is
described by

s̃l+1 = sl + µql, sl+1 = exp (j arg (s̃l+1)) , (34)

where the parameter µ describes the step size and ql expresses
the ascent direction at step l. For the computation of the
suitable step size at each iteration, we apply the backtracking
line search [49]. Note that ql =

∂SRPGP

∂s∗l
= K̄

ln 2

∑G
g=1

∂γ̄g,PGP

∂s∗l
is provided by Proposition 2 below. The projection problem
min|ϕn|=1,n=1,...,N ∥s− s̃∥2 under the unit-modulus constraint
provides the solution of the problem described by (34). In
Algorithm 1, we present the outline of this procedure.

Algorithm 1 Projected Gradient Ascent Algorithm for the IRS
Design
1. Initialisation: s0 = exp (jπ/2)1N , Φ0 = diag (s0),
SR

0

PGP = f (Φ0) given by (32a); ϵ > 0
2. Iteration l: for l = 0, 1, . . . , do
3. ql = K̄

ln 2

∑G
g=1

∂γ̄g,PGP

∂s∗l
, where ∂γ̄g,PGP

∂s∗l
is given by

Proposition 2;
4. Find µ by backtrack line search(f (Φ0) ,ql, sl) [49];
5. s̃l+1 = sl + µql;
6. sl+1 = exp (j arg (s̃l+1)); Φl+1 = diag (sl+1);
7. SR

l+1

PGP = f (Φl+1);
8. Until ∥SRl+1

PGP − SR
l

PGP∥2 < ϵ; Obtain Φ⋆ = Φl+1;
9. end for

Proposition 2: The derivative of γ̄gk,PGP with respect to s∗l
is provided by

∂γ̄g,PGP

∂s∗l
=

∂Sg

∂s∗l
Ig − Sg

∂Ig
∂s∗l

I2g
, (35)

where

∂Sg

∂s∗l
= 2

Pg

K̄

(
1− τ2g

)
δ̄g δ̄

′
g, (36)

∂Ik
∂s∗l

= Ȳ′
gg

(
1−τ2g

(
1−

(
1 + δ̄g

)2))
+ 2Ȳggτ

2
g

(
1 + δ̄g

)
δ̄′g

+
∑
l ̸=g

(
λ̄′
lȲgl + λ̄lȲ

′
gl

) (1 + δ̄g
)2

λ̄g

+

1 +
∑
l ̸=g

λ̄2
l Ȳgl

 (1 + δ̄g
) (

2δ̄′gλ̄g −
(
1 + δ̄g

)
λ̄′
g

)
λ̄2
g

(37)

with

δ̄′g =
1

b̄
tr
(
R̄′

gTg + R̄gT
′
g

)
, T′

g = −Tg(T
−1
g )′Tg, (38)

(T−1
g )′ =

K

b̄

R̄′
g

(
1 + δ̄g

)
− R̄g δ̄

′
g

(1 + δ̄g)2
, (39)

Ȳ′
gg =

Pg

b̄

(
1− 1

K̄

)
m̄′

gg

(
1 + δ̄g

)
− 2m̄gg δ̄

′
g(

1 + δ̄g
)3 , (40)

Ȳ′
gl =

1

b̄

Pl

K̄

m̄′
gl

(
1 + δ̄l

)
− 2m̄glδ̄

′
l(

1 + δ̄l
)3 , (41)

λ̄′
g=

ρg
b̄
Pg

2mg δ̄
′
g−m′

g

(
1+δ̄g

)(
1 + δ̄g

)3
Ψ̄2

g

, (42)

m̄′
g=f ′

g

(
BH

gBg

)
, m̄′

gg = f ′
g

(
R̄g

)
, m̄′

gl = f ′
l

(
BH

l R̄gBl

)
, (43)

with

f ′
g (A) =

K̄
b̄

(
1 + δ̄g

) (
q′(A)

(
1 + δ̄g

)
+ 2q(A)δ̄′g

)(
b
(
1 + δ̄g

)2 − K̄
b̄
q(R̄g)

)
+

K̄
b̄

(
1 + δ̄g

)2
q(A)

(
2b
(
1 + δ̄g

)
δ̄′g − K̄

b̄
q′(R̄g)

)
(
b
(
1 + δ̄g

)2 − K̄
b̄
q(R̄g)

)2 , (44)

and q′(C) for C = A, R̄g written as q′(C) =
tr
(
R̄′

gTgCTg+R̄gT
′
gCTg+R̄gTgC

′Tg+R̄gTgCT′
g

)
,

where each term is computed by Lemma 2. The expressions
of δ̄g, Ψg, Ȳgg, and Ȳgl, given in Theorem 1 and Corollary
1 together with δ̄′g, λ̄′

g, Ȳ′
gg, Ȳ′

gl, m̄′
g, m̄′

gg, and m̄′
gl are

obtained by solving the system of fixed-point equations
(26)-(29), (39)-(43).

Proof: The proof is given in Appendix C.
The RBM beamforming design is based on the gradi-

ent ascent and offers a significant advantage because the
gradient ascent is derived in a closed-form. Note that it
has low computational complexity because it consists of
simple matrix operations. Specifically, the complexity of (35)
is O

(
G(MN2 +N +M)

)
. Obviously, the derivative is a

function of the fundamental system parameters G, M , and
N with the number of IRS elements having the higher (square)
impact.

B. Power Allocation Optimization

Now, for a fixed RBM Φ, the objective is the optimization
over p. In particular, we have

(P4) max
p≥0

SRPGP

s.t

G∑
g=1

Pg ≤ Pmax,
(45)

where SRPGP is given by (32a). This problem is not convex but
a local optimal solution can be obtained by using a weighted
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minimum mean square error (WMMSE) reformulation of the
sum SE maximization. By denoting cg=[cg1, . . . , cgG]

T, the
SINR γ̄g,PGP can be expressed as a function of the downlink
power coefficients given by the vector p as

γ̄g,PGP =
Pgqg

cT
gp+ t2g

, (46)

where

qg=
1

K̄

(
1−τ2

)
δ̄2g , t

2
g=

(
1 + δ̄g

)2
λ̄g

, (47)

cgg=
1

b̄

(
1− 1

K̄

)
m̄gg(
1+δ̄g

)2(1− τ2
(
1−
(
1 + δ̄2g

)2))
, ∀g (48)

cgi =
1

b̄

1

K̄

mgl(
1 + δ̄l

)2 λ̄l

(
1 + δ̄g

)2
λ̄g

, ∀g, ∀i ̸= g. (49)

Now, the optimization problem becomes

(P5) max
p≥0

K̄

G∑
g=1

log2(1 +
Pgqg

cT
gp+ t2g

)

s.t

G∑
g=1

Pg ≤ Pmax.

(50)

For the MMSE reformulation, we assume the single-input
and single-output (SISO) channel that corresponds to this SINR
given by

ỹg =
√
Pgqgsg +

G∑
i=1

√
Pgcgisi + ng, (51)

where ỹg is the received signal, sg ∈ C denotes the normalized
and independent random data signal with E[|sg|2 = 1], and
ng ∼ CN

(
0, t2g

)
. In such case, the receiver can compute an

estimate ŝg = v∗g ỹg of the desired signal sg, where vg as a
scalar combining coefficient. The resulting MSE eg(p, vg) =
[|ŝg − sg|2] is written as

eg(p, vg) = v2g
(
Pgqg + cT

gp+ t2g
)
− 2vg

√
qgPg + 1. (52)

The coefficient vg, minimizing the MSE eg(p, vg) for a
given p, becomes

vg =

√
Pgqg

Pgqg +
∑G

i=1 Pgcgi + t2g
. (53)

Plugging vg into (52), eg becomes 1/ (1 + γ̄g,PGP). Based
on the weighted MMSE method, we introduce the auxiliary
weight dg ≥ 0 for the MSE eg and solve the following problem

(P6) min
p≥0,

{vg,dg≥0:g=1,...,G}

K̄

G∑
g=1

dgeg(p,vg)− ln(dg)

s.t

G∑
g=1

Pg ≤ Pmax.

(54)

Note that both (P5) and (P6) are equivalent, meaning that
they have the same optimal solution. The equivalence stems
from the fact that the optimal dg in (54) is 1/eg = (1+γ̄g,PGP).
The advantage of the reformulation results in the following
lemma adapted from [50, Th. 3].

Lemma 1: The block descent coordinate algorithm, provided
in Algorithm 2, converges to a local optimum of (P6) in terms
of AO among three blocks of variables {vg : g = 1, . . . , G},
{dg : g = 1, . . . , G}, and p.

Algorithm 2 Block coordinate descent algorithm for solving
(P6)

1. Initialisation: Set p = Pmax

G 1G and the solution accuracy
ϵ > 0,
2. while the objective function in (54) is not improved more
than ϵ do
3. vg =

√
Pgqg

Pgqg+
∑G

i=1 Pgcgi+t2g
., g = 1, . . . , G

4. dg = 1/eg(p, vg), g = 1, . . . , G
5. Solve the following problem for the current values of vg
and dg:

(P7) min
p≥0

K̄

G∑
g=1

dgeg(p,vg)

s.t

G∑
g=1

Pg ≤ Pmax,

(55)

6. Update p by the obtained solution to (55)
7. end while
8. Output: p⋆

Algorithm 2 describes the whole procedure for the power
optimization and Step 5 includes a subproblem that needs to
be solved in every iteration. It can be solved in closed-form as

Pg = min

Pmax,
qgd

2
gv

2
g(

qgdgv2g +
∑G

i=1 div
2
i cig

)2
 , (56)

where
√
Pg, g = 1 . . . , G are treated as optimization variables.

Basically, the problem is decomposed into G independent
subproblems, where each one of them concerns a quadratic
minimization under a bound constraint.

The power allocation presents a similar complexity to the
RBM design since Algorithm 2 consists of similar matrix
operations, i.e., its complexity is O

(
G(MN2 +N +M)

)
.

Remark 3: Both Algorithms 1 and 2 converge quickly and
have low computation complexity. Also, since they achieve
to obtain just a local optimum, different initializations are
expected to lead to different solutions of the overall algorithm.

V. NUMERICAL RESULTS

In this section, we elaborate on the numerical results of the
sum SE in IRS-assisted systems under the FDD protocol by
applying PGP of the JSDM method. MC simulations in terms
of 103 independent channel realizations verify the deterministic
equivalent analysis.

The simulation setup includes a uniform linear array (ULA)
of M = 100 antennas at the BS, which serves K = 30 UEs
while aided by an IRS with a uniform planar array (UPA) of
N = 100 elements. UEs are equally shared among G = 6
groups, which means that each group consists of 5 UEs. The
correlation matrices RBS,gk and RIRS,gk are obtained similar
to [35] and [33], respectively. Note that the size of each IRS
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element is given by dH = dV = λ/4. Furthermore, the path-
losses for the BS-to-IRS and IRS-to-UE k links are given by
[4], [18]

β1 =
C1

dα1
1

, β2,k =
C2

dα2

2,k

, (57)

where α1 and d1 are the path-loss exponent and distance
concerning the former link while α2 and d2,k are the path-
loss exponent and distance concerning the latter link. In the
case of βd,k, we assume the same parameters as for β2,k, and
additionally, we consider a penetration loss of 15 dB. The
choice of these values relies on the 3GPP Urban Micro (UMi)
scenario from TR36.814 for a carrier frequency of 2.5 GHz
and a noise level of −80 dBm. Especially, the path-losses for
H1 and h2,k are generated according to the LOS and NLOS
versions [51]. Also, C1 = 26 dB and C2 = 28 dB, which are
the path-losses at a reference distance of 1m while each UE
includes a single 0dBi antenna [52]. Also, we have chosen
b̄ = 12 and r̄ = 12. The latter value is justified because
under these setting the rank of the channel covariance matrix
Rg is r̄ = 27 while only 12 of them are important. Unless
otherwise stated, this set of parameters values is used during
the simulations. Note that σ2 = −174 + 10 log10 Bc, where
Bc = 200 kHz.

Figs. 2.(a) and 2.(b) illustrate the impact of the effective
rank of the channel covariance matrix of each group on the
performance of JSDM in IRS-assisted systems in the cases
of perfect and imperfect CSI. Under perfect CSI conditions
("solid" lines) with τ = 0, we notice that in the case of
choosing r̄ = 5 (Fig. 2.(a)), PGP saturates at high SNR since
this effective rank value is too small. In particular, such a choice
does not allow for consideration of the substantial eigenmodes
by the pre-beamforming matrix and results in large inter-group
interference. On the contrary, a better (higher) choice for r̄, i.e.,
r̄ = 15 (see Fig. 2.(b)) allows the inclusion of the significant
eigenmodes and no interference-limited behaviour is noticed
until 30 dB. Of course, the rate saturates at some larger SNR,
belonging outside the scope of practical applications. Obviously,
the choice of the rank value depends on the channel covariance
matrix. In the case of imperfect CSI (τ = 0.1), met in practice,
saturation is observed in both figures ("dashed" lines). However,
when we have r̄ = 5, the saturation starts much earlier (25
dB) while a choice of r̄ = 15 (Fig. 2.(b)) is more robust
regarding the performance since the saturation is encountered
after 21.7 dB. Similar observations hold when τ = 0.3. The
inference from these two figures is that a good selection of r̄,
where the major eigenmodes are taken into account, defines
the performance. A small value results in severe performance
degradation while a value close to the full rank r̄ will result
in a dimensionality bottleneck while not achieving any profit
concerning the interference. In these figures, we also show the
degradation of the sum SE when no correlation ("dotted" lines)
is taken into account because in such a case the IRS cannot
be optimized.

To elaborate further on the saving advantage of the JSDM
method, we would like to highlight that after the downlink
training of all groups (G = 6) with effective channel dimension
b̄ = 12, each of the K̄ UEs in each group has to feedback
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Figure 2: Sum SE of an IRS-assisted MIMO system with FDD
in the cases of perfect/imperfect CSI and correlated/independent
Rayleigh fading versus the SNR: (a) r̄ = 5 ; (b) r̄ = 12.

its 12× 1 channel vector, which equals to 5× 6× 12 = 360
quantized complex channel coefficients.5 However, in this case,
where the BS is deployed with M = 100 antenna aimed
at serving K = 30 UEs in total, 100 orthogonal downlink
training symbols are required while a total of 30×100 channel
coefficients will be fed back, which means the achievement of
saving by a factor of 10.

In Fig. 3, we depict the impact of the parameter b̄ for a
specific K̄ and when τ = 0.1 (imperfect CSI) for varying SNR
values, being SNR = 5, 15, 25 dB. Specifically, after selecting
r̄ = 15 according to the discussion in the previous paragraph
and subject to the constraint K̄ ≤ b̄ ≤ M − r̄ (G− 1), we
observe that the sum SE does not increase monotonically but
there is an optimal value b̄ because its increase results in a
trade-off between a larger dimensionality overhead and a better

5This conclusion assumes that downlink training has already taken place
at some previous stage. Note that this work does not perform downlink training
but this task and its effects are left for future study.
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channel conditioning. Moreover, we observe that the higher
the SNR, the smaller the optimal b̄ becomes. Also, we notice
that at higher SNR, the range of sum SE values takes higher
values but the impact of b̄ variation is smaller with increasing
SNR as witnessed by the slopes of the corresponding lines.
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Figure 3: Sum SE of an IRS-assisted MIMO system with FDD
in the cases of imperfect CSI (τ = 0.1) versus the effective
channel dimension b̄ for varying SNR values.

Fig. 5 illustrates the achievable sum SE versus the number
of IRS elements N for both cases of perfect and imperfect CSI,
when M = 100 antennas. We notice that the sum SE increases
with the increasing number of IRS elements in both cases, but
the increase is slower in the case of imperfect CSI. Also, in the
case of absence of IRS, we notice the obtained outperformance
when including an IRS but with at least a specific number of
elements. Especially, after N = 100 elements, the introduction
of the IRS enhances significantly the performance. Moreover,
we consider the scenario of "random" phase shifts and we
show that the RBM optimization enhances significantly the
performance.

Fig. 4 shows the achievable sum SE versus the number of
BS antennas M for both perfect and imperfect CSI, when
N = 100 elements. We observe that SRPGP exhibits a similar
dependence on M as on N in the previous figure. Thus, when
M grows large, the sum SE increases without limit in both
cases of perfect and imperfect CSI. In general, these two figures
indicate that an IRS-assisted system performs better with larger
values of IRS elements and BS antennas. In particular, the
latter is further interesting because it agrees with the massive
MIMO design trend that has already started to be implemented.
In addition, we verify that the performance increases in the
presence of the IRS. Moreover, we observe that the performance
of “Perfect CSI (optimal RBM)” is lower than that of “Absent
of IRS” when N is small. The reason is that the gain from the
RIS is not enough to compensate the loss due to the increased
path-loss when the RIS is small [52].

Fig 6 depicts the sum SE versus the number of groups in
the case of imperfect CSI (τ = 0.1) while varying the effective
rank r̄, the effective channel dimension b̄, and UEs per group K̄.

Figure 4: Sum SE of an IRS-assisted MIMO system with
FDD versus the number of IRS elements N in the cases of
i) perfect/imperfect CSI (τ = 0.1) with optimal and random
RBM, ii) without IRS and perfect/imperfect CSI.

Figure 5: Sum SE of an IRS-assisted MIMO system with
FDD versus the number of BS antennas M in the cases of
i) perfect/imperfect CSI (τ = 0.1) with optimal and random
RBM, ii) without IRS and perfect/imperfect CSI.

We notice that the sum SE increases with the number of groups
but this increase becomes slower when the number of UEs per
group grows due to increased interference while the rest of
the parameters are the same. In addition, for a specific K̄, an
increase of the channel rank results in an increase of the sum SE
but caution should be taken since the overhead (dimensionality)
increases too. Moreover, by increasing b̄, the sum SE increases
until a specific b̄ equal to 10 while keeping increasing b̄ results
in lower sum SE due to larger dimensionality cost again.

Fig. 7.(a) illustrates the convergence of the proposed overall
algorithm based on AO, which consists of the subproblems
of RBM and transmit power optimizations. Specifically, we
have depicted the sum SE versus the number of iterations for
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Figure 6: Sum SE of an IRS-assisted MIMO system with FDD
versus the number of groups G in the case of imperfect CSI
(τ = 0.1) for optimal and random RBM for varying effective
rank r̄, effective channel dimension b̄, and UEs per group K̄.

varying numbers of IRS elements and UE groups. As can be
seen, the convergence of the optimization is fast in all cases,
where the algorithm has converged at most in 8 iterations (see
the "dashed-square" line). Also, as expected, as the number of
IRS elements and groups increases, more iterations are needed
until convergence since the number of optimization variables
has increased.

The non-convexity of the overall optimization problem sug-
gests that its solution depends on the initial point, i.e., different
initial points result in different locally optimal solutions. Fig.
7.(b) investigates this dependence on the initializations by
accounting for 30 channel realizations. The initialization of
the overall algorithm including Algs. 1 and 2 assumes that
s0 = exp (jπ/2)1N and p = Pmax

G 1G as mentioned previously.
"Alg. 1-Test" in the figure assumes the best initial point out
of 100 random initial points for each channel instance. We
observe indeed that different initializations result in different
solutions and that the sum SE in both cases is almost the same,
which means that this phase shifts selection for initialization
is a good choice.

VI. CONCLUSION

In this paper, we tackled the channel non-reciprocity wit-
nessed in IRS-assisted communication systems. For this reason,
we assumed an mMIMO system assisted with an IRS operating
in FDD. To this end, we applied the JSDM method by grouping
the UEs with the same covariance matrix to improve the
performance, which, otherwise, would be afflicted due to
prohibitive feedback overhead as the number of BS antennas
and IRS elements increases. Based on DE tools and S-CSI
knowledge, we derived the sum SE accounting for correlated
Rayleigh fading. Next, we formulated the optimization problem
maximizing the sum SE under RBM and power budget
constraints. To solve the nonconvex optimization, we proposed
an efficient AO algorithm that can be performed at every several

(a)

(b)

Figure 7: Sum SE of an IRS-assisted MIMO system with FDD
versus: (a) the number of iterations for varying IRS elements
N and groups G; (b) 30 channel realizations.

coherence intervals, which results in further reduction of the
feedback overhead and computational complexity. Among the
observations, we would like to highlight that the rank of the
covariance matrix is a crucial parameter having a direct impact
on the performance. Its increase improves the performance due
to better channel conditioning while it burdens the feedback
overhead. Other interesting directions could be the extension
of this work to account for 3-dimensional beamforming with
multiple beams in the elevation angle and the consideration of
multiple distributed IRS.

APPENDIX A
PROOF OF THEOREM 1

The derivation of the DE SINR γ̄gk,PGP is obtained by
following the approach in [34] but with extension to imperfect
CSI that brings considerable differences. Hence, taking into
account for imperfect CSI, the proof consists of the derivation
of the DEs of four parts: i) The power normalization term

This paper has been published in the IEEE Transactions on Vehicular Technology. DOI: 10.1109/TVT.2022.3187656.



Ψg, ii) the desired signal power part DSgk , iii) the self-
group interference power part SGIgk , and iv) the inter-group
interference power part IGIgk .

Regarding Ψg , we have

Ψg =

K̄∑
k=1

pgk
ˆ̄hH

gk
Σ−2

g
ˆ̄hgk (58)

=
1

b̄

K̄∑
k=1

pgk

1
b̄
ĥH
gk
BgΣ

−2
g[k]

BH
gĥgk(

1 + 1
b̄
ĥH
gk
BgΣ

−1
g[k]

BH
gĥgk

)2 (59)

≍ 1

b̄

K̄∑
k=1

pgk

1
b̄
tr
(
R̄gΣ

−2
g[k]

)
(
1 + 1

b̄
tr
(
R̄gΣ

−1
g[k]

))2 (60)

≍ 1

b̄
Pg

m̄g(
1 + δ̄g

)2 , (61)

where Σg[k]
= 1

b̄
ˆ̄Hg[k]

ˆ̄HH
g[k]

+ αIb̄. In (59), we applied the
matrix inversion lemma twice [35, Lem. 1] and, in (60),
we used [35, Lem. 4]. The last step makes use of [35,
Th. 1] with m̄g and δ̄g defined in Theorem 1. Note that
m̄g is basically the derivative of δ̄g with respect to α, i.e.,
m̄g = δ̄′g = 1

b̄
tr
(
R̄gT

′
g

)
, where T′

g = Tg

(
K̄
b̄

R̄g δ̄
′
g

1+δ̄g
+ Ib̄

)
Tg .

Its expression is obtained after some algebraic manipulations.
In the case of DSgk , we have

hH

gk
BgΣgB

H

g
ˆ̄hgk =

1
b̄
hH
gk
BgΣg[k]

BH
gĥgk

1 + 1
b̄
ĥH
gk
BgΣg[k]

BH
gĥgk

(62)

=

√
1− τ2g

1
b̄
hH
gk
BgΣg[k]

BH
ghgk

1 + 1
b̄
ĥH
gk
BgΣg[k]

BH
gĥgk

+
τg

1
b̄
hH
gk
BgΣg[k]

BH
gzgk

1 + 1
b̄
ĥH
gk
BgΣg[k]

BH
gĥgk

(63)

=

√
1− τ2g δ̄g

1 + δ̄g
, (64)

where in (62), we applied the matrix inversion lemma [35, Lem.
1], and, in (63), we used (7). In (64), we used [35, Lem. 4]
by considering the independence between hgk and zgk . Next,
we applied [35, Lem. 4], [35, Lem. 3], and [35, Th. 1].

For SGIgk , we have

hH

gk
BgΣgB

H

gĤg[k]
Pg[k]

ĤH

g[k]
BgΣgB

H

ghgk

= hH

gk
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gĤg[k]
Pg[k]

ĤH
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H
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ghgk (65)

=
1

b2
hH

gk
BgDgB

H

ghgk − c0
b2
hH

gk
BgΣgB

H

ghgkh
H

gk
BgDgB

H

ghgk

− c1
b2
hH

gk
BgΣgB

H

gzgkz
H

gk
BgDgB

H

ghgk

− c2
b2
hH

gk
BgΣgB

H

ghgkz
H

gk
BgDgB

H
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gk
BgDgB

H

ghgk . (66)

In (65), we used that Σg−Σ̄g[k]
= −Σg

(
Σ−1

g − Σ̄−1
g[k]

)
Σ̄g[k]

,
where Σ−1

g − Σ̄−1
g[k]

= BH
g(c0hgkh

H
gk

+c1zgkz
H
gk

+

c2
(
hgkz

H
gk

+ zgkh
H
gk

)
)Bg with c0 = 1 − τ2g , c1 = τg,

and c2 = τg
√
1− τ2g . In (66), we denoted Dg =

ΣgB
H
g
ˆ̄Hg[k]

Pg[k]

ˆ̄HH
g[k]

BgΣg. Similar to previous derivations,
we obtain

1

b2
hH
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BgΣgB

H

ghgk ≍ u (1 + c1u)

1 + u
, (67)

1
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H

gzgk ≍ −c2u
2

1 + u
, (68)
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1 + u
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1
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BgΣgB

H

gzgk ≍ −c2uu
′

1 + u
, (70)

where u′= 1
b̄
tr
(
Pg[k]

ˆ̄HH
g[k]

BgΣg[k]
R̄gΣg[k]

BH
g
ˆ̄Hg[k]

)
. Hence,

we have almost surely that
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H

g
ˆ̄Hg[k]

Pg[k]

ˆ̄HH

g[k]
BgΣgBghgk

≍ 1

b̄

u′ (1 + c1u)

1 + u
− 1

b̄

c0 (1 + c1u)
2 − c1c

2
2u

2 − 2c22u

(1 + u)
2 uu′

(71)

=
1

b̄

1− τ2g

(
1− (1 + u)

2
)

(1 + u)
2 u′, (72)

where (71) reduces to (72) after proper substitutions. Based
on the rank perturbation lemma [35, Lem. 3], we have

u ≍ 1

b̄
tr
(
R̄gΣg

)
. (73)

Also, we denote 1
b̄
u′ ≍ Ȳgg, where Ȳgg =

1
b2 tr

(
Pg[k]

ˆ̄HH
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g
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)
, which can

be written as
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tr
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)(
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b̄
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(
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))2 (74)

after applying [35, Lems. 1, 4, 3]. Note that

1

b̄
tr
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R̄gΣgR̄gΣg
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=
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tr
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g R̄gR̄
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tr
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where

T̄g(z) =

(
K̄

b̄

R̄g

1 + δ̄g
+ αIb̄ − zR̄g

)−1

(76)

T̄′
g(0) = T̄g(z)

(
K̄

b̄

R̄g δ̄
′
g(

1 + δ̄g
)2 + R̄g

)
T̄g(z) (77)

with T̄′
g(0) being the derivative dT̄g(z)

dz at z = 0. Use of (77)
into (75) and substitution into (74) gives Ȳgg .

The derivation of IGIgk follows similar lines with SGIgk .
In this case, Ȳgl is obtained as given in Theorem 1. Having
obtained all terms in the SINR, the proof is concluded.
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APPENDIX B
PROOF OF PROPOSITION 1

The power optimization problem for group g is formulated
as

(P1) max
pgk

≥0

K̄∑
k=1

log2(1 + pgkνgk,PGP)

s.t

K̄∑
k=1

pgk ≤ Pg,

(78)

where νgk,PGP = γ̄gk,PGP/pgk does not depend on UE k. The
solution to (P1) is obtained by the water-filling algorithm as

pgk =

[
µ− 1

νgk,PGP

]+
, (79)

where µ is a parameter defining the water level to satisfy the
constraint

∑K̄
k=1 pgk = Pg [53]. Since νgk,PGP is identical for

all UEs in group g, the optimal powers, maximizing (P1), are
all equal and given by p⋆gk = Pg/K̄. In such case, all user
rates of group g become equal to R⋆

g and the sum-rate of this
group becomes SRPGP,g = K̄R⋆

g .

APPENDIX C
PROOF OF PROPOSITION 2

First, we present the following lemma, which is required in
the following derivations.

Lemma 2: The derivative of the trace tr
(
AR̄g

)
including

the covariance matrix R̄g and the matrix A with respect to s∗l ,
where A is independent of s∗l , is given by

∂ tr
(
AR̄g

)
∂s∗l

= diag (β2,gH
H

1AH1ΦRIRS,k) . (80)

Proof: We have

∂ tr
(
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)
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=
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HHH
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H
1AH1ΦRIRS,k) s

∗
l
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(82)

= diag (β2,gH
H

1AH1ΦRIRS,k) , (83)

where (82) is obtained by using the property tr (Adiag(sl)) =
(diag(A))

T
sm.

Hereafter, we denote the partial derivative with respect to
s∗l by (·)′. Starting from the gradient of γ̄gk,PGP, with respect
to s∗l , which relies on the quotient rule derivative, we obtain

∂γ̄g,PGP

∂s∗l
=

∂Sg

∂s∗l
Ig − Sg

∂Ig
∂s∗l

I2g
, (84)

where the calculation of the partial derivatives follows. In
particular, S′

g is written as

S′
g = 2pgk
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g, (85)

where
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with T′
g , being the derivative of an inverse matrix obtained by

[54, Eq. 40] as T′
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where R̄′
g is the derivative of R̄g with respect to s∗l whose trace

expression is given by Lemma 2. As a result, after substituting
(86)-(87) into (85), we obtain S′

g .
The derivative of Ig is given by
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where
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(
1 + δ̄g

)
− 2m̄gg δ̄

′
g(

1 + δ̄g
)3 ,

Ȳ′
gl =

1

b̄

Pl

K̄

m̄′
gl

(
1 + δ̄l

)
− 2m̄glδ̄

′
l(

1 + δ̄l
)3 , (89)

λ̄′
g =

ρg
b̄
Pg

2mg δ̄
′
g −m′

g

(
1 + δ̄g

)(
1 + δ̄g

)3
Ψ̄2

g

(90)

are derived easily by applying basic derivative rules. For the
derivatives of m̄g , m̄gg , and m̄gl, we notice that that they have
a similar expression. Thus, we resort to the definition of a new
function fg(A), which includes them under specific values of
its parameters g and A, and we compute its derivative. Thus,
by defining

fg(A) =
1
b̄
tr
(
R̄gTgATg

)
1−

K̄
b̄

tr(R̄gTgR̄gTg)
b(1+δ̄g)

2

, (91)

we have m̄g = fg
(
BH

gBg

)
, m̄gg = fg

(
R̄g

)
, and

m̄gl = fl
(
BH

l R̄gBl

)
. Note that the dependence on the

RBM is found on R̄g while Bg appears no such dependence.
Also, we define q(C) = tr

(
R̄gTgCTg

)
. After some

lengthy algebraic manipulations, we obtain f ′
g(A) in

(44), where q′(C) for C = A, R̄g written as q′(C) =
tr
(
R̄′

gTgCTg+R̄gT
′
gCTg+R̄gTgC

′Tg+R̄gTgCT′
g

)
,

with T′
g given above while the derivatives of the traces are

obtained by using Lemma 2. Hence, after suitable substitutions
in (44), we obtain m̄′

g , m̄′
gg , and m̄′

gl.
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