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ABSTRACT

Today, leveraging the enormous modular power, diversity and flexibility of manycore systems-on-a-chip
(SoCs) requires careful orchestration of complex and heterogeneous resources, a task left to low-level soft-
ware, e.g., hypervisors. In current architectures, this software forms a single point of failure and worth-
while target for attacks: once compromised, adversaries can gain access to all information and full control
over the platform and the environment it controls. This article proposes Midir, an enhanced manycore
architecture, effecting a paradigm shift from SoCs to distributed SoCs. Midir changes the way platform
resources are controlled, by retrofitting tile-based fault containment through well known mechanisms,
while securing low-overhead quorum-based consensus on all critical operations, in particular privilege
management and, thus, management of containment domains. Allowing versatile redundancy manage-
ment, Midir promotes resilience for all software levels, including at low level. We explain this architec-
ture, its associated algorithms and hardware mechanisms and show, for the example of a Byzantine fault

tolerant microhypervisor, that it outperforms the highly efficient MinBFT by one order of magnitude.

© 2022 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Economic wealth and the well-being of modern societies de-
pends on information and communication technologies (ICT). Such
dependency obviously hinges on the correctness of these systems,
some of them critical, which may fail in a combination of mul-
tiple causes and ways (Davies, 2016; Lee, 2018; Lee et al., 2016;
Price, 2019; Tsidulko, 2018; Yusof, 2019). Systems have been pro-
gressively pushed to extremes of efficiency through modularity in
platform sharing, firstly through virtualization and lately by lever-
aging the enormous power growth, functional diversity and adap-
tation flexibility offered by multi- and manycore architectures. This
has taken platform sharing to new heights, into the realm of multi-
processor systems-on-a-chip (MPSoCs).

The organization of these complex computing resources de-
pends on low-level platform management hardware (e.g., memory-
management units (MMUs)) and software (e.g., firmware, hypervi-
sors, management engines). However, current MPSoC architectures
are such that these management components, which should form
a last line of defense against severe accidental faults or adversaries
intruding the system (malicious faults), instead constitute a single
point of failure (SPoF), for two main reasons. First, the way plat-
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form privilege-enforcement mechanisms (e.g., MMUs or hardware-
enforced capabilities (Woodruff et al., 2014)) are designed allows
faults in a core/tile to propagate through MPSoC components. Sec-
ond, faults in this lowest-level management software, e.g., hyper-
visors configuring these privileges, are bound to propagate across
management and managed components, again causing common-
mode failure scenarios.

If these SPoFs are compromised by adversaries, the latter gain
full authority over the platform’s privilege-enforcement mecha-
nisms and, through them, access to all information and com-
plete control over all platform resources (e.g., cloud-based sys-
tems) (Szefer et al., 2011a), including, in the case of cyber-
physical systems, extended control over the physical environments
on which they act (e.g., nuclear power plants Das, 2019, power
grid stations Meserve, 2007 or contemporary and autonomous
cars Greenberg, 2015).

Is this a real risk? It is, if the vulnerability rate of
these low-level platforms is non-negligible. Continuing prob-
lems, whether in Intel’s CSME (Ermolov and Goryachy, 2017),
Xen/Critix (Xen, 2019) or concerning Spectre (Kocher et al., 2018)
and Meltdown (Lipp et al., 2018), have been repeatedly reminding
us of how brittle the assumption of “tamperproof and unattack-
able low-level platform management assets” is. Numerous vul-
nerabilities have been reported in RTOSs’ source code, namely in
IoT devices (e.g., CWE-119, CWE-120, CWE-126, CWE-134, CWE-
398, CWE-561, CWE-563) (Al-Boghdady et al., 2021). Vulnerability
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analysis of virtualized environments and hypervisor security have
shown the various ways these can be attacked (Brooks et al., 2012;
Prabahar and Edwin, 2012; Thongthua and Ngamsuriyaroj, 2016;
Turnbull and Shropshire, 2013). Even formally verified kernels (e.g.,
sel4 Klein et al., 2009) may fail due to model/reality discrepancies
or hardware faults violating modelling assumptions (Biggs et al.,
2018).

Being the risk real, are there no solutions yet? The solution
design space for contemporary hardware platforms dependability
and security has been unfolding in two directions: (i) application-
specific system-level replication (e.g., triple modular redundancy,
mainly in cyber-physical systems (CPS), by means of multiple elec-
tronic control units (ECUs)), where the lack of flexibility limits the
extension to general systems; (ii) manycore-level replica manage-
ment and consolidation, which then, if on bare MPSoCs, reintro-
duces the SPoF concern, now for the low-level replication manage-
ment component (Baumann et al.,, 2009; Bressoud and Schneider,
1995; Débel, 2014; Esposito et al., 2018; Lamport, 1998).

At this time, we call the reader’s attention to an inter-
esting fact, which will become crucial to our solution. The
current MPSoC architectures’ complexity, modularity and net-
worked inter-connectivity, suggests attributes of distributed sys-
tems (Mullender, 1993), albeit imperfect such systems (an exam-
ple of which is the aforementioned SPoF syndrome). Heavily stud-
ied techniques have been used in distributed systems to mitigate
SPoF syndromes and to implement fault and intrusion tolerance
schemes (Powell et al., 1988; Verissimo et al., 2006), such as repli-
cation and consensus. In consequence, the root of the MPSoC prob-
lems just presented may also be an avenue to their solution, i.e.,
we can leverage the available resources in MPSoCs (e.g. cores)
and their connectivity together with lessons from the distributed
systems realm to solve the presented issues. This comparison of
(MP)SoCs to distributed systems was first made in Fiigger and
Schmid (2012), where a fault-tolerant clock generation mechanism
for SoCs is introduced.

So, in this article, we start by identifying the gaps from
(MP)SoCs to distributed systems and proposing (MP)SoC mecha-
nisms to bridge them, which essentially means achieving: fault
independence and fault containment, despite low software-level
compromise, while retaining the flexibility (MP)SoCs offer. Having
a manycore that behaves as a (closely-coupled) distributed sys-
tem should allow us to design a set of efficient and low-overhead
distributed systems-inspired modular protection and redundancy
management mechanisms, e.g., Byzantine fault tolerant state ma-
chine replication (BFT-SMR), for fault and intrusion tolerance (FIT).
The remaining problem, how to implement and where to locate
all the mechanisms above, is addressed by the Midir' architec-
ture presented in this paper, which leverages the computing crit-
ical mass and flexibility of contemporary tile-based manycore ar-
chitectures.

Midir constrains the connection of all tiles to the network-on-
chip (NoC) through simple, self-contained hardware-based trusted-
trustworthy components, which we call T2H2. Exploring the con-
cept of architectural hybridization (Verissimo, 2006), whilst we
consider those components to be ultra-reliable and not fail, we
are agnostic about the reliability of individual tiles, which may be
compromised or fail. The assumption is justified by the simplicity
of the former, promoting verifiability.

The T2H2 components implement the functionality required for
fault independence, containment, and tolerance mechanisms men-
tioned above. In consequence, tile-internal software or hardware
faults are contained in the tile and the objects the tile can access.
Furthermore, the baseline mechanisms for protection and redun-
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dancy management provided by T2H2 can be extended and recur-
sively applied at any software layer, giving the designer ample lati-
tude for crafting resilience into systems, both “horizontally” (incre-
mental power of defense mechanisms) and “vertically” (depth of
defense).

Locating T2H2 between the tile and the NoC interconnect
not only provides a clear pathway for integration by chip man-
ufacturers and integrators, it also allows drawing from many
well-understood building blocks (e.g., region protection, capabil-
ities Needham and Wilkes, 1974, and other chip-level resource
management mechanisms Aggarwal et al., 2007, capable of isolat-
ing tiles and the resources they can access). The novelty of Midir
lies in their arrangement to avoid SPoFs, even while they are re-
configured.

The contributions of this article are:

1. An analysis of the gaps separating current MPSoC architectures
from genuine distributed systems and how gap fixing, through
measures promoting fault independence and fault containment
in tile-based architectures enforced at the level of the tile-to-
NoC interface, secures fault isolation and the elimination of
SPoFs.

2. An architecture (Midir) leveraging the resulting distributed
system-on-a-chip (DSoC) in (1) to achieve incremental levels
of modular fault and intrusion tolerance, through a range of
diverse redundancy management techniques implemented by
simple hardware-based voting/consensus mechanisms.

3. The design of a simple and ultimately trusted-trustworthy
hardware hybrid, T2H2 — the core component of Midir, staged
at the tile-to-NoC interface — providing just two generic base-
line functions: access control (capability registers) and quorum-
based consensus (voters). Through configurations and combina-
tions of these two basic functions, T2H2 is capable of imple-
menting all the techniques mentioned in (1) and (2).

4. As a proof of concept, we give and evaluate an implementation
featuring Midir and essential parts of a fault and intrusion toler-
ant microhypervisor built on top of it. Although the architecture
serves several reliability strategies, we chose the most effective,
active replication with error masking. Being the most complex
and costlier, we believe to have shown the performance and
practicality of our concept.

An analysis of related work is presented next (Section 2), fol-
lowed by an evaluation of the challenges for bridging SoCs to
DSoCs (Section 3), and the threat model (Section 4). Then, we in-
troduce the Midir architecture (Section 5) and the T2H2 component
in Section 6. At this point, we are able to show Midir in action,
discussing the design of a fault and intrusion tolerant microhyper-
visor built on top of it (Section 7), as an example of critical low-
level management software. Finally, we discuss some relevant im-
plementation matters in Sections 8 and 9, we evaluate Midir on a
Zynq ZC702 board, showing how Midir's hardware voters accelerate
BFT-SMR protocols, voted execution of system calls and consensual
reconfiguration of T2H2. We shall say an operation is consensual if
it becomes effective only after a fault threshold-exceeding quorum
of replicas agreed to executing this operation, here by means of
voting. Section 10 concludes the paper, pointing to directions for
future work.

2. Related work

In this Section, we present several classes of works that mo-
tivated Midir: low-level approaches for detection and containment
of errors in low-level support software; analyses of the evolution of
defects in system support software; attempts at preventing and/or
mitigating the resulting errors and potential failures; approaches
to replication-based fault/intrusion tolerance and resilience.
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Mitigation measures have been studied for detection and con-
tainment of errors in OS and manycore support software (Ddbel,
2014; McCune et al., 2010; Seshadri et al., 2007) through an under-
lying, assumed-trustworthy layer. However, they still have a non-
negligible complexity, and in consequence, even a residual fault
or vulnerability rate in these supposedly trusted components may
breach the platform’s dependability and security goal.

In fact, as confirmed by Hoffmann et al. (2013), “simple” com-
ponents with at least a few KLOCs have a non-negligible statistical
fault footprint. Other studies (Ostrand and Weyuker, 2002; Ostrand
et al., 2004) reveal between 1-16 bugs per 1000 lines of code go
undetected before deployment, even in well-tested software, and
operating-system kernels form no exception (Matias et al., 2014;
Patterson and Ganapathi, 2005). Recent insights (Palix et al., 2014)
reveal that faults in stateful core subsystems — on which we focus
here — outrank driver bugs in severity.

Many approaches target operating systems with the goal of
improving their resilience against faults. However, typically they
protect either applications (Bolchini et al., 2013; Depoutovitch
and Stumm, 2010; Kuvaiskii et al., 2016) or specific OS subsys-
tems (Elphinstone and Shen, 2013; Sundararaman et al., 2010;
Swift et al, 2006; Zhou et al, 2006) and only from acci-
dental faults. Efforts for providing whole-OS fault tolerance in-
clude (Bhat et al., 2016; David et al., 2008; Gens, 2018; Govil
et al., 1999; Herder et al., 2006; Lenharth et al.,, 2009; Nikolaev
and Back, 2013). Furthermore, the complexity of these recovery
kernels is comparable to that of a small hypervisor. For example,
OSIRIS (Bhat et al., 2016) directs OS recovery to a 29 KLOC reliable
computing base (RCB) (Engel and Dd&bel, 2012), roughly twice the
size of modern microkernels (Asmussen et al., 2016; Klein et al.,
2009; Lackorzynski et al., 2018; Liedtke, 1995). Again, this makes
the likelihood of residual faults or vulnerabilities non-negligible.

Several other works have given early steps in the direction of
the solutions we advocate in this paper, minimizing the threat
surface, or enforcing isolation. Nohype (Szefer et al., 2011b) re-
moves all but a small kernel substrate from application cores,
which run functionality-rich OSs in virtual machines (VMs), re-
ducing the threat surface. Cap (Needham and Wilkes, 1974) and
M3 (Asmussen et al., 2016) exploit hardware capability units and
Hive (Chapin et al., 1995) a bus-level firewall to isolate VMs at tile
granularity. However, although this avoids trusting tile-local ker-
nel substrates for isolation, their configuration interface, which is
necessary to retain flexible resource sharing, turns configuring the
kernel into a single point of failure. We address this problem in
Midir, by requiring reconfiguration of the fault-isolating T2H2 unit
to be performed only if agreed by a majority of correct replicas
operating in consensus.

Capabilities  are  cryptographically-  (Tanenbaum  and
Kaashoek, 1994), kernel- (Hardy, 1985; Lackorzynski et al., 2018;
Shapiro and Hardy, 2002) or hardware-protected tuples (Asmussen
et al., 2016; Needham and Wilkes, 1974) comprised of at least
a pointer to an object (or service) and access rights authorizing
which operations owners of these capabilities may execute on the
object. Posession of a capability is both necessary and sufficient to
exercise a granted access over an object. Consequently, as long as
both capability-enforcement and -reconfiguration are trustworthy,
faults in a component cannot propagate beyond the objects it can
access, unless other accessing components are faulty as well.

Cheri (Woodruff et al., 2014) adds capability protection on top
of page-based protection, but includes the MMU and the OS page-
table management in the reliable computing base (RCB), which
means the former must be trustworthy. The concept behind Midir
is independent of the protection model, and thus not necessarily
tied to e.g., capabilities. Also, by establishing the fault contain-
ment domains at the granularity of tiles, we are agnostic about
the semantics and interplay of tile-internal and/or core-level com-
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ponents, e.g., MMUs, memory protection or page-table manage-
ment. Enforced by T2H2, the protection mechanisms are crafted at
inter-tile level, emulating the spacial isolation of distributed sys-
tem nodes.

Replication has been used before in closely-coupled systems,
primarily to tolerate accidental faults in cyber-physical systems
(CPS), by replicating controllers to form triple modular redun-
dant (TMR) units, or duplicated self-checking units. An example
of the use of TMR in highly critical systems can be seen in the
primary flight computers of Boeing 777’s fly-by-wire (FBW) sys-
tem (Yeh, 1998). In a similar context, a form of passive redun-
dancy can also be seen in Airbus’ dependability-oriented approach
to FBW, where “hot spares” are used in case the active computer
interrupts its activity (Traverse et al., 2004). The concept was ex-
tended to multi-phase tightly synchronous message-passing pro-
tocols still in the CPS domain (Kopetz and Bauer, 2003; Mancini,
1986). The so-called ‘Paxos’ (Schiper et al., 2014), and ‘Byzan-
tine’ (Castro and Liskov, 1999) Fault-Tolerant State-Machine Repli-
cation classes of protocols promote resilience to threats, respec-
tively failures and both threats and failures, extending the concept
to generic classes of applications, namely in loosely-coupled sys-
tems. For example, Castro’s seminal BFT-SMR protocol (Castro and
Liskov, 1999) masks the actions of a minority of up to f compro-
mised replicas, by reaching a majority voted consensus of |Q| =
2f +1 out of n = 3f + 1 replicas. Behind all the categories of tech-
niques above is a baseline voting mechanism among the values
proposed by a pre-defined number of replicated fault-independent
components. Midir offers such a baseline mechanism at a low
enough level of abstraction to serve essentially any replication-
oriented application.

Architectural hybridization (Verissimo, 2006) (i.e., the inclu-
sion of trusted-trustworthy components that follow a differenti-
ated fault model) allows reducing n and |Q| to 2f+1 and f+
1, respectively (Correia et al., 2004; Kapitza et al., 2012; Levin
et al., 2009; Veronese et al., 2013a). The implementation of T2H2,
Midir's trusted component, draws from these quorum reduction
results, and further accelerates the BFT-SMR protocol that Midir-
enabled FIT microhypervisors use to coordinate system call execu-
tion (Section 7).

Paxos and BFT replication have been attempted as well inside
MPSoCs (Baumann et al., 2009; Bressoud and Schneider, 1995; D6-
bel, 2014; Esposito et al., 2018; Lamport, 1998). However, all these
works were made under the assumption of a trusted low-level ker-
nel (e.g., hypervisor or platform manager), which obviously is a
single point of failure (SPoF). One of the key results of Midir lies in
the realization of the distributed system-on-a-chip (DSoC) vision,
which enables such replication management techniques in MPSoCs,
whilst removing the SPoF syndrome of the low-level kernel.

Aguilera et al. (2020) leverage RDMA in the crash fault-tolerant
system Mu to bring SMR performance down to microsecond scale,
also for BFT (Aguilera et al., 2019). Midir aims at reaching consen-
sus with a performance close to the speed of the NoC.

3. Gap analysis and system model: from MPSoCs to distributed
MPSoCs

MPSoCs consolidate in a single chip computing resources that
used to reside on multiple chips. Tiles (Waingold et al., 1997) are
placeholders and instantiation points for resources, typically in-
stantiated with cores and private caches, or with slices of shared
caches and connected through the NoC with each other and with
memory controllers (to reach out to RAM/IO). It is possible as well
to cast accelerators, GPUs and FPGAs into the tile abstraction.

The modularity and networked interconnection of tiles already
suggests attributes of a distributed system and has inspired first
steps to hardware-enforced fault containment at tile level, as pi-
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oneered by Hive (Chapin et al., 1995) and M3 (Asmussen et al.,
2016). Tiles favour functional and non-functional diversity since
they can host cores from several makers. This improves fault in-
dependence through the implied low likelihood of experiencing
the same fault in different tiles. Similarly, different versions of
the same code can be used at distinct tiles with the same in-
tent (Avizienis et al., 1977; Joseph and Avizienis, 1988; Knight and
Leveson, 1986). However, fault containment remains imperfect: po-
tentially faulty or compromised low-level kernels retain control
over platform privilege configuration mechanisms and, thus, form
a single-point of failure.

In our system model, we therefore assume a fully connected
tiled system, where on-chip network components offer the ab-
straction of a correct network, interconnecting all tiles to one an-
other. Messages sent are eventually delivered, unchanged, to the
destination, but possibly only after several retries. Network cod-
ing (Ogg et al., 2008), multi-tenant (Colman-Meixner et al., 2016)
and adaptive routing techniques (Yang et al., 2016) increase the
coverage of this assumption. We leave coverage of network attacks
and their mitigation for future work.

We shall further assume tiles are instantiated with heteroge-
neous processing elements and will hence exhibit a certain level
of fault independence through the implied low likelihood of expe-
riencing the same fault in different tiles — diversity.

Conventional multi- and manycore designs retain the possibil-
ity of common mode failures in central hardware components (e.g.,
the clock or power distribution network), which must be addressed
differently. Resilient clocks (Schmid and Steininger, 2010) mitigate
some of these common-mode faults and the recent trend towards
interconnected chiplets further improves the physical decoupling
of tiles. Once physical (hardware) effects of a fault are retained
to the causing tile and the signals it exhibits to the system, any
remaining faults can be contained through trustworthy tile-level
privilege enforcement (as implemented in T2H2). We assume an
instance of T2H2 is located between each tile and its NoC inter-
connect.

Note that, emulating the spacial isolation of distributed system
nodes, we are agnostic about the semantics and interplay of tile-
internal and/or core-level components, e.g., MMUs and their virtu-
alization, copy-on-write, memory protection or recovery function-
alities.

In the time domain, although manycores might seem the per-
fect example of a (closely-coupled) synchronous (distributed) sys-
tem, reality is a bit different, there are several possibilities for
instability. For example, excessive resource use raises the tem-
perature and causes thermal managers to throttle the speed of
tiles near this hot spot; interfering access patterns reduce memory
bandwidth by evicting cache lines from shared caches; and NoC-
level bursts may cause noticeable and, with unfair arbitration, un-
bounded message delays. Faulty behavior (accidental or malicious)
might further worsen these negative time-domain effects. A strict
synchronous model would not reflect reality and thus be proved
brittle.

We rely on a partially-synchronous model and prepare Midir
for possible delays (notably by buffering consensus votes in Midir's
T2H2). Two particularities exist in these closely-coupled environ-
ments, in contrast to large-scale distributed systems, which play
in our favor: (i) barring delay variations, liveness is normally guar-
anteed; and (ii) the infrastructure is plastic in terms of timeliness
trade-offs. Therefore, as in most contemporary BFT approaches, we
consider asynchrony for safety and partial synchrony for liveness.

The structure of our protocols is time-free, and as such they re-
main safe in the presence of delay oscillations, provided that the
fault assumptions hold (no more than f tiles get compromised, as
discussed below). Then, the protocols inherit whatever synchrony
they achieve from the timeliness of the infrastructure they are im-
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mersed in: the manycore works with high performance, in execu-
tion and communication, exhibiting short and bounded delays dur-
ing long enough periods of time, but can exhibit significant varia-
tions in these bounds. These are fair expectations, considering the
nature of these systems.

4. Threat model

Our threat model considers software-level compromise at all
levels, including in the hypervisor, in the firmware, and, more gen-
erally, in any critical software component. This assumption is con-
sistent with our aim of tolerating an incremental level of threat, up
to advanced and persistent threats, such as sophisticated attacks
mounted by highly skilled and well-equipped adversaries, on tiled
manycore systems, often deployed entirely on-chip. Moreover, we
consider a limited set of hardware-level faults and attacks: pre-
cisely those whose physical effects are confined to a tile (e.g., trap-
doors in a core but no hardware faults that cause a chip-wide col-
lapse).

We strive to establish the tile as a unit of component failure.
There is no guaranteed fault containment inside tiles. That is, ad-
versaries (or accidents) will be capable of compromising the whole
software in any tile (e.g., but not only, a hypervisor replica). Once
that happens, we no longer make any assumptions about the cor-
rectness of any software in that tile. However, we also consider
(and enforce it with the strategy described in Section 3) that tiles
themselves are fault containment domains. This and whatever di-
versification measures are deemed necessary to further support
the fault independence assumption for tiles.

We further assume that no more than f tiles are compromised
during a reference time T,. Note that this supports the classical
fault and intrusion tolerance fault bound for our BFT protocols, but
also opens the way to promoting resilience (Sousa et al., 2006).
In fact, classical hardening, diversification and intrusion prevention
help in putting barriers in the adversaries’ way, ensuring that T
has a usefully large value, and shrinks no further. However, we ac-
knowledge the imperfection of these techniques, especially in face
of persistent threats.

We admit that the generic system components (including low-
level platform management ones) can be hardened as needed,
down to a residual fault and vulnerability rate. As we discussed
earlier, this is good, but not enough, especially under malicious
threats. We leverage architectural hybridization to amplify the cov-
erage of the assumptions made in this threat model, by allowing
differentiated strategies towards the fault rate targets across sys-
tem components. T2H2, Midir's trusted-trustworthy components,
fall under a more restricted fault model, failing only by crashing,
much like USIGs in Veronese et al. (2013b). We remind that T2H2
is hardware-based and executes no software.

We assume it is infeasible to construct and/or verify soft-
ware or hardware of reasonable dimensions, to a 0-defect goal.
However, we stipulate that it is possible to design ultra-reliable,
ultimately trusted-trustworthy simple components, to a 0-defect
target. The consequence is that these will remain correct and
operational, despite compromise of the local tile. As discussed
in Verissimo (2006), this is an extremely powerful combination
in algorithmic terms: trusted components used routinely to assist
critical mechanisms and algorithms (e.g. privilege enforcement, re-
dundancy management) overcoming the residual fault and vulner-
ability rate of most system components, in order to achieve correct
operation with extremely high probability.

This is only possible if we strive for absolute simplicity (for
verifiability, e.g. by proof assistants) of these trusted-trustworthy
components. That is the case of T2H2 in the Midir hybrid archi-
tecture, providing just two generic functions staged, in hardware,
at the tile-to-NoC interface: access control (capability registers, in-
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VM frs
| HV, | | HV, | | HV; | (e.g., Linux)
Core Core

Fig. 1. Overview of the Midir architecture: a multi-/manycore system augmented with T2H2 hardware capability units (blue dots) at the NoC interface. Access to tile-external
resources is subject to privilege confirmation in T2H2 and possibly voting. Here, the hypervisor replicas HVy, ..., HV3 consensually reconfigure the privileges of the VM on the
4th core, which in turn obtains access to a region of memory in the scratchpad memory of the application on tile 5. Privilege change is a voted upon operation, indicated
by dashed lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

cluding the logic for privilege enforcement when tile hard- or soft-
ware invokes capabilities) and quorum-based consensus (voters).
Fig. 1 depicts this layout.

5. The Midir architecture

As discussed earlier, Midir is an architectural concept based
on augmenting manycore systems in a minimally intrusive way
through strategically placed, simple and self-contained trusted-
trustworthy components (T2H2). In fact, T2H2 provides just two
generic baseline functions staged in hardware at the tile-to-NoC
interface: access control (capability registers) and quorum-based
consensus (voters).

Fig. 1 depicts one possible layout, of a stereotypical hyper-visor-
based system, where the hypervisor is replicated for fault/intrusion
tolerance, serving virtualized operating systems and applications:
hypervisor replicas are distributed across tiles, so that each replica
executes on a different tile, separate from applications; tiles and
software therein interface with each other through the NoC; and
T2H2 perform that interconnection.

As long as the execution in a tile remains within the resources
associated to this tile (local caches, memories, accelerators, etc.) no
overhead occurs, since T2H2 is not involved in authorizing or deny-
ing these accesses. In fact, we remind that it is not the purpose of
Midir to provide fault containment between software components
co-located on the same tile. This is like the internal behavior of
nodes in a distributed system, where nodes are the unit of fault
containment.

Once software components are spread across tiles, they inter-
act through external operations (e.g., via a resource in another tile,
via shared on-chip memories or via external memory or I0). In
this case, T2H2 interposes such accesses and validates that each
of them has sufficient privileges (i.e., the invoked capability in the
T2H2 capability registers conveys this access). Consequently, hard-
ware faults inside a tile or accidental or malicious faults in any
part of the software it executes are limited in propagation to the
objects authorized by these capabilities.

Further to capability checking, Midir is capable of subjecting
these accesses to voting by means of distributed components in
different tiles. This is especially important for critical operations,
be it in application execution or in platform reconfiguration, in
order to achieve some form of fault/intrusion tolerance, from er-
ror detection, or self-checking by comparison, to error masking by
consensus. To vote, tiles must hold a capability to the correspond-
ing voter, which authorizes this tile to make proposals as one of
these distributed components. Voting is mandatory to install new
or change existing capabilities, in order to prevent faulty hypervi-
sor replicas from bypassing the aforementioned fault containment
when reconfiguring the resources a tile can access.

Given the nature of Midir's trustworthy mechanisms (T2H2) is
to provide fault isolation, access control and a means of consen-
sus on critical operations, not all write operations, be them at low-
level or application-level, make use of Midir. As mentioned, in-tile
accesses are not interposed by T2H2 and not every off-tile write
needs voting, given not all operations are critical, in the sense of
having the potential to modify sensitive memory locations that, if
used maliciously, can put the system at risk or place it in a more
vulnerable state.

Midir's concept of controlling the tiles’ lowest-level privilege
enforcement mechanism is agnostic of the mechanism used. How-
ever, the simpler such a mechanism and the closer it can be im-
plemented to the tile’s NoC interconnect, the more faults Midir will
be able to tolerate. Hence our choice for capabilities.

Simplicity also governs our voter design. Midir's voters merely
collect and act upon proposals of related operations from different
components, letting the voted-upon operation proceed. Because
tile-external resources are typically memory mapped, these opera-
tions are normally simple writes. The voters themselves implement
no error handling or diagnostics functionality, but provide infor-
mation for the voting replicas to perform these tasks. More pre-
cisely, voters suspend voting on disagreement, freeze the proposals
made and expose them for diagnosis. Moreover, they implement
a sequence number seq; for progress tracking, which they incre-
ment after each vote unless the vote gets suspended. A voted upon
voter-reset operation resumes voting and, as well, increments
seq;. Section 7 shows how we utilize this error handling support
and Section 8 details our voter implementations.

6. T2H2 - Midir’s trusted-trustworthy component

In this Section, we provide further details about T2H2.

6.1. Voted and non-voted operations

To retain the flexibility of the software in a manycore system,
allowing it to dynamically adapt resource-to-application mappings
as needed, T2H2 supports direct access to tile-external resources.
This way, applications possessing a capability can directly invoke
operations on external resources (e.g., to access read-shared or pri-
vate data in RAM or to interact with non-critical devices). The sce-
nario in Fig. 2 illustrates a non-voted (write) memory access by
Tile A, performed by invoking a capability in this tile’s T2H2 (1).
Since T2H2’s capability register c; holds a read-write capability to
the memory region [p, p+s] (2), the operation to write value val
in variable a is authorized (3).

However, T2H2 also supports voting, particularly useful when,
e.g., platform management software or hypervisor replicas further
have to execute critical operations (e.g., privilege change or criti-
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Fig. 2. Capability-mediated access of tile-external resources. Invoking capability register ¢;, application A invokes memory capability M : (p, s, {r, w}) to write val to location
a in region [p, p + s]. The numbers are guides reflected in the steps explained in the text.

cal device accesses). These operations are voted upon, within pre-
configured detection or tolerance mechanisms, to prevent compro-
mised components from causing harm. Several strategies may be
served by Midir, such as self-checking, recovery blocks, or f-out-
of-n error masking by majority voting in the presence of f faulty
components, but they are all supported by the same baseline vot-
ing mechanism. Fig. 3 represents a similar operation as in Fig. 2,
but in voted access form. The hypervisor replicas in Tile B and C
vote to write value 1, while the one in Tile A, being faulty, votes
to write value 0. In order to perform these votes, all tiles invoke
a capability on their local T2H2 to access the designated voter (in
this case, the upper voter (orange) residing on Tile A’s T2H2). Given
that a majority of tiles voted to write 1, variable a will be assigned
1

6.2. Consensual privilege change

One particularly relevant scenario for voted access is consensual
reconfiguration of the T2H2 instances themselves. T2H2’s reconfig-
uration interface (see Fig. 2) is accessible only through a voter and
cannot ever be invoked directly (4).

Let us understand why this is a relevant innovation. In con-
ventional OS design, any single kernel instance can directly or in-
directly enforce modifications on platform resources. So, even in
fault tolerant designs, a faulty or compromised kernel instance
could still be able to threaten the platform correctness. For exam-
ple, by manipulating page tables, any low-level OS kernel instance
can install virtual-to-physical address mappings to any resource in
the platform’s memory map and access it through this mapping.
Of course, a trusted underlying layer could solve this issue (e.g., by
mediating page-table access). However, whether this layer is soft-

ware, as in the Inktag kernel (Hofmann et al., 2013) or firmware, as
in Intel SGX (Costan and Devadas, 2016), it becomes a single point
of failure for the platform.

Midir provides an additional level of protection, whereby the
designer can constrain access to the platform reconfiguration, by
allowing a particular mechanism, its registers and data structures
to be only effected in a consensual manner, through a voter. As
with general voting, discussed in Section 6.1, these voted accesses
will normally correspond to the implementation of detection or
tolerance strategies, in this case, directed to the protection against
threats on the platform itself. In Fig. 3, in green colour (lower
voter), we represent such a flow of reconfiguration of a platform
capability register in tile A’s T2H2. Exemplifying with f-out-of-n er-
ror masking in a replicated low-level kernel, several replicas make
the reconfiguration request (dotted line) (1), which is voted (green
voter). The result from the voter is wired through a special T2H2
capability configuration interface to the concerned capability reg-
ister (2), masking the presence of up to f faulty replicas.

Midir does not constrain how systems are configured and hence
what faults are tolerated. Instead it provides the means to tolerate
an incremental quality of faults, including, for highly critical sys-
tems, up to f faults in system management software (e.g., the hy-
pervisor), by providing n = 2f + 1 hypervisor replicas and by sub-
jecting all critical operations to voting.

7. Towards fault and intrusion tolerant microhypervisors

The Midir architecture and, more specifically, the T2H2 units can
be recursively applied at any software layer, protecting any layer of
the system’s software stack. Both sides of the software spectrum,
i.e., low-level management software (e.g., a microhypervisor, mi-
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Fig. 3. Consensual update of location a in the tile-external memory block (upper voter) and consensual reconfiguration of capability register c; in the T2H2 of tile A.
Reconfiguration is always consensual (requiring agreement of a majority of the tiles A, B and C); tile-external resources may be optionally treated in that manner (by
granting access to a voter, but no direct access). The voter installs the majority decision (e.g., it updates location a with the consensual value 1 or the capability in ¢, with

the agreed upon read-only memory capability).

crokernel, firmware) and applications, can benefit from the solu-
tions presented in this paper. However, given low-level software is
typically a system’s last line of defense as a result of the platform
management responsibilities attributed to it, and, given the hyper-
visor’s role of performing critical functions pertaining to isolation,
access control and privilege enforcement; we believe it illustrates
the most complex and costlier usage example of the Midir architec-
ture, while providing a concrete solution to the problem described
in Section 1. A similar example could be applied to the construc-
tion of a fault- and intrusion-tolerant microkernel. At application-
level, on the other hand, one can use the Midir mechanisms to, for
example, coordinate collaboration among several applications shar-
ing data or enforce consensual actuator execution in the context of
embedded systems.

We now turn our attention to the construction of Midir-aware
FIT microhypervisors, such as suggested in Fig. 1. Hypervisor repli-
cas execute on dedicated tiles, from where they remotely config-
ure the privileges of applications executing on other tiles. Most of
the other common OS-functionality (e.g., context switching, inter-
process communication, (non-critical) device access, etc.) can be
left to the application and its kernel-support libraries.

Midir gives the designer latitude to use incremental levels of
protection for individual operations or sets thereof. On one ex-
treme, configurations may be allowed where all accesses are di-
rect, and thus unprotected by voting (setting up voters for direct
pass-through of proposals, i.e., f = 0, to reconfigure capabilities).

On the other extreme, the highest level of protection, while
retaining the flexibility of a manycore system, eliminates all
software-level single points of failure? by subjecting all critical op-
erations to voting. We focus on this facet. The replicated micro-
hypervisor offers a system call interface executed by its replicas,
entering a service loop and maintaining data structures used to
handle system call requests, which they receive from applications,
other replicas (e.g., requesting a privilege they lack for executing a
system call) or from hardware (e.g., triggered by device interrupts).

2 Modulo Midir's T2H2, which, justified through its simplicity, we assume will not
fail.

We provide an informal proof of the protocol’s safety and liveness
in Appendix Appendix A.

Remembering that the unit of fault containment in Midir is
the tile (equivalent to a node in a distributed system) the essen-
tial requirement for a fault tolerant microhypervisor design is that
the replicas behind critical operations are placed in different tiles,
such that they communicate by messages, are subject to T2H2 ac-
cess control, and converge on the necessary votes as dictated by
the algorithm. In order to fully enjoy the baseline functionality
provided by Midir, a few additional design principles should be
followed:

o P11 Impersonation prevention: Correct replicas must deny any
operation with a replica identifier that is already in use (T2H2
voting relies on identifying the individual replicas through their
capability; no two replicas should have a capability to the same
voter with the same identifier).

o P.2 Bypass prevention Correct replicas must deny any opera-
tion attempting to grant direct write access to a consen-sual-
update-only object (Section 6.2).

Let us illustrate the design with the example of reallocating the
tile to a different application. Signaling the tile, an application-
specific library may save the state necessary to resume execu-
tion (e.g., utilizing memory assigned for this purpose). The actual
switch then proceeds by resetting the tile followed by installing
the capabilities the new application’s library needs, in order to
load its state. Obviously, reset and, as we have seen, privilege
change are critical operation, which must be performed consen-
sually to prevent compromised kernel replicas from prematurely
stopping applications. Channeling such critical operations to voters
and confining access with capabilities prevents faulty replicas from
causing harm, since, as long as no more than f replicas become
compromised, a correct majority out of the n = 2f + 1 replicas will
outvote these operations. This turns system call execution into up-
dates of replicated state and a sequence of voted operations, which
we shall later call subordinate votes. This works as well with any
other replicated critical software, even firmware such as in SGX
(e.g., preventing enclave misconfiguration) or device drivers, when
interacting with the physical world. Replies to system calls must
also be voted upon, given that hypervisor replicas, by nature, act
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Fig. 4. Read-shared, consensually updated data structures used by the kernel: system calls are recorded in the syscall log, the error log keeps voting error information, and

a capability space holds an application’s capabilities (Section 9).

on behalf of multiple applications, possibly storing information of
one that must not be revealed to others.

The above is of course true provided replicas have reached
agreement on the system call to execute and on the parameters
with which the client has invoked this call. Clients are applications
and other kernel replicas that invoke system calls. A further role
of the in-kernel service loop is therefore to reach consensus on
system call execution order and parameters. From our evaluation
(Section 9) we found that Midir's support for consensually execut-
ing critical operations also provides for accelerating the BFT proto-
col that the kernel replicas must execute to reach agreement.

7.1. Consensual system calls

Fig. 4 provides a more detailed picture of how T2H2’s voters
and capability registers contribute to reaching consensus about the
system call to execute and its parameters. The service loop of FIT
hypervisors needs to reach consensus before it can start executing
operations that may have critical side effects when misused.

The service loop utilizes two data structures: a consensually up-
dated ringbuffer — the syscall log — records agreed upon system
calls and its parameters to give kernel replicas the opportunity to
learn about those agreed upon. Otherwise, this information would
only be available to the agreeing quorum of f+ 1 replicas and if
faulty replicas participate there, but refuse to execute the system
call later on, too few correct replicas would have obtained this
knowledge to complete the system call. Storing agreed upon sys-
tem calls in the log allows lagging replicas to catch up with the
system calls they missed.

Similarly, the service loop utilizes an error log to protect er-
ror information from getting lost if the voter is reset prematurely
before all replicas have learned about this error. Updates of the
syscall and error logs are made through dedicated voters: v;,, and
Verr, Tespectively.

Macroscopically, clients place system call requests in authentic
buffers, which the kernel replicas poll®> for new requests. Consen-

3 Sleep/wake protocols can be used in periods where no requests are pending.

sual privilege change allows creating such buffers by granting write
access to a single client, but to no kernel replica. The leading ker-
nel replica proposes one such system call by initiating a vote with
Vjog, Which followers observe and agree or deny. Once written to
the syscall log, replicas proceed by executing the system call and
the votes for its critical operations, as well as responding to the
client. We call these subordinate votes as they depend on the main
vote, logging the system call. That is, no correct replica will engage
in a subordinate vote unless the system call has been logged. Sub-
ordinate votes include at least replying to the client and advancing
the syscall log to the next free slot. They are performed utilizing a
set of voters V = {vy, ...} that is disjoint from {v}og, Verr}.

We make no assumptions on the order in which replicas up-
date their local state (even transactional or speculative updates are
imaginable). However, to simplify tracing the progress of the sys-
tem call (and, in turn, the code that late or rebooted replicas have
to execute to catch up), we require subordinate votes to be exe-
cuted in the same order by all replicas and assume that this order
is completely specified by the system call parameters.

Our rationale for agreeing on the system call first is to cir-
cumvent a fundamental problem of consensus protocols with-
out authenticators: the impossibility to diagnose faults if mes-
sages can be altered during multicast operations (Lamport et al.,
1982). In our setting, cryptographic operations would come at
over-proportionally high costs relative to the speed of the transport
medium (the NoC). Since consensus adds to system call execution
times, having an execution time close to the NoC'’s speed is a de-
sirable property. We therefore avoid sending unforgeable authenti-
cation tokens (e.g., HMACs) and instead exploit the authentication
we obtain from a client being the single writer of its request buffer.
Additionally, given clients maintain write access to their request
buffers, they can change the request after the leader has proposed
it, but before followers validate it, which makes it impossible for
followers to distinguish whether the leader proposed a wrong sys-
tem call or whether the leader proposed the client’s original sug-
gestion, but the client changed it afterwards. In consequence, they
cannot differentiate faulty clients from faulty leaders to provably
identify the leader as faulty. We omit this form of error diagnosis
for the system call vote to regain this property when we need it:
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if (replica =seqmodn) {

v;.propose (op, seq;)

10 if (valid) v;.confirm (op, seq;)

11 else
12}
13 /) all

i.decline (op, seq;)

14 wait for f+1 replicas to
15 agree/disagree /timeout

Fig. 5. Generic voting pattern used in the service loop and when executing system calls.

in the subordinate votes for reaching agreement on critical opera-
tions.

Leaders tricked into such a fault are rotated and the new leader
proceeds with all other pending requests before returning to the
suspicious client.

The following details the protocols the hypervisor replicas ex-
ecute to reach consensus on and execute system calls. Leveraging
the generic voting pattern in Fig. 5, replicas first reach agreement
on the system call (Fig. 6) to then consensually perform critical
updates during its execution (Fig. 7).

7.2. Generic voting pattern

Fig. 5 shows the generic pattern and how replicas interact with
voters. Evaluating the sequence number v;.seq of voter v;, repli-
cas identify the leader as the replica with identifier v;.seq mod n*
in its capability. The leader proposes a request by invoking its
vote capability to write operation op to its voter buffer, which
the voter prevents from being changed once the leader marks
this proposal as complete. Followers wait for the leader to com-
plete its proposal to then validate the operation and express their
agreement/disagreement (by submitting the operation they saw or
by writing the corresponding value to the agreement vector (see
Section 8)).

7.3. System call vote

In Phase 1, replicas first agree on the system call to execute fol-
lowing the generic pattern above. In Phase 2, they then vote on

4 As long as enough tiles are available, n and f can be reconfigured, namely
when adopting optimistic voting schemes. Such changes can namely de done on
the go, provided a safe initialization, rejuvenation and relocation protocol. However,
we leave the dynamic modification of these parameters and associated advantages
for discussion in future work.

critical operations. Fig. 6 shows the pseudocode for system call
agreement. Lines 16-23 illustrate the client invocation pattern dis-
cussed above. The leader selects a pending system call (Line 26)
with a valid opcode (Line 27) and prepares the entry to log. To pre-
vent equivocation during subordinate votes (e.g., attempts to trick
a replica into proposing the next system call without completing
the current one), we enforce some additional principles:

e P.3 Coordinated subordinate votes: correct replicas vote only
on subordinate voters (v; € V) to execute the current system
call.

e P4 Presence of correct replica: no voted operation succeeds
without at least one correct replica.

We enforce P4 by requiring quorums of at least f+ 1 match-
ing votes, while preventing impersonation (c.f., P.1 in Section 7). In
combination, these principles ensure that subordinate voters v; € V
will keep their state while in Phase 1 (including their sequence
numbers). By agreeing, alongside the system call, on the first se-
quence number of all voters used in this system call (collected in
Lines 29-33 in the set VS and validated in Line 42), we ensure
that all replicas know all sequence numbers to start with in subor-
dinate votes, even if they have been lagging behind. In the absence
of errors, the jth subordinate vote on v; will be executed with se-
quence number seq; + j, assuming (v;, seq;) € VS was the start se-
quence number of v;. This agreement on the initial sequence num-
ber then allows for a simpler progress tracking in Phase 2, when
executing subordinate votes.

Because of the impossibility in Section 7.1, system call votes op-
erate with reduced error diagnostics: replicas reset vy, if it got
suspended after disagreement (Lines 43, 44) and repeat votes for
pending system calls unless they fail for all client-leader combina-
tions, in which case they exclude this client.
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17 write m:= syscall opcode + parameters
18 to cx’s request buffer

19 wait for reply in c¢;’s response buffer
20 hypervisor replica HV;:

21 service loop:

22 poll all client buffers

23 remember new request (m,cx) as pending
24 on pending request:

25 // leader

26 (m,cy) ;== pending.remove_head

27 if (m is invalid syscall)

28 skip to next pending request

29 VS =0

30 for each voter v; used to execute m
31 // collect voter sequence numbers
32 introspect v; to read seq; :=v,.seq

33 VS = VS U {(v;, seq;)}

34 // follower

35 if (pending requests #0)

36 set timeout

37 /] all

38 Vigg - agree_on (7 write (log, (m,c,VS))”)
39 with validate :=

40 (m# request from client c¢;) ||

41 (vlog.seqiseqlog) | |

42 (seq, # v.seq, where (v,seq,) € VS))

43 if (at least one replica disagrees)
44 Vieg - Vote _for_reset ()

45 if (not f+1 agreement)

46 repeat vote

47 execute m

Fig. 6. Service loop - Phase 1: agree on next system call to execute.

7.4. Subordinate votes

The code for executing subordinate votes in Fig. 7 has to solve
two problems:

1. preserve determinism despite errors and
2. prevent replicas from prematurely resetting voters.

From reaching agreement on the system call, we know that the
first subordinate vote on v; starts with seq; because (v;, seq;) € VS.
As such, without errors, the jth subordinate vote on v; happens
with sequence number seq; + j. The same applies to votes with
at least one disagreeing replica that all received f+ 1 agreement

10

because, after the voter resets (Line 62), they are not repeated
(Line 66). The key for lagging replicas to catch up in case of error
is to make sure they learn about all errors, so that they know how
many times a vote was repeated and when it was successful. As-
sume the k" subordinate vote (k < j) was the last to fail with squ‘,
then k completed with squ‘ + 1 and the system call progressed to
subordinate request j if v;.seq — seq!‘ =j—k

Solutions to the second problem address the point that all repli-
cas must learn about errors. Withn=2f+1and |Q| = f+ 1, up to
n—|Q| = f replicas may lag behind while the remaining |Q| pro-
gressed to another subordinate request or even to another system
call. In particular, faulty replicas may fail a subordinate vote, but
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dest) {

speed with the others

1s valid

error)’’)

information
own error)

48 HV;.vote (log, v;, seq;, req, m,
49 if (syscall_log.log # log)
50 return success

51 if (vj.seq # seq;)

52 if ((err[v;].log # log) |
53 (err[vi].req # req) |
54 (err[v;].eseq > seq;+1))
55 return success

56 push_error_and_reset_voter
57 if (lerr[v;].success)

58 repeat vote with seq; +1
59 // HV; is up to

60 wv;.agree_on(‘‘write(dest, m)’’) with seg;
61 and validate := (m, dest)
62 if (at least one replica disagrees)
63 push_error_and_reset_voter
64 initiate recovery

65 if (f+1 agreement)

66 return success

67 repeat vote with seq; +1

68 }

69 push_error_and_reset_voter:
70 error := introspect (v;)

71 Ve .agree_on(‘ ‘write(err[v;],
72 with validate :=

73 adjust own error

74 (proposed error =

75 if (error vote fails)

76 Verr. vote _for_reset (eseq)

77 repeat pushing the error
78 vi.vote_for_reset (seq;)

Fig. 7. System call execution - Phase 2: subordinate votes and error handling.

agree to reset the voter, which erases the error information about
the failed vote from the voter and leaves behind as few as a sin-
gle correct replica to know about the error. This scenario occurs if
f faulty and one correct replica resets the voter before others di-
agnosed it. Clearly, without costly cryptographic information, the
honest replica cannot convince others about what has happened.
The following design principle solves this problem by preventing
premature resets before error information is pushed to the error
log.

o P.5 No reset before error logging: correct replicas reset subor-
dinate voters only after the error got logged.

This error state contains information about the current system
call, i.e.: the system call entry log; the subordinate vote req; the se-
quence number of the voter v;; the point where it failed eseq and
which replicas agreed/disagreed. In consequence, lagging replicas
can validate if the current subordinate vote succeeded (Lines 52—

1

55) and, if not, who was responsible for it to fail. Voter v; pre-
vents destructive writes until it is reset, which P.5 and P.4 ensure
happens only after error information was written to the log. Non-
destructive writes are updates of empty buffers, respectively, up-
dates of the agreement vector from timeout to agree/disagree and
from empty to any of these three.

The argument for why the problem does not recur with the
nested vote for logging the error state is as follows:

1. The state to push is held in the voter v;. Therefore, even if a
replica lags behind, finding v; suspended, it knows what infor-
mation to write to the log.

2. Because of P.5, and because at least f + 1 replicas are required
(P4) for votes to succeed, the only way to make progress is by
writing correct error information.

Therefore, either faulty replicas agree to writing correct error
information or eventually correct replicas catch up and write cor-
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rect information. The exact information seen by the replicas may
differ depending on the time they read it, i.e., in late reads, more
replicas may have expressed their consent or disagreement. How-
ever, it will always contain at least the consensual result of the
vote, i.e., whether f+ 1 replicas agree, disagree or timed out, and,
in the former two error cases, it identifies at least one replica that
diverges from the majority (the leader, in case of f+ 1 disagree-
ment). This replica is proven faulty. Followers, reading error infor-
mation after the leader and finding proposals of additional replicas,
downgrade their own information to that of the leader after vali-
dating it as described above (Line 73). Repeating the vote while
rotating the leader ensures that valid error information is pro-
posed latest after f retries. It then suffices to reset verr, whenever
it becomes suspended (Line 76). Once error information is pushed,
replicas vote to reset the voter v; for the subordinate vote (Line 78)
and continue executing it.

8. Implementation

The implementation of capability invocation is stan-
dard (Needham and Wilkes, 1974): T2H2 is invoked by tiles
to perform external operations, then it looks up the capability
in the capability register file, and forwards the operation to the
NoC after the privilege check succeeds, silently dropping the
operation otherwise. Replica IDs are communicated as labels in
the capability (Hardy, 1985), which T2H2 inserts as an additional
parameter into the operation.

Our voter implementation is driven by the following considera-
tions and their impact on functional simplicity.

8.1. Buffered vs. unbuffered votes

Perhaps most impactful is the decision to buffer votes to allow
replicas to make their proposals without first having to synchro-
nize on the time when the signal for such a vote must be held.
Although buffering increases the complexity of the voter, it de-
couples replicas, allowing them to act in a partially synchronous
fashion and, as long as different voters are used, even partially
out-of-order® Buffering votes is ideal in a NoC architecture, since
votes are transmitted as normal messages (e.g., writes to the mem-
ory mapped registers of the voter). Tiles can continue executing
once the message is sent. We therefore implement voters to con-
tain buffers for storing proposals from the different replicas for the
current vote executed with this voter.

8.2. Immediate vs. deferred masking

A similarly impactful decision is whether voters should be able
to mask faults immediately. Alternatively, voting can be repeated
until a valid proposal is made. The consequences, besides time to
agreement, are the amount of memory needed for buffering votes
vs. the complexity of the voter logic.

To mask faults and reach agreement immediately after |Q| =
f + 1 matching proposals arrive, the voter needs to buffer sugges-
tions from at least f + 1 replicas. Since up to f such messages may
be wrong and because the voter can only find out after receiving
f + 1 matches, buffer space for at least f+ 1 messages is needed
to prevent having to repeat the vote.

We implemented two variants of T2H2 voters to evaluate the
resource/performance trade-off at the two extremes of this spec-
trum. Our n-buffer variant (Fig. 8a) implements one message buffer

5 To simplify monitoring of the progress of a system call, we have required that
all replicas execute the critical operations of each system call in the same order.
Operations of different system calls need not be constrained in this way, and, at the
cost of a more complex progress tracking, this requirement can be further relaxed
to: same order as far as a single voter is concerned.
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per replica. Each time a message arrives, it is compared against
all other stored messages and the operation applied once f+1
buffers match. Our single-buffer variant (Fig. 8b) trades agreement
time for a more resource-efficient implementation: there is only
one buffer; and only the current leader is granted write access to
this buffer. The single-buffer voter follows a leader-follower voting
scheme, with the leader proposing a vote and followers validating
this proposal. To prevent inconsistency, the voter prevents modifi-
cation of the leader proposal once the leader marks the proposal
as ready. This allows follower replicas to observe the stored mes-
sage and express their agreement/disagreement. For this purpose,
the single-buffer voter implements an agreement vector with one
(initially empty: - ) tri-state cell for each replica to express agree-
ment A or disagreement D. Now, one of three things may happen
when replicas propose:

(i) a majority of f+1 or more replicas disagree with the leader
proposal. In this case, the leader proposal is considered invalid
and the operation is not applied; or

(ii) a majority of at least f + 1 replicas agree. In this case, the pro-
posal is accepted and the voter applies the operation in its
buffer.

(iii) the operation times out without a majority of replicas agree-
ing/disagreeing. In this case, the replicas record this error and
repeat the vote after rotating to the next leader.

The n-buffer version requires logic circuits for pairwise buffer
comparison, whereas in the single-buffer version a 2 data-bit ma-
jority gate over the agreement vector suffices, deeming the latter
more resource efficient. On the other hand, although the single-
buffer voter guarantees that, latest after repeating the vote f times,
a healthy replica is elected as leader and makes a valid proposal,
the n-buffer version may proceed as soon as it finds f+ 1 match-
ing proposal, making it more efficient in terms of execution time.

8.3. Internal vs. external error handling

The third question is whether the voter itself should include
provisions for diagnosing errors and for informing replicas about
them. Errors are detected when one replica diverges with the
majority decision. Voter-initiated error handling translates to the
voter tracing back to the voting replicas’ cores to identify where
to deliver error-handling interrupts. The expected complexity dis-
courages such a solution. We therefore offload error handling to
software and support replicas by a means to track progress (the
sequence number seq) and by suspending voting after detecting a
mismatch. In this situation, seq does not advance but the voter may
still apply the operation (in case of f + 1 agreement). Replicas read
the voter registers and buffers to diagnose the error, by looking for
divergences.

To resume execution of suspended voters, replicas reset the
voter, which clears all buffers and the agreement and reset vectors
and advances the sequence number by one. Reset itself is a voted
operation over the reset vector, which contains one bit per replica.
The voter resets once f + 1 bits in this vector are set. Although this
quorum guarantees that at least one correct replica agrees to reset-
ting the voter, it does not prevent faulty replicas from resetting the
voter prematurely, that is, before all correct replicas were able to
retrieve the error state. P.5 and the protocol in Section 7.4 handles
this corner case.

8.4. Dimensioning voters

The last question we discuss here is: for how many faults
should the voter hardware be laid out. Since we aim at imple-
menting voters in silicon, we have to make this choice at system
design time to dimension buffers and vectors large enough for the
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Fig. 8. Internal structure of a voter. One, resp. n buffers hold the message of replicas to vote upon and size its length. f defines the fault threshold, seq is a voter maintained

sequence number. The agreement and reset vector are described below.

maximum number of faults to tolerate ( fmax). However, to not al-
ways have to execute at this maximum replication degree, a fault
threshold f < fmax of voters can be configured at boot time. For in-
stance, if the system should tolerate up to fmax = 3 faults, it needs
to be dimensioned to have nmgx = 2fmax + 1 = 7 fields in the vec-
tors (and an equal amount of buffers in the n-buffer variant). This
voter can be operated at any fault threshold 0 < f < fmax.

The voter design has been kept simple enough, and decoupled
enough from the surrounding logic. As such, we can expect with
high confidence that T2H2 can be implemented and shown correct,
as well as stay functional even when the tile it is associated with
fails. A crashed T2H2 prevents its tile from invoking any operation
on tile-external resources, in particular from issueing votes. Midir
ensures safety and liveness as long as the overall number of faulty
tiles (including those with a crashed T2H2) does not exceed f.

9. Evaluation

As an early validation of our proposal, we have implemented
T2H2 with both voter variants in VHDL on a Zyng-7 ZC702 Evalua-
tion Board. We instantiated 3 Microblaze cores as tiles, running at
50 MHz, each with one T2H2, connecting the tiles through T2H2
with an AXI interconnect (serving as the NoC). We have imple-
mented and measured the performance of the service loop of a
fault- and intrusion- tolerant hypervisor (Fig. 6). The service loop
is used to agree on and execute client-invoked system calls for
two critical operations: granting and priming capabilities. Grant
(L4 .map (Liedtke, 1995)) copies capabilities between capability
spaces and prepares for later revocation. Prime consensually copies
a capability from the client’s capability space into a T2H2 capabil-
ity register, where it is ready for invocation. We have measured
the performance of grant and prime in two different implementa-
tions of capability spaces, a container object for the capabilities an
application possesses:

(i) as a private data structure in each replica (Section 9.1), requir-
ing, in the case of prime, only the vote to install capabilities
and two further to reply to the client and mark the system call
as finished; and

(ii) as a read-shared, consensually-updated data structure, trading
off speed for a smaller memory footprint by introducing addi-
tional votes for track keeping (Section 9.2).

As baselines, we compare to a cross-tile invoked singleton ker-
nel (horizontal line), executing the same system calls on its pri-
vate state, with 1637 cycles for grant (1977 cycles for prime); and
to a shared-memory variant of MinBFT® requiring 242824 cycles
to agree on a system call. Our agreement protocol outperforms
MinBFT by one order of magnitude.

A comparison to a cross-tile invoked singleton kernel allows us
to understand the overhead the T2H2 introduces in remote mem-
ory block access, which is present only in the execution of criti-
cal operations. The presented values for this baseline are justified
by the absence of caches, as we want cores to be as decoupled as
possible. The choice for comparison with MinBFT relates to its high
efficiency and state-of-the-art popularity in hybrid BFT solutions.

An evaluation of application performance in a Midir architecture
shall be left for future work.

9.1. Per-replica capability space

Fig. 9 shows the average performance of the grant and prime
system calls in a per-replica capability space implementation rel-
ative to two baselines: null and a singleton kernel instance per-
forming these system calls in a non-consensual manner. Shown are
the system calls broken down into individual votes and the Q5 |/
Q95 percentiles of the overall measurements.

The minimal costs for learning about a system call request and
executing it are 1571, 1637 and 1977 cycles on average for null,
grant and prime, respectively, which is the baseline of the single-
ton kernel. System calls for the single-buffer version have a factor
of 8.9 (null) to 9.6 (grant) increase, which can be explained due to
the voter not benefiting from caching. Whereas the singleton ker-
nel merely has to copy one request from the memory where the
client core places it, missing in all caches in the process, follow-
ing replicas have to poll the voter to wait for the leader to make

6 We omit client signatures in favor of authentic buffers, but implement Uls with
HMACs. USIGs can be accessed without overhead.



LP. Gouveia, M. Volp and P. Esteves-Verissimo

16000
14000
12000
10000
8000
6000
4000
2000

]

I-buf n-buf 1-buf
null grant

0
[cycles]

n-buf

Computers & Security 123 (2022) 102920

® advance
H response
m install cap
m syscall

I-buf  n-buf
prime

Fig. 9. Average execution times of the three consensual system calls — null, grant and prime — when executed on a per-replica capability space implementation. System
calls are broken down into the individual votes for agreeing on the system call and for performing the critical updates required. Shown are also the Q5 |/ Q95 percentiles

and the average costs of executing the respective system calls on a singleton kernel.
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Fig. 10. Average execution times of the three system calls for consensually-updated capability spaces.

a proposal and then confirm (or reject) the proposal made. Each
such voter access amounts to costs equivalent to a cache miss.

As can be seen, reaching agreement on the subordinate votes is
much faster, since replicas already align themselves when reaching
agreement on the system call to execute.

In the n-buffer version, higher costs occur during the agreement
on the system call, which is due to the writing of the complete
request to the voter, not just setting a bit in its agreement vec-
tor. However, subordinate votes are much faster, since replicas no
longer wait for the leader to make a proposal. Instead, they just
propose what should be written as critical operation.

9.2. Consensually-updated capability space

Fig. 10 shows a similar diagram as Fig. 9, this time, however,
for consensually-updated capability spaces. Granting and prim-
ing capabilities now require additional votes to update the data
structure.
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This time, the 6.7 (single-buffer) and 7.3 (n-buffer) times slower
performance relative to the singleton kernel can be explained due
to the voter not benefiting from caching:

Singleton kernel: System call execution is triggered by the client
writing to shared memory on one core and the kernel (on another
core) reading it. From then on, all the operations happen locally
in the core of the kernel without any interaction with the outside.
Therefore, all memory operations aside from the invocation and re-
ply hit in the core’s cache, which, in our setting, responds within
1 cycle. The cross-core operations (invocation (1) + reply (2)) dom-
inate these costs.

Replicated kernel: System call execution starts as well with in-
vocation (1), but then, the leader needs to propose the request
(2), followers validate it (3) and express agreement (4) upon which
the voter updates the memory and all replicas wait for the vote to
reach agreement (5). In the case of the per-replica capability space
(case (i) in Section 9), we then execute locally, but for replying (to
not introduce storage channels) we have to repeat at least (4) +
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Fig. 12. Same as Fig. 11 for n-buffer voters.

(5), assuming n-buffer voters. As such, even without any delays, we
have 7 cache misses vs. 2 in the singleton kernel execution, hence
a factor of 3.5. Additionally, more voter accesses are performed to
read the sequence number, which we need for flow control.

To confirm that variations in fact originate from the agreement
on the system call to execute, we have broken down system call
execution into their individual votes and measured their Q5 and
Q95 percentiles. Figs. 11 and 12 show these values for single- re-
spectively n-buffer voters. As expected, subordinate votes remain
close to their average execution times, whereas agreement on the
system call varies significantly.

9.3. Overhead discussion

Given the worst case scenario of an 8,9 (null) to 9,6 (grant) fac-
tor overhead of voted accesses in comparison to the singleton ker-
nel (when using per-replica capability spaces), we discuss here the
arguments addressing this concern.
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First, we remind the reader that not all system calls require
voting, with the latter being applied only to execute critical
operations (e.g., privilege management) and access critical re-
sources external to the tile. Similarly, if used by software at higher
levels of abstraction, namely application level, T2H2 would as
well only be required to perform specific operations that could
potentially cause harm, such as those updating critical shared data
or accessing critical devices.

Furthermore, critical resources being accessed, provided they
present read-most patterns, do not impact overall performance, as
reads do not usually require voted access, unless, for security rea-
sons, the information contained therein should not be leaked to
specific sets of replicas. On the other hand, if the resource is to
be updated (i.e., written), the ratio of reads to writes will deter-
mine the impact the aforementioned overhead will have on per-
formance. Also, not all writes (only critical ones) need voting and,
thus, not all writes incur the demonstrated overhead. Capability
checking incurs 99 cycles overhead to write the request in the
input register and 106 to check the permission result. However,
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Fig. 13. Latency of the null system calls for increasing number of replicas in microseconds.

| singeBuifer | NoBuflr

Common Definitions

T2H2 Interface

Service Loop and Subordinate Votes
Capability Space (per replica)
Capability Space (consensual)
Capability Registers

Voter

187 /1512 VHDL

129 Lines of C++
142 LoC++ 134 LoC++
311 LoC++ 309 LoC++
242 LoC++
314 LoC++
46 / 605 Lines of VHDL

176 /1703 VHDL

Fig. 14. Code size in lines of C++ | VHDL code (logic / total).

we believe that, although the overhead represents almost an order
of magnitude increase, it is still within the expected performance
metrics for the considered communication medium - the NoC.

Finally, was this FPGA-based proof of concept built as an ASIC
(application-specific integrated circuit), as intended for a final MP-
SoC product, voted system calls’ performance would immediately
increase, given an ASIC's die is purposefully built for the task it
is designed to perform and, thus, is optimized in terms of area,
logic gate count and frequency. Additionally, an MPSoC specifi-
cally designed with Midir integration would have the T2H2s sit
much closer to the replica, at its tile-to-NoC interface, with T2H2-
internal registers that would act as a local cache, thus reducing
access times and, combined with an ASIC nature, logic-processing
times. In our FPGA proof of concept, the T2H2s are instead memory
mapped, meaning the processor has to access the external memory
block to perform each voting step, thus having the increased over-
head explained in Section 9.2.

Nevertheless, this overhead essentially translates to a trade-
off, where either no safety measures are applied by removing re-
dundancy and/or voted execution, leaving single points of failure
unresolved, but achieving better performance; or having the pre-
sented performance decrease while enhancing the system with the
safety features proposed in this paper. As mentioned in Section 7,
Midir may be configured in such a way where all accesses are di-
rect, and thus unprotected by voting (f =0), meaning all T2H2s
are “turned-off”. As such, depending on the system’s goals, crit-
icality and requirements, Midir can be tailored in regards to not
only which operations should be subjected to voting, but the total
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number of faulty replicas it should tolerate, if any. This, in turn,
further adjusts performance as not all available tiles need to be
used.

9.4. Scalability

Since our FPGA board’s resource limitation prevents us from
instantiating more replicas, we confirm the scalability of our ap-
proach in an emulation on x86. Hypervisor replicas are pinned as
the sole application on the cores of a 24-core Intel Xeon CPU E5-
4650 system, running at 2.10 GHz. They execute the same server
loop like on the FPGA, but emulate voters in software.

Fig. 13 shows the latency results of scaling the null system call
to an increasing number of replicas and hence an increasing fault
threshold from f=1 to f=7. Also shown (although not directly
comparable) is the performance of the FPGA implementation, both
scaled to microseconds. As can be seen, the execution of the null
system call scales linearly with the number of replicas, which in
part is due to the emulation having to acquire a lock during voting.
We expect a similar though less steep linear increase in a larger
scale FPGA implementation due additive effects of having to wait
for the agreement of an increasing number of replicas with fluctu-
ating system-call execution times.

9.5. Code size

Fig. 14 lists the code size (excluding initialization) for the ser-
vice loop, for consensually executing critical operations and for in-
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Fig. 15. FPGA resources required by T2H2 (without / with AXI interface).

terfacing with the capability registers. Also shown are the VHDL
source lines of code for the logic only and for the overall design
(including 1/O declaration) of the voter and capability unit. As can
be seen, the amount of code that each replica executes for the
above grant and prime system call is well below 1000 lines of
code. Faults in this code are masked by the majority of replicas
outvoting faulty replicas in critical operations. Similarly, the hard-
ware overhead is just above 400 lines of VHDL code for the logic
plus 2411 lines of VHDL for connecting the logic to the AXI inter-
face I/O and for mapping the corresponding internal signals. VHDL
simply defines the logic to be programmed in the board, it is not
executed by the voters or capability units.

Fig. 15 shows the FPGA resources of the (post-synthesis) im-
plementation of our components. LUTs are units with no state,
used to implement the combinatorial logic; while registers hold
state, e.g, to keep buffer contents, but implement no logic. Each
F7 Mux (wide multiplexer) combines the outputs of two LUTs to-
gether, while F8 Muxes combine the outputs of two F7.

Notice that the absolute resource requirement of T2H2 will not
increase if more complex cores are to be controlled. Hence, the rel-
ative resource overhead will shrink when more complex tiles are
considered. This phenomenon occurs since the complexity of the
cores has no influence on the T2H2s’ logic and functional require-
ments. T2H2 will provide the same services with the exact same
hardware logic design independently of the complexity of the tile
invoking it. As such, as the cores’ resource requirements increase
due to higher complexity, T2H2’s remains the same. However, re-
source utilization will increase if more cores are added. Additional
input registers will be needed to store an additional request or
vote from the new cores as well as LUTs to check these registers
when counting votes.

10. Conclusions and future work

We have introduced Midir, an architectural concept which
breaks new ground and opens promising avenues in the applica-
bility and resilience of manycore architectures (MPSoC). Through
minimalist mechanisms integrated in the MPSoC architecture,
Midir frees MPSoCs from the SPoF syndrome, fulfilling the vision
of distributed systems-on-a-chip (DSoC).

In this paper, we show in particular that Midir-enabled DSoCs
achieve a quantum step towards off-the-shelf chip resilience, since
these mechanisms are generic enough to support, in-chip and
with high reliability, a large variety of the protection and re-
dundancy management techniques normally implemented in soft-
ware at higher layers in 'macro’ systems. To convincingly prove
our point, we exemplified and evaluated an implementation, over
Midir, of the most complex version of our solution set: a Byzantine
fault tolerant microhypervisor. We have shown the practicality of
our concept, having quite satisfying performance, since it outper-
forms the highly efficient MinBFT protocol by one order of magni-
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tude. The low overhead of our approach shows large promise for
future full hardware solutions.

Furthermore, Midir was intentionally designed as a non-
intrusive extension to current core architectures, being anchored
on simple and self-contained hardware extensions, sitting at the
tile-to-NoC interface. Taken up by a hardware manufacturer or in-
tegrator, it allows a backwards-compatible, non-fracturing evolu-
tion, as updating critical resources or re-writing privileges trans-
lates to writing specific memory regions, which the capability reg-
isters can be configured to point to, at boot time, by the boot-
loader.

We hope that our findings may be key to enhance general MP-
SoC architectures towards distributed DSoCs and, among other av-
enues, lead to next-generation COTS resilient chips.

After this initial work, several questions remain to be answered,
namely on kernel design details, rejuvenation and diversification
for sustainability, application-level uses, real-time applicability,
coverage for network attacks, dynamic reconfiguration of deployed
parameters and so forth, which leave ample room for future work.
Namely, application-level usage gives way to complex questions.
There are two ways Midircan be used at application level: a)
for applications managing critical resources, for example, cyber-
physical controller applications managing a resource that interacts,
for instance, with the physical world or b) to construct resilient
building blocks used to upgrade mechanisms that coordinate the
sharing of critical resources, e.g., more resilient data structures
to be shared among several applications within the same system.
Future work for a) must explain how the application benefits from
Midir, which specific operations are voted upon, how real-time
requirements are managed and how voting-related error handling
impacts the application. For b), an extensive analysis can be done
with regards to the several options to create said building blocks,
how synchronization among applications is regulated, how this
synchronization affects performance and the RCB, how implemen-
tation options affect the level of required synchronization (and,
thus, performance) and what race conditions can emerge from
adapting, e.g., data structure operations.
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Appendix A. Safety and liveness

In this Section, we argue about the safety and liveness
of the BFT protocol for processing system calls (as shown in
Figs. 6 and 7). That is, any two healthy replicas execute the same
system calls in the same order (safety) and all correct system calls
will be eventually executed (liveness). We assume the combination
of a sleep-wake notification mechanism and polling (summarized
in Line 22) reveals any pending system call to all replicas. How-
ever, before we start arguing about safety and liveness, let us see
why faulty replicas cannot trick healthy ones into participating in
votes with a wrong sequence number.

System call execution involves as set of voters: the subordinate
voters v; mentioned in VS, plus Viog and verr. By construction, voters
ignore proposals and confirmations for all sequence numbers other
than the current one and only if voting is not suspended. That is,
a voter v; will only react to commands with a sequence number
seq if seq = v;.seq. Sequence numbers advance only if f + 1 replicas
agree to a proposal and no replica disagrees, or if f+1 replicas
agree to reset the voter due to some error case (e.g., one or more
replicas disagreeing with the proposal). From property P.3 and P.5
and the arguments we have given in Section 7.4 we know that no
healthy replica participates in reset before error information has
been confirmed by such a replica and logged through ve;. More-
over, we know that healthy replicas will engage with subordinate
voters only for executing the current system call they process. This
means either the replica is participating in the current system call
or it was lagging behind other replicas. In the latter case, the se-
quence numbers it will use to invoke the voter are smaller 7 and
the voter will ignore the request without any effect.

Al. Safety

Proposing VS as part of the system call (Line 38) and includ-
ing this as part of the agreement (Line 42) means a fault-threshold
exceeding quorum of replicas agrees to the starting point of sub-
ordinate votes and from there we know, from the arguments given
in Section 7.4, that without errors the jth subordinate vote on a
voter v; is executed at seq; + j where (v;,seq;) € VS (and similarly
with errors, by recording and acknowledging the number of re-
tries). Therefore, if a healthy replica votes for a subordinate vote,
it will always vote with the correct sequence number, which im-
plies faulty replicas cannot leverage this vote/agreement to confirm
a different request.

From the above, we can conclude safety holds, by seeing that
replicas will not agree on different system calls for the same se-
quence number. The voter will only write system calls to the log
which received f + 1 agreement, and the log position is advanced
consensually and in a way that allows all replicas to learn about
updates (last subordinate vote of the previous system call). The
voter itself thereby prevents equivocation by freezing the proposal
the leader makes for the current sequence number, i.e., by prevent-
ing it from being overwritten for the current sequence number. Ad-
ditionally, sequence numbers will not be reused for the same vote
since both successful requests and reset advances this number.

7 We assume sequence numbers used by lagging replicas will never be overtaken
by the current write and say that such a sequence number is smaller, despite pos-
sible wraparounds of the used integer. We substantiate this assumption by imple-
menting a large enough sequence number space.
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From safety of the logged system call, its parameters and VS,
it then follows safe execution of the subordinate votes, given that
the jth subordinate vote on voter v; is completely defined by these
aspects. Notice that all healthy replicas execute the logged system
calls, including their subordinate votes. In particular, Line 50 will
not lead to skipping the execution of the remaining system call,
but only short cuts through the subordinate votes when realizing
that the system call has already been completed. Healthy, but lag-
ging replicas therefore first update their state with logged system
calls before engaging in new system call requests. Notice also that,
while it is possible for faulty clients to trick leaders in proposing
a system call that followers will not confirm, the consequence of
this is merely a rotation of the leader (by reset of v, in Line 43)
and the next leader continuing with another client.

A2. Liveness

What remains to be seen is why the system is live (i.e., why it
will eventually process all requests from correct clients). The com-
bination of sleep-wake and polling in Line 22 will iterate through
all client/replica combinations. Therefore, each valid client will re-
peatedly find a correct leader who proposes the request. Partial
synchrony then ensures that during the long enough periods of
synchronous behavior, healthy replicas engage in processing this
request. Let us therefore, for the following argument, assume re-
quest processing happens in such a good phase and will not time
out. Then latest after rotating through f leaders, the client will find
a healthy leader to propose the request.

As shown in Line 14 and 15, replicas will wait for either f+ 1
replicas to agree, f + 1 replicas to disagree or f + 1 replicas to time
out. Thus, if the request is proposed by a healthy leader (or by
a faulty, but stealthy leader in a correct manner) at most f (re-
spectively f — 1) replicas can disagree and, in the absence of time-
outs, f+ 1 agreement will be reached. Then, even if the vote is
suspended due to a disagreeing replica, the voter will record the
system call in the log and all healthy replicas will proceed by exe-
cuting the logged call (after resetting v}, in Line 44 to return this
voter into a state where it accepts further votes, including the next
system call).

For subordinate votes, a similar argument applies. In the ab-
sence of timeouts during long enough phases of synchrony, when a
replica proposes an operation for a subordinate vote, replicas wait
until either f + 1 replicas agree to the proposal (in which case the
voter executes the operation, e.g., by writing to the specified des-
tination), even if a minority of replicas disagree; or f+ 1 replicas
disagree. Disagreeing replicas causes an error to be recorded and
the vote to be repeated. From the arguments in Section 7.4 we
know that error logging makes progress latest when a healthy
replica proposes a valid error record and when lagging healthy
replicas catch up to find the error information in the voter (re-
member P5 prevents premature reset before the correct informa-
tion is logged). As such, latest after rotating through f faulty lead-
ers a healthy leader will propose and reach f + 1 agreement (from
healthy followers or from stealthy faulty replicas responding cor-
rectly). This ensures that each subordinate vote gets executed and,
consequently, the system call as a whole. Having seen that the pro-
posed BFT protocol for system call execution is in fact safe and life,
we now focus on the implementation of the voters and how it en-
sures the behavior we require, namely freezing proposals and sus-
pension until consensual reset.
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