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Abstract.  This paper deals with elastic stability analysis of the plane frame structures. The 
main aim is to investigate the accuracy of related parts of European and domestic codes for 
steel and concrete structures. Numerical analysis of frame structures is performed using the 
self-developed Matlab computer program. Matrix analysis of the whole structure according 
to the second order theory, based on application of trigonometric shape functions, is applied. 
As opposed to that, the dominant approach given in most structural codes is based upon the 
stability analysis of compressed structural elements isolated from the structure as a whole. 
Several numerical examples are given in the paper and comparative analyses presented 
herein show that, in some cases, solutions given in domestic and European codes are rather 
inaccurate. For example, the error in determination of the effective buckling length of frame 
columns can sometimes exceed even 100%. Finally, it is concluded that innovation of actual 
codes should be done in the part where the effective buckling length of frame columns is 
considered. Improvement of this calculation could be achieved using the global stability 
approach and the corresponding calculation the critical load for complete structure, as it is 
presented in the paper. 

 
 
 

1. Introduction  
 
There are numerous civil engineering structures which are subjected to the compression 
forces. Calculation of compressed structural elements requires investigation of stability 
phenomena. Dominant compressive stresses may cause structural instability, loss of load-
bearing capacity and collapse of structure, even in the case when allowed stresses are not 
reached. It means that modern regulations have to take into account all knowledge about 
buckling of such kind of structures.  
The subject of this paper is the analysis of codes related to stability problem of plane frame 
structures. The main aim of this analysis is to investigate what is the accuracy of existing 
codes. 
Euler first studied stability problems of compressed bar and his “stability cases” are well 
known. Critical load in all these cases can be obtained by same expression, as it is 
presented in Figure1. 
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Figure 1. Euler’s cases 
 
As it is shown in the Figure 1, definition of “effective length” is given as the distance 
between inflection points of the bended member. For the stability analysis of plane frame 
columns, codes use simplified static scheme, as presented in Figure 2. 
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Figure 2. Simplified static scheme of the frames 
 
 
As it is given in Figure 2, codes consider only columns which are separated from the frame 
structure. These separated columns are supported only by the adjacent columns and beams. 
So, stability analysis of columns is simplified and the results can be obtained very easily. 
They are shown by the corresponding diagrams and approximate formulas. Of course, very 
important question is to what extent these approximate solutions are correct and how they 
can be used in engineering practice. In the last decade there is a fast development of 
computer programs in general and also for the plane frame stability analysis, using the 
second order theory. Global stability analysis of whole frame structures becomes a routine 
calculation. So, the current concept of the stability analysis of structures in engineering 
practice must be correspondingly changed and it has to be also reflected in the codes. This 
paper is analyzing what is the accuracy obtained by use of the approximate solutions as 
given in the structural codes, or rather, how large are the obtained errors and should they be 
tolerated. 
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2. Matrix stability analysis of plane frame structures  
 
Matrix analysis according to the second order theory is applied to solve the problem of the 
frame structure instability. 
It is well known that during the member buckling, axial force produces the bending of the 
member. The basic differential equation of this stability problem is: 

                                                             0vkv 2iv =′′+ ,                                                     (1) 

where are:  
EI
Pk =  ,   P – axial force,  EI – member bending stiffness. 

 
In order to formulate the exact matrix stability analysis, shape functions are used in the 
trigonometric form: 
                                               ( ) ( ) ( )kxcoskxsinkxxv 4321 αααα +++=                           (2) 
 
Stiffness matrix, obtained by trigonometric shape functions based on (2), is given in (3): 
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where:    ( ) ωωω∆ sincos12 ⋅−−⋅= ;    ω = k l.     
 
Equation (3) is the solution for the member of the so-called type “k“ (i.e. clamped at both 
ends), subjected to compressive force. Stiffness matrix for the member of the type “g“ (i.e. 
hinged at one end), is given by: 
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Using the standard displacement-based finite element approach, where each column and 
beam of the plane frame is treated as a single finite element, since the stiffness matrix is 
adopted according to (3) or (4), the finite element discretization of the governing equation 
of the stability analysis is obtained as   
 
                                                          K(ω) δ = 0                                                                   (5) 
 
K(ω) is the global stiffness matrix for the whole frame, including the corresponding 
boundary conditions. Of course, all loads acting upon the frame are expressed as the 
corresponding multiple of a single load parameter P, so also all parameters ω for each 
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element with the axial force are also expressed through one representative ω. The critical 
load for the whole frame is then obtained as the solution of the corresponding stability 
equation: 
 
                                                           det K(ω) = 0                                                               (6) 
      
According to this theoretical approach, numerical analysis was performed using the self-
developed MATLAB computer program. 
 

3. Concrete structures 

3.1 Codes 
 
Serbian and European codes are analyzed in this paper. In Serbian codes, stability analysis 
of concrete structures is presented in “Codes for concrete structures (BAB’87)”. The 
effective length of column, according to BAB’87, can be described by 

                                                                    lkhi ⋅=                                                           (7) 

where are:  hi  – effective length;  l  – column length;   k – effective length coefficient. 

Effective length coefficient can be calculated using: 
• nomograms, 
• formulas (according to British standard), 
• average slenderness ratio of the columns (by the first order theory).  

In the first two methods, stability analysis is applied to “separated column”. Ratio between 
total stiffness of all columns and stiffness off all beams (fixed in the observed joints at the 
ends of the column) has to be calculated. Coefficient value can be obtained using 
nomograms, or from formulas. These coefficients are given for sway or non-sway system, 
separately. In the third method, the whole structure is taken into account, but the analysis is 
performed according to the first order theory. 

European codes for concrete structures (EC2) in Chapter 5.8.3.2 give expressions for the 
effective length value: 
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where: k1 , k2 are the flexibilities of the rotational restraints at ends 1 and 2 respectively 
relative to flexural stiffness of the member itself : k = (θ/M)⋅(EI/l) , 
θ  - the rotation of the restraint for bending moment M; EI - bending stiffness of the 
compressed member; and  l  is the clear height of the compressed member between end 
restraints. 
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It has to be mentioned that calculation of the rotation of the restraint for bending moment 
has to be done using the first order (i.e. the linear) theory. 
 

3.2 Numerical analysis 
 
Accuracy of obtained results according to code methods is checked by the numerical 
analysis of frame structures. Stability analysis was performed according to the second order 
theory which gives, conditionally speaking, the exact solution. 

In this analysis, it was investigated how the complexity of the structural system and load 
can influence the solution accuracy.  
Sway and non-sway systems were analyzed separately. 

In the case of sway systems one-floor, two-floor and multi-floor frames were considered.  
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BAB BAB BAB BAB 

 exact 
EC 

exact 
EC 

exact 
EC 

exact 
EC 

1.15  (1.19) 1.15  (1.54) 1.05  (1.15) 1.15  (1.20) 
k12 1.16 

1.14 
1.49 

1.15 
1.01 

1.13 
1.42 

1.13 

1.15  (1.19) 1.54  (2.30) 1.27  (1.48) 1.15  (1.20) 
k34 1.16 

1.14 
1.49 

1.51 
1.43 

1.20 
1.00 

1.13 

 max.error 2-3 % max.error 3-30% max.error 13-19% max.error 18-25% 
 

Figure 3. One-floor concrete frames 

Comparative numerical analysis was done for the following examples: 

- Symmetric frames, 

- Frames with nonsymmetrical supports (where one column is clamped and other is 
pinned), 

- Frames with nonsymmetrical rigidity of columns, 

- Frames with different axial force in the columns. 
 
Results obtained according to the codes are compared with the exact solution obtained by 
presented matrix analysis. Critical load for the whole frame was calculated firstly, and after 
that the effective length coefficient was determined according to the formula 
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Summary of obtained results and errors, are shown in Figure 3. 

Only in the case of symmetric frames, calculation according to codes, gives almost exact 
solution.  

In the other numerical examples, where the unsymmetrical frames were calculated, it can be 
noticed that error reaches the level of about 30%.  

Results and errors in the case of two and multi floor frames are presented in the Figures 4 
and 5. Obviously, errors are greater then in the case of one-floor frames.    
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BAB BAB BAB BAB 

 exact 
EC 

exact 
EC 

exact 
EC 

exact 
EC 

1.25  (1.35) 1.25  (1.35) 1.20  (1.30) 1.25  (1.67) 
k12 1.38 

1.19 
1.19 

1.19 
1.06 

1.18 
1.47 

1.21 
1.45  (1.54) 1.45  (1.54) 1.43  (1.45) 1.45  (1.58) 

k23 1.38 
1.41 

1.69 
1.41 

1.50 
1.38 

2.08 
1.42 

1.25  (1.35) 1.25  (1.35) 1.42  (1.70) 1.67  (2.70) 
k45 1.38 

1.19 
1.19 

1.19 
1.50 

1.27 
1.47 

1.60 
1.45  (1.54) 1.45  (1.54) 1.80  (2.02) 1.45  (1.58) 

k56 1.38 
1.41 

1.69 
1.41 

2.12 
1.60 

2.08 
1.41 

 max.error 4-16% max.error 13-20% max.error 13-32% max.error 31-84% 

 
Figure 4. Two-floor concrete frames 
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BAB BAB BAB BAB 
 exact 

EC 
exact 

EC 
exact 

EC 
exact 

EC 
1.15  (1.28)  
-1.25  (1.30) 

1.15  (1.28)  
-1.25  (1.30) 

1.45  (1.84)  
-1.60  (2.00) 

3.40  (3.66)  
-3.66  (4.70) I 

FLOOR 1.40 
1.13 – 1.17 

1.21 
1.13 – 1.17 

1.95 
1.22 – 1.25 

2.99 
1.40 – 1.44 

1.30  (1.55)  
-1.55  (1.60) 

1.30  (1.54)  
-1.54  (1.60) 

2.00  (2.33)  
-2.33  (3.10) 

2.00  (2.78)  
-2.70  (3.10) II 

FLOOR 1.40 
1.31 – 1.43 

1.36 
1.31 – 1.43 

1.95 
1.55 – 1.64 

2.99 
1.61 – 1.71 

1.30  (1.55)  
-1.55  (1.60) 

1.30  (1.55)  
-1.55  (1.60) 

1.85  (2.21)  
-2.21  (2.50) 

1.85  (2.31)  
-2.31  (2.50) III 

FLOOR 1.40 
1.32 – 1.43 

1.57 
1.32 – 1.43 

1.95 
1.51 – 1.61 

2.99 
1.52 – 1.61 

1.30  (1.55)  
-1.55  (1.60) 

1.30  (1.54)  
-1.54  (1.60) 

1.60  (1.92)  
-1.92  (2.20) 

1.60  (1.93)  
-1.93  (2.20) IV  

FLOOR 1.40 
1.32 – 1.44 

1.92 
1.32 – 1.44 

1.95 
1.43 – 1.54 

2.99 
1.43 – 1.54 

1.22  (1.44)  
-1.44  (1.45) 

1.22  (1.44)  
-1.44  (1.45) 

1.30  (1.44)  
-1.44  (1.60) 

1.30  (1.44)  
-1.44  (1.60) V  

FLOOR 1.40 
1.26 – 1.38 

2.71 
1.26 – 1.38 

1.95 
1.28 – 1.40 

2.99 
1.28 – 1.40 

 max. 
error 10-24% 

max. 
error 88-117% 

max. 
error 35-59% max. 

error 86-130% 
 

Figure 5. Multi-floor concrete frames 

 

 

PP

ls 

lr 

1

2

I r 

I s I s 

4

3

 
l

I 

I 

3

2

1 

P
I 

I 

I 

I 

P

P P

6

5

4

l 

l 

 

l 

l 

l 

l 

l 

I

V

IV

III

II

ll l

PP P P

P

P

P

P

 
max.error 
20-54% 

max.error 
32-81% 

max.error 
43-146% 

 
Figure 6. Non-sway concrete systems 
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From these numerical examples it can be concluded that effective buckling length of 
columns does not have any physical meaning, as it was in the case of Euler’s stability 
solution. According to codes, each single member has different critical load. But, it should 
be noticed that when the whole structure starts buckling, critical load is of the same value 
for all members. That is the reason, why effective length does not describe, anymore, 
deflection shape of the bended member (as it was in Euler’s cases). Now, effective length is 
just a length which can be calculated by the expression  

                                                    ( ) memb
2

2g
membcr, kl

EIπP 







=

                                                  (11) 

 
4. Steel structures 

4.1 Codes 
 
This paper deals with European and Serbian codes, same as it was in a case of concrete 
structures. Stability analysis in Serbian codes is presented in JUS Standard, where effective 
length of column can be calculated according to equation: 

                                                                 si,s hl ⋅= β                                                         (12) 

where:  ls,i  is the effective length of the column,  hs  is the column length and  β is the 
coefficient of effective length. 
Coefficient of effective length can be calculated for the sway and non-sway systems 
separately, using given formulas (13) and (14) or diagrams.  
 

                      ( )
( ) BABA

BABA

ηηηη
ηηηηβ
⋅⋅++⋅+
⋅⋅++⋅+

=
7.08.12.3
1.29.16.1   , for non-sway systems              (13) 

 
                  =0β ( )

( ) BABA

BABA

ηηηη
ηηηη
⋅⋅++⋅−
⋅⋅++⋅−

10.130.15.1
22.070.05.1   , for sway systems                 (14) 

 
This code considers only separated member and ratio between total stiffness of all columns 
and stiffness off all beams, fixed in the observed joint. 
 
In the last published version of EUROCODE 3 (from 2005.), two ways of calculations are 
suggested. In the case of “typical” structures, which are not too deformable, the classical 
method of analysis has to be used. This method implicates structural calculation according 
to the first order theory, and stability check of structural elements taking into account their 
effective buckling length. In the case of complex deformable structures, calculation 
according to the second order theory is recommended, and global and local imperfections 
have to be taken into account. But, in this case final solution for the effective length 
calculation is not presented.  
In this paper analysis was performed using expressions and diagrams for the first case of 
“typical” structures, given in EC3 - annex E (version ENV 1993-1-1:1992). 
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                 where η1 and η2 are coefficients of member rigidity distributions.                          

 
 

4.2 Numerical analysis 
 
The same numerical examples, as it was in the case of concrete structures, were used. 
Comparative numerical analysis between exact and the code results is presented in Figures 
7, 8, 9 and 10. 
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EC 
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exact 
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exact 
EC 

1.22 1.22 1.00 1.50 
k12 1.16 

1.16 
1.49 

1.16 
1.01 

1.16 
1.42 

1.16 

1.22 2.53 1.42 1.06 
k34 1.16 

1.16 
1.49 

2.37 
1.43 

1.16 
1.00 

1.16 

 max.error 1-6 % max.error 28-70% max.error 14-23% max.error 16-21% 
 

 
Figure 7. One-floor steel frames 
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EC 

1.36 1.36 1.11 1.36 
k12 1.38 

1.28 
1.19 

1.28 
1.06 

1.28 
1.47 

1.28 

1.65 1.65 1.35 1.65 
k23 1.38 

1.47 
1.69 

1.47 
1.50 

1.47 
2.08 

1.47 

1.36 1.36 1.76 2.97 
k45 1.38 

1.28 
1.19 

1.28 
1.50 

1.43 
1.47 

2.68 

1.65 1.65 2.42 1.65 
k56 1.38 

1.47 
1.69 

1.47 
2.12 
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2.08 

1.47 

 max.error 8-20% max.error 14-15% max.error 17-20% max.error 14-102% 

 
Figure 8. Two-floor steel frames 
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Figure 9. Non-sway steel systems 
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 exact 

EC 
exact 

EC 
exact 

EC 
exact 

EC 

1.22  - 1.36  1.22  - 1.36  1.56  - 1.71  3.85  - 5.06  I 
FLOOR 1.40 

1.16 – 1.28 
1.21 

1.16 – 1.28 
1.95 

1.46 – 1.62 
2.99 

3.35 – 4.29 

1.48  - 1.84 1.48  - 1.84 2.40  - 3.24 2.40  - 3.24 II 
FLOOR 1.40 

1.34 – 1.61 
1.36 

1.34 – 1.61 
1.95 

2.04 – 2.70 
2.99 

2.04 – 2.70 

1.48  - 1.84 1.48  - 1.84 2.13  - 2.84 2.13  - 2.84 III 
FLOOR 1.40 

1.34 – 1.61 
1.57 

1.34 – 1.61 
1.95 

1.84 – 2.39 
2.99 

1.84 – 2.39 

1.48  - 1.84 1.48  - 1.84 1.82  - 2.37 1.82  - 2.37 IV  
FLOOR 1.40 

1.34 – 1.61 
1.92 

1.34 – 1.61 
1.95 

1.60 – 2.02 
2.99 

1.60 – 2.02 

1.37  - 1.65 1.37  - 1.65 1.45  - 1.77 1.45  - 1.77 V  
FLOOR 1.40 

1.26 – 1.47 
2.71 

1.26 – 1.47 
1.95 

1.33 – 1.57 
2.99 

1.33 – 1.57 

 max. 
error 20-31% 

max. 
error 64-115% 

max. 
error 34-47% max. 

error 86-125% 
 

 
Figure 10. Multi-floor steel frames 

 

 

5. Conclusions of the analysis  
 
Considering results shown in the numerical analysis, it may be concluded: 
- Serbian and European codes for concrete and steel structures give errors which are of the 
same order, 
- Calculations of sway and non-sway structures give errors which are similar, 
- Geometric interpretation of effective length is valid only for symmetric one-floor frames,  
- Calculation according to presented codes gives the best results in the case of one-floor 
frames, 
- In the case when frames are not symmetrically loaded, or columns are not of the same 
rigidity, errors are higher, 
- Maximum errors are obtained in the case of multi-floor frames, and exceeded 100%. 
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The final conclusion is that innovation of codes, both for concrete and steel structures, is 
recommended in the part where the effective length (hi) of frame columns is considered. 
Improvement of this calculation could be done using the global stability analysis and 
applying calculation of the critical load for the complete structure (Pcr

g). Possibility of such 
calculation is only suggested in EC3, but it is not explained.  

When the critical load is calculated for the whole structure, the critical load for each 
column member can be obtained, as it is presented in this paper. In that case, the effective 
buckling length of the member could be found by the formula: 

                                                     
i

mem,
2

i

2g
memcr, h

h
EIπP ⇒








⋅=                                  (17) 

where Pcr
g

,mem is the critical load in the column member when the complete structure is 
buckled (Pcr

g).  
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