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Abstract—This paper jointly designs linear precoding (LP)
and codebook-based beamforming implemented in a satellite
with massive multiple-input multiple-output (mMIMO) antenna
technology. The codebook of beamforming weights is built using
the columns of the discrete Fourier transform (DFT) matrix, and
the resulting joint design maximizes the achievable throughput
under limited transmission power. The corresponding optimiza-
tion problem is first formulated as a mixed integer non-linear
programming (MINP). To adequately address this challenging
problem, an efficient LP and DFT-based beamforming algorithm
are developed by utilizing several optimization tools, such as
the weighted minimum mean square error transformation, du-
ality method, and Hungarian algorithm. In addition, a greedy
algorithm is proposed for benchmarking. A complexity analysis
of these solutions is provided along with a comprehensive set
of Monte Carlo simulations demonstrating the efficiency of our
proposed algorithms.

I. INTRODUCTION

Powered by several new applications, such as the Internet
of things (IoT), the interest in satellite communications (SAT-
COM) has been proliferating in both academia and industry
due to the increasing demand for ubiquitous network access.
In addition, the vast data traffic generated by devices/services
belonging to customers in areas where terrestrial networks
cannot provide sufficient coverage has also been pushing for
innovation in SATCOM systems [1]–[5]. In this context, to
improve SATCOM performance, well-investigated concepts in
terrestrial networks, such as massive multiple-input multiple-
output (mMIMO) systems implementing digital beamforming
(DBF)/linear precoding (LP), have been tailored to satellite-
aided communications systems [6]–[8]. In this context, the
use of Direct Radiating Arrays (DRA) has been proposed to
implement satellite communication payloads with full power
flexibility and coverage reconfigurability [9].

In particular, the authors in [6] have proposed an mMIMO
scheme for low-Earth orbit (LEO) satellites in which the
full-frequency-reuse downlink precoding and uplink detec-
tion frameworks are implemented based on statistical chan-
nel state information (CSI) to maximize both the average
signal-to-leakage-plus-noise ratio (SLNR) and the signal-to-
interference-plus-noise ratio (SINR). Additionally, the works
in [7], [8] have suggested implementing hybrid precoding
frameworks for mMIMO-enabled SATCOM. However, the
computational complexity of these works is still too high to
be implemented on satellite payloads.

Developing low-complexity, highly efficient beamforming
algorithms for satellite payloads utilizing digital processors
is one of the most attractive research directions for the
next SATCOM generation [10], [11]. Sharing this vision of
reducing the complexity at the on-board processor (OBP),
ESA has proposed in [10] some fixed (codebook-based)
multi-beam (MB) and efficient radio resource management
mechanisms for mMIMO-enabled payloads to increase the
network throughput significantly. On another approach, our
project EGERTON [11] targets employing discrete Fourier
transform (DFT)-based beamforming for mMIMO-enabled
payload architectures. This beamforming technique is well-
known for being an efficient way to obtain multiple inde-
pendent beams while significantly reducing the OBP’s mass
and power consumption due to the avoidance of power-
hungry direct matrix-by-vector multiplications [12]. However,
the lack of beam-steering flexibility is its main drawback. To
tackle this challenge and further enhance its advantages, we
propose utilizing an LP technique together with the DFT-based
beamforming; to the best of our knowledge, such an approach
has not been investigated in any previously published work.

This paper aims to fill this gap by considering the joint de-
sign of both LP and DFT-based beamforming for the payloads
of SATCOM systems. In particular, LP and DFT-vector (e.g.,
a column of the DFT matrix) selection are jointly designed
for the forward-link (gateway⇝satellite⇝user equipment) to
maximize the system achievable rate under a constraint on
transmission power. To begin with, we formulate an opti-
mization that takes into account all these design aspects. This
problem considers the complex-valued variables corresponding
to the LP design and the binary variables related to the DFT-
vector selection mechanism, resulting in a mixed integer non-
linear programming (MINP), which is NP-hard. The resulting
problem is even more challenging due to the non-convex sum-
rate objective function. To cope with this non-convex problem,
we first transform it into an equivalent weighted minimum-
mean-square-error (MMSE) problem. Then, an alternative
approach is developed to solve the resulting weighted-MMSE
problem, following which the LP and DFT-vector selection are
iteratively updated. Notably, in each iteration, the LP is opti-
mized by employing the duality method, while the DFT-vector
selection task is re-formulated as a “job-employee” assignment
problem which can be solved efficiently by the Hungarian
method. In addition, a greedy algorithm is also proposed for



Fig. 1: The broadband-signal architecture of the OBP-enabled MBS payload.

comparison purposes. The computational complexity of these
solutions is then analyzed. Finally, Monte Carlo simulations
are performed to demonstrate the efficiency of the proposed
designs.

The rest of this paper is organized as follows. In Section II
we present the system model. Section III deals with the design
and optimization of the joint precoding and beamforming
schemes. Numerical results alongside their discussions appear
in Section IV. Finally, concluding remarks are drawn in
Section V.

Notations: Matrices and vectors are represented by upper-
case and lowercase boldface letters, respectively. The trans-
pose, conjugate, and Hermitian transpose operators are de-
noted as (·)𝑇 , (·) ′, and (·)𝐻 , respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider the forward-link of an OBP-enabled multi-beam
satellite (MBS) system employing DFT-based beamforming
technology to serve 𝑀 ground users, as illustrated in Fig. 1.
In particular, the payload consists of six main components,
namely: modulation and coding (MODCOD) block, linear
precoding, DFT beam matching, DFT precoding, radiation
selection, and analog interface.

1) MODCOD Block: The “CODing” part refers to the over-
head of forward error correction (FEC), whereas the “MOD-
ulation” implements the transformation from bit stream to an
analog signal. Here, one assumes 𝑀 symbols are generated
by the MODCOD block in one specific time slot due to the
signal corresponding to 𝑀 users, denoted as x = [𝑥1 · · · 𝑥𝑀 ].

2) Linear Precoding (LP): It is a particular subclass of
transmission schemes that enables serving multiple users shar-
ing the same time-frequency resources simultaneously. Based
on this, 𝑀 symbol streams are then coded independently and
multiplied by an LP matrix U ∈ C𝑀×𝑀 , which accounts for
the precoding weights and power. The outputs of this block
are 𝑀 baseband signals, namely s = Ux.

3) DFT Beam Matching: This is a novel block introduced
in this project for selecting the DFT-vector for each output
of the LP block. Let 𝑁 > 𝑀 be the size of the DFT-based
beamforming vectors. If the 𝑛-th column, w𝑛, of the DFT
matrix is assigned to the symbol 𝑠𝑚 of s, it means that the

corresponding DFT beamforming vector applied to 𝑠𝑚 is w𝑛.
As the DFT matrix is 𝑁 × 𝑁 , then “zeros” can be added if
there is no symbol assigned to a specific input of the DFT
vector. Our work aims to develop a matching framework to
select the efficient DFT beamforming vectors for s. To do so,
we introduce the binary matrix A ∈ R𝑁×𝑀 whose (𝑛, 𝑚)-th
element, denoted by variable 𝑎𝑛,𝑚, is defined as

𝑎𝑛,𝑚=

{
1, if the 𝑛-th DFT vector is assigned to 𝑠𝑚,
0, otherwise. (1)

Once DFT-vector w𝑚 is assigned to 𝑠𝑚, the precoded signal
𝑠𝑚 can be propagated by the array element with a specific
beam pattern. Some examples of propagation pattern for pre-
coded signal are illustrated in Fig. 2. The constraints imposed
on these binary variables are:

(𝐶1) :
∑︁
∀𝑛
𝑎𝑛,𝑚 = 1,∀𝑚 (2)

(𝐶2) :
∑︁
∀𝑚

𝑎𝑛,𝑚 ≤ 1,∀𝑛. (3)

And the input of DFT block can be written as

s̃ = As = AUx. (4)

4) DFT beamforming: This block works on multiplying
the baseband signals to the DFT beamforming matrix. Let
W = [w1 w2 · · · w𝑁 ] ∈ C𝑁×𝑁 be the DFT matrix. Then, the
outputs of DFT block can be described as

Ws̃ = WAs = WAUx. (5)

The computational complexity for directly implementing the
𝑁-point DFT via matrix multiplication is 𝑁 × 𝑁 complex
multiplications and 𝑁 × (𝑁 − 1) complex additions, with
an overall computational cost of O

(
𝑁2) [12]. Fast Fourier

transform (FFT) techniques can be used to for lowering the
computational cost of the DFT computation to O (𝑁 log 𝑁),
which explains why real-time beamformers can be better
realized with less sophisticated circuitry and less power than
matrix-by-vector multiplication. The FFT-based beamforming
is an efficient way of improving the performance of the OBPs
on satellite systems in terms of power reduction, mass, and
throughput gain [12]. Furthermore, when compared to ideal



Fig. 2: Examples of beam pattern corresponding to selected DFT-vector for 𝑁 = 256: (a) DFT-vector w1, (a) DFT-vector w5, and (c) DFT-vector w25.

payloads, an mMIMO payload architecture with fixed beam-
forming can achieve a considerable complexity reduction [10].
However, it is impossible to achieve the dynamic nature, i.e.,
steering the beam with respect to the motion of the satellite,
with fixed beamforming alone. The precoding technique can
be used to enable this dynamic capability.

5) Spatial Windowing and Analog interface: In this stage,
𝐾 ≤ 𝑁 consecutive outputs from the DFT are selected
(windowing), and each of them is connected to an antenna
element through a radio-frequency (RF) chain (analog inter-
face). The analog interface includes all the RF functionalities
for transmission, such as up-converting baseband signals to
RF signals and power amplification. Here, we assume that the
matrix 𝚽 ∈ R𝐾×𝑁 is implemented before the analog interface,
where each element of this matrix is zero or one (following
a rectangular window distribution), and with 𝐾 denoting the
number of radiation elements of the antenna array. Thus, the
radiated signal can be written as 𝚽Ws̃.

Downselecting the DFT outputs (𝐾 < 𝑁) increases the
beamwidth of the formed beams, compared to its full uti-
lization (𝐾 = 𝑁), due to the reduction of the array aperture.
However, the system keeps the 𝑁 different beam-pointing
directions as they depend on the incremental phase shifts
generated by the DFT operation, which are maintained in
the available 𝐾 antennas. Designing the array with a reduced
number of elements may be required to comply with physical
payload constraints, such as available area, mass, and power.
On the other hand, the design can also be exploited to create
overlapping beams, e.g., to avoid abrupt transitions in beam-
hopping operations.

B. Problem Formulation

Let H ∈ C𝐾×𝑀 be the channel matrix from the payload
antenna array to the 𝑀 users. The signal received by the 𝑀
users can be written as

y = H𝐻𝚽WAUx + 𝜼 = H̃𝐻WAUx + 𝜼, (6)

where H̃𝐻 = H𝐻𝚽. Thus, user 𝑚’s SINR of can be given as

Γ𝑚 (U,A) = ∥h̃𝐻𝑚WAu𝑚∥2∑
𝑗≠𝑚 ∥h̃𝐻𝑚WAu 𝑗 ∥2 + 𝜎2

, (7)

where h̃𝑚, u𝑚 are the 𝑚-th columns of matrices H̃,U, respec-
tively. Thus, the joint LP and DFT beamforming problem can
be stated as

max
U,A

∑︁
∀𝑚

log2 (1 + Γ𝑚 (U,A)) (8a)

s.t. constraints (𝐶1), (𝐶2),
(𝐶3) : Trace

(
U𝐻U

)
≤ 𝑃, (8b)

where (𝐶3) stands for the power constraint, and 𝑃 represents
the transmission power budget. It is worth noting that problem
(8) is non-convex MINP, which is well-known as NP-hard and
thus non-trivial to solve. In particular, there is the coupling
between the complex variables and binary ones. Additionally,
the objective function is non-convex due to the presence of
the mutual inter-user interference terms in the denominator of
each user’s SINR.

III. OPTIMIZATION-BASED SOLUTION APPROACH

A. Weighted-MMSE-based Transformation

The non-convex problem (8) can be addressed by relating
it to a weighted mean-sum square error (MSE) minimization
problem as mentioned in the following theorem.

Theorem 1. Problem (8) is equivalent to the following
weighted MSE minimization problem, i.e. the two problems
have same optimal points,

min
A,U, {𝛿𝑚 ,𝜔𝑚 }

𝑔(U,A, 𝛿𝑚, 𝜔𝑚) =
∑︁
∀𝑚

(𝜔𝑚𝑒𝑚 − log𝜔𝑚 − 1)

s.t. constraints (𝐶1), (𝐶2), and (𝐶3), (9)

where 𝑒𝑚 = E
[��𝑥𝑚 − 𝛿𝑚𝑦𝑚

��2] , 𝜔𝑚 and 𝛿𝑚 represent the MSE
weight and the receiving coefficient for user 𝑚, respectively.

Proof: The proof for this theorem is similar to that in [13],
[14]. We omit the details for brevity.

It is worth noting that the objective function in problem
(9) is not jointly convex, but it is convex over each set of
variables u𝑚’s, A, 𝛿𝑚’s, and 𝜔𝑚’s. Hence, an efficient algo-
rithm for solving this problem can be developed by alternately
optimizing u𝑚’s and A, and the MSE weight update for 𝛿𝑚’s,
and 𝜔𝑚’s.



B. Iterative LP-DFT Beamforming Design

1) Update MSE Weights and Receive Coefficients: For
given (U,A), 𝛿𝑚’s, and 𝜔𝑚’s can be determined according
to the results in [14]. In particular, the MMSE receiving
coefficient at user 𝑚 is given as

𝛿★𝑚 = 𝛿MMSE
𝑚 =

(∑︁
∀ 𝑗

|h̃𝐻𝑚WAu 𝑗 |2 + 𝜎2
𝑚

)−1
u𝐻𝑚A𝑇W𝑇 h̃𝑚. (10)

And, the optimum value of 𝜔𝑘 is expressed as

𝜔★𝑚=𝑒−1
𝑚 =1+

( ∑︁
∀ 𝑗≠𝑚

|h̃𝐻𝑚WAu 𝑗 |2 + 𝜎2
𝑚

)−1
|h̃𝐻𝑚WAu𝑚 |2. (11)

2) Linear Precoding Design: For given 𝛿𝑚’s, 𝜔𝑚’s, and A,
one can define the LP by solving the following quadratically
constrained quadratic program (QCQP):

min
U

∑︁
∀𝑚

u𝐻𝑚𝚯u𝑚 − 2𝜔𝑚ℜ
(
k𝐻𝑚u𝑚

)
s.t. (𝐶3). (12)

where 𝚯 = A𝑇W𝑇
(∑

∀ 𝑗 𝜔 𝑗 |𝛿 𝑗 |2h̃ 𝑗 h̃𝐻𝑗
)

WA, k𝐻𝑚 = 𝛿𝑚h̃𝐻𝑚WA,
and ℜ(∗) represents the real part. Since the above problem is
a convex quadratic program, it can be solved by employing
SDP transformation and CVX optimization tool as in [15] or
utilizing the standard Lagrangian duality method. In particular,
the Lagrangian of problem (12) is given by

L(U, 𝛽)=
∑︁
∀𝑚

[
u𝐻𝑚 (𝚯 + 𝛽I)u𝑚−2𝜔𝑚ℜ

(
k𝐻𝑚u𝑚

)]
−𝛽𝑃, (13)

where 𝛽 is the Lagrangian multiplier with respect to the
constraints (𝐶3) and I stands for the 𝑀 × 𝑀 identity matrix.
For given 𝛽, u𝑚’s can be optimized in closed-form as

u★𝑚 = arg min
u𝑚

L(U, 𝛽) = (𝚯 + 𝛽I)−1k𝑚𝜔𝑚. (14)

The dual function g(𝛽) is then defined as g(𝛽) = infU L(U, 𝛽),
and the dual problem can be stated as max𝛽 g(𝛽) s.t. 𝛽 ≥ 0
which is convex by nature [16]. Hence, g(𝛽) can be maximized
by using the standard sub-gradient method where the dual
variable 𝛽 can be iteratively updated as follows:

𝛽 [ℓ+1] =
[
𝛽 [ℓ ] + 𝑟 [ℓ ]

(
Trace

(
U𝐻U

)
− 𝑃

)]+
, (15)

where the suffix [ℓ] represents the iteration index, 𝑟 [ℓ ] is
the step size, and [𝑥]+ = max(0, 𝑥). The convergence of this
method can be guaranteed if 𝑟 [ℓ ] is chosen appropriately so
that 𝑟 [ℓ ]

ℓ→∞−→0 such as 𝑟 [ℓ ] =1/
√
ℓ [16], [17].

3) DFT-vector Selection: Let a𝑛 ∈ R𝑀×1 be the vector
generated from the 𝑛-th row of A. Substituting (6) into (9)
and performing some minor manipulators, problem (9) can be
rewritten as

min
A

∑︁
∀𝑛

a𝑇𝑛𝚿𝑛a𝑛 − 2
(
f𝑇𝑛 a𝑛

)
s.t. (𝐶1) and (𝐶2), (16)

where 𝚿𝑛 =
∑

∀𝑚 𝜔𝑚 |𝛿𝑚𝑡 ′𝑚,𝑛 |2
∑

∀ 𝑗 u 𝑗u𝐻𝑗 , 𝑡𝑚,𝑛 stands for the
𝑛-th element of vector Wh̃𝑚, and f𝑛 = ℜ

(∑
∀𝑚 𝜔𝑚𝛿𝑚𝑡

′
𝑚,𝑛u𝑚

)
.

It is a quadratic binary-optimization problem.

Algorithm 1: ITERATIVE LP AND DFT-SELECTION DESIGN

1: Initialize:
1-a: Set u[0]

𝑚 = 𝜃1𝑁×1 for all 𝑚, where 𝜃 is sufficiently
small to not violate constraint (𝐶3).

1-b: Randomly select {𝑎𝑛,𝑚}’s satisfying constraint (𝐶1)
and (𝐶2).

1-c: Set ℓ = 0 and select initial value 𝛽 [0] ≥ 0.
2: repeat
3: Update ℓ := ℓ + 1 and 𝛽 [ℓ ] as in (15).
4: Define

{
𝛿
[ℓ ]
𝑚

}
’s and

{
𝜔

[ℓ ]
𝑚

}
’s as in (10) and (11),

respectively.
5: Calculate U[ℓ ] as described in (14).
6: Update A[𝑙 ] by employing Hungarian method to solve

(17).
7: until Convergence.

Theorem 2. Problem (16) is equivalent to a “job-employee”
assignment problem which can be solved by using the Hun-
garian method [18].

Proof: Because a𝑛 is a vector containing binary elements
and its ℓ1-norm is less than 1, i.e. ∥a𝑛∥1 ≤ 1, according to
(𝐶2), one can yield a𝑇𝑛𝚿𝑛a𝑛 = diag(𝚿𝑛)𝑇a𝑛. Then, problem
(16) can be rewritten as

min
A

∑︁
∀(𝑛,𝑚)

𝜌𝑛,𝑚𝑎𝑛,𝑚 s.t. (𝐶1) and (𝐶2), (17)

where 𝜌𝑛,𝑚 is the 𝑚-th element of vector (diag(𝚿𝑛) − 2f𝑛).
The formulation in (17) is a well-known “job-employee”
assignment problem where 𝜌𝑛,𝑚’s can be considered as the
assignment weights [18].

4) Algorithm Development: By iteratively updating
𝛿𝑚, 𝜔𝑚,U, and A by solving problem (17), the LP matrix and
DFT-vector selection can be obtained. The solution approach
is summarized in Algorithm 1. Similar to the spirit presented
in [13], [19], the alternating minimization process in Step 4–6
of our proposed algorithm results in a monotonic reduction
of the objective function of (9); hence, the convergence of
this algorithm can be guaranteed.

C. Greedy Algorithm

To lessen the complexity level in solving problem (8), we
introduce a greedy algorithm in this section. Following this
approach, the binary matrix A can be determined by step-by-
step picking the DFT vector having strong impact on each
user. Once A is defined, we can employ the zero-forcing (ZF)
design to compute U. In particular, this greedy solution method
is summarized in Algorithm 2.

D. Complexity Analysis

In this section, we investigate the complexities of our two
proposed approaches. To begin with, it is observed that the ma-
jor complexity of each iteration of implementing Algorithm 1
is to solve the problem 17by using the Hungarian method. As



Algorithm 2: GREEDY ALGORITHM

1: Initialization: Set N = {1, 2, ..., 𝑁}.
2: for 𝑚 = 1 to 𝑀 do
3: We define the index of the best DFT vector for user 𝑚

as 𝑛★𝑚 = arg max
𝑛∈N

|h̃𝐻𝑚w𝑛 |2.

4: Set 𝑎𝑛★𝑚 ,𝑚 = 1, and 𝑎𝑛,𝑚 = 0 for all 𝑛 ≠ 𝑛★𝑚.
5: Update N = N \ {𝑛★𝑚}.
6: end for
7: Define UZF = Q𝐻

(
QQ𝐻

)−1 where Q𝐻 = H𝐻𝚽WA.

TABLE I: SIMULATION PARAMETERS

Number of Monte Carlo simulations 50
Forward link carrier frequency 19 GHz
Link bandwidth, 500 MHz
MEO attitude 8000 km
Earth radius 6378 km
Total payload RF power 1.0 − 3.0 kW
Minimum satellite elevation angle 5 degrees
Number of simulated users 20 − 50
Uniform rectangular array (URA) size 8 × 8 − 12 × 12
Array element normalized spacing (𝑑𝐴/𝜆) 0.5 − 1.5
Array element radiation model Cosine
FFT size 256
User terminal antenna gain 41.45 dBi
Temperature at user terminals 224.5 K
Channel Model Refer to [10]

reported in [18], the complexity of the Hungarian algorithm is
O(𝑁3). In addition, according to [20], the number of iterations
of the gradient descent method employed in Algorithm 1 can
be of O

(
𝜉−1

Alg.1

)
where 𝜉Alg.1 represents the solution accuracy

for solving problem (8). The complexity of this algorithm can
be estimated as

𝑋Alg.1 = O(𝜉−1
Alg.1 × 𝑁3). (18)

Next, Algorithm 2 involves a for-loop to select the best
corresponding DFT vector for each user in Steps 2-6 and the
ZF approach to computing U. Hence, the complexity of the
greedy algorithm is of

𝑋Alg.2 = O(𝑁2 + 𝑀3). (19)

The complexity analysis results seem highly suitable for
practical implementations since its power consumption is not
increased, taking into account that the update rate of the
algorithm can be very low and dictated by the variations over
time of the channel response.

IV. SIMULATION RESULTS

In this section, Monte Carlo simulations are conducted to
assess the performance of the proposed algorithms. A MEO
satellite communication scheme with a payload equipped with
a uniform rectangular array (URA) antenna is considered.
Table I summarizes the key system parameters adopted for
the following numerical simulations. For benchmarking, the
simulation results also include fully digital precoding (FDP)
designs using match-filter (MF) and MMSE approaches pre-
sented in [10], as well as DFT beamforming (Algorithm 2
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Fig. 3: The achievable sum rate versus the transmission power.
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Fig. 4: The achievable sum rate versus the number of users.

without LP design). In Figs. 3-6, we show the total achievable
rate obtained by different schemes versus the total transmis-
sion power 𝑃, the number of users, the URA size, and the
normalized array element spacing, respectively. Unless the
setting parameters are stated in a specific range of values for
simulation, we set 𝑃 = 3000 𝑊 , 𝑀 = 45, URA size of 10×10,
and 𝑑𝐴/𝜆 = 1.

As can be seen, Algorithm 2 is significantly superior to
“DFT beamforming” scheme in all simulations. This has
shown that employing the LP design on top of DFT beam-
forming can improve the network performance in terms of
achievable rate, as expected. Furthermore, Figs. 3-6 indicate
that Algorithm 1 always outperforms Algorithm 2. Learning
from these results, one can clearly confirm the advantages of
using the jointly designed LP and DFT beamforming. Interest-
ingly, our joint LP-DFT design can return a higher achievable
rate than both traditional precoding approaches match-filter
(“MF-FDP”) and MMSE (““MMSE-FDP””) significantly.

As observed from Fig. 3, the achievable rates from all
algorithms increase as the transmission power increases. It
is impressing that the employing LP technique on top of
DFT beamforming, i.e., Algorithm 2, can roundly double the
achievable rate in comparison to the scheme exploiting only
the later technique. In addition, jointly designing these two
can further gain more than 3 or 4 Gbps when 𝑃 varies from
1 to 3 kW. In Figs. 4 and 5, we study that a larger number
of users or antennas results in higher total achievable rate for
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Fig. 5: The achievable sum rate versus the number of antennas.
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Fig. 6: The achievable sum rate versus the normalized array element spacing.

all schemes in Fig. 4. Similarly, as shown in Fig. 6, setting
a larger separation between array elements can enhance the
system capacity of all schemes but the greedy algorithm.

V. CONCLUSION

In this paper, we have developed the joint LP and DFT-
beamforming designs for OBP-enabled payloads in satellite
communication systems. In particular, an efficient algorithm
that iteratively and jointly optimizes the linear precoding and
DFT-beamforming selection has been proposed to maximize
the network throughput under transmission power constraints.
Monte Carlo simulation results with various network parame-
ter settings have illustrated the effectiveness of our proposed
algorithms in improving the network capacity.
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