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Abstract 
The circadian clock is a fundamental biological mechanism that 
orchestrates essential cellular and physiological processes to optimize 
fitness and health. The basic functional unit is the cell-autonomous 
oscillator, consisting of intersecting negative feedback loops. Whereas 
the core loop is primarily responsible for rhythm generation, auxiliary 
loops, most notably the secondary or stabilization loop, play pivotal 
roles to confer temporal precision and molecular robustness. The 
stabilization loop contains opposing nuclear receptor subfamilies REV-
ERBs and retinoic acid receptor-related orphan receptors (RORs), 
competing to modulate rhythmic expression of the basic helix-loop-
helix ARNT like 1 (Bmal1) genes in the core loop as well as other clock-
controlled genes. Therefore, REV-ERBs and RORs are strategically 
located to interface the oscillator and the global transcriptomic 
network, promoting cellular homeostasis and physiological fitness 
throughout lifespan. Disruption of REV-ERB and ROR functions has 
been linked with diseases and aging, and pharmacological 
manipulation of these factors has shown promise in various mouse 
disease models. Nobiletin is a natural compound that directly binds to 
and activates RORα/γ, modulating circadian rhythms, and shows 
robust in vivo efficacies to combat clock-associated pathophysiologies 
and age-related decline. Results from several studies demonstrate an 
inverse relation between nobiletin efficacy and clock functional state, 
where nobiletin elicits little effect in young and healthy mice with 
growing efficacy as the clock is perturbed by environmental and 
genetic challenges. This mode of action is consistent with the function 
of the stabilization loop to promote circadian and physiological 
resilience. Future studies should further investigate the function and 
mechanism of REV-ERBs and RORs, and test strategies targeting these 
factors against disease and aging.
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The circadian timing system and health implications
Circadian rhythms are daily cycles of intrinsic processes in living organisms. While light/dark cycles of our environment
are the predominant input (or zeitgeber, time giver) to reset our internal rhythms, it is now clear that other factors including
feeding-fasting state, nutrients, physical activity, and temperature are all capable of manipulating the circadian cycle.1–3

Fundamentally, the circadian timing system is a molecular circuit governing cellular and physiological homeostasis
throughout lifespan. Alterations to this clock machinery, by either environmental stresses or genetic defects, have been
shown to cause or correlate with dysfunction of diverse physiological processes and increased risks for various diseases
involving both peripheral organs and the brain.4–6

At the pinnacle of the circadian timing system is the master pacemaker located in the suprachiasmatic nucleus (SCN)
of the hypothalamus. The SCN clock synchronizes semi-autonomous cellular oscillators in other brain regions and
peripheral organs through neuronal and hormonal signals.7–9 The ubiquitous cellular oscillator, present in the SCN and
throughout the body, contains interlocked transcriptional and translational feedback loops controlling the expression of
downstream target genes.10 The core clock genes functioning in the oscillator include circadian locomotor output cycles
kaput (Clock)/neuronal PAS domain-containing protein 2 (Npas2), basic helix-loop-helix ARNT like 1 (Bmal1), period 1
(Per1)/period 2 (Per2)/period 3 (Per3), cryptochrome 1 (Cry1)/cryptochrome 2 (Cry2), Rev-erba/Rev-erbb (nuclear
receptor subfamily 1 group D member 1/2 (Nr1d1)/2)), and retinoic acid receptor-related orphan receptor alpha (Rora)/
retinoic acid receptor-related orphan receptor beta (Rorb)/Retinoic acid receptor-related orphan receptor gamma (Rorc)
(Nr1f1/2/3), D-box binding protein (Dbp), and nuclear factor, interleukin-3 regulated protein (Nfil3). By acting on
consensus promoter elements or directing the expression of secondary regulators of gene expression, the encoded core
clock proteins play a prevalent role in the global gene expression landscape where more than 80% of genes have been
shown to oscillate in at least one location in the body.11,12

Perhaps one of the most important physiological functions of the clock is to safeguard energy homeostasis.13,14

It has been postulated that an evolutionary origin of the circadian system is energy partitioning: photosynthesis using
oxygen during the day and anaerobic metabolism including nitrogen fixation at night.15 In mammals, central and
peripheral clocks coordinately drive rhythmic expressions of metabolic-related genes in organs with high metabolic
activity including liver, muscle, and adipose tissue.3,16–18 Over the past 15 years or so, a growing body of evidence has
established that the clock gene machinery influences energy homeostasis directly and genetic mutations in clock genes
lead tometabolic dysfunctions, including deficient insulin resistance, glucose intolerance, leptin resistance, and abnormal
glucocorticoid and melatonin levels.17,19,20 In accordance, human subjects who were exposed to a controlled circadian
misalignment condition displayed glucose intolerance, insulin resistance, and other comorbidities.21–23 In addition, our
lifestyle choices that affect circadian rhythms may also evoke adverse metabolic consequences. For example, external
stimuli including abnormal light exposure,24 jet-lag,20,25 and high-fat diet induced-obesity26,27 can trigger desynchro-
nization of the internal clock accompanied by many tissue disorders. Furthermore, sleep deprivation, a common
occurrence in modern lifestyle, is associated with increased body mass index and type 2 diabetes incidence and has
been identified as an independent risk factor for hypertension, obesity, and coronary heart disease.28,29 In addition, sleep
and feeding alterations and shift work are highly correlated with elevated metabolic syndrome markers such as
triglycerides, and lower high-density lipoprotein (HDL)-cholesterol levels.29–31

Dysregulated clocks are also involved in brain dysfunction and diseases.32–34 Sleep is well known to be regulated by the
clock, and elegant studies combining human genetics and mechanistic investigation have revealed molecular links
between several mutations in clock genes, including PER2 and casein kinase I isoform delta (CSNK1D), and sleep
disorders.35 An emerging area of interest is the crosstalk between the clock and neurodegenerative diseases.36–38

Circadian clocks have been shown to control several aspects of brain functions linked to neurodegeneration including
dopamine synthesis, inflammatory response, oxidative stress, and cellular metabolism.33,39 Consistently, circadian and
sleep disruptions are closely associated with neurodegenerative diseases including Alzheimer’s disease and Parkinson’s
disease,40 as evidenced by amyloid-beta (Aβ) oscillation,41 sundowning behaviors,42 and neuronal inflammation in
mouse genetic mutants.40
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Given the fundamental role of the clock in cellular and physiological homeostasis and the myriads of chronic diseases
associated with circadian dysregulation, it is not surprising that age-related decline over time is strongly correlated with
and likely exacerbated by dysfunction in the clock system.43 It is well known that a number of physiological parameters
display blunted circadian rhythms during aging, including sleep, temperature, and hormone secretion.43,44More recently,
global transcriptomic profiling revealed profound rewiring in the clock network, notably dampening of oscillatory gene
expression in accordance with the physiological decline.45 A key role of the circadian rhythms in aging is further
highlighted by two large-scale gene profiling studies where circadian gene expression changes emerged from unbiased
analyses as a top underlying pathway during aging.46,47 For example, a comparative multi-tissue gene profiling approach
was undertaken to search for pathways correlated with maximum lifespan in 26 species, and identified the circadian
system as a pillar that governs metabolic and inflammatory pathways for longevity regulation.47 Furthermore, interven-
tional fasting paradigms designed to incorporate circadian timing were recently reported to markedly prolong lifespan
in Drosophila and mice,48,49 including 35% lifespan extension in male mice. The convergent spotlight on circadian
remodeling during aging provides compelling evidence for the notion that a robust circadian system is key to health and
healthspan.50

The stabilization loop
The core loop of the oscillator is primarily responsible for generating the near-24hr rhythm via the negative feedback
between CLOCK/BMAL1 and CRY/PER. Through binding to E-box elements, the CLOCK/BMAL1 heterodimer
activates the expression of many Clock-Controlled Genes (CCGs). As PER/CRY proteins accumulate and reach critical
levels in the cytoplasm, they translocate to the nucleus to inhibit the activity of CLOCK/BMAL1, thereby inhibiting their
own transcription.10 On the other hand, the secondary loop, mainly involving the opposing transcription factors REV-
ERBs and RORs,51,52 confers stability and robustness for the core loop, and is also strategically located at the interface
between the core oscillator and many downstream clock-controlled genes (Figure 1). Growing evidence suggests a
regulatory and therapeutic potential of the stabilization loop in physiology, disease, and aging.53

REV-ERBs and RORs, the main components of the stabilization loop, are multi-functional nuclear receptors to repress
and activate target gene expression, respectively.52,54,55 REV-ERBs and RORs bind as monomers to the same consensus

Figure 1. The stabilization loop of the circadian oscillator is strategically situated at the interface of the
rhythm-generating core loop and the circadian output network. The core oscillator mainly consists of core and
stabilization loops as indicated by the dotted circle. The REV-ERB and retinoic acid receptor-related orphan receptors
(RORs) compete at the consensus ROR response elements (ROREs) of target gene promoters, including basic helix-
loop-helix ARNT like 1 (Bmal1) andmany clock-controlled genes (CCGs), to regulate circadian transcription in a tissue-
specific manner. They may interact via other mechanisms and in clock-independent processes – see text for details.
REV-ERBs and RORs play regulatory roles inmany tissue and organismal functions and targeting these receptors by
small-molecule agents may strengthen circadian resilience, ultimately conferring beneficial effects to promote
health and health span. CLOCK, circadian locomotor output cycles kaput; CRY, cryptochrome; PER, period.
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sequence, namely the ROR response elements (ROREs, or RREs) consisting of an (A/G) GGTCA flanked by anA/T-rich
5’ in the regulatory regions of the target genes.56–58 In the core oscillator, perhaps the most important function of REV-
ERB/ROR is to maintain and fine-tune the oscillatory expression of Bmal1, encoding the chief circadian transcription
activator in the core loop, thereby serving as a stabilizing mechanism.52,55,59 In addition, several other core clock genes
have been shown to possess the RORE elements in their promoter region,60 suggesting an important stabilizing function
by these opposing regulators. More broadly, gene expression and profiling studies have illustrated a prominent role of
REV-ERBs and RORs in transcriptomic landscape in various tissues/cells.61–65 For example, studies of liver-specific
RORα/RORγ double knockout mice revealed a key role of RORs in lipogenesis, via direct transcriptional regulation of
the insulin-induced gene 2 (Insig2)-sterol regulatory element-binding protein 1 (SREBP) cascade.65

Traditionally REV-ERBs and RORs are considered to interact and compete as repressors and activators on shared target
genes. While Rorα expressions display relatively moderate circadian oscillatory amplitude, Rorγ is more rhythmic,
exhibiting a strong oscillatory pattern of expression in several tissues such as liver, brown adipose tissue (BAT), kidney,
and small intestines with peak expression around ZT16, but not in the hypothalamus, muscle, or brainstem.66–68 Notably,
Rev-erbs are among the most oscillatory genes (highest amplitude) in both protein and mRNA expression.64,69 It is
believed that their opposing functions and circadian patterns (expression and promoter recruitment) play a key role in
amplitude regulation of clock-controlled genes. In a pioneering study, the mRNA oscillation of Bmal1, Clock, and Cry1
genes show strong amplitude in wild-type animals but is diminished in Rev-erbα deficient mice.55 Although dispensable
forBmal1 oscillation per se, RORswere found to contribute to its amplitude.52,70,71More recently, correlation analysis of
publicly available mouse circadian transcriptomic datasets, including both microarray and RNA-sequencing, identified a
strong correlation between Rorc expression level and amplitude with the percentage of cycling transcripts in respective
tissues, consistent with a regulatory role of RORγ in circadian oscillation.72 In addition to jointly regulating Bmal1
transcription, additional modes of genetic and molecular interplay exist between REV-ERBs and RORs. Rorc itself
contains a functional RORE element in its promoter, therefore subject to transcriptional regulation by REV-ERBs/
RORs.60 Moreover, molecular studies have demonstrated a facilitated recruitment mechanism where REV-ERBs are
recruited to the target gene promoter by RORs, in a process that requires chromatin remodeling by SWI/SNF factors.73

These observations suggest an interconnectivity, rather than a simple competition, relationship between these master
regulators. As discussed below, our studies of an ROR agonist, nobiletin (NOB), provide further evidence that RORs, and
likely REV-ERBs, regulate circadian gene expression levels and amplitude in a context-dependent manner, potentially
dictated by an inherent requirement to maintain circadian and physiological resilience.

Consistent with the broad gene regulatory roles of REV-ERBs and RORs, mouse genetic mutants exhibit various
circadian and physiological phenotypes. Rev-erba (Nr1d1)-deficient mice showed disrupted circadian rhythms including
a shorter period length (0.5 h) and exaggerated light-induced phase shifts compared to wild-type (WT) mice.55,74

Rev-erbb (Nr1d2) knockout (KO) mice also displayed a strong diurnal change of gene expression including inhibition of
Bmal1 transcription.51While individual KOmice retained circadian rhythmicity,Nr1d1/2 double knockout led to severe
disruption of overt rhythms, consistent with functional redundancy between these two subtypes.70,75,76 Rora- and Rorb-
deficient mice were reported to display altered circadian behavior such as circadian locomotor activity and shortened
period length, while no significant alteration inwheel activity is apparent inRorc-deficientmice.52,70,71,77,78 These results
indicated that REV-ERBs and RORs are required for the maintenance of normal circadian behavior and period length.

With respect to tissue physiology, REV-ERBs and RORs show overlapping but distinct expression patterns and their
deficiency led to a wide range of other physiological deficits. REV-ERBα and REV-ERBβ are expressed in skeletal
muscle, adipose tissue, liver, and brain with tissue-specific patterns. Whereas REV-ERBα is broadly expressed in a
rhythmic manner in many tissue types with robust amplitude, REV-ERBβ is highly expressed in fewer tissues including
certain brain regions (pineal and prefrontal cortex), thyroid, uterus, and pituitary. Deficiency of bothRev-erbs causes liver
steatosis, in contrast to relatively minor changes upon loss of each subtype alone.75,79

Like REV-ERBs, the three members of the ROR subfamily, RORα, RORβ, and RORγ, display significant sequence
similarities. RORα is expressed broadly, notably in skeletal muscle, liver, kidney, lungs, adipose tissue, skin, and brain.61

Rora KO (Rora�/�) and staggerer mutant (Rorasg/sg) mice displayed debilitating cerebellar ataxia and are mostly
infertile.52,71,80,81 RORα-deficient mice also showed a multitude of other defects including thin long bones82 and
abnormal retinal development,83,84 the latter corresponding to high expression levels of RORα in the ganglion cell layer,
the inner nuclear layer, and cone photoreceptors in the outer layer. RORβ expression is more limited, mainly in the nerve
system. Rorb�/� mice exhibited reproductive abnormality and serious degeneration of postnatal retina.59 RORγ is
expressed in several peripheral tissues including skeletal muscle, liver, kidney, adipose tissue, and particularly thymus.61

In accordance, RORγ KO led to reduced levels of thymocytes and abnormal lymphoid organ development.85 This and
many other studies have since established a key role of RORyt as the master transcription factor for Th17 cell
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development, although circadian clock involvement in this function is not fully understood. Several studies have also
examined double disruption of RORs, providing evidence for their overlapping functions. As mentioned above, in the
liver where both RORα and RORγ are expressed, double Rora/c KO led to strong disruption of lipogenesis via a direct
regulation of the Insig2 gene.65

Therapeutic relevance of REV-ERBs and RORs
REV-ERBα and RORs have been implicated in various diseases including metabolic diseases, immune diseases, and
cancers.53,61,86,87 REV-ERBα and RORs show altered expressions and disrupted rhythms during disease develop-
ment.88–90 Furthermore, alteration of REV-ERBα and RORs affects the organism susceptibility to diseases in both
humans and mice and is involved in many pathways associated with pathological processes and diseases.61,87,90,91–93

Metabolic disorders
Myriad studies have illustrated a regulatory role of REV-ERBs and RORs in energy metabolism. REV-ERBαwas found
to regulate de novo glucose synthesis.94–96 In accordance, REV-ERBα-deficient mice showed a higher plasma glucose
level,75,97 whereas activation of REV-ERBα diminished plasma glucose levels, improving disease phenotypes.94–97

RORs are also involved in glucose metabolism. Single nucleotide polymorphism in RORA (rs7164773) has been shown
to correlate with increased risk of type 2 diabetes in the Mexico Mestizo population, providing human genetic evidence
for a role of RORα in insulin sensitivity.98 In addition, it was reported that RORαwas required for the secretion of FGF21,
a hormone associated with glucose tolerance and hepatic lipid metabolism.99–101 In another study, RORγ was found to
regulate transcription of various genes involved in glucose metabolism including glucose-6-phosphatase (G6p),
phosphoenolpyruvate carboxykinase 1 (Pck), and glucose transporter 2 (Glut2), andRorc-deficient mice in fact displayed
a significantly higher insulin sensitivity and glucose tolerance thanWTmice, particularly at ZT (zeitgeber time, with ZT0
and ZT12 corresponding to light on and off respectively) 4–6.102 In pharmacological studies, SR1078, an agonist of
RORα and RORγ, was able to improve insulin sensitivity, blood glucose, and triglyceride levels in diabetic rodents.103 In
comparison, mice treated with SR3335, an RORα inverse agonist, showed dramatically decreased glucose levels in the
plasma compared with the control mice, by inhibiting Pck expression and gluconeogenesis.104

With respect to lipid metabolism, Rev-erba�/� mice showed increased very low-density lipoprotein (VLDL) and
triglyceride levels, consistent with the observed upregulation of apolipoprotein C-III (Apoc3), a critical regulator in
triglyceride metabolism.105,106 Depletion of both Rev-erbs in the liver synergistically de-repressed several metabolic
genes as well as genes that control the positive limb of the molecular clock.107 Consistent with these genetic results,
administration of the REV-ERB agonist SR9009 decreased cholesterol levels in the plasma in both wild-type and low-
density lipoprotein receptor (Ldlr) null mice through downregulating cholesterol biosynthesis gene expression.108

Extensive mouse studies also point to a key role of RORs in lipid metabolism. In Rorαsg/sg staggerer mice, expression
levels of hepatic sterol regulatory element-binding protein 1, isoform c (Srebp-1c), and fatty acid synthase (Fas) were
decreased, whereas expression of PGC-1α and β, coactivators involved in oxidative metabolism and gluconeogenesis,
were elevated.63,109 At the molecular level, gene expression and cistrome analysis showed that RORα and/or RORγ
broadly regulate genes involved in lipid metabolism in both liver and muscle tissues.65,102,110,111 Furthermore, structural
and biochemical studies identified lipid moieties, mainly cholesterol metabolic intermediates, as possible endogenous
ligands for RORα/γ, consistent with the notion that RORs may function as a lipid sensor in the regulation of lipid
metabolism.63,109,110,112–115

Immune diseases
Mounting evidence indicates circadian rhythms in immunity and inflammation. For example, rheumatoid arthritis
patients exhibit diurnal variations in functional disability such as joint pain and stiffness in morning time.116,117 REV-
ERBα deletion abolished the diurnal rhythms of various inflammatory factors and aggravates inflammation in diseases
including autoimmune encephalomyelitis,118,119 fulminant hepatitis,91 neuroinflammation,120,121 heart failure,122,123

myocardial infarction,124 and ulcerative colitis.118,125 At the molecular level, REV-ERBα regulates rhythmic transcrip-
tion of inflammation-related genes involved in macrophage polarization, immune cell differentiation, and NF-κB
signaling.90,125 For example, REV-ERBα was found to obstruct NF-κB signaling in human endometrial stroma cells
and macrophages/microglia cells in mouse models, suppressing expression of inflammatory genes such as IL-1β, IL-6,
IL-18, tumor necrosis factor alpha (Tnfα), NACHT, LRR and PYD domains-containing protein 3 (Nlrp3), and C-Cmotif
chemokine 2 (Ccl2).90,120,121,126 Activation of REV-ERBα by SR6472 inhibits NF-κB signaling and NLRP3 inflamma-
some activity to prevent cytokines and chemokines productions, consistent with an anti-inflammatory role of REV-
ERBα.2,90,121

RORs also play important roles in immunity.87 Extensive research has establishedRORγt, a subtype of RORγ, as amaster
regulator of Th17 cell differentiation and therefore highly involved in autoimmune diseases.127 In Th17 cells, RORγt is
expressed at dramatically higher levels during daytime than at nighttime.128 This diurnal expression pattern in turn
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up-regulates BMAL1-dependent Rev-erb expression during daytime and conversely represses NFIL3 transcription.
Given the central role of RORγt in Th17 cells, several compounds targeting RORγt have been tested in autoimmune
disease models. For example, SR1001, an RORα and RORγ inverse agonist, inhibited Th17 cell differentiation under
autoimmune disease conditions.129 Moreover, this effect is associated with decreased expression of several cytokines
such as IL17A, IL17F, IL21, and IL22 by specially targeting TH17.130,131 Likewise, SR2211, an RORγ inverse agonist,
suppressed Th17 cell differentiation and reduced IL17a and IL23R expression levels as well as intracellular IL17 protein
level.132

Brain diseases
Circadian disruption can adversely impact brain development and function, potentially leading to various mood and
neurological disorders.33,38 Previously, Rev-erbb knockout mice were found to exhibit enhanced anxiety, and treatment
of an REV-ERB agonist showed anxiolytic effects.133 On the other hand, acute administration of SR8278, a REV-ERB
antagonist, improves anxiety symptom and maniac-like behavior.134,135 Furthermore, REV-ERBα was shown to
diminish fatty acid-binding protein 7 (Fabp7) expression, thereby impairing neuronal differentiation and depleting
neuronal progenitor cells.136,137 Relatedly, deficiency of REV-ERBα adversely affected hippocampal neurogenesis,
which contributes to altered mood behaviors.138

RORα is highly expressed in several brain regions such as cerebellar Purkinje cells (PC) and thalamus, and functions to
regulate brain development.61,139,140 The classical RORα-deficient staggerer mice have been shown to present severe
ataxia because of cerebellar neurodegeneration80,81,141 and abnormal PC development.80,141,142 Likewise, RoraKOmice
exhibit reduced numbers and sizes of PC in the cerebellar region reminiscent of clinical observations from patients
with autism-spectrum disorder (ASD).143,144 RORα also showed neuroprotective effects in astrocytes and neurons during
hypoxia.112,145 RORβ is highly expressed in the retina, pineal gland, and suprachiasmatic nucleus, and has been
implicated in visual function, motor ability, and circadian rhythms.61,78,146 For example, RORβ-deficient mice showed
abnormal motor and olfactory functions, anxiety control, and alterations in circadian behavior.77 The noteworthy
question regarding a potential functional overlap in the neuronal system between RORα and RORβ remains to be
investigated.

Muscle pathologies
REV-ERBs (α and β) andRORs (α and γ) are highly expressed in the skeletal muscle where theymodulatemyofiber types
and energy metabolism61,147 and may be targeted against myopathies.148 In an early study, REV-ERBα-deficient mice
showed a marked increase in the relative amount of the slow (type I) myosin heavy chain (MyHC) isoform compared
to WT controls.147 Extensive research since has further revealed the regulatory roles of REV-ERBs in skeletal muscle
function.86,149,150 For example, REV-ERBβ has been implicated in skeletal muscle lipid metabolism since ectopic
expression of its dominant-negative form upregulated expression of genes associated with fatty acid uptake in skeletal
muscle.151 Consistently, SR8278, an antagonist of REV-ERBs, was found to activate expression of myogenesis genes
including Myogenic determination 1 (Myod), Myogenin (Myog), and Major histocompatibility complex 3 (Mhc3),
suggesting a role of REV-ERBs in myogenesis.152

Loss-of-function studies also suggest an important role of RORα in skeletal muscle metabolism.153 For example, ectopic
expression of a dominant-negative RORα in C2C12 cells or mouse skeletal muscle broadly alters the expression of genes
associatedwith lipidmetabolism, lipogenesis, and energy expenditure, including carnitine palmitoyltransferase-1 (Cpt1),
caveolin 3 (Cav3), and Srebp1c and its downstream targets.110,154

Cancer
REV-ERBα has been implicated in the progression and development of various cancers.155 Activation of REV-ERBα by
SR9009 and SR9011 was found to confer cancer cell-selective cytotoxicity as well as in vivo efficacy against glioma, and
autophagy and lipogenesis were identified as cellular hallmarks closely associated with this anti-cancer activity.156 In a
recent study investigating lung adenocarcinoma-associated cachexia,157 REV-ERBα functions as a key effector whose
exaggerated turnover contributes to gluconeogenesis gene induction and glucose production in mice.

A number of studies have shown that RORα expression is significantly decreased during tumor development and
progression, and exogenous RORα expression repressed cell proliferation and tumor growth.158–163 For example, down-
regulated RORα expression has been observed in colorectal cancer and mammary cancer, and is associated with poor
prognosis in patients with hepatocellular and breast carcinoma.158,159,161,162,164,165 Conversely, restoring RORα expres-
sion suppressed cell migration and tumor growth of breast cancer cells as well as metastasis in nude mice, which was
accompanied by up-regulated expression of semaphorin 3F (SEMA3F), a tumor suppressor that reduces tumor growth
and invasion.161 In colon cancer HCT116 cells treated with DNA-damage agents, a p53-RORα crosstalk was required for
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apoptosis, where Rora gene transcription was dependent on p53 and RORα in turn rendered greater p53 protein
stability.166 In RORγ deficient mice, there was an aggravated development of T-cell lymphomas within the first months
after birth, which rapidly metastasized to other organs including liver and spleen.167

Nobiletin (NOB): A natural ROR agonist
NOB is a natural bioactive polymethxylated flavonoid.168,169 Many studies have provided functional evidence both
in vitro and in vivo for its biological efficacy in diverse disease models,168,170,171 including metabolic diseases and
inflammation. In our previous unbiased chemical screen, we identified NOB, along with its close analog tangeretin, as a
clock-enhancing small molecule in cell-based circadian reporter assays.172 Focusing on NOB, we demonstrated a
circadian clock-dependent efficacy to blunt obesity and metabolic dysfunction in mouse models, and importantly
identified RORα and RORγ as its direct targets via radioactive ligand binding assays. NOB shows robust binding to
the LBDs of RORα and RORγ, with somewhat higher affinity for RORγ. Currently there is no functional evidence to
suggest subtype selectivity analogous to CRY-selective compounds.173 Subsequent published studies, from our group
and others, have provided further evidence that NOB plays a beneficial role in strengthening circadian physiologies in
various mouse models, including aging, metabolic disorders, cardiovascular disease, and Alzheimer’s disease
(AD).171,174–182 In further support of NOB as an anti-inflammatory agent, recent studies demonstrated a potent role of
NOB against neuroinflammation and astrogliosis, accompanied bymitigation of Aβ plaque deposition, in an amyloid AD
mousemodel.183 Given the increasing appreciation of circadian rhythms in aging, recent studies have also tested its effect
in aging models. In naturally aged mice fed with either regular or high-fat diets (HFD), NOB was found to promote
healthy aging at several levels, including metabolic homeostasis, inflammatory markers, tissue functions, and systemic
behaviors.175 An important target organ is skeletal muscle, where circadian gene reprogramming and metabolomic
alteration support an improved mitochondrial function, accompanied by respiratory supercomplex formation. Notably,
while NOB-mediated improvement in general healthy aging parameters seems more pronounced in metabolically
challenged aged mice (HFD fed) than in those fed with regular diet, the latter group showed an extension of median
lifespan, but not maximum lifespan.175 In comparison, NOB was found to exhibit longevity effects in C. elegans,
extending median lifespan by up to 21%.184 Overall, these and many other studies underscore a strong health-promoting
effect of NOB, at least in part via circadian mechanisms.

Mechanistic studies have begun to shed light on the circadian modulatory action of NOB. In addition to its clock
amplitude-enhancing effects, NOB also alters the other two cardinal circadian parameters, period, and phase, at least
in vitro.172,182 Following chronic treatment in vivo (10-12 weeks), NOB was able to strengthen oscillatory amplitude, as
well as peak expression, of core clock components at both transcript and protein levels in HFD-fed mice, and wheel-
running activity was also increased at nighttime.172 Given the extensive crosstalk between clocks and metabolism/
physiology, these overt enhancements of circadian rhythmsmay result from both direct and indirect effects of NOBon the
core oscillator/RORs and clock-regulated downstream functions, respectively. Acute in vivo effects on circadian rhythms
remain to be investigated. Another important issue is related to the varying effects of NOB according to the clock
functional state. There seems to be a general inverse correlation between NOB efficacy and clock health. For example,
in young and healthy mice under normal husbandry conditions, NOB showed essentially no effects on circadian
and metabolic functions, contrary to the profound improvements in obese or diabetic mouse models.172,178,179 Likewise,
as mentioned above, aged mice further challenged with HFD known to dampen circadian rhythms showed a greater
responsiveness to NOB in healthy aging compared with aged mice fed with normal diets.175 A similar pattern was
observed betweenWTandADmice at old ages (>22months) whereNOBwas found tomitigate neuroinflammationmore
markedly in the latter, correlating with a more severe circadian disruption in AD mice.183 These in vivo results together
suggest a role of NOB to enhance circadian resilience toward restoring normal circadian rhythms that may have evolved
to operate within a physiological range. Either dampening or indiscriminately enhancing the normal circadian rhythms is
likely detrimental to organismal health.

Further research should investigate the downstream cellular mechanisms intersecting with the clock machinery. In a
recent study, an inhibitory function of NOB against triple-negative breast cancer (TNBC) was found after cell line
screening.185 Both in vitro and in xenografts, NOB was able to blunt TNBC cell growth, either alone or in combination
with chemotherapeutic agents. The cellular mechanism entailed, at least in part, suppression of NF-κB signaling, via a
pathwaywhere activation of RORs byNOB increased expression of its downstream target gene encoding IκBα, andChIP
analysis showed that ROR recruitment to the IκBα gene promoter was potentiated.185 While this study illustrates a
cellular pathway targeted by NOB in TNBC, it should be noted that the TNBC cells examined do not have a functional
clock despite detectable clock gene expression, and NOB was not able to restore the core oscillator in these cells.185,186

Therefore, this is a scenario that NOB effects are mediated by ROR transcriptional regulation independent of oscillator
function. However, since the host mice have circadian rhythms, whether NOB modulates host rhythms as part of the

Page 8 of 21

F1000Research 2022, 11:1236 Last updated: 15 DEC 2022



effect against TNBC remains to be investigated. Finally, as a natural compound with an excellent safety profile, NOB is
ideally suited for future trials in clinically relevant settings against clock-related disorders.

Concluding remarks
Accumulating evidence from molecular, genetic and interventional studies highlight a critical role of the circadian
secondary/stabilization loop, specifically the REV-ERBα/β andRORα/β/γ nuclear receptors, in linking the core oscillator
with physiology and behavior under both normal and pathological conditions. These are multi-functional transcription
factors, playing important regulatory roles in circadian regulation as well as other processes not primarily tied to the clock
(e.g., RORγt in Th17 differentiation and autoimmunity). It is therefore a challenge to dissect the underlying mechanisms
and devise disease-specific interventions from the circadian perspective.148 Whenever possible, detailed circadian
characterization should be performed, especially at the tissue and organismal levels. As illustrated by pharmacological
studies targeting these factors,53,187 including those on NOB, the concept of circadian resilience, or restoration of
homeostatic clock function, should be an important consideration regarding intervention. Finally, given the tissue-
specific nature of circadian regulation and the growing evidence for inter-organ communication with the clock system,188

the functional effects, mechanistic pathways and interventional approaches should be interrogated accordingly in an
integrative manner. In that regard, distribution and functional redundancy among the subtypes of these receptors should
be considered. Despite the inherent complexity and practical challenges, targeting the circadian machinery, including the
secondary loop, represents an exciting frontier in the 4th dimension for research and medicine.
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ERB and ROR nuclear hormone receptors as therapeutic targets of metabolic disorders, immune 
diseases, brain diseases, muscle pathologies, and cancer, as well as current challenges in the 
research, with special emphasis on natural compound nobiletin. This well-written review article 
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covers the translation of the molecular clock mechanism for health and healthy aging, which is an 
important topic in the field. I strongly support the publication of this article, and a brief description 
of the following points would be useful for further understanding:

Are the therapeutic effects of nobiletin dependent on both RORα and RORγ? As the authors 
described, isoforms of REV-ERB (α and β) and ROR (α, β, and γ) have different expression 
patterns and physiological functions. Therefore, it would be nice to discuss the possibility 
and potential of isoform-selective ligands as well. 
 

○

Because nobiletin is a natural compound and other REV-ERB/ROR ligands are synthetic 
compounds, it would be nice to mention the merit (and demerit) of natural compounds 
compared to synthetic compounds.

○

 
Minor points:

Page 4, line 2: Drosophila to be italic.○

Page 5, “Therapeutic relevance of REV-ERBs and RORs” section, lines 2-3: “expression” is 
duplicated.

○

Page 6, line 11: ZT may need an explanation.○

Page 6, the second paragraph, line 1: Rev-erba-/- to be italic.○

Please check whether references 60 (Emery and Clayton, 2001) and 137 (Nagoshi et al., 
2004) are proper literature in the context.

○

 
Is the topic of the review discussed comprehensively in the context of the current 
literature?
Yes

Are all factual statements correct and adequately supported by citations?
Yes

Is the review written in accessible language?
Yes

Are the conclusions drawn appropriate in the context of the current research literature?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: circadian biology, small molecules

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 28 Nov 2022
Eunju Kim, McGovern Medical School, The University of Texas Health Science Center at 
Houston (UTHealth Houston), Houston, USA 

Point-by-Point Response 
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We thank both expert reviewers for their thorough and thoughtful comments. Our 
response is as follows. 
 
Reviewer 2 
 
In this manuscript, Kim, Yoo, and Chen beautifully and convincingly describe the 
relevance of REV-ERB and ROR nuclear hormone receptors as therapeutic targets of 
metabolic disorders, immune diseases, brain diseases, muscle pathologies, and 
cancer, as well as current challenges in the research, with special emphasis on natural 
compound nobiletin. This well-written review article covers the translation of the 
molecular clock mechanism for health and healthy aging, which is an important topic 
in the field. I strongly support the publication of this article, and a brief description of 
the following points would be useful for further understanding: 
Thank you very much for the positive comments. 
 
Are the therapeutic effects of nobiletin dependent on both RORα and RORγ? As the 
authors described, isoforms of REV-ERB (α and β) and ROR (α, β, and γ) have different 
expression patterns and physiological functions. Therefore, it would be nice to discuss 
the possibility and potential of isoform-selective ligands as well. 
Thank you for this valuable comment. NOB shows robust binding to the LBDs of RORα and 
RORγ, with somewhat higher affinity for RORγ (PMID: 27076076). However, there is 
currently no functional evidence for a possible selectivity of NOB toward either ROR. We 
agree that potential isoform/subtype-selective ligands, such as those characterized for 
CRYs, would be valuable. We have added this discussion to the text on page 9. 
 
Because nobiletin is a natural compound and other REV-ERB/ROR ligands are synthetic 
compounds, it would be nice to mention the merit (and demerit) of natural 
compounds compared to synthetic compounds. 
Thank you for this excellent comment. NOB’s excellent safety profile is indeed a significant 
advantage over other synthetic ligands which may require extensive medicinal chemistry 
efforts before in vivo and clinical applications. Without making a direct comparison, we have 
added a sentence on page 10 to highlight this point. Thank you. 
 
Minor points: 
Page 4, line 2: Drosophila to be italic. 
As suggested, we have italicized the word. 
 
Page 5, “Therapeutic relevance of REV-ERBs and RORs” section, lines 2-3: “expression” 
is duplicated. 
As suggested, we corrected the sentence. 
 
Page 6, line 11: ZT may need an explanation. 
Apologies for this omission. We added the full name and explanation of ZT in the 
manuscript. 
 
Page 6, the second paragraph, line 1: Rev-erba-/- to be italic. 
As suggested, we have italicized the word. 
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Please check whether references 60 (Emery and Clayton, 2001) and 137 (Nagoshi et al., 
2004) are proper literature in the context. 
As suggested, we have removed these references as they are not immediately relevant as 
the reviewer pointed out. 
 
Thank you again.  

Competing Interests: No competing interests were disclosed.

Reviewer Report 11 November 2022
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© 2022 Kojima S et al. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Shihoko Kojima   
Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA 
Evan S. Littleton  
Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA 

Summary: 
 
In the review article titled “Circadian stabilization loop: the regulatory hub and therapeutic target 
promoting circadian resilience and physiological health”, the authors discuss various studies on 
the role of Rev-erbs and Rors on health and aging with the main focus being their function within 
the circadian clock. The authors give a well-balanced and comprehensive approach to discussing 
the importance of these genes in many different physiological pathways, such as immune 
response, metabolic disorders, cancer, and more. The authors provide extensive citations to 
support their discussion as well. We only have minor comments, and believe the article is suitable 
for approval. 
 
Minor Concerns:

In the second paragraph of the section titled “The circadian timing system and health 
implications”, Dbp and Nfil3 are not mentioned as part of the circadian clock, despite their 
known regulation of multiple clock genes via D-boxes. 
 

1. 

In the third paragraph of the section titled “The stabilization loop”, the authors state “While 
Ror expressions display relatively moderate circadian oscillatory amplitude, Rev-erbs are 
among the most oscillatory genes (highest amplitude) in both protein and mRNA 
expression”. However, Rors themselves differ in amplitude with Rora expression showing 
little to no rhythmicity in most tissues. Meanwhile, Rorc expression is rhythmic and displays 
similar amplitude to Rev-erbs in some tissues/cell types1,2,3. 

2. 
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The nomenclature for mouse models should be superscripted (for example, Rorasg/sg rather 
than Rorasg/sg)

3. 
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Is the topic of the review discussed comprehensively in the context of the current 
literature?
Yes

Are all factual statements correct and adequately supported by citations?
Yes

Is the review written in accessible language?
Yes

Are the conclusions drawn appropriate in the context of the current research literature?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Circadian genomics, rhythmic gene expression, mouse, clock-controlled genes

We confirm that we have read this submission and believe that we have an appropriate level 
of expertise to confirm that it is of an acceptable scientific standard.

Author Response 28 Nov 2022
Eunju Kim, McGovern Medical School, The University of Texas Health Science Center at 
Houston (UTHealth Houston), Houston, USA 

Point-by-Point Response 
We thank both expert reviewers for their thorough and thoughtful comments. Our 
response is as follows. 
Reviewer 1 
 
In the review article titled “Circadian stabilization loop: the regulatory hub and 
therapeutic target promoting circadian resilience and physiological health”, the 
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authors discuss various studies on the role of Rev-erbs and Rors on health and aging 
with the main focus being their function within the circadian clock. The authors give a 
well-balanced and comprehensive approach to discussing the importance of these 
genes in many different physiological pathways, such as immune response, metabolic 
disorders, cancer, and more. The authors provide extensive citations to support their 
discussion as well. We only have minor comments, and believe the article is suitable 
for approval. 
 
We thank the reviewer for the overall positive comments. 
 
Minor Concerns: 
1. In the second paragraph of the section titled “The circadian timing system and 
health implications”, Dbp and Nfil3 are not mentioned as part of the circadian clock, 
despite their known regulation of multiple clock genes via D-boxes. 
Apologies for this omission. We have added Dbp and Nfil3 as additional core clock genes 
functioning in the oscillator on page 3. 
 
2. In the third paragraph of the section titled “The stabilization loop”, the authors 
state “While Ror expressions display relatively moderate circadian oscillatory 
amplitude, Rev-erbs are among the most oscillatory genes (highest amplitude) in both 
protein and mRNA expression”. However, Rors themselves differ in amplitude with 
Rora expression showing little to no rhythmicity in most tissues. Meanwhile, Rorc 
expression is rhythmic and displays a similar amplitude to Rev-erbs in some 
tissues/cell types1,2,3. 
Thank you for this great comment. We have added a discussion text with these references 
to highlight the differences between the RORs (page 5, paragraph 2 in “the stabilization 
loop”). We thank the reviewer for this excellent suggestion. 
 
3. The nomenclature for mouse models should be superscripted (for example, Rora
sg/sg rather than Rorasg/sg) 
As suggested, we have superscripted the mouse model names. 
 
Thank you again.  

Competing Interests: No competing interests were disclosed.
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