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Abstract: 
  

This paper presents a stability analysis of multi-story steel frames in the elastic and elasto-
plastic domain. The concept of the tangent modulus theory is applied. Numerical analysis is 
carried out using FEM where corresponding stiffness matrices are based upon the trigonometric 
and hyperbolic interpolation functions of normal forces. Also, the calculation algorithm is based 
on the global stability analysis of the considered frames. The numerical analysis is performed 
using the self-developed computer program ALIN. A six-story three-bay steel frame was chosen 
as a benchmark numerical example. Sway and non-sway frames that are clamped at the base are 
analyzed separately. Two load cases are considered: when the axial forces are applied at the top 
of the frame and when these forces are applied at each story of the frame. From the obtained 
results it is obvious the weakness of the traditional elastic stability analysis. Therefore, stability 
analysis in the inelastic domain is recommended, especially in the case of rigid structures. 
 
Key words: steel frames, inelastic buckling, tangent modulus, finite element method. 
 
 
1. Introduction 
 

Calculation of compressed frame columns requires investigation of stability phenomena. The 
dominant compressive stresses can cause structural instability, loss of load-bearing capacity and 
at the end collapse of the construction, even in cases where the allowable stresses are not 
exceeded. So, the calculation of such structures, especially taking into account their stability, 
requires the application of modern and complex numerical methods. 

The first investigations in this field were based on Euler’s theory of buckling of isolated 
columns [1]. They were mainly based on solving the differential equation of buckling according 
to the second-order theory. However, in the case of the complex structures, it was necessary to 
introduce some approximations. So, all the compressed elements were considered "isolated" from 
the structure as a whole. These isolated columns are supported only by the adjacent columns and 
beams. Basically, the presence of the other structural elements connected to the considered one is 
introduced by the corresponding boundary conditions. Thus, stability analysis of columns is 
simplified and the results may be obtained through the corresponding diagrams and approximate 
formulas. The results of some elementary cases are given in [2]. It is important to point out that 
these are approximate solutions are bases for many design codes, especially for steel structures, 
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for example [3]-[5]. Regardless of its frequent use in engineering practice, this approach has 
major limitations, as it is explained in [6]. That is the reason why lately a great effort has been 
devoted to improving these approximate calculation procedures. Thus, besides other, 
investigations [7]-[9] provided significant contributions in this field. 

Certainly, it has to be pointed out usage of finite element method (FEM) as one of the most 
efficient methods for stability analysis of the frame structures [10], [11]. It is used in modern 
commercial programs which deal with stability analysis of the frames. In the usual approach, the 
finite element method analysis is based upon the integral structural model and the geometric 
stiffness matrix as a part of the tangent stiffness matrix. This paper presents the procedure where 
the stiffness matrix is derived using the interpolation functions related to the exact solution of the 
differential equation of bending of a beam according to the second-order theory. On the basis of 
the obtained solutions, the method for determining the critical load in all columns is based on the 
global stability analysis. 

Besides the geometrical nonlinearity, the physically (or materially) nonlinearity is also 
considered in this analysis. The tangent modulus theory [12] is used, as one of the most efficient 
methods for solving such kind of problems. It means that stiffness matrices are derived using the 
tangent modulus (Et) that is stress dependent and follows changes of the member stiffness in the 
inelastic domain. 

So, the most important aspect of this research will be devoted to the investigation of the 
suitable numerical methods to obtain the solution of the corresponding transcendental stability 
equation. After finding the appropriate algorithm, the problem will be extrapolated to the non-
elastic material behavior, i.e. to the stability problems in the plastic, or rather, elastic-plastic 
range. The numerical investigation of multi-story steel columns with different boundary 
conditions and different loads will be carried out in self-developed code ALIN. 

 
2. Calculation of the critical load applying the tangent modulus theory 
 

In this investigation, it is used finite element method, as the most convenient for numerical 
analysis of frames related to their stability. Applying FEM, the critical load can be obtained as the 
non-trivial solution from the homogeneous matrix equation: 

 0 K q      (1) 

In Eq. (1) K represents global stiffness matrix for the entire frame including the 
corresponding boundary conditions, while q is the vector of generalized coordinates. In the elastic 
stability analysis relationship between stresses and strains is a linear, so the Young's modulus (E) 
has a constant value. Taking into consideration well known expression for the Euler’s critical 
force, critical stress in a member may be expressed as a function of the modulus of elasticity and 
the slenderness ratio: 
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where 0 /i l i  is slenderness ratio of the member; l0 is effective length of the member; 

AIi / is the radius of gyration; I is moment of inertia and А is cross-sectional area. Eq. (2) is 
represented by a hyperbolic curve and this function is valid until the critical stress is less than the 
proportionality limit (p), as shown in Fig.1a. This stability formulation for elastic buckling is 
given in [2] and it is also bases of the regulations for design of steel structures, for example [4]. 
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   (a)        (b) 

Figure 1. (a) Buckling stress diagram - Euler hyperbola and Tetmajer line 
(b) - diagram of structural steel 

 
However, this analysis becomes more complicated when some compressed columns enter 

into the phase of nonlinear material behavior although the critical load has not been reached. It 
means that stresses in such members exceed the proportional limit value and that buckling occurs 
in the plastic domain. One of the first solutions to this problem, which is still used in engineering 
practice, was proposed by Tetmajer, Fig.1a. 

Besides many other investigations related to this problem, it is important to emphasize 
Engesser’s solution [13] because has established a tangent modulus theory. Namely, he replaced 
Young’s modulus E with the tangent modulus Et, that represents the slope of the tangent on the 
stress-strain diagram at any point. More about this theory can be found in [12], [14]. Another 
well-established method for obtaining the tangent modulus is the Ramberg–Osgood [15] 
equation that relates Young's modulus to the tangent modulus. 

In this paper are considered multi-story steel frames that are made of steel. In order to 
implement numerical stability analysis in the inelastic domain, we have to know the physical and 
mechanical properties of such material. The diagram graph that represents the relationship 
between the strain and stress of the axially loaded steel member is presented in Fig.1b. The 
proportional limit is marked as σp, and yield stress with σv. 

In this analysis it is used an empirical relationship between two moduli that is suggested in 
many relevant investigations [14], [16], where it is assumed that this expression is valid for ratio 
/p > 0.5: 
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This empirical formula was derived from inelastic column curves and represents the behavior of 
structural steel columns in the inelastic domain. It was applied in this investigation in order to 
develop corresponding computer program ALIN for the nonlinear elastic-plastic analysis of frame 
structures. 

The main goal of this analysis was, conditionally speaking, to formulate the exact matrix 
stability analysis of multi-story frames. So, it was necessary to use trigonometric shape functions 
related to the exact solution of the differential equation of bending of a beam according to the 
second-order theory. The advantages of such an approach can be found in numerous literatures, 
for example [17]. 

The most important aspect of this research was devoted to the formulation of a suitable 
algorithm and corresponding computer program that can solve solving such kind of problems. 
Namely, in this case instead of the generalized eigenvalue problem, for which there are several 
well-established methods, herein the buckling problem is reduced to the solution of the 
transcendental equation that depends, in a very complicated way, upon the axial forces in the 
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columns and beams. Therefore, it was necessary to formulate corresponding stiffness matrices for 
nonlinear material behavior. In this paper it is only given stiffness matrix for the member that is 
clamped at both ends and subjected to the compressive force: 
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The procedure for deriving this matrix is given in [17]-[19]. It is clear that it has a same form 
as for the linear behavior of the material, but it is essentially totally different. Namely, instead of 
constant modulus E, there is stress dependent function Et. Also, values of ω and  are replaced by 
ωt and t, respectively. 

 
3. Program for the stability analysis in elasto-plastic domain 

 
In order to successfully use this theoretical approach, it was necessary to formulate an 

appropriate computer program. This code was named ALIN and it was developed using C++ 
programming language. It should be emphasized that one of the main contributions of this 
investigation consists of the development of the part of this program which provides efficient 
solutions for stability problems in the elasto-plastic domain. Those solutions are obtained using 
the "exact" expressions of the stiffness matrix which are derived previously. So, in this case, 
instead of the generalized eigenvalue problem (that is applied in „classical“ stability analysis), for 
which there are several well-established methods (e.g. the subspace iteration, Lanczos method, 
etc), herein the buckling problem is reduced to the solution of the transcendental equation that 
depends, in a very complicated way, upon the axial forces in the columns and beams. 

In the framework of this paper, the algorithm for the calculation of the critical load in the 
elastic and inelastic domain will be briefly presented. Firstly, this program has the ability to 
determine the critical load in the elastic range. It means that in first iteration axial forces are 
calculated according to the first order theory. These forces are in the first iteration to determine 
the stiffness matrix according to the second order theory. This calculation is performed iteratively 
until the displacement difference in two consecutive iterations becomes smaller than some pre-set 
small value. At the end of this procedure stiffness matrix of the whole system should be reduced, 
and only the active degrees of freedom should be considered. Obtained reduced stiffness matrix 
must satisfy the condition for the existence of the nontrivial solution, i.e. that the determinant of 
this matrix is equal to zero. In the end, this procedure gives the value of the critical force in the 
elastic domain, i.e. when the modulus of elasticity E has a constant value which is given in the 
input file. 

After that, it is possible to perform "inelastic" stability analysis. When the critical load in the 
"elastic" domain is obtained, it should be calculated the critical stress as the ratio of the critical 
normal force and the cross-sectional area of the analyzed element. When the obtained critical 
stress is greater than the proportionality limit (p), calculation continues as it is previously 
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presented. It means that it is necessary to change stiffness for such columns, and a new tangent 
modulus (Et) should be taken in the form (2). Thus, the new stiffness matrix in the local 
coordinate system has to be formed for those columns. Columns with critical stress which did not 
reach proportionality limit should keep "old characteristics". So, the stiffness matrix for this 
element is the same as in the first part of this calculation. Then, all matrices should be 
transformed from the local to the global coordinate system and the stiffness matrix of elements is 
formed. The iterative calculation should be again performed in the same way as when 
determining the critical load in the elastic range. As a result of this procedure, corresponding 
critical load factor and the value of tangent modulus for all elements buckling in the inelastic 
domain are obtained. 

The detailed description of the program is given in [18], [20]. 
 
4. Numerical examples 
 

In order to illustrate the proposed procedure, a three-bay plane frame of six stories is 
considered. The sway and non-sway frames will be analyzed separately. Figure 2 presents the 
geometry and the loading of a frame without lateral bracing which will be considered first. As it 
can be seen, rigid connections for columns ends including their supports at the base are assumed. 
Two load cases are considered: when the axial forces are applied at the top of the frame (Fig.2a) 
and when these forces are applied on each column at each story in the frame (Fig.2b). 

 

     
                     (a)                (b) 

Figure 2. Six-story three-bay plane sway frame 
 

Considered frame is made of steel with modulus of elasticity E = 210,000,000 kN/m2 and 
yield stress σv = 240,000 kN/m2. So, proportional limit can be calculated as σp= 0.5·σv = 120,000 
kN/m2, according to the Eq.(3). In this analysis several different section types are used for the 
columns (IPB100, IPB140, IPB180, IPB220, IPB260 and IPB300). The sections of the girders in 
all stories are assumed as IPE300. 

The results of the performed stability analysis for the frame given in Figure 2 (a) are given in 
Table 1. 
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Profile 
Elastic analysis        Inelastic analysis 

Pcr,el Pcr,inel Et 

IPB100 525.25 445.48 171,564,770 

IPB140 1433.09 869.19 111,653,565 

IPB180 2597.58 1399.81 80,135,580 

IPB220 3613.95 2003.42 63,771,472 

IPB260 4351.28 2631.47 55,267,926 

 
Table 1. Values of Pcr (kN) and Еt (kN/m2) for the frame given in Figure 2(a) 

 
In the load case (b) the axial load in the columns is increasing from the upper stories to the 

basic level. It means that conducted elasto-plastic analysis of stability leads to the different 
behaviour of the columns in the different stories. The calculated values of the critical load and 
tangent moduli for the characteristic floors are shown in Table 2. 

 

Profile 
Elastic 

analysis 
Inelastic analysis 

Pcr,el Pcr,inel Et – 6th floor Et – 3rd floor Et – 1st floor 

IPB100 95.93 76.08 210,000,000 209,873,261 164,953,336 

IPB140 282.91 148.16 210,000,000 205,366,416 100,283,751 

IPB180 557.34 238.89 210,000,000 199,888,758 65,629,798 

IPB220 829.79 342.77 210,000,000 196,285,251 46,142,006 

IPB260 1069.86 451.92 210,000,000 193,931,804 34,213,200 

 
Table 2. Values of Pcr (kN) and Еt (kN/m2) for the frame given in Figure 2(b) 

 
From these results it is obvious that frames with stiffer cross sections of the columns can be 

exposed to larger critical load. It means that the application of the stability analysis in inelastic 
domain is even more justified for such frames. The similar conclusion was observed and for other 
types of steel cross-sections, as it is shown in [20]. Also, it is clear that overall buckling of such 
multi-story frame is governed by the behaviour of the columns in the first, most loaded floor. 
That is the reason why the stress in columns in upper floors does not exceed the proportionality 
limit of the material. So their characteristics remain unchanged, i.e. their tangent module remains 
the same as the Young's modulus of elasticity. 

Comparison of the results for both load cases is presented in Figure 3. 
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Figure 3. Critical load vs. radius of inertia of analysed cross-section for sway frames 

 
Considered six-story three-bay non-sway (braced) frames with two load cases are shown in 

Figure 4. The geometry and the member characteristics are the same as in the previous example.  
 

     
                          (a)                     (b) 

Figure 4. Six-story three-bay plane non-sway frame 
 

The results obtained by ALIN program are given in Tables 3 and 4.  
 

Profile 
Elastic analysis        Inelastic analysis 

Pcr,el Pcr,inel Et 

IPB100 1829.24 579.89 55,181,756 

IPB140 4228.50 992.97 30,564,565 

IPB180 7940.69 1528.75 20,104,996 

IPB220 13958.22 2152.20 12,050,779 

IPB260 23264.87 2792.69 11,469,690 

 
Table 3. Values of Pcr (kN) and Еt (kN/m2) for the frame given in Figure 4(a) 
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Profile 
Elastic 

analysis 
Inelastic analysis 

Pcr,el Pcr,inel Et – 3rd floor Et – 2nd floor Et – 1st floor 

IPB100 358.87 97.12 197,377,066 144,972,868 51,869,283 

IPB140 918.32 166.26 192,481,190 131,592,892 27,101,155 

IPB180 1843.17 255.99 190,242,250 125,744,940 16,424,481 

IPB220 3379.18 359.22 189,054,395 122,696,386 10,889,735 

IPB260 5753.00 467.64 188,359,143 120,927,723 7,687,822 

 
Table 4. Values of Pcr (kN) and Еt (kN/m2) for the frame given in Figure 4(b) 

 

These results lead to a similar outcome as in the case of sway frames. Also, it is shown how 
important is to use inelastic stability analysis for such examples, especially in the case of rigid 
structures. Namely, the application of traditional elastic buckling analysis may lead to substantial 
errors. This numerical example also illustrates the difference in the stability analysis of sway and 
non-sway frames in the elastic-plastic field. It can be noted in Figure 5, which shows the value of 
elastic modulus and tangent modules at the time of buckling. 

 

 
Figure 5. Comparison of tangent modulus values for the sway and non-sway frames 

 
5. Conclusions 

 
In this paper, it is presented a procedure for the global stability analysis of the steel frame 

structures. Applied matrix analysis is based on the use of trigonometric shape functions. The 
proposed method is not unknown, but the way how it is formulated and implemented here hasn’t 
been applied in any of the commercial programs or design procedure that deal with the stability of 
frames.   

Presented analysis shows the advantages of performed inelastic stability calculation when 
compared with traditional elastic stability analysis. In this case, corresponding stiffness matrices 
have been derived using the tangent modulus approach. These matrices have been implemented in 
the self-developed computer code ALIN. 

Some of the possibilities of such a calculation algorithm are presented on the example of one 
multi-story frame. It has been shown that for rigid frames, the calculation in the inelastic domain 
has greater application. The stiffness of the system is varied through the different cross-sections 
of the axially loaded columns and the consideration of the sway and non-sway frames separately. 
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So, obtained results confirm that the proposed inelastic buckling approach is convenient for 
determination of the stability analysis of the steel frame structures. Therefore it can be used as a 
good alternative for estimation of the load-bearing capacity of the axially loaded elements in the 
design of steel frames. 

In the end, it should be emphasized again that presented calculated algorithm brings more 
precise stability calculation both in the elastic and in the inelastic domain. It enables monitoring 
of the loss of structural stability in the plastic range and determination of the critical load and 
tangent modulus of the axially loaded elements when the frame structure buckles. 

 
Acknowledgement. Author is grateful for the financial support of the Ministry of education, 
science and technological development of the Republic of Serbia within the project TP 36043. 
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