
Computers & Security 123 (2022) 102920

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Behind the last line of defense: Surviving SoC faults and intrusions

Inês Pinto Gouveia

a , ∗, Marcus Völp

a , Paulo Esteves-Verissimo

b

a University of Luxembourg, Interdisciplinary Center for Security, Reliability and Trust (SnT) - CritiX group, Luxembourg
b KAUST - King Abdullah University of Science and Technology, Resilient Computing and Cybersecurity Center (RC3), Saudi Arabia

a r t i c l e i n f o

Article history:

Received 9 December 2021

Revised 3 September 2022

Accepted 10 September 2022

Available online 13 September 2022

Keywords:

Fault and intrusion tolerance

Reliability

Hypervisor

Processor architecture

MPSoCs

a b s t r a c t

Today, leveraging the enormous modular power, diversity and flexibility of manycore systems-on-a-chip

(SoCs) requires careful orchestration of complex and heterogeneous resources, a task left to low-level soft-

ware, e.g., hypervisors. In current architectures, this software forms a single point of failure and worth-

while target for attacks: once compromised, adversaries can gain access to all information and full control

over the platform and the environment it controls. This article proposes Midir , an enhanced manycore

architecture, effecting a paradigm shift from SoCs to distributed SoCs. Midir changes the way platform

resources are controlled, by retrofitting tile-based fault containment through well known mechanisms,

while securing low-overhead quorum-based consensus on all critical operations, in particular privilege

management and, thus, management of containment domains. Allowing versatile redundancy manage-

ment, Midir promotes resilience for all software levels, including at low level. We explain this architec-

ture, its associated algorithms and hardware mechanisms and show, for the example of a Byzantine fault

tolerant microhypervisor, that it outperforms the highly efficient MinBFT by one order of magnitude.

© 2022 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1

p

d

s

t

P

g

p

a

t

h

p

p

m

s

a

a

i

p

f

e

f

o

v

m

m

f

n

p

t

p

o

g

c

t

l

X

a

u

h

0

. Introduction

Economic wealth and the well-being of modern societies de-

ends on information and communication technologies (ICT). Such

ependency obviously hinges on the correctness of these systems,

ome of them critical, which may fail in a combination of mul-

iple causes and ways (Davies, 2016; Lee, 2018; Lee et al., 2016;

rice, 2019; Tsidulko, 2018; Yusof, 2019). Systems have been pro-

ressively pushed to extremes of efficiency through modularity in

latform sharing, firstly through virtualization and lately by lever-

ging the enormous power growth, functional diversity and adap-

ation flexibility offered by multi- and manycore architectures. This

as taken platform sharing to new heights, into the realm of multi-

rocessor systems-on-a-chip (MPSoCs).

The organization of these complex computing resources de-

ends on low-level platform management hardware (e.g., memory-

anagement units (MMUs)) and software (e.g., firmware, hypervi-

ors, management engines). However, current MPSoC architectures

re such that these management components, which should form

 last line of defense against severe accidental faults or adversaries

ntruding the system (malicious faults), instead constitute a single

oint of failure (SPoF), for two main reasons. First, the way plat-
∗ Corresponding author.

E-mail addresses: ines.gouveia@uni.lu (I.P. Gouveia), marcus.voelp@uni.lu

(M. Völp), paulo.verissimo@kaust.edu.sa (P. Esteves-Verissimo) .

a

n

I

3

ttps://doi.org/10.1016/j.cose.2022.102920

167-4048/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article u
orm privilege-enforcement mechanisms (e.g., MMUs or hardware-

nforced capabilities (Woodruff et al., 2014)) are designed allows

aults in a core/tile to propagate through MPSoC components. Sec-

nd, faults in this lowest-level management software, e.g., hyper-

isors configuring these privileges, are bound to propagate across

anagement and managed components, again causing common-

ode failure scenarios.

If these SPoFs are compromised by adversaries, the latter gain

ull authority over the platform’s privilege-enforcement mecha-

isms and, through them, access to all information and com-

lete control over all platform resources (e.g., cloud-based sys-

ems) (Szefer et al., 2011a), including, in the case of cyber-

hysical systems, extended control over the physical environments

n which they act (e.g., nuclear power plants Das, 2019 , power

rid stations Meserve, 2007 or contemporary and autonomous

ars Greenberg, 2015).

Is this a real risk? It is, if the vulnerability rate of

hese low-level platforms is non-negligible. Continuing prob-

ems, whether in Intel’s CSME (Ermolov and Goryachy, 2017),

en/Critix (Xen, 2019) or concerning Spectre (Kocher et al., 2018)

nd Meltdown (Lipp et al., 2018), have been repeatedly reminding

s of how brittle the assumption of “tamperproof and unattack-

ble low-level platform management assets” is. Numerous vul-

erabilities have been reported in RTOSs’ source code, namely in

oT devices (e.g., CWE-119, CWE-120, CWE-126, CWE-134, CWE-

98, CWE-561, CWE-563) (Al-Boghdady et al., 2021). Vulnerability
nder the CC BY license (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.cose.2022.102920
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2022.102920&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:ines.gouveia@uni.lu
mailto:marcus.voelp@uni.lu
mailto:paulo.verissimo@kaust.edu.sa
https://doi.org/10.1016/j.cose.2022.102920
http://creativecommons.org/licenses/by/4.0/

I.P. Gouveia, M. Völp and P. Esteves-Verissimo Computers & Security 123 (2022) 102920

a

s

P

T

s

o

2

d

a

s

m

t

e

m

d

m

1

e

c

w

t

p

i

S

s

c

l

w

a

s

(

S

f

(

n

i

c

a

t

d

m

c

T

a

t

i

c

c

t

c

c

a

c

o

f

t

f

F

d

s

t

m

d

n

u

w

i

m

i

l

c

l

D

t

i

d

v

l

p

Z

B

r

i

o

v

f

2

t

o

nalysis of virtualized environments and hypervisor security have

hown the various ways these can be attacked (Brooks et al., 2012;

rabahar and Edwin, 2012; Thongthua and Ngamsuriyaroj, 2016;

urnbull and Shropshire, 2013). Even formally verified kernels (e.g.,

eL4 Klein et al., 2009) may fail due to model/reality discrepancies

r hardware faults violating modelling assumptions (Biggs et al.,

018).

Being the risk real, are there no solutions yet? The solution

esign space for contemporary hardware platforms dependability

nd security has been unfolding in two directions: (i) application-

pecific system-level replication (e.g., triple modular redundancy,

ainly in cyber-physical systems (CPS), by means of multiple elec-

ronic control units (ECUs)), where the lack of flexibility limits the

xtension to general systems; (ii) manycore-level replica manage-

ent and consolidation, which then, if on bare MPSoCs, reintro-

uces the SPoF concern, now for the low-level replication manage-

ent component (Baumann et al., 2009; Bressoud and Schneider,

995; Döbel, 2014; Esposito et al., 2018; Lamport, 1998).

At this time, we call the reader’s attention to an inter-

sting fact, which will become crucial to our solution. The

urrent MPSoC architectures’ complexity, modularity and net-

orked inter-connectivity, suggests attributes of distributed sys-

ems (Mullender, 1993), albeit imperfect such systems (an exam-

le of which is the aforementioned SPoF syndrome). Heavily stud-

ed techniques have been used in distributed systems to mitigate

PoF syndromes and to implement fault and intrusion tolerance

chemes (Powell et al., 1988; Verissimo et al., 2006), such as repli-

ation and consensus. In consequence, the root of the MPSoC prob-

ems just presented may also be an avenue to their solution, i.e.,

e can leverage the available resources in MPSoCs (e.g. cores)

nd their connectivity together with lessons from the distributed

ystems realm to solve the presented issues. This comparison of

MP)SoCs to distributed systems was first made in Függer and

chmid (2012) , where a fault-tolerant clock generation mechanism

or SoCs is introduced.

So, in this article, we start by identifying the gaps from

MP)SoCs to distributed systems and proposing (MP)SoC mecha-

isms to bridge them, which essentially means achieving: fault

ndependence and fault containment, despite low software-level

ompromise, while retaining the flexibility (MP)SoCs offer. Having

 manycore that behaves as a (closely-coupled) distributed sys-

em should allow us to design a set of efficient and low-overhead

istributed systems-inspired modular protection and redundancy

anagement mechanisms, e.g., Byzantine fault tolerant state ma-

hine replication (BFT-SMR), for fault and intrusion tolerance (FIT).

he remaining problem, how to implement and where to locate

ll the mechanisms above, is addressed by the Midir 1 architec-

ure presented in this paper, which leverages the computing crit-

cal mass and flexibility of contemporary tile-based manycore ar-

hitectures.

Midir constrains the connection of all tiles to the network-on-

hip (NoC) through simple, self-contained hardware-based trusted-

rustworthy components, which we call T2H2 . Exploring the con-

ept of architectural hybridization (Veríssimo, 2006), whilst we

onsider those components to be ultra-reliable and not fail, we

re agnostic about the reliability of individual tiles, which may be

ompromised or fail. The assumption is justified by the simplicity

f the former, promoting verifiability.

The T2H2 components implement the functionality required for

ault independence, containment, and tolerance mechanisms men-

ioned above. In consequence, tile-internal software or hardware

aults are contained in the tile and the objects the tile can access.

urthermore, the baseline mechanisms for protection and redun-
1 pronounced meedir

d

m

t

2

ancy management provided by T2H2 can be extended and recur-

ively applied at any software layer, giving the designer ample lati-

ude for crafting resilience into systems, both “horizontally” (incre-

ental power of defense mechanisms) and “vertically” (depth of

efense).

Locating T2H2 between the tile and the NoC interconnect

ot only provides a clear pathway for integration by chip man-

facturers and integrators, it also allows drawing from many

ell-understood building blocks (e.g., region protection, capabil-

ties Needham and Wilkes, 1974 , and other chip-level resource

anagement mechanisms Aggarwal et al., 2007 , capable of isolat-

ng tiles and the resources they can access). The novelty of Midir

ies in their arrangement to avoid SPoFs, even while they are re-

onfigured.

The contributions of this article are:

1. An analysis of the gaps separating current MPSoC architectures

from genuine distributed systems and how gap fixing, through

measures promoting fault independence and fault containment

in tile-based architectures enforced at the level of the tile-to-

NoC interface, secures fault isolation and the elimination of

SPoFs.

2. An architecture (Midir) leveraging the resulting distributed

system-on-a-chip (DSoC) in (1) to achieve incremental levels

of modular fault and intrusion tolerance, through a range of

diverse redundancy management techniques implemented by

simple hardware-based voting/consensus mechanisms.

3. The design of a simple and ultimately t rusted- t rustworthy

h ardware h ybrid, T2H2 — the core component of Midir , staged

at the tile-to-NoC interface — providing just two generic base-

line functions: access control (capability registers) and quorum-

based consensus (voters). Through configurations and combina-

tions of these two basic functions, T2H2 is capable of imple-

menting all the techniques mentioned in (1) and (2).

4. As a proof of concept, we give and evaluate an implementation

featuring Midir and essential parts of a fault and intrusion toler-

ant microhypervisor built on top of it. Although the architecture

serves several reliability strategies, we chose the most effective,

active replication with error masking. Being the most complex

and costlier, we believe to have shown the performance and

practicality of our concept.

An analysis of related work is presented next (Section 2), fol-

owed by an evaluation of the challenges for bridging SoCs to

SoCs (Section 3), and the threat model (Section 4). Then, we in-

roduce the Midir architecture (Section 5) and the T2H2 component

n Section 6 . At this point, we are able to show Midir in action,

iscussing the design of a fault and intrusion tolerant microhyper-

isor built on top of it (Section 7), as an example of critical low-

evel management software. Finally, we discuss some relevant im-

lementation matters in Sections 8 and 9 , we evaluate Midir on a

ynq ZC702 board, showing how Midir ’s hardware voters accelerate

FT-SMR protocols, voted execution of system calls and consensual

econfiguration of T2H2 . We shall say an operation is consensual if

t becomes effective only after a fault threshold-exceeding quorum

f replicas agreed to executing this operation, here by means of

oting. Section 10 concludes the paper, pointing to directions for

uture work.

. Related work

In this Section, we present several classes of works that mo-

ivated Midir : low-level approaches for detection and containment

f errors in low-level support software; analyses of the evolution of

efects in system support software; attempts at preventing and/or

itigating the resulting errors and potential failures; approaches

o replication-based fault/intrusion tolerance and resilience.

I.P. Gouveia, M. Völp and P. Esteves-Verissimo Computers & Security 123 (2022) 102920

t

2

l

n

o

b

p

f

e

u

o

P

r

h

i

p

a

t

S

d

c

e

a

k

O

c

s

2

t

t

s

m

w

d

M

H

g

n

n

k

M

t

o

K

S

e

a

w

o

e

b

f

a

o

t

m

i

t

m

t

p

m

i

t

p

(

d

o

p

t

d

t

i

t

t

1

t

c

t

t

t

L

m

2

n

p

c

e

o

s

a

1

e

M

r

e

t

M

b

w

n

s

t

w

w

s

a

s

3

M

u

p

s

c

m

t

s

s

Mitigation measures have been studied for detection and con-

ainment of errors in OS and manycore support software (Döbel,

014; McCune et al., 2010; Seshadri et al., 2007) through an under-

ying, assumed-trustworthy layer. However, they still have a non-

egligible complexity, and in consequence, even a residual fault

r vulnerability rate in these supposedly trusted components may

reach the platform’s dependability and security goal.

In fact, as confirmed by Hoffmann et al. (2013) , “simple” com-

onents with at least a few KLOCs have a non-negligible statistical

ault footprint. Other studies (Ostrand and Weyuker, 2002; Ostrand

t al., 2004) reveal between 1–16 bugs per 10 0 0 lines of code go

ndetected before deployment, even in well-tested software, and

perating-system kernels form no exception (Matias et al., 2014;

atterson and Ganapathi, 2005). Recent insights (Palix et al., 2014)

eveal that faults in stateful core subsystems — on which we focus

ere — outrank driver bugs in severity.

Many approaches target operating systems with the goal of

mproving their resilience against faults. However, typically they

rotect either applications (Bolchini et al., 2013; Depoutovitch

nd Stumm, 2010; Kuvaiskii et al., 2016) or specific OS subsys-

ems (Elphinstone and Shen, 2013; Sundararaman et al., 2010;

wift et al., 2006; Zhou et al., 2006) and only from acci-

ental faults. Efforts for providing whole-OS fault tolerance in-

lude (Bhat et al., 2016; David et al., 2008; Gens, 2018; Govil

t al., 1999; Herder et al., 2006; Lenharth et al., 2009; Nikolaev

nd Back, 2013). Furthermore, the complexity of these recovery

ernels is comparable to that of a small hypervisor. For example,

SIRIS (Bhat et al., 2016) directs OS recovery to a 29 KLOC reliable

omputing base (RCB) (Engel and Döbel, 2012), roughly twice the

ize of modern microkernels (Asmussen et al., 2016; Klein et al.,

009; Lackorzynski et al., 2018; Liedtke, 1995). Again, this makes

he likelihood of residual faults or vulnerabilities non-negligible.

Several other works have given early steps in the direction of

he solutions we advocate in this paper, minimizing the threat

urface, or enforcing isolation. Nohype (Szefer et al., 2011b) re-

oves all but a small kernel substrate from application cores,

hich run functionality-rich OSs in virtual machines (VMs), re-

ucing the threat surface. Cap (Needham and Wilkes, 1974) and

3 (Asmussen et al., 2016) exploit hardware capability units and

ive (Chapin et al., 1995) a bus-level firewall to isolate VMs at tile

ranularity. However, although this avoids trusting tile-local ker-

el substrates for isolation, their configuration interface, which is

ecessary to retain flexible resource sharing, turns configuring the

ernel into a single point of failure. We address this problem in

idir , by requiring reconfiguration of the fault-isolating T2H2 unit

o be performed only if agreed by a majority of correct replicas

perating in consensus.

Capabilities are cryptographically- (Tanenbaum and

aashoek, 1994), kernel- (Hardy, 1985; Lackorzynski et al., 2018;

hapiro and Hardy, 2002) or hardware-protected tuples (Asmussen

t al., 2016; Needham and Wilkes, 1974) comprised of at least

 pointer to an object (or service) and access rights authorizing

hich operations owners of these capabilities may execute on the

bject. Posession of a capability is both necessary and sufficient to

xercise a granted access over an object. Consequently, as long as

oth capability-enforcement and -reconfiguration are trustworthy,

aults in a component cannot propagate beyond the objects it can

ccess, unless other accessing components are faulty as well.

Cheri (Woodruff et al., 2014) adds capability protection on top

f page-based protection, but includes the MMU and the OS page-

able management in the reliable computing base (RCB), which

eans the former must be trustworthy. The concept behind Midir

s independent of the protection model, and thus not necessarily

ied to e.g., capabilities. Also, by establishing the fault contain-

ent domains at the granularity of tiles, we are agnostic about

he semantics and interplay of tile-internal and/or core-level com-
3
onents, e.g., MMUs, memory protection or page-table manage-

ent. Enforced by T2H2 , the protection mechanisms are crafted at

nter-tile level, emulating the spacial isolation of distributed sys-

em nodes.

Replication has been used before in closely-coupled systems,

rimarily to tolerate accidental faults in cyber-physical systems

CPS), by replicating controllers to form triple modular redun-

ant (TMR) units, or duplicated self-checking units. An example

f the use of TMR in highly critical systems can be seen in the

rimary flight computers of Boeing 777’s fly-by-wire (FBW) sys-

em (Yeh, 1998). In a similar context, a form of passive redun-

ancy can also be seen in Airbus’ dependability-oriented approach

o FBW, where “hot spares” are used in case the active computer

nterrupts its activity (Traverse et al., 2004). The concept was ex-

ended to multi-phase tightly synchronous message-passing pro-

ocols still in the CPS domain (Kopetz and Bauer, 2003; Mancini,

986). The so-called ‘Paxos’ (Schiper et al., 2014), and ‘Byzan-

ine’ (Castro and Liskov, 1999) Fault-Tolerant State-Machine Repli-

ation classes of protocols promote resilience to threats, respec-

ively failures and both threats and failures, extending the concept

o generic classes of applications, namely in loosely-coupled sys-

ems. For example, Castro’s seminal BFT-SMR protocol (Castro and

iskov, 1999) masks the actions of a minority of up to f compro-

ised replicas, by reaching a majority voted consensus of | Q| =

 f + 1 out of n = 3 f + 1 replicas. Behind all the categories of tech-

iques above is a baseline voting mechanism among the values

roposed by a pre-defined number of replicated fault-independent

omponents. Midir offers such a baseline mechanism at a low

nough level of abstraction to serve essentially any replication-

riented application.

Architectural hybridization (Veríssimo, 2006) (i.e., the inclu-

ion of trusted-trustworthy components that follow a differenti-

ted fault model) allows reducing n and | Q| to 2 f + 1 and f +
 , respectively (Correia et al., 2004; Kapitza et al., 2012; Levin

t al., 2009; Veronese et al., 2013a). The implementation of T2H2,

idir ’s trusted component, draws from these quorum reduction

esults, and further accelerates the BFT-SMR protocol that Midir -

nabled FIT microhypervisors use to coordinate system call execu-

ion (Section 7).

Paxos and BFT replication have been attempted as well inside

PSoCs (Baumann et al., 2009; Bressoud and Schneider, 1995; Dö-

el, 2014; Esposito et al., 2018; Lamport, 1998). However, all these

orks were made under the assumption of a trusted low-level ker-

el (e.g., hypervisor or platform manager), which obviously is a

ingle point of failure (SPoF). One of the key results of Midir lies in

he realization of the distributed system-on-a-chip (DSoC) vision,

hich enables such replication management techniques in MPSoCs,

hilst removing the SPoF syndrome of the low-level kernel.

Aguilera et al. (2020) leverage RDMA in the crash fault-tolerant

ystem Mu to bring SMR performance down to microsecond scale,

lso for BFT (Aguilera et al., 2019). Midir aims at reaching consen-

us with a performance close to the speed of the NoC.

. Gap analysis and system model: from MPSoCs to distributed

PSoCs

MPSoCs consolidate in a single chip computing resources that

sed to reside on multiple chips. Tiles (Waingold et al., 1997) are

laceholders and instantiation points for resources, typically in-

tantiated with cores and private caches, or with slices of shared

aches and connected through the NoC with each other and with

emory controllers (to reach out to RAM/IO). It is possible as well

o cast accelerators, GPUs and FPGAs into the tile abstraction.

The modularity and networked interconnection of tiles already

uggests attributes of a distributed system and has inspired first

teps to hardware-enforced fault containment at tile level, as pi-

I.P. Gouveia, M. Völp and P. Esteves-Verissimo Computers & Security 123 (2022) 102920

o

2

t

d

t

t

t

L

t

o

a

t

s

o

d

i

a

c

a

n

o

r

i

t

d

s

i

o

t

r

p

i

c

n

i

a

a

f

t

i

p

t

b

l

b

m

s

b

f

T

m

i

a

t

c

m

f

d

t

m

t

i

t

n

4

l

e

s

t

m

m

c

c

d

l

T

v

s

t

r

(

t

v

t

d

f

a

I

h

h

k

o

l

d

e

t

e

d

t

f

m

i

w

H

u

t

o

i

i

c

d

a

o

v

c

t

a

neered by Hive (Chapin et al., 1995) and M3 (Asmussen et al.,

016). Tiles favour functional and non-functional diversity since

hey can host cores from several makers. This improves fault in-

ependence through the implied low likelihood of experiencing

he same fault in different tiles. Similarly, different versions of

he same code can be used at distinct tiles with the same in-

ent (Avizienis et al., 1977; Joseph and Avizienis, 1988; Knight and

eveson, 1986). However, fault containment remains imperfect: po-

entially faulty or compromised low-level kernels retain control

ver platform privilege configuration mechanisms and, thus, form

 single-point of failure.

In our system model, we therefore assume a fully connected

iled system, where on-chip network components offer the ab-

traction of a correct network, interconnecting all tiles to one an-

ther. Messages sent are eventually delivered, unchanged, to the

estination, but possibly only after several retries. Network cod-

ng (Ogg et al., 2008), multi-tenant (Colman-Meixner et al., 2016)

nd adaptive routing techniques (Yang et al., 2016) increase the

overage of this assumption. We leave coverage of network attacks

nd their mitigation for future work.

We shall further assume tiles are instantiated with heteroge-

eous processing elements and will hence exhibit a certain level

f fault independence through the implied low likelihood of expe-

iencing the same fault in different tiles — diversity.

Conventional multi- and manycore designs retain the possibil-

ty of common mode failures in central hardware components (e.g.,

he clock or power distribution network), which must be addressed

ifferently. Resilient clocks (Schmid and Steininger, 2010) mitigate

ome of these common-mode faults and the recent trend towards

nterconnected chiplets further improves the physical decoupling

f tiles. Once physical (hardware) effects of a fault are retained

o the causing tile and the signals it exhibits to the system, any

emaining faults can be contained through trustworthy tile-level

rivilege enforcement (as implemented in T2H2). We assume an

nstance of T2H2 is located between each tile and its NoC inter-

onnect.

Note that, emulating the spacial isolation of distributed system

odes, we are agnostic about the semantics and interplay of tile-

nternal and/or core-level components, e.g., MMUs and their virtu-

lization, copy-on-write, memory protection or recovery function-

lities.

In the time domain, although manycores might seem the per-

ect example of a (closely-coupled) synchronous (distributed) sys-

em, reality is a bit different, there are several possibilities for

nstability. For example, excessive resource use raises the tem-

erature and causes thermal managers to throttle the speed of

iles near this hot spot; interfering access patterns reduce memory

andwidth by evicting cache lines from shared caches; and NoC-

evel bursts may cause noticeable and, with unfair arbitration, un-

ounded message delays. Faulty behavior (accidental or malicious)

ight further worsen these negative time-domain effects. A strict

ynchronous model would not reflect reality and thus be proved

rittle.

We rely on a partially-synchronous model and prepare Midir

or possible delays (notably by buffering consensus votes in Midir ’s

2H2). Two particularities exist in these closely-coupled environ-

ents, in contrast to large-scale distributed systems, which play

n our favor: (i) barring delay variations, liveness is normally guar-

nteed; and (ii) the infrastructure is plastic in terms of timeliness

rade-offs. Therefore, as in most contemporary BFT approaches, we

onsider asynchrony for safety and partial synchrony for liveness.

The structure of our protocols is time-free, and as such they re-

ain safe in the presence of delay oscillations, provided that the

ault assumptions hold (no more than f tiles get compromised, as

iscussed below). Then, the protocols inherit whatever synchrony

hey achieve from the timeliness of the infrastructure they are im-
4
ersed in: the manycore works with high performance, in execu-

ion and communication, exhibiting short and bounded delays dur-

ng long enough periods of time, but can exhibit significant varia-

ions in these bounds. These are fair expectations, considering the

ature of these systems.

. Threat model

Our threat model considers software-level compromise at all

evels, including in the hypervisor, in the firmware, and, more gen-

rally, in any critical software component. This assumption is con-

istent with our aim of tolerating an incremental level of threat, up

o advanced and persistent threats, such as sophisticated attacks

ounted by highly skilled and well-equipped adversaries, on tiled

anycore systems, often deployed entirely on-chip. Moreover, we

onsider a limited set of hardware-level faults and attacks: pre-

isely those whose physical effects are confined to a tile (e.g., trap-

oors in a core but no hardware faults that cause a chip-wide col-

apse).

We strive to establish the tile as a unit of component failure.

here is no guaranteed fault containment inside tiles. That is, ad-

ersaries (or accidents) will be capable of compromising the whole

oftware in any tile (e.g., but not only, a hypervisor replica). Once

hat happens, we no longer make any assumptions about the cor-

ectness of any software in that tile. However, we also consider

and enforce it with the strategy described in Section 3) that tiles

hemselves are fault containment domains. This and whatever di-

ersification measures are deemed necessary to further support

he fault independence assumption for tiles.

We further assume that no more than f tiles are compromised

uring a reference time T a . Note that this supports the classical

ault and intrusion tolerance fault bound for our BFT protocols, but

lso opens the way to promoting resilience (Sousa et al., 2006).

n fact, classical hardening, diversification and intrusion prevention

elp in putting barriers in the adversaries’ way, ensuring that T a
as a usefully large value, and shrinks no further. However, we ac-

nowledge the imperfection of these techniques, especially in face

f persistent threats.

We admit that the generic system components (including low-

evel platform management ones) can be hardened as needed,

own to a residual fault and vulnerability rate. As we discussed

arlier, this is good, but not enough, especially under malicious

hreats. We leverage architectural hybridization to amplify the cov-

rage of the assumptions made in this threat model, by allowing

ifferentiated strategies towards the fault rate targets across sys-

em components. T2H2, Midir ’s trusted-trustworthy components,

all under a more restricted fault model, failing only by crashing,

uch like USIGs in Veronese et al. (2013b) . We remind that T2H2

s hardware-based and executes no software.

We assume it is infeasible to construct and/or verify soft-

are or hardware of reasonable dimensions, to a 0-defect goal.

owever, we stipulate that it is possible to design ultra-reliable,

ltimately trusted-trustworthy simple components, to a 0-defect

arget. The consequence is that these will remain correct and

perational, despite compromise of the local tile. As discussed

n Veríssimo (2006) , this is an extremely powerful combination

n algorithmic terms: trusted components used routinely to assist

ritical mechanisms and algorithms (e.g. privilege enforcement, re-

undancy management) overcoming the residual fault and vulner-

bility rate of most system components, in order to achieve correct

peration with extremely high probability.

This is only possible if we strive for absolute simplicity (for

erifiability, e.g. by proof assistants) of these trusted-trustworthy

omponents. That is the case of T2H2 in the Midir hybrid archi-

ecture, providing just two generic functions staged, in hardware ,

t the tile-to-NoC interface: access control (capability registers, in-

I.P. Gouveia, M. Völp and P. Esteves-Verissimo Computers & Security 123 (2022) 102920

Fig. 1. Overview of the Midir architecture: a multi-/manycore system augmented with T2H2 hardware capability units (blue dots) at the NoC interface. Access to tile-external

resources is subject to privilege confirmation in T2H2 and possibly voting. Here, the hypervisor replicas H V 1 , . . . , H V 3 consensually reconfigure the privileges of the VM on the

4th core, which in turn obtains access to a region of memory in the scratchpad memory of the application on tile 5. Privilege change is a voted upon operation, indicated

by dashed lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

c

w

F

5

o

t

t

g

i

c

b

t

h

e

s

T

a

o

i

M

c

n

c

a

v

t

o

T

w

p

o

t

d

b

o

r

c

i

t

o

s

w

t

s

l

a

n

h

u

v

e

e

p

b

c

c

t

t

n

m

c

m

a

m

v
s

a

6

6

a

a

T

o

v

n

T

S

t

i

e

h

luding the logic for privilege enforcement when tile hard- or soft-

are invokes capabilities) and quorum-based consensus (voters).

ig. 1 depicts this layout.

. The Midir architecture

As discussed earlier, Midir is an architectural concept based

n augmenting manycore systems in a minimally intrusive way

hrough strategically placed, simple and self-contained trusted-

rustworthy components (T2H2). In fact, T2H2 provides just two

eneric baseline functions staged in hardware at the tile-to-NoC

nterface: access control (capability registers) and quorum-based

onsensus (voters).

Fig. 1 depicts one possible layout, of a stereotypical hyper-visor-

ased system, where the hypervisor is replicated for fault/intrusion

olerance, serving virtualized operating systems and applications:

ypervisor replicas are distributed across tiles, so that each replica

xecutes on a different tile, separate from applications; tiles and

oftware therein interface with each other through the NoC; and

2H2 perform that interconnection.

As long as the execution in a tile remains within the resources

ssociated to this tile (local caches, memories, accelerators, etc.) no

verhead occurs, since T2H2 is not involved in authorizing or deny-

ng these accesses. In fact, we remind that it is not the purpose of

idir to provide fault containment between software components

o-located on the same tile . This is like the internal behavior of

odes in a distributed system, where nodes are the unit of fault

ontainment.

Once software components are spread across tiles, they inter-

ct through external operations (e.g., via a resource in another tile,

ia shared on-chip memories or via external memory or IO). In

his case, T2H2 interposes such accesses and validates that each

f them has sufficient privileges (i.e., the invoked capability in the

2H2 capability registers conveys this access). Consequently, hard-

are faults inside a tile or accidental or malicious faults in any

art of the software it executes are limited in propagation to the

bjects authorized by these capabilities.

Further to capability checking, Midir is capable of subjecting

hese accesses to voting by means of distributed components in

ifferent tiles. This is especially important for critical operations,

e it in application execution or in platform reconfiguration, in

rder to achieve some form of fault/intrusion tolerance, from er-

or detection, or self-checking by comparison, to error masking by

onsensus. To vote, tiles must hold a capability to the correspond-

ng voter, which authorizes this tile to make proposals as one of

hese distributed components. Voting is mandatory to install new

r change existing capabilities, in order to prevent faulty hypervi-

or replicas from bypassing the aforementioned fault containment

hen reconfiguring the resources a tile can access.
5

Given the nature of Midir ’s trustworthy mechanisms (T2H2) is

o provide fault isolation, access control and a means of consen-

us on critical operations, not all write operations, be them at low-

evel or application-level, make use of Midir . As mentioned, in-tile

ccesses are not interposed by T2H2 and not every off-tile write

eeds voting, given not all operations are critical, in the sense of

aving the potential to modify sensitive memory locations that, if

sed maliciously, can put the system at risk or place it in a more

ulnerable state.

Midir ’s concept of controlling the tiles’ lowest-level privilege

nforcement mechanism is agnostic of the mechanism used. How-

ver, the simpler such a mechanism and the closer it can be im-

lemented to the tile’s NoC interconnect, the more faults Midir will

e able to tolerate. Hence our choice for capabilities.

Simplicity also governs our voter design. Midir ’s voters merely

ollect and act upon proposals of related operations from different

omponents, letting the voted-upon operation proceed. Because

ile-external resources are typically memory mapped, these opera-

ions are normally simple writes. The voters themselves implement

o error handling or diagnostics functionality, but provide infor-

ation for the voting replicas to perform these tasks. More pre-

isely, voters suspend voting on disagreement, freeze the proposals

ade and expose them for diagnosis. Moreover, they implement

 sequence number seq i for progress tracking, which they incre-

ent after each vote unless the vote gets suspended. A voted upon

oter-reset operation resumes voting and, as well, increments

eq i . Section 7 shows how we utilize this error handling support

nd Section 8 details our voter implementations.

. T2H2 – Midir’s trusted-trustworthy component

In this Section, we provide further details about T2H2 .

.1. Voted and non-voted operations

To retain the flexibility of the software in a manycore system,

llowing it to dynamically adapt resource-to-application mappings

s needed, T2H2 supports direct access to tile-external resources.

his way, applications possessing a capability can directly invoke

perations on external resources (e.g., to access read-shared or pri-

ate data in RAM or to interact with non-critical devices). The sce-

ario in Fig. 2 illustrates a non-voted (write) memory access by

ile A, performed by invoking a capability in this tile’s T2H2 (1).

ince T2H2 ’s capability register c 1 holds a read-write capability to

he memory region [p, p + s] (2), the operation to write value val

n variable a is authorized (3).

However, T2H2 also supports voting, particularly useful when,

.g., platform management software or hypervisor replicas further

ave to execute critical operations (e.g., privilege change or criti-

I.P. Gouveia, M. Völp and P. Esteves-Verissimo Computers & Security 123 (2022) 102920

Fig. 2. Capability-mediated access of tile-external resources. Invoking capability register c 1 , application A invokes memory capability M : (p, s, { r, w }) to write val to location

a in region [p, p + s] . The numbers are guides reflected in the steps explained in the text.

c

c

m

s

o

c

i

b

v

t

a

t

t

1

6

r

u

c

v

d

f

c

p

c

t

O

m

w

i

o

d

a

t

w

w

t

t

v

c

r

t

v

c

i

w

a

t

p

j

7

b

t

i

al device accesses). These operations are voted upon, within pre-

onfigured detection or tolerance mechanisms, to prevent compro-

ised components from causing harm. Several strategies may be

erved by Midir , such as self-checking, recovery blocks, or f-out-

f-n error masking by majority voting in the presence of f faulty

omponents, but they are all supported by the same baseline vot-

ng mechanism. Fig. 3 represents a similar operation as in Fig. 2 ,

ut in voted access form. The hypervisor replicas in Tile B and C

ote to write value 1, while the one in Tile A, being faulty, votes

o write value 0. In order to perform these votes, all tiles invoke

 capability on their local T2H2 to access the designated voter (in

his case, the upper voter (orange) residing on Tile A’s T2H2). Given

hat a majority of tiles voted to write 1, variable a will be assigned

.

.2. Consensual privilege change

One particularly relevant scenario for voted access is consensual

econfiguration of the T2H2 instances themselves. T2H2 ’s reconfig-

ration interface (see Fig. 2) is accessible only through a voter and

annot ever be invoked directly (4).

Let us understand why this is a relevant innovation. In con-

entional OS design, any single kernel instance can directly or in-

irectly enforce modifications on platform resources. So, even in

ault tolerant designs, a faulty or compromised kernel instance

ould still be able to threaten the platform correctness. For exam-

le, by manipulating page tables, any low-level OS kernel instance

an install virtual-to-physical address mappings to any resource in

he platform’s memory map and access it through this mapping.

f course, a trusted underlying layer could solve this issue (e.g., by

ediating page-table access). However, whether this layer is soft-
6

are, as in the Inktag kernel (Hofmann et al., 2013) or firmware, as

n Intel SGX (Costan and Devadas, 2016), it becomes a single point

f failure for the platform.

Midir provides an additional level of protection, whereby the

esigner can constrain access to the platform reconfiguration, by

llowing a particular mechanism, its registers and data structures

o be only effected in a consensual manner, through a voter. As

ith general voting, discussed in Section 6.1 , these voted accesses

ill normally correspond to the implementation of detection or

olerance strategies, in this case, directed to the protection against

hreats on the platform itself. In Fig. 3 , in green colour (lower

oter), we represent such a flow of reconfiguration of a platform

apability register in tile A’s T2H2 . Exemplifying with f-out-of-n er-

or masking in a replicated low-level kernel, several replicas make

he reconfiguration request (dotted line) (1), which is voted (green

oter). The result from the voter is wired through a special T2H2

apability configuration interface to the concerned capability reg-

ster (2), masking the presence of up to f faulty replicas.

Midir does not constrain how systems are configured and hence

hat faults are tolerated. Instead it provides the means to tolerate

n incremental quality of faults, including, for highly critical sys-

ems, up to f faults in system management software (e.g., the hy-

ervisor), by providing n = 2 f + 1 hypervisor replicas and by sub-

ecting all critical operations to voting.

. Towards fault and intrusion tolerant microhypervisors

The Midir architecture and, more specifically, the T2H2 units can

e recursively applied at any software layer, protecting any layer of

he system’s software stack. Both sides of the software spectrum,

.e., low-level management software (e.g., a microhypervisor, mi-

I.P. Gouveia, M. Völp and P. Esteves-Verissimo Computers & Security 123 (2022) 102920

Fig. 3. Consensual update of location a in the tile-external memory block (upper voter) and consensual reconfiguration of capability register c 2 in the T2H2 of tile A .

Reconfiguration is always consensual (requiring agreement of a majority of the tiles A , B and C); tile-external resources may be optionally treated in that manner (by

granting access to a voter, but no direct access). The voter installs the majority decision (e.g., it updates location a with the consensual value 1 or the capability in c 2 with

the agreed upon read-only memory capability).

c

t

t

m

v

a

t

t

i

t

l

e

i

e

F

c

u

t

p

l

p

t

r

p

r

s

e

h

e

h

o

s

f

W

i

t

t

t

s

c

t

p

f

t

s

t

s

t

l

c

s

s

a

c

c

o

d

rokernel, firmware) and applications, can benefit from the solu-

ions presented in this paper. However, given low-level software is

ypically a system’s last line of defense as a result of the platform

anagement responsibilities attributed to it, and, given the hyper-

isor’s role of performing critical functions pertaining to isolation,

ccess control and privilege enforcement; we believe it illustrates

he most complex and costlier usage example of the Midir architec-

ure, while providing a concrete solution to the problem described

n Section 1 . A similar example could be applied to the construc-

ion of a fault- and intrusion-tolerant microkernel. At application-

evel, on the other hand, one can use the Midir mechanisms to, for

xample, coordinate collaboration among several applications shar-

ng data or enforce consensual actuator execution in the context of

mbedded systems.

We now turn our attention to the construction of Midir -aware

IT microhypervisors, such as suggested in Fig. 1 . Hypervisor repli-

as execute on dedicated tiles, from where they remotely config-

re the privileges of applications executing on other tiles. Most of

he other common OS-functionality (e.g., context switching, inter-

rocess communication, (non-critical) device access, etc.) can be

eft to the application and its kernel-support libraries.

Midir gives the designer latitude to use incremental levels of

rotection for individual operations or sets thereof. On one ex-

reme, configurations may be allowed where all accesses are di-

ect, and thus unprotected by voting (setting up voters for direct

ass-through of proposals, i.e., f = 0 , to reconfigure capabilities).

On the other extreme, the highest level of protection, while

etaining the flexibility of a manycore system, eliminates all

oftware-level single points of failure 2 by subjecting all critical op-

rations to voting. We focus on this facet. The replicated micro-

ypervisor offers a system call interface executed by its replicas,

ntering a service loop and maintaining data structures used to

andle system call requests, which they receive from applications,

ther replicas (e.g., requesting a privilege they lack for executing a

ystem call) or from hardware (e.g., triggered by device interrupts).
2 Modulo Midir ’s T2H2 , which, justified through its simplicity, we assume will not

ail.

w

o

(

i

a

7

e provide an informal proof of the protocol’s safety and liveness

n Appendix Appendix A.

Remembering that the unit of fault containment in Midir is

he tile (equivalent to a node in a distributed system) the essen-

ial requirement for a fault tolerant microhypervisor design is that

he replicas behind critical operations are placed in different tiles,

uch that they communicate by messages, are subject to T2H2 ac-

ess control, and converge on the necessary votes as dictated by

he algorithm. In order to fully enjoy the baseline functionality

rovided by Midir , a few additional design principles should be

ollowed:

• P.1 Impersonation prevention: Correct replicas must deny any

operation with a replica identifier that is already in use (T2H2

voting relies on identifying the individual replicas through their

capability; no two replicas should have a capability to the same

voter with the same identifier).
• P.2 Bypass prevention Correct replicas must deny any opera-

tion attempting to grant direct write access to a consen-sual-

update-only object (Section 6.2).

Let us illustrate the design with the example of reallocating the

ile to a different application. Signaling the tile, an application-

pecific library may save the state necessary to resume execu-

ion (e.g., utilizing memory assigned for this purpose). The actual

witch then proceeds by resetting the tile followed by installing

he capabilities the new application’s library needs, in order to

oad its state. Obviously, reset and, as we have seen, privilege

hange are critical operation, which must be performed consen-

ually to prevent compromised kernel replicas from prematurely

topping applications. Channeling such critical operations to voters

nd confining access with capabilities prevents faulty replicas from

ausing harm, since, as long as no more than f replicas become

ompromised, a correct majority out of the n = 2 f + 1 replicas will

utvote these operations. This turns system call execution into up-

ates of replicated state and a sequence of voted operations, which

e shall later call subordinate votes . This works as well with any

ther replicated critical software, even firmware such as in SGX

e.g., preventing enclave misconfiguration) or device drivers, when

nteracting with the physical world. Replies to system calls must

lso be voted upon, given that hypervisor replicas, by nature, act

I.P. Gouveia, M. Völp and P. Esteves-Verissimo Computers & Security 123 (2022) 102920

Fig. 4. Read-shared, consensually updated data structures used by the kernel: system calls are recorded in the syscall log, the error log keeps voting error information, and

a capability space holds an application’s capabilities (Section 9).

o

o

a

w

a

o

s

(

i

c

7

a

s

h

o

d

c

l

o

f

c

k

t

s

r

b

s

v

b

s

a

n

v
t

t

c

v

i

o

t

s

d

i

t

t

c

i

c

o

s

1

o

m

t

s

c

w

A

b

i

f

t

g

n behalf of multiple applications, possibly storing information of

ne that must not be revealed to others.

The above is of course true provided replicas have reached

greement on the system call to execute and on the parameters

ith which the client has invoked this call. Clients are applications

nd other kernel replicas that invoke system calls. A further role

f the in-kernel service loop is therefore to reach consensus on

ystem call execution order and parameters. From our evaluation

 Section 9) we found that Midir ’s support for consensually execut-

ng critical operations also provides for accelerating the BFT proto-

ol that the kernel replicas must execute to reach agreement.

.1. Consensual system calls

Fig. 4 provides a more detailed picture of how T2H2 ’s voters

nd capability registers contribute to reaching consensus about the

ystem call to execute and its parameters. The service loop of FIT

ypervisors needs to reach consensus before it can start executing

perations that may have critical side effects when misused.

The service loop utilizes two data structures: a consensually up-

ated ringbuffer — the syscall log — records agreed upon system

alls and its parameters to give kernel replicas the opportunity to

earn about those agreed upon. Otherwise, this information would

nly be available to the agreeing quorum of f + 1 replicas and if

aulty replicas participate there, but refuse to execute the system

all later on, too few correct replicas would have obtained this

nowledge to complete the system call. Storing agreed upon sys-

em calls in the log allows lagging replicas to catch up with the

ystem calls they missed.

Similarly, the service loop utilizes an error log to protect er-

or information from getting lost if the voter is reset prematurely

efore all replicas have learned about this error. Updates of the

yscall and error logs are made through dedicated voters: v log and

 err , respectively.

Macroscopically, clients place system call requests in authentic

uffers, which the kernel replicas poll 3 for new requests. Consen-
3 Sleep/wake protocols can be used in periods where no requests are pending.

c

i

f

8

ual privilege change allows creating such buffers by granting write

ccess to a single client, but to no kernel replica. The leading ker-

el replica proposes one such system call by initiating a vote with

 log , which followers observe and agree or deny. Once written to

he syscall log, replicas proceed by executing the system call and

he votes for its critical operations, as well as responding to the

lient. We call these subordinate votes as they depend on the main

ote, logging the system call. That is, no correct replica will engage

n a subordinate vote unless the system call has been logged. Sub-

rdinate votes include at least replying to the client and advancing

he syscall log to the next free slot. They are performed utilizing a

et of voters V = { v 1 , . . . } that is disjoint from { v log , v err } .
We make no assumptions on the order in which replicas up-

ate their local state (even transactional or speculative updates are

maginable). However, to simplify tracing the progress of the sys-

em call (and, in turn, the code that late or rebooted replicas have

o execute to catch up), we require subordinate votes to be exe-

uted in the same order by all replicas and assume that this order

s completely specified by the system call parameters.

Our rationale for agreeing on the system call first is to cir-

umvent a fundamental problem of consensus protocols with-

ut authenticators: the impossibility to diagnose faults if mes-

ages can be altered during multicast operations (Lamport et al.,

982). In our setting, cryptographic operations would come at

ver-proportionally high costs relative to the speed of the transport

edium (the NoC). Since consensus adds to system call execution

imes, having an execution time close to the NoC’s speed is a de-

irable property. We therefore avoid sending unforgeable authenti-

ation tokens (e.g., HMACs) and instead exploit the authentication

e obtain from a client being the single writer of its request buffer.

dditionally, given clients maintain write access to their request

uffers, they can change the request after the leader has proposed

t, but before followers validate it, which makes it impossible for

ollowers to distinguish whether the leader proposed a wrong sys-

em call or whether the leader proposed the client’s original sug-

estion, but the client changed it afterwards. In consequence, they

annot differentiate faulty clients from faulty leaders to provably

dentify the leader as faulty. We omit this form of error diagnosis

or the system call vote to regain this property when we need it:

I.P. Gouveia, M. Völp and P. Esteves-Verissimo Computers & Security 123 (2022) 102920

Fig. 5. Generic voting pattern used in the service loop and when executing system calls.

i

t

p

s

e

t

o

u

7

v

c

i

v

t

t

p

a

b

S

7

l

w

t

w

f

c

a

c

w

v

a

t

i

c

w

n

q

L

t

d

o

q

q

b

n the subordinate votes for reaching agreement on critical opera-

ions.

Leaders tricked into such a fault are rotated and the new leader

roceeds with all other pending requests before returning to the

uspicious client.

The following details the protocols the hypervisor replicas ex-

cute to reach consensus on and execute system calls. Leveraging

he generic voting pattern in Fig. 5 , replicas first reach agreement

n the system call (Fig. 6) to then consensually perform critical

pdates during its execution (Fig. 7).

.2. Generic voting pattern

Fig. 5 shows the generic pattern and how replicas interact with

oters. Evaluating the sequence number v i . seq of voter v i , repli-

as identify the leader as the replica with identifier v i . seq mod n 4

n its capability. The leader proposes a request by invoking its

ote capability to write operation op to its voter buffer, which

he voter prevents from being changed once the leader marks

his proposal as complete. Followers wait for the leader to com-

lete its proposal to then validate the operation and express their

greement/disagreement (by submitting the operation they saw or

y writing the corresponding value to the agreement vector (see

ection 8)).

.3. System call vote

In Phase 1, replicas first agree on the system call to execute fol-

owing the generic pattern above. In Phase 2, they then vote on
4 As long as enough tiles are available, n and f can be reconfigured, namely

hen adopting optimistic voting schemes. Such changes can namely de done on

he go, provided a safe initialization, rejuvenation and relocation protocol. However,

e leave the dynamic modification of these parameters and associated advantages

or discussion in future work.

e

e

s

p

t

9
ritical operations. Fig. 6 shows the pseudocode for system call

greement. Lines 16–23 illustrate the client invocation pattern dis-

ussed above. The leader selects a pending system call (Line 26)

ith a valid opcode (Line 27) and prepares the entry to log. To pre-

ent equivocation during subordinate votes (e.g., attempts to trick

 replica into proposing the next system call without completing

he current one), we enforce some additional principles:

• P.3 Coordinated subordinate votes: correct replicas vote only

on subordinate voters (v i ∈ V) to execute the current system

call.
• P.4 Presence of correct replica: no voted operation succeeds

without at least one correct replica.

We enforce P.4 by requiring quorums of at least f + 1 match-

ng votes, while preventing impersonation (c.f., P.1 in Section 7). In

ombination, these principles ensure that subordinate voters v i ∈ V

ill keep their state while in Phase 1 (including their sequence

umbers). By agreeing, alongside the system call, on the first se-

uence number of all voters used in this system call (collected in

ines 29–33 in the set V S and validated in Line 42), we ensure

hat all replicas know all sequence numbers to start with in subor-

inate votes, even if they have been lagging behind. In the absence

f errors, the j th subordinate vote on v i will be executed with se-

uence number seq i + j, assuming (v i , seq i) ∈ V S was the start se-

uence number of v i . This agreement on the initial sequence num-

er then allows for a simpler progress tracking in Phase 2, when

xecuting subordinate votes.

Because of the impossibility in Section 7.1 , system call votes op-

rate with reduced error diagnostics: replicas reset v log if it got

uspended after disagreement (Lines 43, 44) and repeat votes for

ending system calls unless they fail for all client-leader combina-

ions, in which case they exclude this client.

I.P. Gouveia, M. Völp and P. Esteves-Verissimo Computers & Security 123 (2022) 102920

Fig. 6. Service loop - Phase 1: agree on next system call to execute.

7

t

fi

A

w

a

b

(

i

m

s

t

s

c

n

g

c

.4. Subordinate votes

The code for executing subordinate votes in Fig. 7 has to solve

wo problems:

1. preserve determinism despite errors and

2. prevent replicas from prematurely resetting voters.

From reaching agreement on the system call, we know that the

rst subordinate vote on v i starts with seq i because (v i , seq i) ∈ V S .

s such, without errors, the j th subordinate vote on v i happens

ith sequence number seq i + j. The same applies to votes with

t least one disagreeing replica that all received f + 1 agreement
10
ecause, after the voter resets (Line 62), they are not repeated

Line 66). The key for lagging replicas to catch up in case of error

s to make sure they learn about all errors, so that they know how

any times a vote was repeated and when it was successful. As-

ume the k th subordinate vote (k < j) was the last to fail with seq k
i
,

hen k completed with seq k
i

+ 1 and the system call progressed to

ubordinate request j if v i . seq − seq k
i

= j − k .

Solutions to the second problem address the point that all repli-

as must learn about errors. With n = 2 f + 1 and | Q| = f + 1 , up to

 − | Q| = f replicas may lag behind while the remaining | Q| pro-

ressed to another subordinate request or even to another system

all. In particular, faulty replicas may fail a subordinate vote, but

I.P. Gouveia, M. Völp and P. Esteves-Verissimo Computers & Security 123 (2022) 102920

Fig. 7. System call execution - Phase 2: subordinate votes and error handling.

a

t

g

a

h

T

p

l

c

q

w

c

5

v

h

d

d

f

n

i

gree to reset the voter, which erases the error information about

he failed vote from the voter and leaves behind as few as a sin-

le correct replica to know about the error. This scenario occurs if

f faulty and one correct replica resets the voter before others di-

gnosed it. Clearly, without costly cryptographic information, the

onest replica cannot convince others about what has happened.

he following design principle solves this problem by preventing

remature resets before error information is pushed to the error

og.

• P.5 No reset before error logging: correct replicas reset subor-

dinate voters only after the error got logged.

This error state contains information about the current system

all, i.e.: the system call entry log ; the subordinate vote req ; the se-

uence number of the voter v i ; the point where it failed eseq and

hich replicas agreed/disagreed. In consequence, lagging replicas

an validate if the current subordinate vote succeeded (Lines 52–
11
5) and, if not, who was responsible for it to fail. Voter v i pre-

ents destructive writes until it is reset, which P.5 and P.4 ensure

appens only after error information was written to the log. Non-

estructive writes are updates of empty buffers, respectively, up-

ates of the agreement vector from timeout to agree/disagree and

rom empty to any of these three.

The argument for why the problem does not recur with the

ested vote for logging the error state is as follows:

1. The state to push is held in the voter v i . Therefore, even if a

replica lags behind, finding v i suspended, it knows what infor-

mation to write to the log.

2. Because of P.5, and because at least f + 1 replicas are required

(P.4) for votes to succeed, the only way to make progress is by

writing correct error information.

Therefore, either faulty replicas agree to writing correct error

nformation or eventually correct replicas catch up and write cor-

I.P. Gouveia, M. Völp and P. Esteves-Verissimo Computers & Security 123 (2022) 102920

r

d

r

e

v

i

d

m

m

d

d

r

p

i

r

a

8

d

t

i

N

o

t

p

t

8

r

n

A

c

f

o

v

o

o

t

c

8

t

u

a

v

t

b

t

r

t

a

O

c

t

p

a

b

t

o

t

s

t

c

a

s

t

(

m

w

(

(

(i

c

j

m

b

a

t

i

8

p

t

m

v

t

c

s

s

m

s

t

d

v

a

o

T

q

t

v

r

t

ect information. The exact information seen by the replicas may

iffer depending on the time they read it, i.e., in late reads, more

eplicas may have expressed their consent or disagreement. How-

ver, it will always contain at least the consensual result of the

ote, i.e., whether f + 1 replicas agree, disagree or timed out, and,

n the former two error cases, it identifies at least one replica that

iverges from the majority (the leader, in case of f + 1 disagree-

ent). This replica is proven faulty. Followers, reading error infor-

ation after the leader and finding proposals of additional replicas,

owngrade their own information to that of the leader after vali-

ating it as described above (Line 73). Repeating the vote while

otating the leader ensures that valid error information is pro-

osed latest after f retries. It then suffices to reset v err , whenever

t becomes suspended (Line 76). Once error information is pushed,

eplicas vote to reset the voter v i for the subordinate vote (Line 78)

nd continue executing it.

. Implementation

The implementation of capability invocation is stan-

ard (Needham and Wilkes, 1974): T2H2 is invoked by tiles

o perform external operations, then it looks up the capability

n the capability register file, and forwards the operation to the

oC after the privilege check succeeds, silently dropping the

peration otherwise. Replica IDs are communicated as labels in

he capability (Hardy, 1985), which T2H2 inserts as an additional

arameter into the operation.

Our voter implementation is driven by the following considera-

ions and their impact on functional simplicity.

.1. Buffered vs. unbuffered votes

Perhaps most impactful is the decision to buffer votes to allow

eplicas to make their proposals without first having to synchro-

ize on the time when the signal for such a vote must be held.

lthough buffering increases the complexity of the voter, it de-

ouples replicas, allowing them to act in a partially synchronous

ashion and, as long as different voters are used, even partially

ut-of-order 5 Buffering votes is ideal in a NoC architecture, since

otes are transmitted as normal messages (e.g., writes to the mem-

ry mapped registers of the voter). Tiles can continue executing

nce the message is sent. We therefore implement voters to con-

ain buffers for storing proposals from the different replicas for the

urrent vote executed with this voter.

.2. Immediate vs. deferred masking

A similarly impactful decision is whether voters should be able

o mask faults immediately. Alternatively, voting can be repeated

ntil a valid proposal is made. The consequences, besides time to

greement, are the amount of memory needed for buffering votes

s. the complexity of the voter logic.

To mask faults and reach agreement immediately after | Q| =

f + 1 matching proposals arrive, the voter needs to buffer sugges-

ions from at least f + 1 replicas. Since up to f such messages may

e wrong and because the voter can only find out after receiving

f + 1 matches, buffer space for at least f + 1 messages is needed

o prevent having to repeat the vote.

We implemented two variants of T2H2 voters to evaluate the

esource/performance trade-off at the two extremes of this spec-

rum. Our n -buffer variant (Fig. 8 a) implements one message buffer
5 To simplify monitoring of the progress of a system call, we have required that

ll replicas execute the critical operations of each system call in the same order.

perations of different system calls need not be constrained in this way, and, at the

ost of a more complex progress tracking, this requirement can be further relaxed

o: same order as far as a single voter is concerned.

8

s

m

d

12
er replica. Each time a message arrives, it is compared against

ll other stored messages and the operation applied once f + 1

uffers match. Our single-buffer variant (Fig. 8 b) trades agreement

ime for a more resource-efficient implementation: there is only

ne buffer; and only the current leader is granted write access to

his buffer. The single-buffer voter follows a leader-follower voting

cheme, with the leader proposing a vote and followers validating

his proposal. To prevent inconsistency, the voter prevents modifi-

ation of the leader proposal once the leader marks the proposal

s ready. This allows follower replicas to observe the stored mes-

age and express their agreement/disagreement. For this purpose,

he single-buffer voter implements an agreement vector with one

initially empty: -) tri-state cell for each replica to express agree-

ent A or disagreement D . Now, one of three things may happen

hen replicas propose:

i) a majority of f + 1 or more replicas disagree with the leader

proposal. In this case, the leader proposal is considered invalid

and the operation is not applied; or

ii) a majority of at least f + 1 replicas agree. In this case, the pro-

posal is accepted and the voter applies the operation in its

buffer.

ii) the operation times out without a majority of replicas agree-

ing/disagreeing. In this case, the replicas record this error and

repeat the vote after rotating to the next leader.

The n -buffer version requires logic circuits for pairwise buffer

omparison, whereas in the single-buffer version a 2 data-bit ma-

ority gate over the agreement vector suffices, deeming the latter

ore resource efficient. On the other hand, although the single-

uffer voter guarantees that, latest after repeating the vote f times,

 healthy replica is elected as leader and makes a valid proposal,

he n -buffer version may proceed as soon as it finds f + 1 match-

ng proposal, making it more efficient in terms of execution time.

.3. Internal vs. external error handling

The third question is whether the voter itself should include

rovisions for diagnosing errors and for informing replicas about

hem. Errors are detected when one replica diverges with the

ajority decision. Voter-initiated error handling translates to the

oter tracing back to the voting replicas’ cores to identify where

o deliver error-handling interrupts. The expected complexity dis-

ourages such a solution. We therefore offload error handling to

oftware and support replicas by a means to track progress (the

equence number seq) and by suspending voting after detecting a

ismatch. In this situation, seq does not advance but the voter may

till apply the operation (in case of f + 1 agreement). Replicas read

he voter registers and buffers to diagnose the error, by looking for

ivergences.

To resume execution of suspended voters, replicas reset the

oter, which clears all buffers and the agreement and reset vectors

nd advances the sequence number by one. Reset itself is a voted

peration over the reset vector, which contains one bit per replica.

he voter resets once f + 1 bits in this vector are set. Although this

uorum guarantees that at least one correct replica agrees to reset-

ing the voter, it does not prevent faulty replicas from resetting the

oter prematurely, that is, before all correct replicas were able to

etrieve the error state. P.5 and the protocol in Section 7.4 handles

his corner case.

.4. Dimensioning voters

The last question we discuss here is: for how many faults

hould the voter hardware be laid out. Since we aim at imple-

enting voters in silicon, we have to make this choice at system

esign time to dimension buffers and vectors large enough for the

I.P. Gouveia, M. Völp and P. Esteves-Verissimo Computers & Security 123 (2022) 102920

Fig. 8. Internal structure of a voter. One, resp. n buffers hold the message of replicas to vote upon and size its length. f defines the fault threshold, seq is a voter maintained

sequence number. The agreement and reset vector are described below.

m

w

t

s

t

t

v

e

h

a

f

o

e

t

9

T

t

5

w

m

f

i

t

(

s

a

i

t

t

a

(

(

n

v

t

t

M

t

o

c

b

p

e

s

9

s

a

f

t

Q

e

g

t

o

t

n

c

i

6 We omit client signatures in favor of authentic buffers, but implement UIs with

HMACs. USIGs can be accessed without overhead.
aximum number of faults to tolerate (f max). However, to not al-

ays have to execute at this maximum replication degree, a fault

hreshold f ≤ f max of voters can be configured at boot time. For in-

tance, if the system should tolerate up to f max = 3 faults, it needs

o be dimensioned to have n max = 2 f max + 1 = 7 fields in the vec-

ors (and an equal amount of buffers in the n -buffer variant). This

oter can be operated at any fault threshold 0 ≤ f ≤ f max .

The voter design has been kept simple enough, and decoupled

nough from the surrounding logic. As such, we can expect with

igh confidence that T2H2 can be implemented and shown correct,

s well as stay functional even when the tile it is associated with

ails. A crashed T2H2 prevents its tile from invoking any operation

n tile-external resources, in particular from issueing votes. Midir

nsures safety and liveness as long as the overall number of faulty

iles (including those with a crashed T2H2) does not exceed f .

. Evaluation

As an early validation of our proposal, we have implemented

2H2 with both voter variants in VHDL on a Zynq-7 ZC702 Evalua-

ion Board. We instantiated 3 Microblaze cores as tiles, running at

0 MHz, each with one T2H2 , connecting the tiles through T2H2

ith an AXI interconnect (serving as the NoC). We have imple-

ented and measured the performance of the service loop of a

ault- and intrusion- tolerant hypervisor (Fig. 6). The service loop

s used to agree on and execute client-invoked system calls for

wo critical operations: granting and priming capabilities. Grant

 L4.map (Liedtke, 1995)) copies capabilities between capability

paces and prepares for later revocation. Prime consensually copies

 capability from the client’s capability space into a T2H2 capabil-

ty register, where it is ready for invocation. We have measured

he performance of grant and prime in two different implementa-

ions of capability spaces, a container object for the capabilities an

pplication possesses:

i) as a private data structure in each replica (Section 9.1), requir-

ing, in the case of prime, only the vote to install capabilities

and two further to reply to the client and mark the system call

as finished; and
13
ii) as a read-shared, consensually-updated data structure, trading

off speed for a smaller memory footprint by introducing addi-

tional votes for track keeping (Section 9.2).

As baselines, we compare to a cross-tile invoked singleton ker-

el (horizontal line), executing the same system calls on its pri-

ate state, with 1637 cycles for grant (1977 cycles for prime); and

o a shared-memory variant of MinBFT 6 requiring 242824 cycles

o agree on a system call. Our agreement protocol outperforms

inBFT by one order of magnitude.

A comparison to a cross-tile invoked singleton kernel allows us

o understand the overhead the T2H2 introduces in remote mem-

ry block access, which is present only in the execution of criti-

al operations. The presented values for this baseline are justified

y the absence of caches, as we want cores to be as decoupled as

ossible. The choice for comparison with MinBFT relates to its high

fficiency and state-of-the-art popularity in hybrid BFT solutions.

An evaluation of application performance in a Midir architecture

hall be left for future work.

.1. Per-replica capability space

Fig. 9 shows the average performance of the grant and prime

ystem calls in a per-replica capability space implementation rel-

tive to two baselines: null and a singleton kernel instance per-

orming these system calls in a non-consensual manner. Shown are

he system calls broken down into individual votes and the Q5 /

95 percentiles of the overall measurements.

The minimal costs for learning about a system call request and

xecuting it are 1571, 1637 and 1977 cycles on average for null,

rant and prime, respectively, which is the baseline of the single-

on kernel. System calls for the single-buffer version have a factor

f 8.9 (null) to 9.6 (grant) increase, which can be explained due to

he voter not benefiting from caching. Whereas the singleton ker-

el merely has to copy one request from the memory where the

lient core places it, missing in all caches in the process, follow-

ng replicas have to poll the voter to wait for the leader to make

I.P. Gouveia, M. Völp and P. Esteves-Verissimo Computers & Security 123 (2022) 102920

Fig. 9. Average execution times of the three consensual system calls — null, grant and prime — when executed on a per-replica capability space implementation. System

calls are broken down into the individual votes for agreeing on the system call and for performing the critical updates required. Shown are also the Q5 / Q95 percentiles

and the average costs of executing the respective system calls on a singleton kernel.

Fig. 10. Average execution times of the three system calls for consensually-updated capability spaces.

a

s

m

a

o

r

t

l

p

9

f

i

s

p

t

w

c

i

T

p

1

i

v

(

t

r

(

n

 proposal and then confirm (or reject) the proposal made. Each

uch voter access amounts to costs equivalent to a cache miss.

As can be seen, reaching agreement on the subordinate votes is

uch faster, since replicas already align themselves when reaching

greement on the system call to execute.

In the n-buffer version, higher costs occur during the agreement

n the system call, which is due to the writing of the complete

equest to the voter, not just setting a bit in its agreement vec-

or. However, subordinate votes are much faster, since replicas no

onger wait for the leader to make a proposal. Instead, they just

ropose what should be written as critical operation.

.2. Consensually-updated capability space

Fig. 10 shows a similar diagram as Fig. 9 , this time, however,

or consensually-updated capability spaces. Granting and prim-

ng capabilities now require additional votes to update the data

tructure.
14
This time, the 6.7 (single-buffer) and 7.3 (n-buffer) times slower

erformance relative to the singleton kernel can be explained due

o the voter not benefiting from caching:

Singleton kernel: System call execution is triggered by the client

riting to shared memory on one core and the kernel (on another

ore) reading it. From then on, all the operations happen locally

n the core of the kernel without any interaction with the outside.

herefore, all memory operations aside from the invocation and re-

ly hit in the core’s cache, which, in our setting, responds within

 cycle. The cross-core operations (invocation (1) + reply (2)) dom-

nate these costs.

Replicated kernel: System call execution starts as well with in-

ocation (1), but then, the leader needs to propose the request

2), followers validate it (3) and express agreement (4) upon which

he voter updates the memory and all replicas wait for the vote to

each agreement (5). In the case of the per-replica capability space

case (i) in Section 9), we then execute locally, but for replying (to

ot introduce storage channels) we have to repeat at least (4) +

I.P. Gouveia, M. Völp and P. Esteves-Verissimo Computers & Security 123 (2022) 102920

Fig. 11. System calls broken down into individual votes. Shown are the Q5 and Q95 percentiles for the main system call vote and each subordinate vote for single-buffer

voters.

Fig. 12. Same as Fig. 11 for n-buffer voters.

(

h

a

r

o

e

Q

s

c

s

9

t

n

a

v

o

s

l

w

p

o

p

r

s

s

b

m

f

t

c

i

5), assuming n -buffer voters. As such, even without any delays, we

ave 7 cache misses vs. 2 in the singleton kernel execution, hence

 factor of 3.5. Additionally, more voter accesses are performed to

ead the sequence number, which we need for flow control.

To confirm that variations in fact originate from the agreement

n the system call to execute, we have broken down system call

xecution into their individual votes and measured their Q5 and

95 percentiles. Figs. 11 and 12 show these values for single- re-

pectively n-buffer voters. As expected, subordinate votes remain

lose to their average execution times, whereas agreement on the

ystem call varies significantly.

.3. Overhead discussion

Given the worst case scenario of an 8,9 (null) to 9,6 (grant) fac-

or overhead of voted accesses in comparison to the singleton ker-

el (when using per-replica capability spaces), we discuss here the

rguments addressing this concern.
15
First, we remind the reader that not all system calls require

oting, with the latter being applied only to execute critical

perations (e.g., privilege management) and access critical re-

ources external to the tile. Similarly, if used by software at higher

evels of abstraction, namely application level, T2H2 would as

ell only be required to perform specific operations that could

otentially cause harm, such as those updating critical shared data

r accessing critical devices.

Furthermore, critical resources being accessed, provided they

resent read-most patterns, do not impact overall performance, as

eads do not usually require voted access, unless, for security rea-

ons, the information contained therein should not be leaked to

pecific sets of replicas. On the other hand, if the resource is to

e updated (i.e., written), the ratio of reads to writes will deter-

ine the impact the aforementioned overhead will have on per-

ormance. Also, not all writes (only critical ones) need voting and,

hus, not all writes incur the demonstrated overhead. Capability

hecking incurs 99 cycles overhead to write the request in the

nput register and 106 to check the permission result. However,

I.P. Gouveia, M. Völp and P. Esteves-Verissimo Computers & Security 123 (2022) 102920

Fig. 13. Latency of the null system calls for increasing number of replicas in microseconds.

Fig. 14. Code size in lines of C++ / VHDL code (logic / total).

w

o

m

(

S

i

i

l

c

m

i

a

t

m

b

h

o

d

u

s

s

M

r

a

i

o

n

f

u

9

i

p

t

4

l

t

t

c

s

s

p

W

s

f

a

9

v

e believe that, although the overhead represents almost an order

f magnitude increase, it is still within the expected performance

etrics for the considered communication medium - the NoC.

Finally, was this FPGA-based proof of concept built as an ASIC

application-specific integrated circuit), as intended for a final MP-

oC product, voted system calls’ performance would immediately

ncrease, given an ASIC’s die is purposefully built for the task it

s designed to perform and, thus, is optimized in terms of area,

ogic gate count and frequency. Additionally, an MPSoC specifi-

ally designed with Midir integration would have the T2H2 s sit

uch closer to the replica, at its tile-to-NoC interface, with T2H2 -

nternal registers that would act as a local cache, thus reducing

ccess times and, combined with an ASIC nature, logic-processing

imes. In our FPGA proof of concept, the T2H2 s are instead memory

apped, meaning the processor has to access the external memory

lock to perform each voting step, thus having the increased over-

ead explained in Section 9.2 .

Nevertheless, this overhead essentially translates to a trade-

ff, where either no safety measures are applied by removing re-

undancy and/or voted execution, leaving single points of failure

nresolved, but achieving better performance; or having the pre-

ented performance decrease while enhancing the system with the

afety features proposed in this paper. As mentioned in Section 7 ,

idir may be configured in such a way where all accesses are di-

ect, and thus unprotected by voting (f = 0), meaning all T2H2 s

re “turned-off”. As such, depending on the system’s goals, crit-

cality and requirements, Midir can be tailored in regards to not

nly which operations should be subjected to voting, but the total
16
umber of faulty replicas it should tolerate, if any. This, in turn,

urther adjusts performance as not all available tiles need to be

sed.

.4. Scalability

Since our FPGA board’s resource limitation prevents us from

nstantiating more replicas, we confirm the scalability of our ap-

roach in an emulation on x86. Hypervisor replicas are pinned as

he sole application on the cores of a 24-core Intel Xeon CPU E5-

650 system, running at 2.10 GHz. They execute the same server

oop like on the FPGA, but emulate voters in software.

Fig. 13 shows the latency results of scaling the null system call

o an increasing number of replicas and hence an increasing fault

hreshold from f = 1 to f = 7 . Also shown (although not directly

omparable) is the performance of the FPGA implementation, both

caled to microseconds. As can be seen, the execution of the null

ystem call scales linearly with the number of replicas, which in

art is due to the emulation having to acquire a lock during voting.

e expect a similar though less steep linear increase in a larger

cale FPGA implementation due additive effects of having to wait

or the agreement of an increasing number of replicas with fluctu-

ting system-call execution times.

.5. Code size

Fig. 14 lists the code size (excluding initialization) for the ser-

ice loop, for consensually executing critical operations and for in-

I.P. Gouveia, M. Völp and P. Esteves-Verissimo Computers & Security 123 (2022) 102920

Fig. 15. FPGA resources required by T2H2 (without / with AXI interface).

t

s

(

b

a

c

o

w

p

f

s

e

p

u

s

F

g

i

a

c

c

m

h

i

d

s

i

v

w

1

b

b

m

M

o

a

t

w

d

w

o

M

f

o

f

t

f

i

o

t

t

t

l

i

l

S

e

n

f

c

p

N

T

f

p

f

b

s

t

F

M

r

i

w

h

s

t

t

a

D

c

i

C

W

o

F

I

erfacing with the capability registers. Also shown are the VHDL

ource lines of code for the logic only and for the overall design

including I/O declaration) of the voter and capability unit. As can

e seen, the amount of code that each replica executes for the

bove grant and prime system call is well below 10 0 0 lines of

ode. Faults in this code are masked by the majority of replicas

utvoting faulty replicas in critical operations. Similarly, the hard-

are overhead is just above 400 lines of VHDL code for the logic

lus 2411 lines of VHDL for connecting the logic to the AXI inter-

ace I/O and for mapping the corresponding internal signals. VHDL

imply defines the logic to be programmed in the board, it is not

xecuted by the voters or capability units.

Fig. 15 shows the FPGA resources of the (post-synthesis) im-

lementation of our components. LUTs are units with no state,

sed to implement the combinatorial logic; while registers hold

tate, e.g, to keep buffer contents, but implement no logic. Each

7 Mux (wide multiplexer) combines the outputs of two LUTs to-

ether, while F8 Muxes combine the outputs of two F7.

Notice that the absolute resource requirement of T2H2 will not

ncrease if more complex cores are to be controlled. Hence, the rel-

tive resource overhead will shrink when more complex tiles are

onsidered. This phenomenon occurs since the complexity of the

ores has no influence on the T2H2 s’ logic and functional require-

ents. T2H2 will provide the same services with the exact same

ardware logic design independently of the complexity of the tile

nvoking it. As such, as the cores’ resource requirements increase

ue to higher complexity, T2H2 ’s remains the same. However, re-

ource utilization will increase if more cores are added. Additional

nput registers will be needed to store an additional request or

ote from the new cores as well as LUTs to check these registers

hen counting votes.

0. Conclusions and future work

We have introduced Midir , an architectural concept which

reaks new ground and opens promising avenues in the applica-

ility and resilience of manycore architectures (MPSoC). Through

inimalist mechanisms integrated in the MPSoC architecture,

idir frees MPSoCs from the SPoF syndrome, fulfilling the vision

f distributed systems-on-a-chip (DSoC).

In this paper, we show in particular that Midir -enabled DSoCs

chieve a quantum step towards off-the-shelf chip resilience, since

hese mechanisms are generic enough to support, in-chip and

ith high reliability, a large variety of the protection and re-

undancy management techniques normally implemented in soft-

are at higher layers in ’macro’ systems. To convincingly prove

ur point, we exemplified and evaluated an implementation, over

idir , of the most complex version of our solution set: a Byzantine

ault tolerant microhypervisor. We have shown the practicality of

ur concept, having quite satisfying performance, since it outper-

orms the highly efficient MinBFT protocol by one order of magni-
17
ude. The low overhead of our approach shows large promise for

uture full hardware solutions.

Furthermore, Midir was intentionally designed as a non-

ntrusive extension to current core architectures, being anchored

n simple and self-contained hardware extensions, sitting at the

ile-to-NoC interface. Taken up by a hardware manufacturer or in-

egrator, it allows a backwards-compatible, non-fracturing evolu-

ion, as updating critical resources or re-writing privileges trans-

ates to writing specific memory regions, which the capability reg-

sters can be configured to point to, at boot time, by the boot-

oader.

We hope that our findings may be key to enhance general MP-

oC architectures towards distributed DSoCs and, among other av-

nues, lead to next-generation COTS resilient chips.

After this initial work, several questions remain to be answered,

amely on kernel design details, rejuvenation and diversification

or sustainability, application-level uses, real-time applicability,

overage for network attacks, dynamic reconfiguration of deployed

arameters and so forth, which leave ample room for future work.

amely, application-level usage gives way to complex questions.

here are two ways Midir can be used at application level: a)

or applications managing critical resources, for example, cyber-

hysical controller applications managing a resource that interacts,

or instance, with the physical world or b) to construct resilient

uilding blocks used to upgrade mechanisms that coordinate the

haring of critical resources, e.g., more resilient data structures

o be shared among several applications within the same system.

uture work for a) must explain how the application benefits from

idir , which specific operations are voted upon, how real-time

equirements are managed and how voting-related error handling

mpacts the application. For b), an extensive analysis can be done

ith regards to the several options to create said building blocks,

ow synchronization among applications is regulated, how this

ynchronization affects performance and the RCB, how implemen-

ation options affect the level of required synchronization (and,

hus, performance) and what race conditions can emerge from

dapting, e.g., data structure operations.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

RediT authorship contribution statement

Inês Pinto Gouveia: Methodology, Software, Investigation,

riting – original draft. Marcus Völp: Conceptualization, Method-

logy, Software, Investigation, Writing – original draft, Supervision,

unding acquisition. Paulo Esteves-Verissimo: Conceptualization,

nvestigation, Writing – review & editing, Supervision.

I.P. Gouveia, M. Völp and P. Esteves-Verissimo Computers & Security 123 (2022) 102920

A

R

A

o

F

s

w

o

i

e

w

v

v

i

t

a

s

a

a

r

a

h

b

o

v

m

o

q

t

A

i

e

o

i

v

w

t

i

p

a

r

q

w

c

u

v

t

i

d

s

b

s

m

i

t

a

c

n

b

t

g

c

w

a

t

a

A

w

b

a

p

s

s

r

q

o

a

r

o

a

s

o

s

s

c

v

s

s

r

u

v

t

d

t

k

r

r

m

t

e

h

r

c

p

w

s

p

cknowledgements

Funding: This work was supported by the Fonds National de la

echerche (FNR) [C18/IS/12686210/HyLIT].

ppendix A. Safety and liveness

In this Section, we argue about the safety and liveness

f the BFT protocol for processing system calls (as shown in

igs. 6 and 7). That is, any two healthy replicas execute the same

ystem calls in the same order (safety) and all correct system calls

ill be eventually executed (liveness). We assume the combination

f a sleep-wake notification mechanism and polling (summarized

n Line 22) reveals any pending system call to all replicas. How-

ver, before we start arguing about safety and liveness, let us see

hy faulty replicas cannot trick healthy ones into participating in

otes with a wrong sequence number.

System call execution involves as set of voters: the subordinate

oters v i mentioned in V S, plus v log and v err . By construction, voters

gnore proposals and confirmations for all sequence numbers other

han the current one and only if voting is not suspended. That is,

 voter v i will only react to commands with a sequence number

eq if seq = v i . seq . Sequence numbers advance only if f + 1 replicas

gree to a proposal and no replica disagrees, or if f + 1 replicas

gree to reset the voter due to some error case (e.g., one or more

eplicas disagreeing with the proposal). From property P . 3 and P . 5

nd the arguments we have given in Section 7.4 we know that no

ealthy replica participates in reset before error information has

een confirmed by such a replica and logged through v err . More-

ver, we know that healthy replicas will engage with subordinate

oters only for executing the current system call they process. This

eans either the replica is participating in the current system call

r it was lagging behind other replicas. In the latter case, the se-

uence numbers it will use to invoke the voter are smaller 7 and

he voter will ignore the request without any effect.

1. Safety

Proposing V S as part of the system call (Line 38) and includ-

ng this as part of the agreement (Line 42) means a fault-threshold

xceeding quorum of replicas agrees to the starting point of sub-

rdinate votes and from there we know, from the arguments given

n Section 7.4 , that without errors the j th subordinate vote on a

oter v i is executed at seq i + j where (v i , seq i) ∈ V S (and similarly

ith errors, by recording and acknowledging the number of re-

ries). Therefore, if a healthy replica votes for a subordinate vote,

t will always vote with the correct sequence number, which im-

lies faulty replicas cannot leverage this vote/agreement to confirm

 different request.

From the above, we can conclude safety holds, by seeing that

eplicas will not agree on different system calls for the same se-

uence number. The voter will only write system calls to the log

hich received f + 1 agreement, and the log position is advanced

onsensually and in a way that allows all replicas to learn about

pdates (last subordinate vote of the previous system call). The

oter itself thereby prevents equivocation by freezing the proposal

he leader makes for the current sequence number, i.e., by prevent-

ng it from being overwritten for the current sequence number. Ad-

itionally, sequence numbers will not be reused for the same vote

ince both successful requests and reset advances this number.
7 We assume sequence numbers used by lagging replicas will never be overtaken

y the current write and say that such a sequence number is smaller, despite pos-

ible wraparounds of the used integer. We substantiate this assumption by imple-

enting a large enough sequence number space.

R

A

18
From safety of the logged system call, its parameters and V S,

t then follows safe execution of the subordinate votes, given that

he j th subordinate vote on voter v i is completely defined by these

spects. Notice that all healthy replicas execute the logged system

alls, including their subordinate votes. In particular, Line 50 will

ot lead to skipping the execution of the remaining system call,

ut only short cuts through the subordinate votes when realizing

hat the system call has already been completed. Healthy, but lag-

ing replicas therefore first update their state with logged system

alls before engaging in new system call requests. Notice also that,

hile it is possible for faulty clients to trick leaders in proposing

 system call that followers will not confirm, the consequence of

his is merely a rotation of the leader (by reset of v log in Line 43)

nd the next leader continuing with another client.

2. Liveness

What remains to be seen is why the system is live (i.e., why it

ill eventually process all requests from correct clients). The com-

ination of sleep-wake and polling in Line 22 will iterate through

ll client/replica combinations. Therefore, each valid client will re-

eatedly find a correct leader who proposes the request. Partial

ynchrony then ensures that during the long enough periods of

ynchronous behavior, healthy replicas engage in processing this

equest. Let us therefore, for the following argument, assume re-

uest processing happens in such a good phase and will not time

ut. Then latest after rotating through f leaders, the client will find

 healthy leader to propose the request.

As shown in Line 14 and 15, replicas will wait for either f + 1

eplicas to agree, f + 1 replicas to disagree or f + 1 replicas to time

ut. Thus, if the request is proposed by a healthy leader (or by

 faulty, but stealthy leader in a correct manner) at most f (re-

pectively f − 1) replicas can disagree and, in the absence of time-

uts, f + 1 agreement will be reached. Then, even if the vote is

uspended due to a disagreeing replica, the voter will record the

ystem call in the log and all healthy replicas will proceed by exe-

uting the logged call (after resetting v log in Line 44 to return this

oter into a state where it accepts further votes, including the next

ystem call).

For subordinate votes, a similar argument applies. In the ab-

ence of timeouts during long enough phases of synchrony, when a

eplica proposes an operation for a subordinate vote, replicas wait

ntil either f + 1 replicas agree to the proposal (in which case the

oter executes the operation, e.g., by writing to the specified des-

ination), even if a minority of replicas disagree; or f + 1 replicas

isagree. Disagreeing replicas causes an error to be recorded and

he vote to be repeated. From the arguments in Section 7.4 we

now that error logging makes progress latest when a healthy

eplica proposes a valid error record and when lagging healthy

eplicas catch up to find the error information in the voter (re-

ember P 5 prevents premature reset before the correct informa-

ion is logged). As such, latest after rotating through f faulty lead-

rs a healthy leader will propose and reach f + 1 agreement (from

ealthy followers or from stealthy faulty replicas responding cor-

ectly). This ensures that each subordinate vote gets executed and,

onsequently, the system call as a whole. Having seen that the pro-

osed BFT protocol for system call execution is in fact safe and life,

e now focus on the implementation of the voters and how it en-

ures the behavior we require, namely freezing proposals and sus-

ension until consensual reset.

eferences

ggarwal, N., Ranganathan, P., Jouppi, N.P., Smith, J.E., 2007. Configurable isolation:
building high availability systems with commodity multi-core processors. In: In-

ternational Symposium on Computer Architecture (ISCA), pp. 470–481 .

https://doi.org/10.13039/501100001866
http://refhub.elsevier.com/S0167-4048(22)00312-1/sbref0001

I.P. Gouveia, M. Völp and P. Esteves-Verissimo Computers & Security 123 (2022) 102920

A

A

A

A

A

B

B

B

B

B

B

C

C

C

C

C

D

D

D

D

D

E

E

E

E

F

G

G

G

H

H

H

H

J

K

K

K

K

K

K

L

L
L

L

L

L

L

L

L

M

M

M

M

M

N

N

guilera, M.K., Ben-David, N., Guerraoui, R., Marathe, V., Zablotchi, I., 2019. The im-
pact of RDMA on agreement. In: Proceedings of the 2019 ACM Symposium on

Principles of Distributed Computing. Association for Computing Machinery, New

York, NY, USA, p. 409418. doi: 10.1145/3293611.3331601 .

guilera, M.K., Ben-David, N., Guerraoui, R., Marathe, V.J., Xygkis, A., Zablotchi, I.,
2020. Microsecond consensus for microsecond applications. 14th USENIX Sym-

posium on Operating Systems Design and Implementation .
l-Boghdady, A., Wassif, K., El-Ramly, M., 2021. The presence, trends, and causes of

security vulnerabilities in operating systems of IoT’s low-end devices. Sensors

21 (7), 2329 .
smussen, N., Völp, M., Nöthen, B., Härtig, H., Fettweis, G., 2016. M3: a hard-

ware/operating-system co-design to tame heterogeneous manycores. Architec-
tural Support for Programming Languages and Operating Systems. ACM, Atlanta,

GA, USA .
vizienis A., Chen L., et al. On the implementation of n-version programming for

software fault-tolerance during program execution1977;.

aumann, A., Barham, P., Dagand, P.E., Harris, T., Isaacs, R., Peter, S., Roscoe, T.,
Schüpbach, A., Singhania, A., 2009. The multikernel: a new OS architecture for

scalable multicore systems. In: Proceedings of the ACM SIGOPS 22Nd Sym-
posium on Operating Systems Principles, SOSP ’09. ACM, New York, NY, USA,

pp. 29–44. doi: 10.1145/1629575.1629579 .
hat, K., Vogt, D., van der Kouwe, E., Gras, B., Sambuc, L., Tanenbaum, A.S., Bos, H.,

Giuffrida, C., 2016. Osiris: efficient and consistent recovery of compartmental-

ized operating systems. In: 2016 46th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pp. 25–36. doi: 10.1109/DSN.2016.

12 .
iggs, S., Lee, D., Heiser, G., 2018. The jury is in: monolithic OS design is flawed.

Asia-Pacific Workshop on Systems (APSys). ACM SIGOPS, Korea doi: 10.1145/
3265723.3265733 .

olchini, C., Carminati, M., Miele, A., 2013. Self-adaptive fault tolerance in

multi-/many-core systems. J. Electron. Test 29 (2), 159–175. doi: 10.1007/
s10836- 013- 5367- y .

ressoud, T.C., Schneider, F.B., 1995. Hypervisor-based fault tolerance. In: 15th ACM

Symposium on Operating Systems Principles (SOSP), Copper Mountain, Col-

orado, USA, pp. 1–11 .
rooks, T.T., Caicedo, C., Park, J.S., 2012. Security vulnerability analysis in virtualized

computing environments. Int. J. Intell. Comput. Res. 3 (1/2), 277–291 .

astro, M., Liskov, B., 1999. Practical byzantine fault tolerance. 3rd Symposium on
Operating Systems Design and Implementation. ACM, New Orleans, USA .

hapin, J., Rosenblum, M., Devine, S., Lahiri, T., Teodosiu, D., Gupta, A., 1995. Hive:
fault containment for shared-memory multiprocessors. In: Proceedings of the

Fifteenth ACM Symposium on Operating Systems Principles, SOSP ’95. ACM,
New York, NY, USA, pp. 12–25. doi: 10.1145/224056.224059 .

olman-Meixner, C., Develder, C., Tornatore, M., Mukherjee, B., 2016. A survey on

resiliency techniques in cloud computing infrastructures and applications. IEEE
Commun. Surv. Tutor. 18 (3), 2244–2281. doi: 10.1109/COMST.2016.2531104 .

orreia, M., Neves, N.F., Verissimo, P., 2004. How to tolerate half less one byzantine
nodes in practical distributed systems. In: Proceedings of the 23rd IEEE Inter-

national Symposium on Reliable Distributed Systems, pp. 174–183. doi: 10.1109/
RELDIS.2004.1353018 .

ostan, V., Devadas, S., 2016. Intel SGX Explained. Technical Report. Massachusetts
Institute of Technology . https://eprint.iacr.org/2016/086.pdf (Accessed: 2016-07-

22)

as D.. An indian nuclear power plant suffered a cyberattack. Here’s what you
need to know. https://www.washingtonpost.com/politics/2019/11/04/an-indian-

nuclear-power-plant-suffered-cyberattack-heres-what-you-need-know/ ; 2019.
Accessed: 2017-03-12.

avid, F.M., Chan, E.M., Carlyle, J.C., Campbell, R.H., 2008. CuriOS: improving reli-
ability through operating system structure. In: Proceedings of the 8th USENIX

Conference on Operating Systems Design and Implementation, OSDI’08. USENIX

Association, Berkeley, CA , USA , pp. 59–72 . http://dl.acm.org/citation.cfm?id=
1855741.1855746 .

avies A.. Tesla’s autopilot has had its first deadly crash. https://www.wired.com/
2016/06/teslas- autopilot- first- deadly- crash/ ; 2016. Accessed: 2017-03-12.

epoutovitch, A., Stumm, M., 2010. Otherworld: giving applications a chance to
survive OS kernel crashes. In: Proceedings of the 5th European Conference

on Computer Systems, EuroSys ’10. ACM, New York, NY, USA, pp. 181–194.

doi: 10.1145/1755913.1755933 .
öbel, B., 2014. Operating System Support for Redundant Multithreading. Technis-

che Universität Dresden, Dresden, Germany Ph.D. thesis .
lphinstone, K., Shen, Y., 2013. Increasing the trustworthiness of commodity hard-

ware through software. In: 43rd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN) .

ngel, M., Döbel, B., 2012. The reliable computing base: a paradigm for soft-

ware-based reliability. Workshop on SOBRES .
rmolov, M., Goryachy, M., 2017. How to hack a turned-off computer —

or running unsigned code in intel management engine. Black hat Eu-
rope, London, UK . Avail at https://www.blackhat.com/docs/eu-17/materials/

eu- 17- Goryachy- How- To- Hack- A- Turned- Off- Computer- Or- Running- Unsigned-
Code- In- Intel- Management- Engine.pdf , accessed 15.04.2018

sposito, E.G., Coelho, P., Pedone, F., 2018. Kernel paxos. 37th Symposium on Reliable

Distributed Systems (SRDS). IEEE .
ügger, M., Schmid, U., 2012. Reconciling fault-tolerant distributed computing and

systems-on-chip. Distrib. Comput. 24 (6), 323–355 .
ens, D., 2018. OS-Level Attacks and Defenses: From Software to Hardware-Based

Exploits. Technische Universität Darmstadt Ph.D. thesis .
19
ovil, K., Teodosiu, D., Huang, Y., Rosenblum, M., 1999. Cellular disco: resource man-
agement using virtual clusters on shared-memory multiprocessors. In: Proceed-

ings of the Seventeenth ACM Symposium on Operating Systems Principles, SOSP
’99. ACM, New York, NY, USA, pp. 154–169. doi: 10.1145/319151.319162 .

reenberg A.. Hackers remotely kill a jeep on the highway. http://www.wired.com/
2015/07/hackers-remotely- kill- jeep- highway/ ; 2015.

ardy, N., 1985. KeyKOS architecture. SIGOPS Oper. Syst. Rev. 19 (4), 8–25. doi: 10.
1145/858336.858337 .

erder, J.N., Bos, H., Gras, B., Homburg, P., Tanenbaum, A.S., 2006. Construction of a

highly dependable operating system. In: Proceedings of the Sixth European De-
pendable Computing Conference, EDCC ’06. IEEE Computer Society, Washington,

DC, USA, pp. 3–12. doi: 10.1109/EDCC.2006.7 .
offmann, M., Dietrich, C., Lohmann, D., 2013. Failure by design: influence of

the RTOS interface on memory fault resilience. In: G. S. of Informatics (Ed.),
Proceedings of the 2nd GI Workshop on Software-Based Methods for Ro-

bust Embedded Systems (SOBRES ’13) . http://www4.cs.fau.de/Publications/2013/

hoffmann _ 13 _ sobres.pdf .
ofmann, O.S., Kim, S., Dunn, A.M., Lee, M.Z., Witchel, E., 2013. Inktag: secure ap-

plications on an untrusted operating system. SIGPLAN Not. 48 (4), 265–278.
doi: 10.1145/24 9936 8.2451146 .

oseph, M.K., Avizienis, A., 1988. A fault tolerance approach to computer viruses. In:
IEEE Symposium on Security and Privacy, Oakland, CA, USA, pp. 52–58 .

apitza, R., Behl, J., Cachin, C., Distler, T., Kuhnle, S., Mohammadi, S.V., Schröder-

Preikschat, W., Stengel, K., 2012. CheapBFT: Resource-efficient byzantine fault
tolerance. In: Proceedings of the 7th ACM European Conference on Computer

Systems, EuroSys ’12. ACM, New York, NY, USA, pp. 295–308. doi: 10.1145/
2168836.2168866 .

lein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe, D.,
Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S., 2009.

seL4: Formal verification of an OS kernel. In: Matthews, J.N., Anderson, T.E.

(Eds.), Proceedings of the 22nd ACM Symposium on Operating Systems Prin-
ciples 20 09, SOSP 20 09, Big Sky, Montana, USA, October 11–14, 2009. ACM,

pp. 207–220. doi: 10.1145/1629575.1629596 .
night, J.C., Leveson, N.G., 1986. An experimental evaluation of the assumption of

independence in multiversion programming. IEEE Trans. Softw. Eng. SE-12 (1),
96–109 .

ocher, P., Genkin, D., Gruss, D., Haar, W., Hamburg, M., Lipp, M., Mangard, S.,

Prescher, T., Schwarz, M., Yarom, Y., 2018. Spectre Attacks: Exploiting Specula-
tive Execution. Technical Report . ArXiv e-prints 1801.01203

opetz, H., Bauer, G., 2003. The time-triggered architecture. Proc. IEEE 91 (1),
112–126 .

uvaiskii, D., Faqueh, R., Bhatotia, P., Felber, P., Fetzer, C., 2016. Haft: hardware-as-
sisted fault tolerance. In: 11th European Conference on Computer Systems (Eu-

roSys), London, UK, pp. 1–17 .

ackorzynski A., Warg A., Hohmuth M., Härtig H.. L4re. https://l4re.org/doc/index.
html ; 2018.

amport, L., 1998. The part-time parliament. Trans. Comput. Syst. 16 (2), 133–169 .
amport, L., Shostak, R.E., Pease, M.C., 1982. The byzantine generals problem. ACM

Trans. Program. Lang. Syst. 4 (3), 382–401. doi: 10.1145/357172.357176 .
ee D.. Myfitnesspal breach affects millions of under armour users. bbc.com; 2018.

ee R.M., Assante M.J., Conway T.. Analysis of the cyber attack on the ukrainian
power grid. 2016. https://ics.sans.org/media/E-ISAC _ SANS _ Ukraine _ DUC _ 5.pdf .

enharth, A., Adve, V.S., King, S.T., 2009. Recovery domains: an organizing princi-

ple for recoverable operating systems. In: Proceedings of the 14th International
Conference on Architectural Support for Programming Languages and Operating

Systems, ASPLOS XIV. ACM, New York, NY, USA, pp. 49–60. doi: 10.1145/1508244.
1508251 .

evin, D., Douceur, J.R., Lorch, J.R., Moscibroda, T., 2009. TrInc: small trusted hard-
ware for large distributed systems. In: Proceedings of the Sixth USENIX Sympo-

sium on Networked Systems Design and Implementation, NSDI 2009, Boston,

Massachusetts, USA, April 22–24, 2009, Boston, Massachusetts, USA, vol. 9,
pp. 1–14 .

iedtke, J., 1995. On micro-kernel construction. In: Jones, M.B. (Ed.), Proceedings of
the Fifteenth ACM Symposium on Operating System Principles, SOSP 1995, Cop-

per Mountain Resort, Colorado, USA, December 3–6, 1995. ACM, pp. 237–250.
doi: 10.1145/224056.224075 .

ipp, M., Schwart, M., Gruss, D., Prescher, T., Haas, W., Mangard, S., Kocher, P.,

Genkin, D., Yarom, Y., Hamburg, M., 2018. Meltdown (CVE-2017-5754). Technical
Report . ArXiv e-prints 1801.01207

ancini, L., 1986. Modular redundancy in a message passing system. IEEE Trans.
Softw. Eng. (1) 79–86 .

atias, R., Prince, M., Borges, L., Sousa, C., Henrique, L., 2014. An empirical ex-
ploratory study on operating system reliability. In: Proceedings of the 29th An-

nual ACM Symposium on Applied Computing, SAC ’14. ACM, New York, NY, USA,

pp. 1523–1528. doi: 10.1145/2554850.2555021 .
cCune, J.M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V., Perrig, A., 2010. Trustvisor:

efficient TCB reduction and attestation. In: 2010 IEEE Symposium on Security
and Privacy, pp. 143–158. doi: 10.1109/SP.2010.17 .

eserve J.. Mouse click could plunge city into darkness, experts say. http://edition.
cnn.com/2007/US/09/27/power.at.risk/index.html ; 2007. Accessed: 2017-03-12.

ullender, S. (Ed.), 1993. Distributed Systems, second ed.. ACM Press/

Addison-Wesley Publishing Co., New York, NY, USA .
eedham, R.M., Wilkes, M.V., 1974. Domains of protection and the management of

processes. Comput. J. 17 (2), 117–120 .
ikolaev, R., Back, G., 2013. VirtuOS: an operating system with kernel virtualization.

In: Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems

https://doi.org/10.1145/3293611.3331601
http://refhub.elsevier.com/S0167-4048(22)00312-1/sbref0003
http://refhub.elsevier.com/S0167-4048(22)00312-1/sbref0004
http://refhub.elsevier.com/S0167-4048(22)00312-1/sbref0005
https://doi.org/10.1145/1629575.1629579
https://doi.org/10.1109/DSN.2016.12
https://doi.org/10.1145/3265723.3265733
https://doi.org/10.1007/s10836-013-5367-y
http://refhub.elsevier.com/S0167-4048(22)00312-1/sbref0011
http://refhub.elsevier.com/S0167-4048(22)00312-1/sbref0012
http://refhub.elsevier.com/S0167-4048(22)00312-1/sbref0013
https://doi.org/10.1145/224056.224059
https://doi.org/10.1109/COMST.2016.2531104
https://doi.org/10.1109/RELDIS.2004.1353018
https://eprint.iacr.org/2016/086.pdf
https://www.washingtonpost.com/politics/2019/11/04/an-indian-nuclear-power-plant-suffered-cyberattack-heres-what-you-need-know/
http://dl.acm.org/citation.cfm?id=1855741.1855746
https://www.wired.com/2016/06/teslas-autopilot-first-deadly-crash/
https://doi.org/10.1145/1755913.1755933
http://refhub.elsevier.com/S0167-4048(22)00312-1/sbref0022
http://refhub.elsevier.com/S0167-4048(22)00312-1/sbref0023
http://refhub.elsevier.com/S0167-4048(22)00312-1/sbref0024
https://www.blackhat.com/docs/eu-17/materials/eu-17-Goryachy-How-To-Hack-A-Turned-Off-Computer-Or-Running-Unsigned-Code-In-Intel-Management-Engine.pdf
http://refhub.elsevier.com/S0167-4048(22)00312-1/sbref0026
http://refhub.elsevier.com/S0167-4048(22)00312-1/sbref0027
http://refhub.elsevier.com/S0167-4048(22)00312-1/sbref0028
https://doi.org/10.1145/319151.319162
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://doi.org/10.1145/858336.858337
https://doi.org/10.1109/EDCC.2006.7
http://www4.cs.fau.de/Publications/2013/hoffmann_13_sobres.pdf
https://doi.org/10.1145/2499368.2451146
http://refhub.elsevier.com/S0167-4048(22)00312-1/sbref0035
https://doi.org/10.1145/2168836.2168866
https://doi.org/10.1145/1629575.1629596
http://refhub.elsevier.com/S0167-4048(22)00312-1/sbref0038
http://refhub.elsevier.com/S0167-4048(22)00312-1/sbref0039
http://refhub.elsevier.com/S0167-4048(22)00312-1/sbref0039
http://refhub.elsevier.com/S0167-4048(22)00312-1/sbref0040
http://refhub.elsevier.com/S0167-4048(22)00312-1/sbref0041
https://l4re.org/doc/index.html
http://refhub.elsevier.com/S0167-4048(22)00312-1/sbref0043
https://doi.org/10.1145/357172.357176
https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf
https://doi.org/10.1145/1508244.1508251
http://refhub.elsevier.com/S0167-4048(22)00312-1/sbref0048
https://doi.org/10.1145/224056.224075
http://refhub.elsevier.com/S0167-4048(22)00312-1/sbref0050
http://refhub.elsevier.com/S0167-4048(22)00312-1/sbref0050
http://refhub.elsevier.com/S0167-4048(22)00312-1/sbref0051
https://doi.org/10.1145/2554850.2555021
https://doi.org/10.1109/SP.2010.17
http://edition.cnn.com/2007/US/09/27/power.at.risk/index.html
http://refhub.elsevier.com/S0167-4048(22)00312-1/sbref0055
http://refhub.elsevier.com/S0167-4048(22)00312-1/sbref0056

I.P. Gouveia, M. Völp and P. Esteves-Verissimo Computers & Security 123 (2022) 102920

O

O

O

P

P

P

P

P

R

S

S

S

S

S

S

S

S

S

T

T

T

T

T

V

V

V

V

W

W

Y

Y

Y

Z

Principles, SOSP ’13. ACM, New York, NY, USA, pp. 116–132. doi: 10.1145/2517349.
2522719 .

gg, S., Al-Hashimi, B., Yakovlev, A., 2008. Asynchronous transient resilient links
for NoC. In: Proceedings of the 6th IEEE/ACM/IFIP International Conference on

Hardware/Software Codesign and System Synthesis, CODES+ISSS ’08. ACM, New

York, NY, USA, pp. 209–214. doi: 10.1145/1450135.1450182 .

strand, T.J., Weyuker, E.J., 2002. The distribution of faults in a large industrial soft-
ware system. In: Proceedings of the 2002 ACM SIGSOFT International Sympo-

sium on Software Testing and Analysis, ISSTA ’02. ACM, New York, NY, USA,

pp. 55–64. doi: 10.1145/566172.566181 .
strand, T.J., Weyuker, E.J., Bell, R.M., 2004. Where the bugs are. In: Proceedings

of the 2004 ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA ’04. ACM, New York, NY, USA, pp. 86–96. doi: 10.1145/1007512.

1007524 .
alix, N., Thomas, G., Saha, S., Calvès, C., Muller, G., Lawall, J., 2014. Faults in linux

2.6. ACM Trans. Comput. Syst. 32 (2), 4:1–4:40. doi: 10.1145/2619090 .

atterson D., Ganapathi A.. Crash data collection: a windows case study. 3D
Digital Imaging and Modeling, International Conference on2005;280–285.

10.1109/DSN.2005.32
owell, D., Bonn, G., Seaton, D.T., Verissimo, P., Waeselynck, F., 1988. The delta-4

approach to dependability in open distributed computing systems. In: 18th IEEE
International Symposium on Fault-Tolerant Computing (FTCS), pp. 246–251 .

rabahar, B.P., Edwin, B.E., 2012. Survey on virtual machine security. Int. J. Adv. Res.

Comput. Eng. Technol. (IJARCET) 1 (8), 115–121 .
rice R.. Facebook says it ’unintentionally uploaded’ 1.5 million people’s email con-

tacts without their consent. Businessinsider.com; 2019.
ecently reported xen/critix hypervisor vulnerabilities, documented in CVE-2019-

18420, CVE-2019-18421, CVE-2019-18424, CVE-2019-18425. 2019.
chiper, N., Rahli, V., Van Renesse, R., Bickford, M., Constable, R.L., 2014. Devel-

oping correctly replicated databases using formal tools. In: 2014 44th Annual

IEEE/IFIP International Conference on Dependable Systems and Networks. IEEE,
pp. 395–406 .

chmid U., Steininger A.. Decentralised fault-tolerant clock pulse generation in VLSI
chips. 2010. TU Wien, patent: US7791394B2.

eshadri, A., Luk, M., Qu, N., Perrig, A., 2007. Secvisor: a tiny hypervisor to provide
lifetime kernel code integrity for commodity OSes. In: Proceedings of Twenty-

first ACM SIGOPS Symposium on Operating Systems Principles, SOSP ’07. ACM,

New York, NY, USA, pp. 335–350. doi: 10.1145/1294261.1294294 .
hapiro, J.S., Hardy, N., 2002. Eros: a principle-driven operating system from the

ground up. IEEE Softw. 19 (1), 26–33. doi: 10.1109/52.976938 .
ousa, P., Neves, N.F., Verissimo, P., 2006. Proactive resilience through architectural

hybridization. In: Proceedings of the 2006 ACM Symposium on Applied Com-
puting. ACM, pp. 686–690 .

undararaman, S., Subramanian, S., Rajimwale, A ., Arpaci-Dusseau, A .C., Arpaci-

Dusseau, R.H., Swift, M.M., 2010. Membrane: operating system support for
restartable file systems. Trans. Storage 6 (3), 11:1–11:30. doi: 10.1145/1837915.

1837919 .
wift, M.M., Annamalai, M., Bershad, B.N., Levy, H.M., 2006. Recovering de-

vice drivers. ACM Trans. Comput. Syst. 24 (4), 333–360. doi: 10.1145/1189256.
1189257 .

zefer, J., Keller, E., Lee, R.B., Rexford, J., 2011a. Eliminating the hypervisor attack
surface for a more secure cloud. In: Proceedings of the 18th ACM Conference

on Computer and Communications Security, pp. 401–412 .

zefer, J., Keller, E., Lee, R.B., Rexford, J., 2011b. Eliminating the hypervisor attack
surface for a more secure cloud. In: Proceedings of the 18th ACM Conference

on Computer and Communications Security, CCS ’11. ACM, New York, NY, USA,
pp. 401–412. doi: 10.1145/2046707.2046754 .

anenbaum, A.S., Kaashoek, M.F., 1994. The amoeba microkernel. In: Distributed
Open Systems, pp. 11–30 .

hongthua, A., Ngamsuriyaroj, S., 2016. Assessment of hypervisor vulnerabilities. In:

2016 International Conference on Cloud Computing Research and Innovations
(ICCCRI). IEEE, pp. 71–77 .

raverse, P., Lacaze, I., Souyris, J., 2004. Airbus fly-by-wire: a total approach to de-
pendability. In: Building the Information Society. Springer, pp. 191–212 .

sidulko J.. The 10 biggest cloud outages of 2018. https://www.crn.com/slide-shows/
cloud/the- 10- biggest- cloud- outages- of- 2018 ; 2018.

urnbull, L., Shropshire, J., 2013. Breakpoints: an analysis of potential hypervisor

attack vectors. In: 2013 Proceedings of IEEE Southeastcon. IEEE, pp. 1–6 .
erissimo, P., Neves, N., Cachin, C., Poritz, J., Powell, D., Deswarte, Y., Stroud, R.,

Welch, I., 2006. Intrusion-tolerant middleware - the road to automatic security.
Secur. Privacy, IEEE 4, 54–62. doi: 10.1109/MSP.2006.95 .
20
eríssimo, P.E., 2006. Travelling through wormholes: a new look at distributed sys-
tems models. SIGACT News 37 (1), 66–81 .

eronese, G.S., Correia, M., Bessani, A.N., Lung, L.C., Verissimo, P., 2013a. Efficient
byzantine fault-tolerance. IEEE Trans. Comput. 62 (1), 16–30. doi: 10.1109/TC.

2011.221 .
eronese, G.S., Correia, M., Bessani, A.N., Lung, L.C., Verissimo, P., 2013b. Efficient

byzantine fault tolerance. IEEE Trans. Comput. 62 (1), 16–30. doi: 10.1109/TC.
2011.221 .

aingold, E., Taylor, M., Srikrishna, D., Sarkar, V., Lee, W., Lee, V., Kim, J., Frank, M.,

Finch, P., Barua, R., Babb, J., Amarasinghe, S., Agarwal, Anant, 1997. Baring it all
to software: raw machines. IEEE Comput. 30, 86–93 .

oodruff, J., Watson, R.N.M., Chisnall, D., Moore, S.W., Anderson, J., Davis, B., Lau-
rie, B., Neumann, P.G., Norton, R., Roe, M., 2014. The CHERI capability model:

Revisiting RISC in an age of risk. In: Proceeding of the 41st Annual Interna-
tional Symposium on Computer Architecuture, ISCA ’14. IEEE Press, Piscataway,

NJ, USA, pp. 457–468 .

ang, P., Wang, Q., Li, W., Yu, Z., Ye, H., 2016. A fault tolerance NoC topology and
adaptive routing algorithm. In: 2016 13th International Conference on Embed-

ded Software and Systems (ICESS), pp. 42–47. doi: 10.1109/ICESS.2016.20 .
eh, Y.C., 1998. Triple-triple redundant 777 primary flight computer. In: 1996 IEEE

Aerospace Applications Conference. Proceedings, vol. 1. IEEE, pp. 293–307 .
usof N.. Personal data of 808,0 0 0 blood donors compromised for nine weeks; HSA

lodges police report. TODAYonline; 2019.

hou, F., Condit, J., Anderson, Z., Bagrak, I., Ennals, R., Harren, M., Necula, G.,
Brewer, E., 2006. Safedrive: safe and recoverable extensions using language-

based techniques. In: Proceedings of the 7th USENIX Symposium on Operating
Systems Design and Implementation - Volume 7. USENIX Association; OSDI ’06,

Berkeley, CA, USA, p. 4 . http://dl.acm.org/citation.cfm?id=1267308.1267312 .

Inês Pinto Gouveia received her Ph.D in Computer Sci-

ence from the University of Luxembourg, in 2022. Previ-
ously, she completed her Bachelor’s and Master’s degrees

at the Faculty of Sciences, University of Lisbon. Her re-
search interests are in low-level programming languages,

namely hardware description languages, systems architec-
ture, distributed systems and fault and intrusion toler-

ance. She is currently a postdoctoral researcher at SnT,

University of Luxembourg.

Prof. Dr.-Ing. Marcus Völp heads the Critical and Ex-
treme Computing Group (CritiX) of the Interdisciplinary

Center for Security, Reliability and Trust at University of
Luxembourg. He received his Ph.D. in 2011 from Tech-

nische Universität Dresden, has been visiting scholar at
Carnegie Mellon University and was appointed Associate

Professor in 2020. His research interests include methods,

tools and system architectures for constructing resilient
cyberphysical and embedded systems, from small scale

to large scale distributed systems. The goal is to simulta-
neously tolerating accidental and intentionally malicious

faults (i.e., targeted attacks), while continuing to guaran-
tee realtime, secure and dependable behavior.

Paulo Esteves-Veríssimo is a professor at KAUST Univer-
sity (KSA) and Director of its Resilient Computing and

Cybersecurity Center (https://rc3.kaust.edu.sa/), and re-
search fellow of SnT at the Univ. of Luxembourg (UNILU).

He is past Chair of IFIP WG 10.4 on Dependable Comp.
and F/T. He is Fellow of IEEE and of ACM, and asso-

ciate editor of the IEEE TETC journal, author of over 200

peer-refereed publications and co-author of 5 books. He
is currently interested in resilient computing, in areas

like: SDNbased infrastructures; autonomous vehicles; dis-
tributed control systems; digital health and genomics; or

blockchain and cryptocurrencies.

https://doi.org/10.1145/2517349.2522719
https://doi.org/10.1145/1450135.1450182
https://doi.org/10.1145/566172.566181
https://doi.org/10.1145/1007512.1007524
https://doi.org/10.1145/2619090
http://refhub.elsevier.com/S0167-4048(22)00312-1/sbref0063
http://refhub.elsevier.com/S0167-4048(22)00312-1/sbref0064
http://refhub.elsevier.com/S0167-4048(22)00312-1/sbref0067
https://doi.org/10.1145/1294261.1294294
https://doi.org/10.1109/52.976938
http://refhub.elsevier.com/S0167-4048(22)00312-1/sbref0071
https://doi.org/10.1145/1837915.1837919
https://doi.org/10.1145/1189256.1189257
http://refhub.elsevier.com/S0167-4048(22)00312-1/sbref0074
https://doi.org/10.1145/2046707.2046754
http://refhub.elsevier.com/S0167-4048(22)00312-1/sbref0076
http://refhub.elsevier.com/S0167-4048(22)00312-1/sbref0077
http://refhub.elsevier.com/S0167-4048(22)00312-1/sbref0078
https://www.crn.com/slide-shows/cloud/the-10-biggest-cloud-outages-of-2018
http://refhub.elsevier.com/S0167-4048(22)00312-1/sbref0080
https://doi.org/10.1109/MSP.2006.95
http://refhub.elsevier.com/S0167-4048(22)00312-1/sbref0082
https://doi.org/10.1109/TC.2011.221
https://doi.org/10.1109/TC.2011.221
http://refhub.elsevier.com/S0167-4048(22)00312-1/sbref0085
http://refhub.elsevier.com/S0167-4048(22)00312-1/sbref0086
https://doi.org/10.1109/ICESS.2016.20
http://refhub.elsevier.com/S0167-4048(22)00312-1/sbref0088
http://dl.acm.org/citation.cfm?id=1267308.1267312
https://rc3.kaust.edu.sa/

	Behind the last line of defense: Surviving SoC faults and intrusions
	1 Introduction
	2 Related work
	3 Gap analysis and system model: from MPSoCs to distributed MPSoCs
	4 Threat model
	5 The Midir architecture
	6 T2H2 - Midir’s trusted-trustworthy component
	6.1 Voted and non-voted operations
	6.2 Consensual privilege change

	7 Towards fault and intrusion tolerant microhypervisors
	7.1 Consensual system calls
	7.2 Generic voting pattern
	7.3 System call vote
	7.4 Subordinate votes

	8 Implementation
	8.1 Buffered vs. unbuffered votes
	8.2 Immediate vs. deferred masking
	8.3 Internal vs. external error handling
	8.4 Dimensioning voters

	9 Evaluation
	9.1 Per-replica capability space
	9.2 Consensually-updated capability space
	9.3 Overhead discussion
	9.4 Scalability
	9.5 Code size

	10 Conclusions and future work
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgements
	Appendix A Safety and liveness
	A1 Safety
	A2 Liveness

	References

