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a b s t r a c t 

Today, leveraging the enormous modular power, diversity and flexibility of manycore systems-on-a-chip 

(SoCs) requires careful orchestration of complex and heterogeneous resources, a task left to low-level soft- 

ware, e.g., hypervisors. In current architectures, this software forms a single point of failure and worth- 

while target for attacks: once compromised, adversaries can gain access to all information and full control 

over the platform and the environment it controls. This article proposes Midir , an enhanced manycore 

architecture, effecting a paradigm shift from SoCs to distributed SoCs. Midir changes the way platform 

resources are controlled, by retrofitting tile-based fault containment through well known mechanisms, 

while securing low-overhead quorum-based consensus on all critical operations, in particular privilege 

management and, thus, management of containment domains. Allowing versatile redundancy manage- 

ment, Midir promotes resilience for all software levels, including at low level. We explain this architec- 

ture, its associated algorithms and hardware mechanisms and show, for the example of a Byzantine fault 

tolerant microhypervisor, that it outperforms the highly efficient MinBFT by one order of magnitude. 

© 2022 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Economic wealth and the well-being of modern societies de- 

ends on information and communication technologies (ICT). Such 

ependency obviously hinges on the correctness of these systems, 

ome of them critical, which may fail in a combination of mul- 

iple causes and ways ( Davies, 2016; Lee, 2018; Lee et al., 2016; 

rice, 2019; Tsidulko, 2018; Yusof, 2019 ). Systems have been pro- 

ressively pushed to extremes of efficiency through modularity in 

latform sharing, firstly through virtualization and lately by lever- 

ging the enormous power growth, functional diversity and adap- 

ation flexibility offered by multi- and manycore architectures. This 

as taken platform sharing to new heights, into the realm of multi- 

rocessor systems-on-a-chip (MPSoCs). 

The organization of these complex computing resources de- 

ends on low-level platform management hardware (e.g., memory- 

anagement units (MMUs)) and software (e.g., firmware, hypervi- 

ors, management engines). However, current MPSoC architectures 

re such that these management components, which should form 

 last line of defense against severe accidental faults or adversaries 

ntruding the system (malicious faults), instead constitute a single 

oint of failure ( SPoF ), for two main reasons. First, the way plat-
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orm privilege-enforcement mechanisms (e.g., MMUs or hardware- 

nforced capabilities ( Woodruff et al., 2014 )) are designed allows 

aults in a core/tile to propagate through MPSoC components. Sec- 

nd, faults in this lowest-level management software, e.g., hyper- 

isors configuring these privileges, are bound to propagate across 

anagement and managed components, again causing common- 

ode failure scenarios. 

If these SPoFs are compromised by adversaries, the latter gain 

ull authority over the platform’s privilege-enforcement mecha- 

isms and, through them, access to all information and com- 

lete control over all platform resources (e.g., cloud-based sys- 

ems) ( Szefer et al., 2011a ), including, in the case of cyber- 

hysical systems, extended control over the physical environments 

n which they act (e.g., nuclear power plants Das, 2019 , power 

rid stations Meserve, 2007 or contemporary and autonomous 

ars Greenberg, 2015 ). 

Is this a real risk? It is, if the vulnerability rate of 

hese low-level platforms is non-negligible. Continuing prob- 

ems, whether in Intel’s CSME ( Ermolov and Goryachy, 2017 ), 

en/Critix ( Xen, 2019 ) or concerning Spectre ( Kocher et al., 2018 )

nd Meltdown ( Lipp et al., 2018 ), have been repeatedly reminding 

s of how brittle the assumption of “tamperproof and unattack- 

ble low-level platform management assets” is. Numerous vul- 

erabilities have been reported in RTOSs’ source code, namely in 

oT devices (e.g., CWE-119, CWE-120, CWE-126, CWE-134, CWE- 

98, CWE-561, CWE-563) ( Al-Boghdady et al., 2021 ). Vulnerability 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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nalysis of virtualized environments and hypervisor security have 

hown the various ways these can be attacked ( Brooks et al., 2012; 

rabahar and Edwin, 2012; Thongthua and Ngamsuriyaroj, 2016; 

urnbull and Shropshire, 2013 ). Even formally verified kernels (e.g., 

eL4 Klein et al., 2009 ) may fail due to model/reality discrepancies 

r hardware faults violating modelling assumptions ( Biggs et al., 

018 ). 

Being the risk real, are there no solutions yet? The solution 

esign space for contemporary hardware platforms dependability 

nd security has been unfolding in two directions: (i) application- 

pecific system-level replication (e.g., triple modular redundancy, 

ainly in cyber-physical systems (CPS), by means of multiple elec- 

ronic control units (ECUs)), where the lack of flexibility limits the 

xtension to general systems; (ii) manycore-level replica manage- 

ent and consolidation, which then, if on bare MPSoCs, reintro- 

uces the SPoF concern, now for the low-level replication manage- 

ent component ( Baumann et al., 2009; Bressoud and Schneider, 

995; Döbel, 2014; Esposito et al., 2018; Lamport, 1998 ). 

At this time, we call the reader’s attention to an inter- 

sting fact, which will become crucial to our solution. The 

urrent MPSoC architectures’ complexity, modularity and net- 

orked inter-connectivity, suggests attributes of distributed sys- 

ems ( Mullender, 1993 ), albeit imperfect such systems (an exam- 

le of which is the aforementioned SPoF syndrome). Heavily stud- 

ed techniques have been used in distributed systems to mitigate 

PoF syndromes and to implement fault and intrusion tolerance 

chemes ( Powell et al., 1988; Verissimo et al., 2006 ), such as repli-

ation and consensus. In consequence, the root of the MPSoC prob- 

ems just presented may also be an avenue to their solution, i.e., 

e can leverage the available resources in MPSoCs (e.g. cores) 

nd their connectivity together with lessons from the distributed 

ystems realm to solve the presented issues. This comparison of 

MP)SoCs to distributed systems was first made in Függer and 

chmid (2012) , where a fault-tolerant clock generation mechanism 

or SoCs is introduced. 

So, in this article, we start by identifying the gaps from 

MP)SoCs to distributed systems and proposing (MP)SoC mecha- 

isms to bridge them, which essentially means achieving: fault 

ndependence and fault containment, despite low software-level 

ompromise, while retaining the flexibility (MP)SoCs offer. Having 

 manycore that behaves as a (closely-coupled) distributed sys- 

em should allow us to design a set of efficient and low-overhead 

istributed systems-inspired modular protection and redundancy 

anagement mechanisms, e.g., Byzantine fault tolerant state ma- 

hine replication (BFT-SMR), for fault and intrusion tolerance (FIT). 

he remaining problem, how to implement and where to locate 

ll the mechanisms above, is addressed by the Midir 1 architec- 

ure presented in this paper, which leverages the computing crit- 

cal mass and flexibility of contemporary tile-based manycore ar- 

hitectures. 

Midir constrains the connection of all tiles to the network-on- 

hip (NoC) through simple, self-contained hardware-based trusted- 

rustworthy components, which we call T2H2 . Exploring the con- 

ept of architectural hybridization ( Veríssimo, 2006 ), whilst we 

onsider those components to be ultra-reliable and not fail, we 

re agnostic about the reliability of individual tiles, which may be 

ompromised or fail. The assumption is justified by the simplicity 

f the former, promoting verifiability. 

The T2H2 components implement the functionality required for 

ault independence, containment, and tolerance mechanisms men- 

ioned above. In consequence, tile-internal software or hardware 

aults are contained in the tile and the objects the tile can access. 

urthermore, the baseline mechanisms for protection and redun- 
1 pronounced meedir 

d

m

t

2

ancy management provided by T2H2 can be extended and recur- 

ively applied at any software layer, giving the designer ample lati- 

ude for crafting resilience into systems, both “horizontally” (incre- 

ental power of defense mechanisms) and “vertically” (depth of 

efense). 

Locating T2H2 between the tile and the NoC interconnect 

ot only provides a clear pathway for integration by chip man- 

facturers and integrators, it also allows drawing from many 

ell-understood building blocks (e.g., region protection, capabil- 

ties Needham and Wilkes, 1974 , and other chip-level resource 

anagement mechanisms Aggarwal et al., 2007 , capable of isolat- 

ng tiles and the resources they can access). The novelty of Midir 

ies in their arrangement to avoid SPoFs, even while they are re- 

onfigured. 

The contributions of this article are: 

1. An analysis of the gaps separating current MPSoC architectures 

from genuine distributed systems and how gap fixing, through 

measures promoting fault independence and fault containment 

in tile-based architectures enforced at the level of the tile-to- 

NoC interface, secures fault isolation and the elimination of 

SPoFs. 

2. An architecture ( Midir ) leveraging the resulting distributed 

system-on-a-chip (DSoC) in (1) to achieve incremental levels 

of modular fault and intrusion tolerance, through a range of 

diverse redundancy management techniques implemented by 

simple hardware-based voting/consensus mechanisms. 

3. The design of a simple and ultimately t rusted- t rustworthy 

h ardware h ybrid, T2H2 — the core component of Midir , staged 

at the tile-to-NoC interface — providing just two generic base- 

line functions: access control (capability registers) and quorum- 

based consensus (voters). Through configurations and combina- 

tions of these two basic functions, T2H2 is capable of imple- 

menting all the techniques mentioned in (1) and (2). 

4. As a proof of concept, we give and evaluate an implementation 

featuring Midir and essential parts of a fault and intrusion toler- 

ant microhypervisor built on top of it. Although the architecture 

serves several reliability strategies, we chose the most effective, 

active replication with error masking. Being the most complex 

and costlier, we believe to have shown the performance and 

practicality of our concept. 

An analysis of related work is presented next ( Section 2 ), fol- 

owed by an evaluation of the challenges for bridging SoCs to 

SoCs ( Section 3 ), and the threat model ( Section 4 ). Then, we in-

roduce the Midir architecture ( Section 5 ) and the T2H2 component 

n Section 6 . At this point, we are able to show Midir in action,

iscussing the design of a fault and intrusion tolerant microhyper- 

isor built on top of it ( Section 7 ), as an example of critical low-

evel management software. Finally, we discuss some relevant im- 

lementation matters in Sections 8 and 9 , we evaluate Midir on a 

ynq ZC702 board, showing how Midir ’s hardware voters accelerate 

FT-SMR protocols, voted execution of system calls and consensual 

econfiguration of T2H2 . We shall say an operation is consensual if 

t becomes effective only after a fault threshold-exceeding quorum 

f replicas agreed to executing this operation, here by means of 

oting. Section 10 concludes the paper, pointing to directions for 

uture work. 

. Related work 

In this Section, we present several classes of works that mo- 

ivated Midir : low-level approaches for detection and containment 

f errors in low-level support software; analyses of the evolution of 

efects in system support software; attempts at preventing and/or 

itigating the resulting errors and potential failures; approaches 

o replication-based fault/intrusion tolerance and resilience. 
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Mitigation measures have been studied for detection and con- 

ainment of errors in OS and manycore support software ( Döbel, 

014; McCune et al., 2010; Seshadri et al., 2007 ) through an under- 

ying, assumed-trustworthy layer. However, they still have a non- 

egligible complexity, and in consequence, even a residual fault 

r vulnerability rate in these supposedly trusted components may 

reach the platform’s dependability and security goal. 

In fact, as confirmed by Hoffmann et al. (2013) , “simple” com- 

onents with at least a few KLOCs have a non-negligible statistical 

ault footprint. Other studies ( Ostrand and Weyuker, 2002; Ostrand 

t al., 2004 ) reveal between 1–16 bugs per 10 0 0 lines of code go

ndetected before deployment, even in well-tested software, and 

perating-system kernels form no exception ( Matias et al., 2014; 

atterson and Ganapathi, 2005 ). Recent insights ( Palix et al., 2014 ) 

eveal that faults in stateful core subsystems — on which we focus 

ere — outrank driver bugs in severity. 

Many approaches target operating systems with the goal of 

mproving their resilience against faults. However, typically they 

rotect either applications ( Bolchini et al., 2013; Depoutovitch 

nd Stumm, 2010; Kuvaiskii et al., 2016 ) or specific OS subsys- 

ems ( Elphinstone and Shen, 2013; Sundararaman et al., 2010; 

wift et al., 2006; Zhou et al., 2006 ) and only from acci- 

ental faults. Efforts for providing whole-OS fault tolerance in- 

lude ( Bhat et al., 2016; David et al., 2008; Gens, 2018; Govil 

t al., 1999; Herder et al., 2006; Lenharth et al., 2009; Nikolaev 

nd Back, 2013 ). Furthermore, the complexity of these recovery 

ernels is comparable to that of a small hypervisor. For example, 

SIRIS ( Bhat et al., 2016 ) directs OS recovery to a 29 KLOC reliable

omputing base (RCB) ( Engel and Döbel, 2012 ), roughly twice the 

ize of modern microkernels ( Asmussen et al., 2016; Klein et al., 

009; Lackorzynski et al., 2018; Liedtke, 1995 ). Again, this makes 

he likelihood of residual faults or vulnerabilities non-negligible. 

Several other works have given early steps in the direction of 

he solutions we advocate in this paper, minimizing the threat 

urface, or enforcing isolation. Nohype ( Szefer et al., 2011b ) re- 

oves all but a small kernel substrate from application cores, 

hich run functionality-rich OSs in virtual machines (VMs), re- 

ucing the threat surface. Cap ( Needham and Wilkes, 1974 ) and 

3 ( Asmussen et al., 2016 ) exploit hardware capability units and 

ive ( Chapin et al., 1995 ) a bus-level firewall to isolate VMs at tile

ranularity. However, although this avoids trusting tile-local ker- 

el substrates for isolation, their configuration interface, which is 

ecessary to retain flexible resource sharing, turns configuring the 

ernel into a single point of failure. We address this problem in 

idir , by requiring reconfiguration of the fault-isolating T2H2 unit 

o be performed only if agreed by a majority of correct replicas 

perating in consensus. 

Capabilities are cryptographically- ( Tanenbaum and 

aashoek, 1994 ), kernel- ( Hardy, 1985; Lackorzynski et al., 2018; 

hapiro and Hardy, 2002 ) or hardware-protected tuples ( Asmussen 

t al., 2016; Needham and Wilkes, 1974 ) comprised of at least 

 pointer to an object (or service) and access rights authorizing 

hich operations owners of these capabilities may execute on the 

bject. Posession of a capability is both necessary and sufficient to 

xercise a granted access over an object. Consequently, as long as 

oth capability-enforcement and -reconfiguration are trustworthy, 

aults in a component cannot propagate beyond the objects it can 

ccess, unless other accessing components are faulty as well. 

Cheri ( Woodruff et al., 2014 ) adds capability protection on top 

f page-based protection, but includes the MMU and the OS page- 

able management in the reliable computing base (RCB), which 

eans the former must be trustworthy. The concept behind Midir 

s independent of the protection model, and thus not necessarily 

ied to e.g., capabilities. Also, by establishing the fault contain- 

ent domains at the granularity of tiles, we are agnostic about 

he semantics and interplay of tile-internal and/or core-level com- 
3 
onents, e.g., MMUs, memory protection or page-table manage- 

ent. Enforced by T2H2 , the protection mechanisms are crafted at 

nter-tile level, emulating the spacial isolation of distributed sys- 

em nodes. 

Replication has been used before in closely-coupled systems, 

rimarily to tolerate accidental faults in cyber-physical systems 

CPS), by replicating controllers to form triple modular redun- 

ant (TMR) units, or duplicated self-checking units. An example 

f the use of TMR in highly critical systems can be seen in the 

rimary flight computers of Boeing 777’s fly-by-wire (FBW) sys- 

em ( Yeh, 1998 ). In a similar context, a form of passive redun-

ancy can also be seen in Airbus’ dependability-oriented approach 

o FBW, where “hot spares” are used in case the active computer 

nterrupts its activity ( Traverse et al., 2004 ). The concept was ex- 

ended to multi-phase tightly synchronous message-passing pro- 

ocols still in the CPS domain ( Kopetz and Bauer, 2003; Mancini, 

986 ). The so-called ‘Paxos’ ( Schiper et al., 2014 ), and ‘Byzan- 

ine’ ( Castro and Liskov, 1999 ) Fault-Tolerant State-Machine Repli- 

ation classes of protocols promote resilience to threats, respec- 

ively failures and both threats and failures, extending the concept 

o generic classes of applications, namely in loosely-coupled sys- 

ems. For example, Castro’s seminal BFT-SMR protocol ( Castro and 

iskov, 1999 ) masks the actions of a minority of up to f compro- 

ised replicas, by reaching a majority voted consensus of | Q| = 

 f + 1 out of n = 3 f + 1 replicas. Behind all the categories of tech-

iques above is a baseline voting mechanism among the values 

roposed by a pre-defined number of replicated fault-independent 

omponents. Midir offers such a baseline mechanism at a low 

nough level of abstraction to serve essentially any replication- 

riented application. 

Architectural hybridization ( Veríssimo, 2006 ) (i.e., the inclu- 

ion of trusted-trustworthy components that follow a differenti- 

ted fault model) allows reducing n and | Q| to 2 f + 1 and f +
 , respectively ( Correia et al., 2004; Kapitza et al., 2012; Levin 

t al., 2009; Veronese et al., 2013a ). The implementation of T2H2, 

idir ’s trusted component, draws from these quorum reduction 

esults, and further accelerates the BFT-SMR protocol that Midir - 

nabled FIT microhypervisors use to coordinate system call execu- 

ion ( Section 7 ). 

Paxos and BFT replication have been attempted as well inside 

PSoCs ( Baumann et al., 2009; Bressoud and Schneider, 1995; Dö- 

el, 2014; Esposito et al., 2018; Lamport, 1998 ). However, all these 

orks were made under the assumption of a trusted low-level ker- 

el (e.g., hypervisor or platform manager), which obviously is a 

ingle point of failure (SPoF). One of the key results of Midir lies in 

he realization of the distributed system-on-a-chip (DSoC) vision, 

hich enables such replication management techniques in MPSoCs, 

hilst removing the SPoF syndrome of the low-level kernel. 

Aguilera et al. (2020) leverage RDMA in the crash fault-tolerant 

ystem Mu to bring SMR performance down to microsecond scale, 

lso for BFT ( Aguilera et al., 2019 ). Midir aims at reaching consen-

us with a performance close to the speed of the NoC. 

. Gap analysis and system model: from MPSoCs to distributed 

PSoCs 

MPSoCs consolidate in a single chip computing resources that 

sed to reside on multiple chips. Tiles ( Waingold et al., 1997 ) are

laceholders and instantiation points for resources, typically in- 

tantiated with cores and private caches, or with slices of shared 

aches and connected through the NoC with each other and with 

emory controllers (to reach out to RAM/IO). It is possible as well 

o cast accelerators, GPUs and FPGAs into the tile abstraction. 

The modularity and networked interconnection of tiles already 

uggests attributes of a distributed system and has inspired first 

teps to hardware-enforced fault containment at tile level, as pi- 
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neered by Hive ( Chapin et al., 1995 ) and M3 ( Asmussen et al.,

016 ). Tiles favour functional and non-functional diversity since 

hey can host cores from several makers. This improves fault in- 

ependence through the implied low likelihood of experiencing 

he same fault in different tiles. Similarly, different versions of 

he same code can be used at distinct tiles with the same in- 

ent ( Avizienis et al., 1977; Joseph and Avizienis, 1988; Knight and 

eveson, 1986 ). However, fault containment remains imperfect: po- 

entially faulty or compromised low-level kernels retain control 

ver platform privilege configuration mechanisms and, thus, form 

 single-point of failure. 

In our system model, we therefore assume a fully connected 

iled system, where on-chip network components offer the ab- 

traction of a correct network, interconnecting all tiles to one an- 

ther. Messages sent are eventually delivered, unchanged, to the 

estination, but possibly only after several retries. Network cod- 

ng ( Ogg et al., 2008 ), multi-tenant ( Colman-Meixner et al., 2016 )

nd adaptive routing techniques ( Yang et al., 2016 ) increase the 

overage of this assumption. We leave coverage of network attacks 

nd their mitigation for future work. 

We shall further assume tiles are instantiated with heteroge- 

eous processing elements and will hence exhibit a certain level 

f fault independence through the implied low likelihood of expe- 

iencing the same fault in different tiles — diversity. 

Conventional multi- and manycore designs retain the possibil- 

ty of common mode failures in central hardware components (e.g., 

he clock or power distribution network), which must be addressed 

ifferently. Resilient clocks ( Schmid and Steininger, 2010 ) mitigate 

ome of these common-mode faults and the recent trend towards 

nterconnected chiplets further improves the physical decoupling 

f tiles. Once physical (hardware) effects of a fault are retained 

o the causing tile and the signals it exhibits to the system, any 

emaining faults can be contained through trustworthy tile-level 

rivilege enforcement (as implemented in T2H2 ). We assume an 

nstance of T2H2 is located between each tile and its NoC inter- 

onnect. 

Note that, emulating the spacial isolation of distributed system 

odes, we are agnostic about the semantics and interplay of tile- 

nternal and/or core-level components, e.g., MMUs and their virtu- 

lization, copy-on-write, memory protection or recovery function- 

lities. 

In the time domain, although manycores might seem the per- 

ect example of a (closely-coupled) synchronous (distributed) sys- 

em, reality is a bit different, there are several possibilities for 

nstability. For example, excessive resource use raises the tem- 

erature and causes thermal managers to throttle the speed of 

iles near this hot spot; interfering access patterns reduce memory 

andwidth by evicting cache lines from shared caches; and NoC- 

evel bursts may cause noticeable and, with unfair arbitration, un- 

ounded message delays. Faulty behavior (accidental or malicious) 

ight further worsen these negative time-domain effects. A strict 

ynchronous model would not reflect reality and thus be proved 

rittle. 

We rely on a partially-synchronous model and prepare Midir 

or possible delays (notably by buffering consensus votes in Midir ’s 

2H2 ). Two particularities exist in these closely-coupled environ- 

ents, in contrast to large-scale distributed systems, which play 

n our favor: (i) barring delay variations, liveness is normally guar- 

nteed; and (ii) the infrastructure is plastic in terms of timeliness 

rade-offs. Therefore, as in most contemporary BFT approaches, we 

onsider asynchrony for safety and partial synchrony for liveness. 

The structure of our protocols is time-free, and as such they re- 

ain safe in the presence of delay oscillations, provided that the 

ault assumptions hold (no more than f tiles get compromised, as 

iscussed below). Then, the protocols inherit whatever synchrony 

hey achieve from the timeliness of the infrastructure they are im- 
4 
ersed in: the manycore works with high performance, in execu- 

ion and communication, exhibiting short and bounded delays dur- 

ng long enough periods of time, but can exhibit significant varia- 

ions in these bounds. These are fair expectations, considering the 

ature of these systems. 

. Threat model 

Our threat model considers software-level compromise at all 

evels, including in the hypervisor, in the firmware, and, more gen- 

rally, in any critical software component. This assumption is con- 

istent with our aim of tolerating an incremental level of threat, up 

o advanced and persistent threats, such as sophisticated attacks 

ounted by highly skilled and well-equipped adversaries, on tiled 

anycore systems, often deployed entirely on-chip. Moreover, we 

onsider a limited set of hardware-level faults and attacks: pre- 

isely those whose physical effects are confined to a tile (e.g., trap- 

oors in a core but no hardware faults that cause a chip-wide col- 

apse). 

We strive to establish the tile as a unit of component failure. 

here is no guaranteed fault containment inside tiles. That is, ad- 

ersaries (or accidents) will be capable of compromising the whole 

oftware in any tile (e.g., but not only, a hypervisor replica). Once 

hat happens, we no longer make any assumptions about the cor- 

ectness of any software in that tile. However, we also consider 

and enforce it with the strategy described in Section 3 ) that tiles 

hemselves are fault containment domains. This and whatever di- 

ersification measures are deemed necessary to further support 

he fault independence assumption for tiles. 

We further assume that no more than f tiles are compromised 

uring a reference time T a . Note that this supports the classical 

ault and intrusion tolerance fault bound for our BFT protocols, but 

lso opens the way to promoting resilience ( Sousa et al., 2006 ). 

n fact, classical hardening, diversification and intrusion prevention 

elp in putting barriers in the adversaries’ way, ensuring that T a 
as a usefully large value, and shrinks no further. However, we ac- 

nowledge the imperfection of these techniques, especially in face 

f persistent threats. 

We admit that the generic system components (including low- 

evel platform management ones) can be hardened as needed, 

own to a residual fault and vulnerability rate. As we discussed 

arlier, this is good, but not enough, especially under malicious 

hreats. We leverage architectural hybridization to amplify the cov- 

rage of the assumptions made in this threat model, by allowing 

ifferentiated strategies towards the fault rate targets across sys- 

em components. T2H2, Midir ’s trusted-trustworthy components, 

all under a more restricted fault model, failing only by crashing, 

uch like USIGs in Veronese et al. (2013b) . We remind that T2H2 

s hardware-based and executes no software. 

We assume it is infeasible to construct and/or verify soft- 

are or hardware of reasonable dimensions, to a 0-defect goal. 

owever, we stipulate that it is possible to design ultra-reliable, 

ltimately trusted-trustworthy simple components, to a 0-defect 

arget. The consequence is that these will remain correct and 

perational, despite compromise of the local tile. As discussed 

n Veríssimo (2006) , this is an extremely powerful combination 

n algorithmic terms: trusted components used routinely to assist 

ritical mechanisms and algorithms (e.g. privilege enforcement, re- 

undancy management) overcoming the residual fault and vulner- 

bility rate of most system components, in order to achieve correct 

peration with extremely high probability. 

This is only possible if we strive for absolute simplicity (for 

erifiability, e.g. by proof assistants) of these trusted-trustworthy 

omponents. That is the case of T2H2 in the Midir hybrid archi- 

ecture, providing just two generic functions staged, in hardware , 

t the tile-to-NoC interface: access control (capability registers, in- 
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Fig. 1. Overview of the Midir architecture: a multi-/manycore system augmented with T2H2 hardware capability units (blue dots) at the NoC interface. Access to tile-external 

resources is subject to privilege confirmation in T2H2 and possibly voting. Here, the hypervisor replicas H V 1 , . . . , H V 3 consensually reconfigure the privileges of the VM on the 

4th core, which in turn obtains access to a region of memory in the scratchpad memory of the application on tile 5. Privilege change is a voted upon operation, indicated 

by dashed lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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luding the logic for privilege enforcement when tile hard- or soft- 

are invokes capabilities) and quorum-based consensus (voters). 

ig. 1 depicts this layout. 

. The Midir architecture 

As discussed earlier, Midir is an architectural concept based 

n augmenting manycore systems in a minimally intrusive way 

hrough strategically placed, simple and self-contained trusted- 

rustworthy components ( T2H2 ). In fact, T2H2 provides just two 

eneric baseline functions staged in hardware at the tile-to-NoC 

nterface: access control (capability registers) and quorum-based 

onsensus (voters). 

Fig. 1 depicts one possible layout, of a stereotypical hyper-visor- 

ased system, where the hypervisor is replicated for fault/intrusion 

olerance, serving virtualized operating systems and applications: 

ypervisor replicas are distributed across tiles, so that each replica 

xecutes on a different tile, separate from applications; tiles and 

oftware therein interface with each other through the NoC; and 

2H2 perform that interconnection. 

As long as the execution in a tile remains within the resources 

ssociated to this tile (local caches, memories, accelerators, etc.) no 

verhead occurs, since T2H2 is not involved in authorizing or deny- 

ng these accesses. In fact, we remind that it is not the purpose of 

idir to provide fault containment between software components 

o-located on the same tile . This is like the internal behavior of 

odes in a distributed system, where nodes are the unit of fault 

ontainment. 

Once software components are spread across tiles, they inter- 

ct through external operations (e.g., via a resource in another tile, 

ia shared on-chip memories or via external memory or IO). In 

his case, T2H2 interposes such accesses and validates that each 

f them has sufficient privileges (i.e., the invoked capability in the 

2H2 capability registers conveys this access). Consequently, hard- 

are faults inside a tile or accidental or malicious faults in any 

art of the software it executes are limited in propagation to the 

bjects authorized by these capabilities. 

Further to capability checking, Midir is capable of subjecting 

hese accesses to voting by means of distributed components in 

ifferent tiles. This is especially important for critical operations, 

e it in application execution or in platform reconfiguration, in 

rder to achieve some form of fault/intrusion tolerance, from er- 

or detection, or self-checking by comparison, to error masking by 

onsensus. To vote, tiles must hold a capability to the correspond- 

ng voter, which authorizes this tile to make proposals as one of 

hese distributed components. Voting is mandatory to install new 

r change existing capabilities, in order to prevent faulty hypervi- 

or replicas from bypassing the aforementioned fault containment 

hen reconfiguring the resources a tile can access. 
5

Given the nature of Midir ’s trustworthy mechanisms ( T2H2 ) is 

o provide fault isolation, access control and a means of consen- 

us on critical operations, not all write operations, be them at low- 

evel or application-level, make use of Midir . As mentioned, in-tile 

ccesses are not interposed by T2H2 and not every off-tile write 

eeds voting, given not all operations are critical, in the sense of 

aving the potential to modify sensitive memory locations that, if 

sed maliciously, can put the system at risk or place it in a more 

ulnerable state. 

Midir ’s concept of controlling the tiles’ lowest-level privilege 

nforcement mechanism is agnostic of the mechanism used. How- 

ver, the simpler such a mechanism and the closer it can be im- 

lemented to the tile’s NoC interconnect, the more faults Midir will 

e able to tolerate. Hence our choice for capabilities. 

Simplicity also governs our voter design. Midir ’s voters merely 

ollect and act upon proposals of related operations from different 

omponents, letting the voted-upon operation proceed. Because 

ile-external resources are typically memory mapped, these opera- 

ions are normally simple writes. The voters themselves implement 

o error handling or diagnostics functionality, but provide infor- 

ation for the voting replicas to perform these tasks. More pre- 

isely, voters suspend voting on disagreement, freeze the proposals 

ade and expose them for diagnosis. Moreover, they implement 

 sequence number seq i for progress tracking, which they incre- 

ent after each vote unless the vote gets suspended. A voted upon 

oter-reset operation resumes voting and, as well, increments 

eq i . Section 7 shows how we utilize this error handling support 

nd Section 8 details our voter implementations. 

. T2H2 – Midir’s trusted-trustworthy component 

In this Section, we provide further details about T2H2 . 

.1. Voted and non-voted operations 

To retain the flexibility of the software in a manycore system, 

llowing it to dynamically adapt resource-to-application mappings 

s needed, T2H2 supports direct access to tile-external resources. 

his way, applications possessing a capability can directly invoke 

perations on external resources (e.g., to access read-shared or pri- 

ate data in RAM or to interact with non-critical devices). The sce- 

ario in Fig. 2 illustrates a non-voted (write) memory access by 

ile A, performed by invoking a capability in this tile’s T2H2 (1). 

ince T2H2 ’s capability register c 1 holds a read-write capability to 

he memory region [ p, p + s ] (2), the operation to write value val 

n variable a is authorized (3). 

However, T2H2 also supports voting, particularly useful when, 

.g., platform management software or hypervisor replicas further 

ave to execute critical operations (e.g., privilege change or criti- 
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Fig. 2. Capability-mediated access of tile-external resources. Invoking capability register c 1 , application A invokes memory capability M : (p, s, { r, w } ) to write val to location 

a in region [ p, p + s ] . The numbers are guides reflected in the steps explained in the text. 
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al device accesses). These operations are voted upon, within pre- 

onfigured detection or tolerance mechanisms, to prevent compro- 

ised components from causing harm. Several strategies may be 

erved by Midir , such as self-checking, recovery blocks, or f-out- 

f-n error masking by majority voting in the presence of f faulty 

omponents, but they are all supported by the same baseline vot- 

ng mechanism. Fig. 3 represents a similar operation as in Fig. 2 , 

ut in voted access form. The hypervisor replicas in Tile B and C 

ote to write value 1, while the one in Tile A, being faulty, votes 

o write value 0. In order to perform these votes, all tiles invoke 

 capability on their local T2H2 to access the designated voter (in 

his case, the upper voter (orange) residing on Tile A’s T2H2 ). Given 

hat a majority of tiles voted to write 1, variable a will be assigned 

. 

.2. Consensual privilege change 

One particularly relevant scenario for voted access is consensual 

econfiguration of the T2H2 instances themselves. T2H2 ’s reconfig- 

ration interface (see Fig. 2 ) is accessible only through a voter and 

annot ever be invoked directly (4). 

Let us understand why this is a relevant innovation. In con- 

entional OS design, any single kernel instance can directly or in- 

irectly enforce modifications on platform resources. So, even in 

ault tolerant designs, a faulty or compromised kernel instance 

ould still be able to threaten the platform correctness. For exam- 

le, by manipulating page tables, any low-level OS kernel instance 

an install virtual-to-physical address mappings to any resource in 

he platform’s memory map and access it through this mapping. 

f course, a trusted underlying layer could solve this issue (e.g., by 

ediating page-table access). However, whether this layer is soft- 
6

are, as in the Inktag kernel ( Hofmann et al., 2013 ) or firmware, as

n Intel SGX ( Costan and Devadas, 2016 ), it becomes a single point

f failure for the platform. 

Midir provides an additional level of protection, whereby the 

esigner can constrain access to the platform reconfiguration, by 

llowing a particular mechanism, its registers and data structures 

o be only effected in a consensual manner, through a voter. As 

ith general voting, discussed in Section 6.1 , these voted accesses 

ill normally correspond to the implementation of detection or 

olerance strategies, in this case, directed to the protection against 

hreats on the platform itself. In Fig. 3 , in green colour (lower 

oter), we represent such a flow of reconfiguration of a platform 

apability register in tile A’s T2H2 . Exemplifying with f-out-of-n er- 

or masking in a replicated low-level kernel, several replicas make 

he reconfiguration request (dotted line) (1), which is voted (green 

oter). The result from the voter is wired through a special T2H2 

apability configuration interface to the concerned capability reg- 

ster (2), masking the presence of up to f faulty replicas. 

Midir does not constrain how systems are configured and hence 

hat faults are tolerated. Instead it provides the means to tolerate 

n incremental quality of faults, including, for highly critical sys- 

ems, up to f faults in system management software (e.g., the hy- 

ervisor), by providing n = 2 f + 1 hypervisor replicas and by sub- 

ecting all critical operations to voting. 

. Towards fault and intrusion tolerant microhypervisors 

The Midir architecture and, more specifically, the T2H2 units can 

e recursively applied at any software layer, protecting any layer of 

he system’s software stack. Both sides of the software spectrum, 

.e., low-level management software (e.g., a microhypervisor, mi- 
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Fig. 3. Consensual update of location a in the tile-external memory block (upper voter) and consensual reconfiguration of capability register c 2 in the T2H2 of tile A . 

Reconfiguration is always consensual (requiring agreement of a majority of the tiles A , B and C); tile-external resources may be optionally treated in that manner (by 

granting access to a voter, but no direct access). The voter installs the majority decision (e.g., it updates location a with the consensual value 1 or the capability in c 2 with 

the agreed upon read-only memory capability). 
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rokernel, firmware) and applications, can benefit from the solu- 

ions presented in this paper. However, given low-level software is 

ypically a system’s last line of defense as a result of the platform 

anagement responsibilities attributed to it, and, given the hyper- 

isor’s role of performing critical functions pertaining to isolation, 

ccess control and privilege enforcement; we believe it illustrates 

he most complex and costlier usage example of the Midir architec- 

ure, while providing a concrete solution to the problem described 

n Section 1 . A similar example could be applied to the construc- 

ion of a fault- and intrusion-tolerant microkernel. At application- 

evel, on the other hand, one can use the Midir mechanisms to, for 

xample, coordinate collaboration among several applications shar- 

ng data or enforce consensual actuator execution in the context of 

mbedded systems. 

We now turn our attention to the construction of Midir -aware 

IT microhypervisors, such as suggested in Fig. 1 . Hypervisor repli- 

as execute on dedicated tiles, from where they remotely config- 

re the privileges of applications executing on other tiles. Most of 

he other common OS-functionality (e.g., context switching, inter- 

rocess communication, (non-critical) device access, etc.) can be 

eft to the application and its kernel-support libraries. 

Midir gives the designer latitude to use incremental levels of 

rotection for individual operations or sets thereof. On one ex- 

reme, configurations may be allowed where all accesses are di- 

ect, and thus unprotected by voting (setting up voters for direct 

ass-through of proposals, i.e., f = 0 , to reconfigure capabilities). 

On the other extreme, the highest level of protection, while 

etaining the flexibility of a manycore system, eliminates all 

oftware-level single points of failure 2 by subjecting all critical op- 

rations to voting. We focus on this facet. The replicated micro- 

ypervisor offers a system call interface executed by its replicas, 

ntering a service loop and maintaining data structures used to 

andle system call requests, which they receive from applications, 

ther replicas (e.g., requesting a privilege they lack for executing a 

ystem call) or from hardware (e.g., triggered by device interrupts). 
2 Modulo Midir ’s T2H2 , which, justified through its simplicity, we assume will not 

ail. 

w

o

(

i

a

7

e provide an informal proof of the protocol’s safety and liveness 

n Appendix Appendix A. 

Remembering that the unit of fault containment in Midir is 

he tile (equivalent to a node in a distributed system) the essen- 

ial requirement for a fault tolerant microhypervisor design is that 

he replicas behind critical operations are placed in different tiles, 

uch that they communicate by messages, are subject to T2H2 ac- 

ess control, and converge on the necessary votes as dictated by 

he algorithm. In order to fully enjoy the baseline functionality 

rovided by Midir , a few additional design principles should be 

ollowed: 

• P.1 Impersonation prevention: Correct replicas must deny any 

operation with a replica identifier that is already in use ( T2H2 

voting relies on identifying the individual replicas through their 

capability; no two replicas should have a capability to the same 

voter with the same identifier). 
• P.2 Bypass prevention Correct replicas must deny any opera- 

tion attempting to grant direct write access to a consen-sual- 

update-only object ( Section 6.2 ). 

Let us illustrate the design with the example of reallocating the 

ile to a different application. Signaling the tile, an application- 

pecific library may save the state necessary to resume execu- 

ion (e.g., utilizing memory assigned for this purpose). The actual 

witch then proceeds by resetting the tile followed by installing 

he capabilities the new application’s library needs, in order to 

oad its state. Obviously, reset and, as we have seen, privilege 

hange are critical operation, which must be performed consen- 

ually to prevent compromised kernel replicas from prematurely 

topping applications. Channeling such critical operations to voters 

nd confining access with capabilities prevents faulty replicas from 

ausing harm, since, as long as no more than f replicas become 

ompromised, a correct majority out of the n = 2 f + 1 replicas will

utvote these operations. This turns system call execution into up- 

ates of replicated state and a sequence of voted operations, which 

e shall later call subordinate votes . This works as well with any 

ther replicated critical software, even firmware such as in SGX 

e.g., preventing enclave misconfiguration) or device drivers, when 

nteracting with the physical world. Replies to system calls must 

lso be voted upon, given that hypervisor replicas, by nature, act 
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Fig. 4. Read-shared, consensually updated data structures used by the kernel: system calls are recorded in the syscall log, the error log keeps voting error information, and 

a capability space holds an application’s capabilities ( Section 9 ). 
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n behalf of multiple applications, possibly storing information of 

ne that must not be revealed to others. 

The above is of course true provided replicas have reached 

greement on the system call to execute and on the parameters 

ith which the client has invoked this call. Clients are applications 

nd other kernel replicas that invoke system calls. A further role 

f the in-kernel service loop is therefore to reach consensus on 

ystem call execution order and parameters. From our evaluation 

 Section 9 ) we found that Midir ’s support for consensually execut- 

ng critical operations also provides for accelerating the BFT proto- 

ol that the kernel replicas must execute to reach agreement. 

.1. Consensual system calls 

Fig. 4 provides a more detailed picture of how T2H2 ’s voters 

nd capability registers contribute to reaching consensus about the 

ystem call to execute and its parameters. The service loop of FIT 

ypervisors needs to reach consensus before it can start executing 

perations that may have critical side effects when misused. 

The service loop utilizes two data structures: a consensually up- 

ated ringbuffer — the syscall log — records agreed upon system 

alls and its parameters to give kernel replicas the opportunity to 

earn about those agreed upon. Otherwise, this information would 

nly be available to the agreeing quorum of f + 1 replicas and if

aulty replicas participate there, but refuse to execute the system 

all later on, too few correct replicas would have obtained this 

nowledge to complete the system call. Storing agreed upon sys- 

em calls in the log allows lagging replicas to catch up with the 

ystem calls they missed. 

Similarly, the service loop utilizes an error log to protect er- 

or information from getting lost if the voter is reset prematurely 

efore all replicas have learned about this error. Updates of the 

yscall and error logs are made through dedicated voters: v log and 

 err , respectively. 

Macroscopically, clients place system call requests in authentic 

uffers, which the kernel replicas poll 3 for new requests. Consen- 
3 Sleep/wake protocols can be used in periods where no requests are pending. 

c

i

f

8

ual privilege change allows creating such buffers by granting write 

ccess to a single client, but to no kernel replica. The leading ker- 

el replica proposes one such system call by initiating a vote with 

 log , which followers observe and agree or deny. Once written to 

he syscall log, replicas proceed by executing the system call and 

he votes for its critical operations, as well as responding to the 

lient. We call these subordinate votes as they depend on the main 

ote, logging the system call. That is, no correct replica will engage 

n a subordinate vote unless the system call has been logged. Sub- 

rdinate votes include at least replying to the client and advancing 

he syscall log to the next free slot. They are performed utilizing a 

et of voters V = { v 1 , . . . } that is disjoint from { v log , v err } . 
We make no assumptions on the order in which replicas up- 

ate their local state (even transactional or speculative updates are 

maginable). However, to simplify tracing the progress of the sys- 

em call (and, in turn, the code that late or rebooted replicas have 

o execute to catch up), we require subordinate votes to be exe- 

uted in the same order by all replicas and assume that this order 

s completely specified by the system call parameters. 

Our rationale for agreeing on the system call first is to cir- 

umvent a fundamental problem of consensus protocols with- 

ut authenticators: the impossibility to diagnose faults if mes- 

ages can be altered during multicast operations ( Lamport et al., 

982 ). In our setting, cryptographic operations would come at 

ver-proportionally high costs relative to the speed of the transport 

edium (the NoC). Since consensus adds to system call execution 

imes, having an execution time close to the NoC’s speed is a de- 

irable property. We therefore avoid sending unforgeable authenti- 

ation tokens (e.g., HMACs) and instead exploit the authentication 

e obtain from a client being the single writer of its request buffer. 

dditionally, given clients maintain write access to their request 

uffers, they can change the request after the leader has proposed 

t, but before followers validate it, which makes it impossible for 

ollowers to distinguish whether the leader proposed a wrong sys- 

em call or whether the leader proposed the client’s original sug- 

estion, but the client changed it afterwards. In consequence, they 

annot differentiate faulty clients from faulty leaders to provably 

dentify the leader as faulty. We omit this form of error diagnosis 

or the system call vote to regain this property when we need it: 
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Fig. 5. Generic voting pattern used in the service loop and when executing system calls. 
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n the subordinate votes for reaching agreement on critical opera- 

ions. 

Leaders tricked into such a fault are rotated and the new leader 

roceeds with all other pending requests before returning to the 

uspicious client. 

The following details the protocols the hypervisor replicas ex- 

cute to reach consensus on and execute system calls. Leveraging 

he generic voting pattern in Fig. 5 , replicas first reach agreement 

n the system call ( Fig. 6 ) to then consensually perform critical 

pdates during its execution ( Fig. 7 ). 

.2. Generic voting pattern 

Fig. 5 shows the generic pattern and how replicas interact with 

oters. Evaluating the sequence number v i . seq of voter v i , repli- 

as identify the leader as the replica with identifier v i . seq mod n 4 

n its capability. The leader proposes a request by invoking its 

ote capability to write operation op to its voter buffer, which 

he voter prevents from being changed once the leader marks 

his proposal as complete. Followers wait for the leader to com- 

lete its proposal to then validate the operation and express their 

greement/disagreement (by submitting the operation they saw or 

y writing the corresponding value to the agreement vector (see 

ection 8 )). 

.3. System call vote 

In Phase 1, replicas first agree on the system call to execute fol- 

owing the generic pattern above. In Phase 2, they then vote on 
4 As long as enough tiles are available, n and f can be reconfigured, namely 

hen adopting optimistic voting schemes. Such changes can namely de done on 

he go, provided a safe initialization, rejuvenation and relocation protocol. However, 

e leave the dynamic modification of these parameters and associated advantages 

or discussion in future work. 

e

e
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9 
ritical operations. Fig. 6 shows the pseudocode for system call 

greement. Lines 16–23 illustrate the client invocation pattern dis- 

ussed above. The leader selects a pending system call (Line 26) 

ith a valid opcode (Line 27) and prepares the entry to log. To pre- 

ent equivocation during subordinate votes (e.g., attempts to trick 

 replica into proposing the next system call without completing 

he current one), we enforce some additional principles: 

• P.3 Coordinated subordinate votes: correct replicas vote only 

on subordinate voters ( v i ∈ V ) to execute the current system 

call. 
• P.4 Presence of correct replica: no voted operation succeeds 

without at least one correct replica. 

We enforce P.4 by requiring quorums of at least f + 1 match- 

ng votes, while preventing impersonation (c.f., P.1 in Section 7 ). In 

ombination, these principles ensure that subordinate voters v i ∈ V 

ill keep their state while in Phase 1 (including their sequence 

umbers). By agreeing, alongside the system call, on the first se- 

uence number of all voters used in this system call (collected in 

ines 29–33 in the set V S and validated in Line 42), we ensure 

hat all replicas know all sequence numbers to start with in subor- 

inate votes, even if they have been lagging behind. In the absence 

f errors, the j th subordinate vote on v i will be executed with se- 

uence number seq i + j, assuming (v i , seq i ) ∈ V S was the start se- 

uence number of v i . This agreement on the initial sequence num- 

er then allows for a simpler progress tracking in Phase 2, when 

xecuting subordinate votes. 

Because of the impossibility in Section 7.1 , system call votes op- 

rate with reduced error diagnostics: replicas reset v log if it got 

uspended after disagreement (Lines 43, 44) and repeat votes for 

ending system calls unless they fail for all client-leader combina- 

ions, in which case they exclude this client. 
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Fig. 6. Service loop - Phase 1: agree on next system call to execute. 
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.4. Subordinate votes 

The code for executing subordinate votes in Fig. 7 has to solve 

wo problems: 

1. preserve determinism despite errors and 

2. prevent replicas from prematurely resetting voters. 

From reaching agreement on the system call, we know that the 

rst subordinate vote on v i starts with seq i because (v i , seq i ) ∈ V S . 

s such, without errors, the j th subordinate vote on v i happens 

ith sequence number seq i + j. The same applies to votes with 

t least one disagreeing replica that all received f + 1 agreement 
10 
ecause, after the voter resets (Line 62), they are not repeated 

Line 66). The key for lagging replicas to catch up in case of error 

s to make sure they learn about all errors, so that they know how 

any times a vote was repeated and when it was successful. As- 

ume the k th subordinate vote ( k < j) was the last to fail with seq k 
i 
,

hen k completed with seq k 
i 

+ 1 and the system call progressed to 

ubordinate request j if v i . seq − seq k 
i 

= j − k . 

Solutions to the second problem address the point that all repli- 

as must learn about errors. With n = 2 f + 1 and | Q| = f + 1 , up to

 − | Q| = f replicas may lag behind while the remaining | Q| pro-

ressed to another subordinate request or even to another system 

all. In particular, faulty replicas may fail a subordinate vote, but 
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Fig. 7. System call execution - Phase 2: subordinate votes and error handling. 
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gree to reset the voter, which erases the error information about 

he failed vote from the voter and leaves behind as few as a sin-

le correct replica to know about the error. This scenario occurs if 

f faulty and one correct replica resets the voter before others di- 

gnosed it. Clearly, without costly cryptographic information, the 

onest replica cannot convince others about what has happened. 

he following design principle solves this problem by preventing 

remature resets before error information is pushed to the error 

og. 

• P.5 No reset before error logging: correct replicas reset subor- 

dinate voters only after the error got logged. 

This error state contains information about the current system 

all, i.e.: the system call entry log ; the subordinate vote req ; the se- 

uence number of the voter v i ; the point where it failed eseq and 

hich replicas agreed/disagreed. In consequence, lagging replicas 

an validate if the current subordinate vote succeeded (Lines 52–
11 
5) and, if not, who was responsible for it to fail. Voter v i pre-

ents destructive writes until it is reset, which P.5 and P.4 ensure 

appens only after error information was written to the log. Non- 

estructive writes are updates of empty buffers, respectively, up- 

ates of the agreement vector from timeout to agree/disagree and 

rom empty to any of these three. 

The argument for why the problem does not recur with the 

ested vote for logging the error state is as follows: 

1. The state to push is held in the voter v i . Therefore, even if a

replica lags behind, finding v i suspended, it knows what infor- 

mation to write to the log. 

2. Because of P.5, and because at least f + 1 replicas are required 

(P.4) for votes to succeed, the only way to make progress is by 

writing correct error information. 

Therefore, either faulty replicas agree to writing correct error 

nformation or eventually correct replicas catch up and write cor- 
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ect information. The exact information seen by the replicas may 

iffer depending on the time they read it, i.e., in late reads, more 

eplicas may have expressed their consent or disagreement. How- 

ver, it will always contain at least the consensual result of the 

ote, i.e., whether f + 1 replicas agree, disagree or timed out, and, 

n the former two error cases, it identifies at least one replica that 

iverges from the majority (the leader, in case of f + 1 disagree- 

ent). This replica is proven faulty. Followers, reading error infor- 

ation after the leader and finding proposals of additional replicas, 

owngrade their own information to that of the leader after vali- 

ating it as described above (Line 73). Repeating the vote while 

otating the leader ensures that valid error information is pro- 

osed latest after f retries. It then suffices to reset v err , whenever 

t becomes suspended (Line 76). Once error information is pushed, 

eplicas vote to reset the voter v i for the subordinate vote (Line 78) 

nd continue executing it. 

. Implementation 

The implementation of capability invocation is stan- 

ard ( Needham and Wilkes, 1974 ): T2H2 is invoked by tiles 

o perform external operations, then it looks up the capability 

n the capability register file, and forwards the operation to the 

oC after the privilege check succeeds, silently dropping the 

peration otherwise. Replica IDs are communicated as labels in 

he capability ( Hardy, 1985 ), which T2H2 inserts as an additional 

arameter into the operation. 

Our voter implementation is driven by the following considera- 

ions and their impact on functional simplicity. 

.1. Buffered vs. unbuffered votes 

Perhaps most impactful is the decision to buffer votes to allow 

eplicas to make their proposals without first having to synchro- 

ize on the time when the signal for such a vote must be held.

lthough buffering increases the complexity of the voter, it de- 

ouples replicas, allowing them to act in a partially synchronous 

ashion and, as long as different voters are used, even partially 

ut-of-order 5 Buffering votes is ideal in a NoC architecture, since 

otes are transmitted as normal messages (e.g., writes to the mem- 

ry mapped registers of the voter). Tiles can continue executing 

nce the message is sent. We therefore implement voters to con- 

ain buffers for storing proposals from the different replicas for the 

urrent vote executed with this voter. 

.2. Immediate vs. deferred masking 

A similarly impactful decision is whether voters should be able 

o mask faults immediately. Alternatively, voting can be repeated 

ntil a valid proposal is made. The consequences, besides time to 

greement, are the amount of memory needed for buffering votes 

s. the complexity of the voter logic. 

To mask faults and reach agreement immediately after | Q| = 

f + 1 matching proposals arrive, the voter needs to buffer sugges- 

ions from at least f + 1 replicas. Since up to f such messages may

e wrong and because the voter can only find out after receiving 

f + 1 matches, buffer space for at least f + 1 messages is needed

o prevent having to repeat the vote. 

We implemented two variants of T2H2 voters to evaluate the 

esource/performance trade-off at the two extremes of this spec- 

rum. Our n -buffer variant ( Fig. 8 a) implements one message buffer 
5 To simplify monitoring of the progress of a system call, we have required that 

ll replicas execute the critical operations of each system call in the same order. 

perations of different system calls need not be constrained in this way, and, at the 

ost of a more complex progress tracking, this requirement can be further relaxed 

o: same order as far as a single voter is concerned. 

8

s

m

d

12 
er replica. Each time a message arrives, it is compared against 

ll other stored messages and the operation applied once f + 1 

uffers match. Our single-buffer variant ( Fig. 8 b) trades agreement 

ime for a more resource-efficient implementation: there is only 

ne buffer; and only the current leader is granted write access to 

his buffer. The single-buffer voter follows a leader-follower voting 

cheme, with the leader proposing a vote and followers validating 

his proposal. To prevent inconsistency, the voter prevents modifi- 

ation of the leader proposal once the leader marks the proposal 

s ready. This allows follower replicas to observe the stored mes- 

age and express their agreement/disagreement. For this purpose, 

he single-buffer voter implements an agreement vector with one 

initially empty: - ) tri-state cell for each replica to express agree- 

ent A or disagreement D . Now, one of three things may happen 

hen replicas propose: 

i) a majority of f + 1 or more replicas disagree with the leader 

proposal. In this case, the leader proposal is considered invalid 

and the operation is not applied; or 

ii) a majority of at least f + 1 replicas agree. In this case, the pro-

posal is accepted and the voter applies the operation in its 

buffer. 

ii) the operation times out without a majority of replicas agree- 

ing/disagreeing. In this case, the replicas record this error and 

repeat the vote after rotating to the next leader. 

The n -buffer version requires logic circuits for pairwise buffer 

omparison, whereas in the single-buffer version a 2 data-bit ma- 

ority gate over the agreement vector suffices, deeming the latter 

ore resource efficient. On the other hand, although the single- 

uffer voter guarantees that, latest after repeating the vote f times, 

 healthy replica is elected as leader and makes a valid proposal, 

he n -buffer version may proceed as soon as it finds f + 1 match-

ng proposal, making it more efficient in terms of execution time. 

.3. Internal vs. external error handling 

The third question is whether the voter itself should include 

rovisions for diagnosing errors and for informing replicas about 

hem. Errors are detected when one replica diverges with the 

ajority decision. Voter-initiated error handling translates to the 

oter tracing back to the voting replicas’ cores to identify where 

o deliver error-handling interrupts. The expected complexity dis- 

ourages such a solution. We therefore offload error handling to 

oftware and support replicas by a means to track progress (the 

equence number seq ) and by suspending voting after detecting a 

ismatch. In this situation, seq does not advance but the voter may 

till apply the operation (in case of f + 1 agreement). Replicas read 

he voter registers and buffers to diagnose the error, by looking for 

ivergences. 

To resume execution of suspended voters, replicas reset the 

oter, which clears all buffers and the agreement and reset vectors 

nd advances the sequence number by one. Reset itself is a voted 

peration over the reset vector, which contains one bit per replica. 

he voter resets once f + 1 bits in this vector are set. Although this

uorum guarantees that at least one correct replica agrees to reset- 

ing the voter, it does not prevent faulty replicas from resetting the 

oter prematurely, that is, before all correct replicas were able to 

etrieve the error state. P.5 and the protocol in Section 7.4 handles 

his corner case. 

.4. Dimensioning voters 

The last question we discuss here is: for how many faults 

hould the voter hardware be laid out. Since we aim at imple- 

enting voters in silicon, we have to make this choice at system 

esign time to dimension buffers and vectors large enough for the 
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Fig. 8. Internal structure of a voter. One, resp. n buffers hold the message of replicas to vote upon and size its length. f defines the fault threshold, seq is a voter maintained 

sequence number. The agreement and reset vector are described below. 
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6 We omit client signatures in favor of authentic buffers, but implement UIs with 

HMACs. USIGs can be accessed without overhead. 
aximum number of faults to tolerate ( f max ). However, to not al- 

ays have to execute at this maximum replication degree, a fault 

hreshold f ≤ f max of voters can be configured at boot time. For in- 

tance, if the system should tolerate up to f max = 3 faults, it needs

o be dimensioned to have n max = 2 f max + 1 = 7 fields in the vec-

ors (and an equal amount of buffers in the n -buffer variant). This 

oter can be operated at any fault threshold 0 ≤ f ≤ f max . 

The voter design has been kept simple enough, and decoupled 

nough from the surrounding logic. As such, we can expect with 

igh confidence that T2H2 can be implemented and shown correct, 

s well as stay functional even when the tile it is associated with 

ails. A crashed T2H2 prevents its tile from invoking any operation 

n tile-external resources, in particular from issueing votes. Midir 

nsures safety and liveness as long as the overall number of faulty 

iles (including those with a crashed T2H2 ) does not exceed f . 

. Evaluation 

As an early validation of our proposal, we have implemented 

2H2 with both voter variants in VHDL on a Zynq-7 ZC702 Evalua- 

ion Board. We instantiated 3 Microblaze cores as tiles, running at 

0 MHz, each with one T2H2 , connecting the tiles through T2H2 

ith an AXI interconnect (serving as the NoC). We have imple- 

ented and measured the performance of the service loop of a 

ault- and intrusion- tolerant hypervisor ( Fig. 6 ). The service loop 

s used to agree on and execute client-invoked system calls for 

wo critical operations: granting and priming capabilities. Grant 

 L4.map ( Liedtke, 1995 )) copies capabilities between capability 

paces and prepares for later revocation. Prime consensually copies 

 capability from the client’s capability space into a T2H2 capabil- 

ty register, where it is ready for invocation. We have measured 

he performance of grant and prime in two different implementa- 

ions of capability spaces, a container object for the capabilities an 

pplication possesses: 

i) as a private data structure in each replica ( Section 9.1 ), requir- 

ing, in the case of prime, only the vote to install capabilities 

and two further to reply to the client and mark the system call 

as finished; and 
13 
ii) as a read-shared, consensually-updated data structure, trading 

off speed for a smaller memory footprint by introducing addi- 

tional votes for track keeping ( Section 9.2 ). 

As baselines, we compare to a cross-tile invoked singleton ker- 

el (horizontal line), executing the same system calls on its pri- 

ate state, with 1637 cycles for grant (1977 cycles for prime ); and 

o a shared-memory variant of MinBFT 6 requiring 242824 cycles 

o agree on a system call. Our agreement protocol outperforms 

inBFT by one order of magnitude. 

A comparison to a cross-tile invoked singleton kernel allows us 

o understand the overhead the T2H2 introduces in remote mem- 

ry block access, which is present only in the execution of criti- 

al operations. The presented values for this baseline are justified 

y the absence of caches, as we want cores to be as decoupled as 

ossible. The choice for comparison with MinBFT relates to its high 

fficiency and state-of-the-art popularity in hybrid BFT solutions. 

An evaluation of application performance in a Midir architecture 

hall be left for future work. 

.1. Per-replica capability space 

Fig. 9 shows the average performance of the grant and prime 

ystem calls in a per-replica capability space implementation rel- 

tive to two baselines: null and a singleton kernel instance per- 

orming these system calls in a non-consensual manner. Shown are 

he system calls broken down into individual votes and the Q5 / 

95 percentiles of the overall measurements. 

The minimal costs for learning about a system call request and 

xecuting it are 1571, 1637 and 1977 cycles on average for null, 

rant and prime, respectively, which is the baseline of the single- 

on kernel. System calls for the single-buffer version have a factor 

f 8.9 (null) to 9.6 (grant) increase, which can be explained due to 

he voter not benefiting from caching. Whereas the singleton ker- 

el merely has to copy one request from the memory where the 

lient core places it, missing in all caches in the process, follow- 

ng replicas have to poll the voter to wait for the leader to make 
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Fig. 9. Average execution times of the three consensual system calls — null, grant and prime — when executed on a per-replica capability space implementation. System 

calls are broken down into the individual votes for agreeing on the system call and for performing the critical updates required. Shown are also the Q5 / Q95 percentiles 

and the average costs of executing the respective system calls on a singleton kernel. 

Fig. 10. Average execution times of the three system calls for consensually-updated capability spaces. 
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 proposal and then confirm (or reject) the proposal made. Each 

uch voter access amounts to costs equivalent to a cache miss. 

As can be seen, reaching agreement on the subordinate votes is 

uch faster, since replicas already align themselves when reaching 

greement on the system call to execute. 

In the n-buffer version, higher costs occur during the agreement 

n the system call, which is due to the writing of the complete 

equest to the voter, not just setting a bit in its agreement vec- 

or. However, subordinate votes are much faster, since replicas no 

onger wait for the leader to make a proposal. Instead, they just 

ropose what should be written as critical operation. 

.2. Consensually-updated capability space 

Fig. 10 shows a similar diagram as Fig. 9 , this time, however, 

or consensually-updated capability spaces. Granting and prim- 

ng capabilities now require additional votes to update the data 

tructure. 
14 
This time, the 6.7 (single-buffer) and 7.3 (n-buffer) times slower 

erformance relative to the singleton kernel can be explained due 

o the voter not benefiting from caching: 

Singleton kernel: System call execution is triggered by the client 

riting to shared memory on one core and the kernel (on another 

ore) reading it. From then on, all the operations happen locally 

n the core of the kernel without any interaction with the outside. 

herefore, all memory operations aside from the invocation and re- 

ly hit in the core’s cache, which, in our setting, responds within 

 cycle. The cross-core operations (invocation (1) + reply (2)) dom- 

nate these costs. 

Replicated kernel: System call execution starts as well with in- 

ocation (1), but then, the leader needs to propose the request 

2), followers validate it (3) and express agreement (4) upon which 

he voter updates the memory and all replicas wait for the vote to 

each agreement (5). In the case of the per-replica capability space 

case (i) in Section 9 ), we then execute locally, but for replying (to 

ot introduce storage channels) we have to repeat at least (4) + 
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Fig. 11. System calls broken down into individual votes. Shown are the Q5 and Q95 percentiles for the main system call vote and each subordinate vote for single-buffer 

voters. 

Fig. 12. Same as Fig. 11 for n-buffer voters. 
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5), assuming n -buffer voters. As such, even without any delays, we 

ave 7 cache misses vs. 2 in the singleton kernel execution, hence 

 factor of 3.5. Additionally, more voter accesses are performed to 

ead the sequence number, which we need for flow control. 

To confirm that variations in fact originate from the agreement 

n the system call to execute, we have broken down system call 

xecution into their individual votes and measured their Q5 and 

95 percentiles. Figs. 11 and 12 show these values for single- re- 

pectively n-buffer voters. As expected, subordinate votes remain 

lose to their average execution times, whereas agreement on the 

ystem call varies significantly. 

.3. Overhead discussion 

Given the worst case scenario of an 8,9 (null) to 9,6 (grant) fac- 

or overhead of voted accesses in comparison to the singleton ker- 

el (when using per-replica capability spaces), we discuss here the 

rguments addressing this concern. 
15 
First, we remind the reader that not all system calls require 

oting, with the latter being applied only to execute critical 

perations (e.g., privilege management) and access critical re- 

ources external to the tile. Similarly, if used by software at higher 

evels of abstraction, namely application level, T2H2 would as 

ell only be required to perform specific operations that could 

otentially cause harm, such as those updating critical shared data 

r accessing critical devices. 

Furthermore, critical resources being accessed, provided they 

resent read-most patterns, do not impact overall performance, as 

eads do not usually require voted access, unless, for security rea- 

ons, the information contained therein should not be leaked to 

pecific sets of replicas. On the other hand, if the resource is to 

e updated (i.e., written), the ratio of reads to writes will deter- 

ine the impact the aforementioned overhead will have on per- 

ormance. Also, not all writes (only critical ones) need voting and, 

hus, not all writes incur the demonstrated overhead. Capability 

hecking incurs 99 cycles overhead to write the request in the 

nput register and 106 to check the permission result. However, 
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Fig. 13. Latency of the null system calls for increasing number of replicas in microseconds. 

Fig. 14. Code size in lines of C++ / VHDL code (logic / total). 
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e believe that, although the overhead represents almost an order 

f magnitude increase, it is still within the expected performance 

etrics for the considered communication medium - the NoC. 

Finally, was this FPGA-based proof of concept built as an ASIC 

application-specific integrated circuit), as intended for a final MP- 

oC product, voted system calls’ performance would immediately 

ncrease, given an ASIC’s die is purposefully built for the task it 

s designed to perform and, thus, is optimized in terms of area, 

ogic gate count and frequency. Additionally, an MPSoC specifi- 

ally designed with Midir integration would have the T2H2 s sit 

uch closer to the replica, at its tile-to-NoC interface, with T2H2 - 

nternal registers that would act as a local cache, thus reducing 

ccess times and, combined with an ASIC nature, logic-processing 

imes. In our FPGA proof of concept, the T2H2 s are instead memory 

apped, meaning the processor has to access the external memory 

lock to perform each voting step, thus having the increased over- 

ead explained in Section 9.2 . 

Nevertheless, this overhead essentially translates to a trade- 

ff, where either no safety measures are applied by removing re- 

undancy and/or voted execution, leaving single points of failure 

nresolved, but achieving better performance; or having the pre- 

ented performance decrease while enhancing the system with the 

afety features proposed in this paper. As mentioned in Section 7 , 

idir may be configured in such a way where all accesses are di- 

ect, and thus unprotected by voting ( f = 0 ), meaning all T2H2 s

re “turned-off”. As such, depending on the system’s goals, crit- 

cality and requirements, Midir can be tailored in regards to not 

nly which operations should be subjected to voting, but the total 
16 
umber of faulty replicas it should tolerate, if any. This, in turn, 

urther adjusts performance as not all available tiles need to be 

sed. 

.4. Scalability 

Since our FPGA board’s resource limitation prevents us from 

nstantiating more replicas, we confirm the scalability of our ap- 

roach in an emulation on x86. Hypervisor replicas are pinned as 

he sole application on the cores of a 24-core Intel Xeon CPU E5- 

650 system, running at 2.10 GHz. They execute the same server 

oop like on the FPGA, but emulate voters in software. 

Fig. 13 shows the latency results of scaling the null system call 

o an increasing number of replicas and hence an increasing fault 

hreshold from f = 1 to f = 7 . Also shown (although not directly

omparable) is the performance of the FPGA implementation, both 

caled to microseconds. As can be seen, the execution of the null 

ystem call scales linearly with the number of replicas, which in 

art is due to the emulation having to acquire a lock during voting. 

e expect a similar though less steep linear increase in a larger 

cale FPGA implementation due additive effects of having to wait 

or the agreement of an increasing number of replicas with fluctu- 

ting system-call execution times. 

.5. Code size 

Fig. 14 lists the code size (excluding initialization) for the ser- 

ice loop, for consensually executing critical operations and for in- 
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Fig. 15. FPGA resources required by T2H2 (without / with AXI interface). 
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erfacing with the capability registers. Also shown are the VHDL 

ource lines of code for the logic only and for the overall design 

including I/O declaration) of the voter and capability unit. As can 

e seen, the amount of code that each replica executes for the 

bove grant and prime system call is well below 10 0 0 lines of 

ode. Faults in this code are masked by the majority of replicas 

utvoting faulty replicas in critical operations. Similarly, the hard- 

are overhead is just above 400 lines of VHDL code for the logic 

lus 2411 lines of VHDL for connecting the logic to the AXI inter- 

ace I/O and for mapping the corresponding internal signals. VHDL 

imply defines the logic to be programmed in the board, it is not 

xecuted by the voters or capability units. 

Fig. 15 shows the FPGA resources of the (post-synthesis) im- 

lementation of our components. LUTs are units with no state, 

sed to implement the combinatorial logic; while registers hold 

tate, e.g, to keep buffer contents, but implement no logic. Each 

7 Mux (wide multiplexer) combines the outputs of two LUTs to- 

ether, while F8 Muxes combine the outputs of two F7. 

Notice that the absolute resource requirement of T2H2 will not 

ncrease if more complex cores are to be controlled. Hence, the rel- 

tive resource overhead will shrink when more complex tiles are 

onsidered. This phenomenon occurs since the complexity of the 

ores has no influence on the T2H2 s’ logic and functional require- 

ents. T2H2 will provide the same services with the exact same 

ardware logic design independently of the complexity of the tile 

nvoking it. As such, as the cores’ resource requirements increase 

ue to higher complexity, T2H2 ’s remains the same. However, re- 

ource utilization will increase if more cores are added. Additional 

nput registers will be needed to store an additional request or 

ote from the new cores as well as LUTs to check these registers 

hen counting votes. 

0. Conclusions and future work 

We have introduced Midir , an architectural concept which 

reaks new ground and opens promising avenues in the applica- 

ility and resilience of manycore architectures (MPSoC). Through 

inimalist mechanisms integrated in the MPSoC architecture, 

idir frees MPSoCs from the SPoF syndrome, fulfilling the vision 

f distributed systems-on-a-chip (DSoC). 

In this paper, we show in particular that Midir -enabled DSoCs 

chieve a quantum step towards off-the-shelf chip resilience, since 

hese mechanisms are generic enough to support, in-chip and 

ith high reliability, a large variety of the protection and re- 

undancy management techniques normally implemented in soft- 

are at higher layers in ’macro’ systems. To convincingly prove 

ur point, we exemplified and evaluated an implementation, over 

idir , of the most complex version of our solution set: a Byzantine 

ault tolerant microhypervisor. We have shown the practicality of 

ur concept, having quite satisfying performance, since it outper- 

orms the highly efficient MinBFT protocol by one order of magni- 
17 
ude. The low overhead of our approach shows large promise for 

uture full hardware solutions. 

Furthermore, Midir was intentionally designed as a non- 

ntrusive extension to current core architectures, being anchored 

n simple and self-contained hardware extensions, sitting at the 

ile-to-NoC interface. Taken up by a hardware manufacturer or in- 

egrator, it allows a backwards-compatible, non-fracturing evolu- 

ion, as updating critical resources or re-writing privileges trans- 

ates to writing specific memory regions, which the capability reg- 

sters can be configured to point to, at boot time, by the boot- 

oader. 

We hope that our findings may be key to enhance general MP- 

oC architectures towards distributed DSoCs and, among other av- 

nues, lead to next-generation COTS resilient chips. 

After this initial work, several questions remain to be answered, 

amely on kernel design details, rejuvenation and diversification 

or sustainability, application-level uses, real-time applicability, 

overage for network attacks, dynamic reconfiguration of deployed 

arameters and so forth, which leave ample room for future work. 

amely, application-level usage gives way to complex questions. 

here are two ways Midir can be used at application level: a) 

or applications managing critical resources, for example, cyber- 

hysical controller applications managing a resource that interacts, 

or instance, with the physical world or b) to construct resilient 

uilding blocks used to upgrade mechanisms that coordinate the 

haring of critical resources, e.g., more resilient data structures 

o be shared among several applications within the same system. 

uture work for a) must explain how the application benefits from 

idir , which specific operations are voted upon, how real-time 

equirements are managed and how voting-related error handling 

mpacts the application. For b), an extensive analysis can be done 

ith regards to the several options to create said building blocks, 

ow synchronization among applications is regulated, how this 

ynchronization affects performance and the RCB, how implemen- 

ation options affect the level of required synchronization (and, 

hus, performance) and what race conditions can emerge from 

dapting, e.g., data structure operations. 
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ppendix A. Safety and liveness 

In this Section, we argue about the safety and liveness 

f the BFT protocol for processing system calls (as shown in 

igs. 6 and 7 ). That is, any two healthy replicas execute the same

ystem calls in the same order (safety) and all correct system calls 

ill be eventually executed (liveness). We assume the combination 

f a sleep-wake notification mechanism and polling (summarized 

n Line 22) reveals any pending system call to all replicas. How- 

ver, before we start arguing about safety and liveness, let us see 

hy faulty replicas cannot trick healthy ones into participating in 

otes with a wrong sequence number. 

System call execution involves as set of voters: the subordinate 

oters v i mentioned in V S, plus v log and v err . By construction, voters

gnore proposals and confirmations for all sequence numbers other 

han the current one and only if voting is not suspended. That is, 

 voter v i will only react to commands with a sequence number 

eq if seq = v i . seq . Sequence numbers advance only if f + 1 replicas

gree to a proposal and no replica disagrees, or if f + 1 replicas

gree to reset the voter due to some error case (e.g., one or more 

eplicas disagreeing with the proposal). From property P . 3 and P . 5

nd the arguments we have given in Section 7.4 we know that no 

ealthy replica participates in reset before error information has 

een confirmed by such a replica and logged through v err . More- 

ver, we know that healthy replicas will engage with subordinate 

oters only for executing the current system call they process. This 

eans either the replica is participating in the current system call 

r it was lagging behind other replicas. In the latter case, the se- 

uence numbers it will use to invoke the voter are smaller 7 and 

he voter will ignore the request without any effect. 

1. Safety 

Proposing V S as part of the system call (Line 38) and includ- 

ng this as part of the agreement (Line 42) means a fault-threshold 

xceeding quorum of replicas agrees to the starting point of sub- 

rdinate votes and from there we know, from the arguments given 

n Section 7.4 , that without errors the j th subordinate vote on a 

oter v i is executed at seq i + j where (v i , seq i ) ∈ V S (and similarly

ith errors, by recording and acknowledging the number of re- 

ries). Therefore, if a healthy replica votes for a subordinate vote, 

t will always vote with the correct sequence number, which im- 

lies faulty replicas cannot leverage this vote/agreement to confirm 

 different request. 

From the above, we can conclude safety holds, by seeing that 

eplicas will not agree on different system calls for the same se- 

uence number. The voter will only write system calls to the log 

hich received f + 1 agreement, and the log position is advanced 

onsensually and in a way that allows all replicas to learn about 

pdates (last subordinate vote of the previous system call). The 

oter itself thereby prevents equivocation by freezing the proposal 

he leader makes for the current sequence number, i.e., by prevent- 

ng it from being overwritten for the current sequence number. Ad- 

itionally, sequence numbers will not be reused for the same vote 

ince both successful requests and reset advances this number. 
7 We assume sequence numbers used by lagging replicas will never be overtaken 

y the current write and say that such a sequence number is smaller, despite pos- 

ible wraparounds of the used integer. We substantiate this assumption by imple- 

enting a large enough sequence number space. 

R

A

18 
From safety of the logged system call, its parameters and V S, 

t then follows safe execution of the subordinate votes, given that 

he j th subordinate vote on voter v i is completely defined by these 

spects. Notice that all healthy replicas execute the logged system 

alls, including their subordinate votes. In particular, Line 50 will 

ot lead to skipping the execution of the remaining system call, 

ut only short cuts through the subordinate votes when realizing 

hat the system call has already been completed. Healthy, but lag- 

ing replicas therefore first update their state with logged system 

alls before engaging in new system call requests. Notice also that, 

hile it is possible for faulty clients to trick leaders in proposing 

 system call that followers will not confirm, the consequence of 

his is merely a rotation of the leader (by reset of v log in Line 43)

nd the next leader continuing with another client. 

2. Liveness 

What remains to be seen is why the system is live (i.e., why it 

ill eventually process all requests from correct clients). The com- 

ination of sleep-wake and polling in Line 22 will iterate through 

ll client/replica combinations. Therefore, each valid client will re- 

eatedly find a correct leader who proposes the request. Partial 

ynchrony then ensures that during the long enough periods of 

ynchronous behavior, healthy replicas engage in processing this 

equest. Let us therefore, for the following argument, assume re- 

uest processing happens in such a good phase and will not time 

ut. Then latest after rotating through f leaders, the client will find 

 healthy leader to propose the request. 

As shown in Line 14 and 15, replicas will wait for either f + 1

eplicas to agree, f + 1 replicas to disagree or f + 1 replicas to time

ut. Thus, if the request is proposed by a healthy leader (or by 

 faulty, but stealthy leader in a correct manner) at most f (re- 

pectively f − 1 ) replicas can disagree and, in the absence of time- 

uts, f + 1 agreement will be reached. Then, even if the vote is 

uspended due to a disagreeing replica, the voter will record the 

ystem call in the log and all healthy replicas will proceed by exe- 

uting the logged call (after resetting v log in Line 44 to return this 

oter into a state where it accepts further votes, including the next 

ystem call). 

For subordinate votes, a similar argument applies. In the ab- 

ence of timeouts during long enough phases of synchrony, when a 

eplica proposes an operation for a subordinate vote, replicas wait 

ntil either f + 1 replicas agree to the proposal (in which case the 

oter executes the operation, e.g., by writing to the specified des- 

ination), even if a minority of replicas disagree; or f + 1 replicas 

isagree. Disagreeing replicas causes an error to be recorded and 

he vote to be repeated. From the arguments in Section 7.4 we 

now that error logging makes progress latest when a healthy 

eplica proposes a valid error record and when lagging healthy 

eplicas catch up to find the error information in the voter (re- 

ember P 5 prevents premature reset before the correct informa- 

ion is logged). As such, latest after rotating through f faulty lead- 

rs a healthy leader will propose and reach f + 1 agreement (from 

ealthy followers or from stealthy faulty replicas responding cor- 

ectly). This ensures that each subordinate vote gets executed and, 

onsequently, the system call as a whole. Having seen that the pro- 

osed BFT protocol for system call execution is in fact safe and life, 

e now focus on the implementation of the voters and how it en- 

ures the behavior we require, namely freezing proposals and sus- 

ension until consensual reset. 
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