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Abstract—Reducing waiting time due to scheduling process and
exploiting multi-access transmission, grant-free non-orthogonal
multiple access (GF-NOMA) has been considered as a promising
access technology for URLLC-enabled 5G system with strict
requirements on reliability and latency. However, GF-NOMA-
based systems can suffer from severe interference caused by the
grant-free (GF) access manner which may degrade the system
performance and violate the URLLC-related requirements. To
overcome this issue, the paper proposes a novel reinforcement-
learning (RL)-based random access (RA) protocol based on
which each device can learn from the previous decision and
its corresponding performance to select the best subchannels
and transmit power level for data transmission to avoid strong
cross-interference. The learning-based framework is developed
to maximize the system access efficiency which is defined as
the ratio between the number of successful transmissions and
the number of subchannels. Simulation results show that our
proposed framework can improve the system access efficiency
significantly in overloaded scenarios.

Index Terms—Grand-free NOMA, Q-Learning, URLLC.

I. INTRODUCTION

Providing ultra-reliable and low-latency communications
(URLLC) to special services with stringent reliability and
latency requirements and supporting massive access over a
limited radio spectrum are two important use-cases of the fifth
generation (5G) and beyond wireless networks (5GBNs) [1–
6]. Recently, GF-NOMA has been demonstrated as a promis-
ing solution for these such use-cases [7]. With GF-NOMA
strategy, each device can access any subchannel (SC) quickly
without waiting for receiving the admission granted by the
base station. Furthermore, the NOMA transmission can be
exploited when there are more than one device access any
SC. Hence, this technology can improve the spectrum access
efficiency significantly while reduce transmission latency for
the system. However, opening the spectrum for free access
without admission control may cause congestion problem
where there are too many devices competing a limit number
of SCs. To mitigate this issue, [8, 9] proposed to modify GF-
NOMA scheme by dividing a cell into several fractions and
using orthogonal resource allocation among different fractions.
These modified framework can reduce inter-fraction collisions
but the spectrum competition among devices within the same
fraction still causes severe collisions. Thus, it is important to
find a smart resource access solution to further reduce the
collisions and improve the system throughput.

In recent years, RL algorithms, especially Q-learning (QL),
has been applied to intelligently address the collisions and
severe interference in massive access scenario [10–15]. Specif-
ically, [10] proposed a collaborative distributed QL algorithm
for frame-based slotted-Aloha (SA) RA scheme to find the
best RB allocation strategy for devices in order to avoid
the collision in GF orthogonal multiple access systems. On
different approaches, [11–15] employed QL into different
GF-NOMA systems to mitigate the congestion issue and
interference in overloaded scenario. However, in these works,
only the scheme allowing all devices compete over all SCs
is investigated and no suitable solution for URLLC-enabled
systems is considered.

This paper aims to employ the RL method to develop
a novel power control (PC) and SC selection mechanism
for GF-NOMA URLLC-enabled system to address the col-
lision challenge while maintaining the strict URLLC-related
requirements. The proposed framework can be employed at
the devices to help them select the best SC and power level
for transmission to improve the system RA efficiency and
requirements on reliability and latency. In this work, two
different GF-NOMA transmission methods, namely with and
without SDC (wSDC and woSDC) are investigated. In wSDC
scheme, the SCs and devices are grouped into various clusters
in each of which GF-NOMA is performed separately. While
the woSDC scheme allows all devices to compete for all
available SCs to perform GF-NOMA. The simulation is then
demonstrated to evaluate the system performance in term of
AE and convergence of the proposed learning algorithm.

II. SYSTEM MODEL

We investigate an uplink URLLC-enabled GF-NOMA sys-
tem consisting of one central-cell BS and M devices allocated
randomly within a circle-cell with radius of r0 (m), as shown
in Fig. 1. In this setting, the system bandwidth of W (MHz) is
divided equally into K SCs (SCs) (so-called resource blocks
- RBs), i.e., the bandwidth of each SC can be expressed as
WSC = W/K. Furthermore, this paper focuses on saturated
traffic scenarios where data packets are always available at
the beginning of each slot for all devices. GF-NOMA-based
transmission scheme is assumed in this system where every
SC is opened for access from all devices.
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Fig. 1. Illustration of SDC in an uplink URLLC-enabled GF-NOMA system.

A. Grant-Free Access Strategy

Following the Grant-Free strategy, the SCs are opened for
devices to access without scheduling processes; then, the
devices can individually choose the SCs and a power level for
data transmission. However, letting all device freely access
all SCs in the system may result in unbalancing resource
allocation where there exits one SC accessed by too many
devices. In such scenario, the devices’ signal may suffer
the strong interference and the system’s performance can
be degraded. To overcome this challenge, admission-limited
GF-NOMA frameworks, so-called SC and device clustering
(SDC) methods, have been proposed to reduce the set of
chosen-able SCs for each device and also group devices in
cluster to avoid the strong cross-interference [9]. This work
investigates both original and admission-limited GF-NOMA
communication schemes which are named as:

• Without SDC (woSDC): All K SCs are available for all
devices to compete for their transmissions [10–13]. In
this scheme, there is a high probability that too many
devices admitted to one SC which results in performance
degradation due to the heavy interference among these
devices.

• With SDC (wSDC): This scheme aims to reduce the
interference by clustering devices and SCs for NOMA
transmission [9]. Specifically, let C be the number of
clusters and K ′ present the number of SCs in each cluster,
i.e., C = ⌈K/K ′⌉, where ⌈·⌉ denotes the ceiling function.
Here, there are K ′ SCs arranged in each of the first
C − 1 clusters while the C-th cluster consists of the
remaining SCs, i.e., K − (C − 1)K ′. To access the SCs
within different clusters, the devices are grouped into
M ′ = ⌈M/C⌉ rings based on their distances to the BS
so that the cardinal number of each group is C or C−1.
In particular, each of the first M − M ′(C − 1) rings
consists of C devices while the each of the remaining
contains C−1 devices. Then, the set of devices allowed to
access SCs in each cluster can be determined by randomly
choosing one device from each ring.

B. NOMA Transmission Process

This section briefly overviews the NOMA transmission
process over SC k. Denote am,k as a binary indicator where

am,k = 1 indicates that device m decides to access SC k and
vice versa. Then, the set of devices accessing SC k can be
described as Mk = {m|am,k = 1}. Let Mk (Mk < M ) be
the number of devices using SC k for their data transmission.
When Mk > 1, the power-domain NOMA transmission is
employed. Let Pm,k be transmission power due to device m
over SC k. Here Pm,k can be selected from a predetermined
set P = {P1, P2, ..., PL}, i.e., Pm,k ∈ P . Then, the signal
received by the BS over SC k can be expressed as

yk =
∑

m∈Mk

√
Pm,kgm,kxm,k +N0, (1)

where xm,k presents the data symbol of device k, N0 is the
additive white Gaussian noise (AWGN), and gm,k stands for
the channel coefficient of the wireless link between device k
and the BS over SC k. Here, both large-scale fading and small-
scale fading are considered in the channel model. In particular,
the channel gain over SC k from device k to the BS is modeled
as |gm,k|2 = hm,kd

−θ
m where θ is the path loss exponent, dm

represents the distance from device m to the BS, and hm,k

stands for the random small-scale fading factor.
Without loss of generality, one assumesMk = {1, . . . ,Mk}

where the devices are sorted in the descending order of the cor-
responding received power level at the BS, i.e., Pm,khm,kd

−θ
m .

Following NOMA principle, the devices with higher received
power level are decoded earlier at the BS. In particular, the
BS decodes the message of a device by considering the
message of devices with lower received power level as noise
[11]. It then removes this component from its observation to
detect the remaining devices’ messages by using successive
interference cancellation (SIC) technique. Given this context,
the received signal-to-interference-plus-noise ratio (SINR) of
device m over SC k can be written as

γm,k =
Pm,khm,kd

−θ
m

m−1∑
i=1

ηPi,khi,kd
−θ
i︸ ︷︷ ︸

I1

+

Mk∑
j=m+1

Pj,thj,kd
−θ
j︸ ︷︷ ︸

I2

+σ2

, (2)

where I1 is the residual interference component due to SIC
process, I2 denotes the interference caused by devices having
received power level lower than device m, and η (0 ≤ η ≤ 1)
represents the imperfect level of SIC process.

C. URLLC-enabled Communication

For URLLC communication, very short packets and finite
blocklength (FBL) are implemented for data transmission
due to the stringent requirements on latency and reliability.
Consequently, Shannon’s capacity formula cannot be applied
for URLLC communication model since it is designed under
the assumption of infinite blocklength (iFBL). According to
[16], the achievable rate of device m in FBL regime for a
quasi-static flat fading channel can be approximated as

Rm,k ≈W ′

[
log2 (1 + γm,k)−

√
Vm,k

DmaxW ′
Q−1 (εm,k)

ln 2

]
,

(3)



where Vm,k = (log2e)
2
[
1− 1

(1+γm,k)
2

]
represents the chan-

nel dispersion, Dmax denotes the maximum transmission
latency, Q−1(x) is the inverse of the Gaussian Q-function

Q (x) =
∞∫
x

1√
2π

e−
t2

2 dt, and εm,k is the decoding error prob-

ability (DEP) which can be used to evaluate the transmission
reliability. Following NOMA principle, the BS needs to decode
the messages of m − 1 devices having better received power
levels successfully and then removes these components from
its observation before detecting the message of device m.
Thus, the effective DEP of device m is expressed as

εm,k = 1−
m−1∏
i=1

(1− εi,k) +

m−1∏
i=1

(1− εi,k)ε0, (4)

where ε0 is the initial DEP for NOMA process and ε1,k = ε0.

D. Access Efficiency Maximization

In this work context, the message of device m transmitted
over SC k is successfully decoded at the BS if its achievable
rate Rm,k with URLLC requirements (i.e., Dmax and εm,k)
is larger than or equal to a predetermined rate threshold Rth,
i.e., Rm,k ≥ Rth. Then, the access attempt of device m on
SC k is considered as successful access if its data stream is
decoded correctly. Based on that, an access efficiency factor
is introduced in this work context as

AE(P,A) =

K∑
k=1

∑
m∈Mk

1{Rm,k≥Rth}/K, (5)

where 1{X} presents the indicating function which equals to
one if X is true and zero otherwise; P,A stand for the matrix
of power and SC selection variables, respectively.

In this paper, we focus on develop a distributed power
control and SC selection framework which can be processed
at devices to maximize the system access efficiency. This
problem can be stated as

max
P,A

AE(P,A) s.t. am,k ∈ {0, 1}, ∀(m, k), (6a)

Pm,k ∈ {P1, P2, ..., PL}, ∀(m, k), (6b)

Solving problem (6) is very challenging due to the cou-
pling between binary variables {am,k}’s and discreet variables
{Pm,k}’s, and the complicated form of Rm,k given in (3).

III. LEARNING-BASED RANDOM ACCESS MECHANISM

Although GF access can reduce access latency and increases
the number of active devices for URLLC-enabled GF-NOMA
systems, its random access nature causes collisions since mul-
tiple devices can use the same SC. To mitigate this drawback,
we apply an efficient QL framework to improve the network
throughput by allowing multiple devices to use the same SC
while guaranteeing the required latency and DEP for devices.

QL is one of the most popular RL algorithms, which can
be implemented in a distributed manner. It enables an agent
to interact with the environment and learn from the previous
experience in the absence of a training data-set to perform a
task in a sequence of time-steps {1, . . . , t, . . . , T}. At each

Algorithm 1: QL-based PC and SC Selection Algo-
rithm
Data : M , K, K ′, P , Dmax, W ′, r0, δ, α, γ, Rth,

pv maximum number of iterations for learning
process I .

Result: Q-Table for M devices.

1 Calculate the number of clusters C, the number of SCs
and the number of devices in each cluster with
respect to wSDC method;

2 Determine the number of available SC K̂ for device m
based on the applied NOMA transmission method,
i.e., woSDC or wSDC;

3 Initialize L× K̂ zero Q-table for device m, i← 1;
4 while i ≤ I do
5 Device m (1 ≤ m ≤M ) selects an action am, i.e.,

selecting a (power transmit, SC) pair for its
transmission using ϵGP or BAP method;

6 Take action am, observe reward according to (9);
7 Update Q-value according to (8);
8 i← i+ 1;
9 end

time-step t, an agent can move its state from the current state
st ∈ S to the next state st+1 ∈ S by taking an action at ∈ A,
and during this transition, the agent receives a respective
reward rt+1. To depict the agent-environment relationship,
the agent builds an action-value function, namely Q-function.
After performing action at, the new Q-value at each state is
calculated based on the following iterative procedure [17]

Qt+1 (st, at) = (1− α)Qt (st, at)

+ α

[
rt+1 + γmax

a∈A
Qt (st+1, a)

]
,

(7)

where 0 ≤ α ≤ 1 denotes the learning rate, 0 ≤ γ ≤ 1 is the
discount factor, and rt+1 represents the reward function.

To apply the above-described QL algorithm into the con-
sidered URLLC-enabled GF-NOMA system, we consider that
each device is a learning agent and define Qt (m, am,t) as
the Q-value of device m at time-step t with the action am,t.
The action here is the transmit power and SC selection
am,t ∈ A =

{
1, . . . , lk, . . . LK̂

}
, where A is the set of

possible actions, L is the maximum number of available
transmit power levels (TPLs), and K̂ is the number of available
SCs depending on NOMA transmission method, i.e., woSDC
or wSDC. We define P = {P1, . . . , PL} as the set of TPLs.
After taking the action am,t, the new Q-value Qt+1 (m, am,t)
is updated as follows:

Qt+1 (m, am,t) = (1− α)Qt (m, am,t)

+ α

[
rm,t+1 + γmax

a∈A
Qt (m, a)

]
,

(8)

where the reward function rm,t+1 is defined as

rm,t+1 =

{
1, if the transmission is successful,
pv, otherwise, (9)



in which pv ≤ 0 is the penalty value. For action selection, we
investigate the following two methods:

• ϵ-greedy policy (ϵGP): this is a widely-used method for
action selection, where device m can select an action
randomly with probability ϵ or an action with highest Q-
value with probability 1− ϵ. The probability ϵ is updated
after each learning step as ϵ = δϵ, where δ (0 ≤ δ ≤ 1)
is the exploration decay coefficient.

• Best action policy (BAP): this policy aims to only select
the best action with highest Q-value in each learning step,
where if there are many actions with the same highest
Q-value, device m can choose one of these actions
randomly.

The proposed mechanism is summarized in Algorithm 1.
Specifically, the Q-table of device m is first initialized as
a L × K̂ array of zeros, where K̂ depends on the NOMA
transmission method, i.e., woSDC or wSDC, as depicted in
Section II. Using ϵGP or BAP methods, device m can select
one SC and a TPL for its transmission. It then updates
the respective Q-value based on (8). After updating the Q-
value, another TPL and SC selection is performed in the next
transmission. This learning process ends when each device
finds the best TPL and SC to communicate with the BS.

IV. SIMULATION RESULTS AND DISCUSSIONS

The simulation results are provided in this section to eval-
uate our proposed algorithm’s performance. For QL setting,
we select α = 0.1, γ = 0.5, pv = −1, δ = 0.95, and
the initial probability for ϵGP method is one, i.e., ϵ = 1. In
addition, the simulation parameters are set as r0 = 100 m,
K = 100, the SC bandwidth WSC = 180 KHz, K ′ = 20,
P = {0.1; 0.25; 0.5} W, θ = 3, σ2 = −174 dBm, η = 0.05.
The rate threshold is set as 1 bps/Hz for all transmission, i.e.,
Rth = 1 bps/Hz while Dmax is selected in {0.5; 1; 2; 2.5; 3}
ms, and ε0 ∈

{
10−1, 10−2, 10−3, 10−4, 10−5

}
.

In Fig. 2, we plot the AE versus the number of devices
M . We investigate seven different access approaches including
the proposed QL method with wSDC and BAP (wSDC-BAP-
QL), the proposed QL method with wSDC and ϵGP (wSDC-
ϵGP-QL), the proposed QL method with woSDC and BAP
(woSDC-BAP-QL), Slotted-Aloha (SA), woSDC-GF-NOMA-
SA, wSDC-GF-NOMA-SA, and QL-based SA (QL-SA). In
SA, the devices randomly select a SC, where a collision occurs
if more than one device use the same SC. In woSDC-GF-
NOMA-SA and wSDC-GF-NOMA-SA, GF-NOMA scheme
is applied for SA method in case of considering NOMA
transmission methods woSDC and wSDC, respectively. In
QL-SA, the QL algorithm is utilized to reduce the collision
for SA method. As can be observed, QL-based frameworks
significantly increase the system AE. Furthermore, our pro-
posed methods outperforms the QL-SA in overloaded scenario,
i.e., M > K. Among QL-based scheme, the wSDC ones
(i.e., wSDC-BAP-QL and wSDC-ϵGP-QL) return in the higher
AE than the woSDCs do. It is because when GF-NOMA is
performed for small clusters separately, severe interference
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Fig. 2. AE versus number of devices with different RA methods.
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Fig. 3. Convergence of Q-learning with different RA methods.

can be avoided. Fig. 2 also indicates that wSDC-BAP-QL and
wSDC-ϵGP-QL achieve the similar AE.

As mentioned earlier in Algorithm 1, the learning process of
QL algorithm continues until the Q-value achieves a conver-
gence value such that the devices find unique (transmit power,
SC) pairs for their transmissions. To evaluate the convergence
of the proposed QL methods, we investigate the variation of
the parameter total Q-value of all devices with respect to the
number of iterations in Fig. 3. We can see from this figure that
although the proposed wSDC-BAP-QL and wSDC-ϵGP-QL
methods bring the similar performance in terms of AE, wSDC-
BAP-QL achieves the convergence faster than wSDC-ϵGP-
QL. Furthermore, this figure indicates that the convergence
of woSDC-BAP-QL is similar to that of wSDC-BAP-QL.

To evaluate the DEP and latency on the system performance,
we analyze the change of the AE with respect to different
reliability and latency thresholds in Figs. 4 and 5, respec-
tively. Here, we use the wSDC-BAP-QL, woSDC-BAP-QL,
wSDC-GF-NOMA-SA, and woSDC-GF-NOMA-SA methods
for comparison. From these two figures, one can observe that
the AE of the system decreases when the requirements on
reliability and latency get more stringent (i.e., the reliability
increases from 10−1 to 10−5 and the latency decreases from
3 ms to 0.5 ms). Furthermore, the wSDC-BAP-QL, woSDC-
BAP-QL methods using QL achieve the performance bet-
ter than wSDC-GF-NOMA-SA, and woSDC-GF-NOMA-SA
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approaches without QL. In addition, these two figures also
clarify the benefits of the wSDC-BAP-QL method over the
woSDC-BAP-QL scheme, where wSDC-BAP-QL outperforms
woSDC-BAP-QL in terms of the AE under different conditions
of reliability and latency. From the above four figures, we
can conclude that among the proposed QL methods, wSDC-
BAP-QL brings the best performance in terms of both AE and
convergence.

V. CONCLUSION

This paper has investigated the RA in and URLLC-enabled
GF-NOMA system. To reduce severe interference and improve
the AE, a SC and device clustering method has been con-
sidered for GF-NOMA transmission. Different QL methods,
i.e., wSDC-BAP-QL, wSDC-ϵGP-QL, and woSDC-BAP-QL
has been proposed to reduce the interference among devices
and enhance the system performance in terms of AE while
taking the URLLC requirements into account. Furthermore,
two different action selection methods, i.e., BAP and ϵGP
has been examined for learning process. Simulation results
have indicated that the proposed QL methods brings better
performance compared to the other approaches such as SA,
woSDC-GF-NOMA-SA, wSDC-GF-NOMA-SA, and QL-SA,
in overloaded scenario, i.e., the number of devices is larger
than the number of available SCs. Furthermore, among the

proposed QL methods, wSDC-BAP-QL achieves the best
performance for both AE and convergence.
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