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Purpose: To explore the clinical phenotype and genetic defects of families

with congenital aniridia.

Methods: Four Chinese families with aniridia were enrolled in this study.

The detailed ocular presentations of the patients were recorded. Whole

exome sequencing (BGI MGIEasy V4 chip) was used to detect the gene

mutation. Sanger sequencing was performed to validate the potential

pathogenic variants, and segregation analysis was performed on all available

family members.

Results: By whole exome sequencing and Sanger sequencing, three recurrent

mutations (c.112del, p.Arg38Glyfs∗16; c.299G > A, p.Trp100∗ and c.718C > T,

p.Arg240∗) and one novel mutation (c.278_281del, p.Glu93Alafs∗30) of PAX6

were identified. All the mutations were co-segregated with the phenotype in

the families. We also observed spontaneous anterior lens capsule rupture in

aniridia for the first time.

Conclusion: We report spontaneous anterior lens capsule rupture as a novel

phenotype of aniridia and three recurrent mutations and one novel mutation

of PAX6 in families with aniridia. Our results expanded the phenotype and

genotype spectra of aniridia and can help us better understand the disease.
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Introduction

Aniridia is a rare, bilateral, congenital panocular disorder that causes complete or
partial absence of the iris and iris hypoplasia. The incidence of aniridia ranges from 1
in 64,000 to 1 in 96,000 population, with no known preference for race or sex (1–3).
Aniridia can be accompanied by a range of other ocular anomalies, including corneal

Abbreviations: IOP, intraocular pressure; SLM, slit-lamp microscopy; ALC, anterior lens capsule;
NMD, nonsense-mediated decay; PTC, premature termination codon.
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abnormalities, cataract, ectopia lentis, glaucoma, strabismus,
refractive error, ptosis, microphthalmia, foveal hypoplasia, and
optic nerve hypoplasia. Non-ocular sensory and neurological
deficits can also be present, including hearing difficulties,
reduced olfaction, and Wilms tumor, aniridia, genitourinary
anomalies, and intellectual disability (WAGR) syndrome (3).
About two-thirds of aniridia cases are familial and inherited
as an autosomal dominant trait, with complete penetrance
and variable expressivity (4, 5). Most aniridia cases are
associated with mutations in the pair box 6 (PAX6) gene at
chromosome 11p13.

PAX6 was firstly proposed as the causative gene of
congenital aniridia in 1991 by positional cloning (6, 7). Human
PAX6 encodes a 422-amino acid transcriptional regulatory
protein, which consists of two DNA-binding domains (a paired
domain at the NH2 terminal, including 128 amino acids, and
a homeodomain, including 61 amino acids) separated by a 79-
amino acid linker region, and a transcriptional transactivation
domain at the COOH terminus rich in proline, serine, and
threonine (6, 7). PAX6 is expressed in early eye structures, the
forebrain, the neural tube, and the pancreas and plays a crucial
role in the development of the eye and central nervous system
(8, 9). The majority of PAX6 mutations result in null alleles
and consequent PAX6 haploinsufficiency and lead to aniridia.
Other ocular abnormalities have also been associated with
PAX6 changes. Isolated foveal hypoplasia has been described
in few families with PAX6 missense mutations [p.Pro76Arg,
p.Arg128Cys, p.Gly72Ser (10–12)] or premature termination
codon (PTC) mutations [p.Pro346Aspfs∗20, p.Tyr354Cysfs∗8
(11)]. Microphthalmia and Peters anomaly are associated with
several PAX6 mutations, most of which are missense, while
anophthalmia is associated with homozygous PAX6 variants
(13). With the advances in neuroimaging technologies, both
anatomical (changes in the anterior commissure, posterior
commissure, pineal gland, corpus callosum, optic chiasm,
and olfactory bulb) and functional neuro-abnormalities
(deficits in olfactory function, cognitive ability, and auditory
interhemispheric transfer) have been described in individuals
with aniridia (14), highlighting the crucial role of PAX6 in
development of central nervous system. However, the exact
phenotype-genotype correlation is still unclear.

In this study, we enrolled four Chinese families with aniridia
to explore the genetic defects of congenital aniridia.

Materials and methods

The study was approved by the ethics committee of Tianjin
Medical University Eye Hospital and was in compliance with
the regulations of the Declaration of Helsinki. Informed consent
was obtained from the enrolled family members. The method
of whole exome sequencing and data analysis is described in
detail previously (15–17). Briefly, genomic DNA was extracted
from venous blood samples according to the manufacturer’s

standard procedure (MagPure Buffy Coat DNA Midi KF Kit,
Magen, China) and sequenced on MGISEQ-2000 (PE100) using
the BGI MGIEasy V4 chip, which contains exons of all human
genes and their adjacent±20 bp introns. Sanger sequencing was
then performed to validate the potential pathogenic variants,
and segregation analysis was performed on all available family
members. The primers for Sanger sequencing are summarized
in Supplementary Table 1. Additionally, the structures of
the mutant and homomeric wild-type PAX6 were modeled
by the SWISS-MODEL server1 and shown using a PyMOL
Molecular Graphic system. The PAX6 PDB file (AF-P26367-F1-
model_v1.pdb) was downloaded from the AlphaFold Protein
Structure Database2 and was used as a template.

Results

We enrolled four Chinese families with aniridia in this
study.

Family 1

The proband of family 1 was a 14-year-old girl. The detailed
ocular presentations of the affected members in family 1 are
summarized in Table 1. Briefly, 11 individuals in the family
were affected and presented with complete aniridia, while
four members had nystagmus. All the affected individuals had
poor vision (ranging from finger counting to 0.12), and the
intraocular pressure (IOP) was high in two patients. Lens
abnormalities were detected in eight patients, including cortical
cataract, nuclear cataract, total cataract, and lens ectopia. We
also observed spontaneous anterior lens capsule (ALC) rupture
in two of the three patients with total cataracts, which was
never reported before in patients with aniridia. Unfortunately,
the ocular anterior segment photographs are not available in
this family and a schematic picture was drawn to illustrate the
changes (Figure 1).

By whole exome sequencing and Sanger sequencing, a
previously reported nonsense mutation in PAX6 (c.718C > T,
p.Arg240∗) was detected (Figure 1). It was detected in all the
affected individuals but not in the unaffected individuals in this
family, indicating that the mutation was co-segregated with the
phenotype.

Family 2

The proband was a 30-year-old woman, and she had
complained of blurred vision for more than 20 years. She

1 https://swissmodel.expasy.org

2 https://alphafold.ebi.ac.uk
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TABLE 1 Ocular manifestations of affected individuals in aniridia family 1.

Individual Age
(year)

Gender VA (R/L) IOP (mmHg,
R/L)

Aniridia Nystagmus Exotropia Lens

I:1 57 F 0.1/0.1 17.1/19.3 + + − Dense nuclear cataract

II:1 36 F FC/FC 18.5/14.5 + − + Cortical cataract

II:3 34 F 0.1/0.12 17.8/19.1 + − + pseudophakic

II:5 30 F 0.04/0.02 20.3/20.6 + − − Cortical cataract

III:1 13 F 0.02/0.02 23.7/26.8 + − − Clear

III:2 1.5 M NA NA + + − NA

III:3 14 F FC/FC 11.8/21.2 + − − Total cataract with
spontaneous ALC rupture

III:4 11 F 0.1/0.08 20.7/15.9 + − − Total cataract with
spontaneous ALC rupture

III:5 9 M 0.1/0.1 17.3/17.5 + + − Total cataract

III:6 10 M 0.1/0.04 14.1/14.4 + + − Lens ectopia

III:7 3 F NA 22.4/25.7 + − − Clear

F, female; M, male; NA, not available; FC, finger counting; R, right eye; L, left eye; +, present;−, absent; ALC, anterior lens capsule.

FIGURE 1

Clinical and genetic evaluation of family 1. (A) Pedigree map of family 1. The arrow indicates the proband. The circles and squares represent
females and males, respectively. White and black denotes unaffected and affected individuals, respectively. (B) Schematic picture showing
anterior lens capsule (ALC) rupture in patient with total cataract. (C) Sanger sequencing showing a previously reported nonsense mutation of
PAX6 (c.718C > T, p.Arg240*).

was diagnosed with aniridia, nystagmus, congenital cataract
(posterior polar cataract), and lens ectopia at the age of
15 years. At that time, her visual acuities were 0.12 and 0.1;
IOP, 17.8 and 18.1 mmHg; axial lengths, 24.02 and 23.70 mm;
central anterior chamber depths, 1.53 and 1.54 mm; flat K
values, 39.5 and 39.0 D; steep K values, 40.5 and 40.0 D;
endothelium cell densities, 3677.2/mm2 and 3780.2/mm2 in
the right eye and left eyes, respectively. The patient accepted
cataract extraction and intraocular lens implantation in 2007
for the right eye (Morcher GmbH Type 67G, + 22D) and
in 2009 for the left eye (Morcher GmbH Type 67G, + 23D).
After surgery, her vision improved to 0.2 in both eyes. In

2017, the patient complained of blurred vision again. On
presentation, her vision was 0.1 and light perception, and the
IOP was 29.1 mmHg in the right eye and 33.2 mmHg in
the left eye, respectively. Slit-lamp microscopy (SLM) revealed
aniridia and nystagmus, and both eyes were pseudophakic
(Figure 2). A fundoscopy examination could not be performed
because of severe nystagmus. The patient was given three anti-
glaucoma medications to control the IOP. The patient’s mother
had similar ocular presentations. The patient’s daughter was
3 months old and had nystagmus and aniridia in both eyes.
The patient’s brother was found to have ectropion of the iris
pigment epithelium in the right eye and iris coloboma in
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FIGURE 2

Clinical and genetic evaluations of family 2. (A) Pedigree map of family 2. (B) Anterior segment photograph showing complete aniridia and the
intraocular lens in both eyes of the proband. (C) Anterior segment photograph showing ectropion of the iris pigment epithelium in the right eye
(R) and iris coloboma in the left eye (L) of the proband’s brother. (D) Sanger sequencing showing a previously reported frame-shift mutation in
PAX6 (c.112del, p.Arg38Glyfs*16).

the left eye (Figure 2). He had normal vision and IOP in
both eyes.

By whole exome sequencing and Sanger sequencing, a
previously reported frame-shift mutation in PAX6 (c.112del,
p.Arg38Glyfs∗16) was detected in the proband, her mother, and
her brother (Figure 2). No blood sample was available from her
daughter.

Family 3

The proband of family 3 was a 34-year-old woman, and
her medical records were reviewed. On presentation, her visual
acuity was hand motion and 0.12, and her IOP was 12.7 mmHg
in the right eye and 13.5 mmHg in the left eye. SLM revealed
nystagmus, aniridia, cataracts (total cataract in the right eye
and cortical cataract in the left eye), and lens ectopia in both
eyes (Figure 3). In the right and left eyes, the axial lengths

were 24.07 and 23.26 mm; central corneal thicknesses, 624
and 636 µm; endothelium cell densities, 3968.8/mm2 and
3275.1/mm2; flat K values, 40.45 and 40.21 D; steep K values,
43.12 and 42.15 D; corneal diameters, 11.45 and 11.24 mm,
respectively. Ultrasonographic biomicroscopy revealed severe
iris hypoplasia in both eyes (Figure 3). The patient accepted
sequential cataract extraction of both eyes in 2009, without
intraocular lens implantation. After that, the IOPs of both
eyes increased (29.5 mmHg in the right eye and 26.6 mmHg
in the left eye), and glaucomatous optic neuropathy occurred
(cup-to-disc ratio: 0.8). In 2012, the patient accepted Ahmed
glaucoma valve implantation for the right eye. One year later,
the IOP in both eyes increased again, ranging from 20 to
30 mmHg, under three anti-glaucoma medications. The patient’s
mother also had nystagmus, aniridia, cataracts, and glaucoma in
both eyes.

Whole exome sequencing revealed a recurrent PAX6
nonsense mutation (c.299G > A, p.Trp100∗; Figure 3). Sanger
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FIGURE 3

Clinical and genetic evaluations of family 3. (A) Pedigree map of family 3. (B) Anterior segment photograph showing white cataract of the right
eye, cortical cataract of the left eye, and lens ectopia of both eyes in the proband. (C) Sanger sequencing showing a recurrent PAX6 nonsense
mutation (c.299G > A, p.Trp100*). (D) Ultrasonographic biomicroscopy image showing severe iris hypoplasia in both eyes of the proband.

sequencing revealed that the patient’s mother also carried this
mutation, while her father and brother did not.

Family 4

The proband of family 4 was a 66-year-old man. He
complained of bilateral ocular pain for 1 month. He was
diagnosed with aniridia when he was 6 years old. On
presentation, his visual acuity was hand motion and no
light perception, and his IOP was 35.7 mmHg in the right
eye and 55.2 mmHg in the left eye. SLM revealed corneal
neovascularization, aniridia, and nystagmus in both eyes
(Figure 4). A dense nuclear cataract was found in the right eye,
and severe corneal opacity was found in the left eye, which made
the fundus invisible. Keratoplasty and cataract surgery of the
right eye was suggested, but was refused by the patient. The
patient was administered anti-glaucoma medications to control
the IOP in both eyes and was still under follow-up.

Whole exome sequencing and Sanger sequencing revealed
a novel frame-shift mutation in PAX6 (c.278_281del,
p.Glu93Alafs∗30; Figure 4). The variant was detected by
further Sanger sequencing in all affected patients enrolled in
this study (III:2, III:3) but not in the unaffected family members
(III:4, III:5, IV:2). The variant was co-segregated with the
disease in family members and was not found in NCBI dbSNP,
HapMap, 1000 human genome dataset, the database of 100
healthy Chinese adults, and ClinVar, suggesting that the variant
may be the pathogenic mutation in this family.

The location of the four mutations detected in this study was
highlighted in Figure 5.

Protein model construction

Compared with the wild-type PAX6 protein, all four
mutations detected in this study were predicted to produce a
truncated protein and interfere with DNA binding (Figure 6).

Discussion

In this study, we enrolled four families with aniridia and
identified three recurrent mutations (c.112del, p.Arg38Glyfs∗16;
c.299G > A, p.Trp100∗ and c.718C > T, p.Arg240∗)
and one novel mutation (c.278_281del, p.Glu93Alafs∗30)
of PAX6 by whole exome sequencing. We also found
spontaneous ALC rupture in aniridia, which expanded the
disease phenotype.

Although aniridia has a spectrum of ocular findings,
cataract, glaucoma and keratopathy are main reasons for visual
compromise in such patients. Cataracts may develop at any
age and are usually progressive. The common morphological
types of cataract include posterior polar, posterior subcapsular,
and total cataract. Cataract surgery in aniridia is challenging,
because of the poor ocular surface, corneal opacification, friable
capsule and lens dislocation (18). Iris prosthesis implantation
can also be considered in cataract surgery, although several
complications may occur during or after the surgery. Glaucoma
occurs in 46–70% of cases (19). Several possible mechanisms,
including maldevelopment of the anterior chamber angle,
absence of Schlemm’s canal, and obstruction of the angle with
a shapeless, homogenous avascular tissue, are implicated in
the development of glaucoma (18). Although medical therapy
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FIGURE 4

Clinical and genetic evaluations of family 4. (A) Pedigree map of family 4. (B) Sanger sequencing showing a novel frame-shift mutation of PAX6
(c.278_281del, p.Glu93Alafs*30). (C) Anterior segment photograph of the proband showing corneal neovascularization, aniridia in both eyes, a
dense nuclear cataract in the right eye and severe corneal opacity in the left eye.

FIGURE 5

Schematic diagram of the location of the four mutations detected in this study in PAX6 protein. PST, proline, serine, and threonine. *Means a
stop codon.

remains the first line of treatment, most patients with glaucoma
eventually require surgical therapy, such as goniotomy,
trabeculotomy, trabeculectomy, glaucoma drainage devices
implantation and cyclodestructive procedures (19). However,
the management of aniridic glaucoma remains a challenge. At
present, there is a lack of prospective and randomized controlled
studies on glaucoma treatment in aniridia, and the results
from the existing studies are inconsistent. Aniridia-associated
keratopathy (AAK), characterized by gradual corneal pannus
and opacification, is another common cause of progressive
vision loss. AAK is resulted from the breakdown of the
limbal stem cell niche, impaired wound healing, and neural
deterioration and can occur as early as 2 years of age (18).
The management of AAK depends on its severity. In the
early stages, supportive treatment includes artificial tear fluid
without preservatives and autologous serum are generally

recommended. When the keratopathy affects the visual axis,
surgery intervention is often needed. Penetrating keratoplasty
tends to fail eventually, owing to the underlying limbal
stem cell deficiency. Even procedures attempting to restore
or improve the limbal stem cell niche, such as amniotic
membrane transplantation, limbal or keratolimbal allograft
transplantation, cultivated limbal epithelial transplantation,
cultivated oral mucosa epithelial transplantation, have a
risk of surgery failure (18, 19). Keratoprosthesis is an
option in treatment of end-stage AAK. Boston type 1
keratoprosthesis is reported to have good anatomical and
functional long-term results in patients with AAK (20).
Obviously, an appropriate individualized treatment regimen
should be determined for patients with aniridia, in order
to achieve the best chance of postoperative success with
minimized complications.
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FIGURE 6

Protein model construction. Compared with the wild-type PAX6 protein, all the four mutations detected in this study were predicted to produce
a truncated protein. (A) Wild-type PAX6 protein. (B) Mutant PAX6 protein of family 1 (c.718C > T, p.Arg240*). (C) Mutant PAX6 protein of family 2
(c.112del, p.Arg38Glyfs*16). (D) Mutant PAX6 protein of family 3 (c.299G > A, p.Trp100*). (E) Mutant PAX6 protein of family 4 (c.278_281del,
p.Glu93Alafs*30). Aa, amino acids.

TABLE 2 Phenotypes and genotypes of the families with aniridia.

Family PAX6mutation Nystagmus Cornea Lens Glaucoma Iris

1 c.718C > T + Clear ALC rupture, cortical
cataract, nuclear cataract,
total cataract, LE

+ Aniridia

2 c.112del + Clear Posterior polar cataract, LE + Aniridia, ectropion of
IPE, iris coloboma

3 c.299G > A + Clear Total cataract, cortical
cataract, LE

+ Aniridia

4 c.278_281del + Corneal neovascularization,
corneal opacity

Nuclear cataract + Aniridia

LE, lens ectopia; ALC, anterior lens capsule; IPE, iris pigment epithelium; +, positive.

According to the Human Gene Mutation Database
(HGMD),3 over 750 PAX6 mutations were reported, with
predicted premature truncations being the most common PAX6
mutations. Although so many mutations have been reported,
the exact phenotype-genotype correlation of aniridia is not yet
clear. However, patients with nonsense or frame-shift mutations
that leading to the introduction of a PTC tend to present
classical aniridia phenotype (21–23), which is in accordance
with our findings. All four mutations detected in this study
were truncating mutations, and all four families presented
with typical aniridia. It has also been reported that missense

3 https://www.hgmd.cf.ac.uk

mutations are usually associated with milder atypical aniridia
phenotypes (21, 22), probably resulting from the prediction
that the PAX6 proteins of missense mutations retain some of
their functions (24). Nevertheless, a recent statistical analysis
of the genotype-phenotype correlations in PAX6-associated
aniridia revealed that missense mutations were associated with
a severe aniridia phenotype similar to the truncating mutations,
because some formally missense mutations could disrupt
splicing and lead to nonsense-mediated decay (NMD) (25).
Obviously, the exact genotype-phenotype correlations remain
to be further elucidated.

Phenotypic variability is frequently reported in aniridia,
even among members of the same family (13, 22, 26–30). In
an analysis of 155 patients with aniridia, complete aniridia

Frontiers in Medicine 07 frontiersin.org

https://doi.org/10.3389/fmed.2022.1042588
https://www.hgmd.cf.ac.uk
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-1042588 December 7, 2022 Time: 15:9 # 8

Guo et al. 10.3389/fmed.2022.1042588

was observed in 78% patients, and foveal hypoplasia, cataract,
nystagmus, keratopathy, and glaucoma was observed in 85,
80, 78, 58, and 26% patients, respectively (25), which is in
accordance with other reports (23, 29). In our study, there
were 18 patients with aniridia whose ocular presentations
were available. Complete aniridia was the predominant ocular
manifestation, which occurred in 17 of the 18 patients (94.4%).
Cataract, nystagmus, glaucoma, lens ectopia, strabismus, ALC
rupture, keratopathy and iris coloboma occurred in 66.7%
(12/18), 55.6% (10/18), 33.3% (6/18), 22.2% (4/18), 11.1%
(2/18), 11.1% (2/18), 5.6% (1/18) and 5.6% (1/18) of the
patients, respectively. Generally, the incidences of each ocular
presentation was comparable to that of other reports (23, 25,
29), except for keratopathy. The percentage of keratopathy was
much smaller in our study, this may be resulted from that the
enrolled patients were generally younger and aniridia-associated
keratopathy is age-dependent (18). Our results also highlight the
high phenotypic heterogeneity of aniridia (Table 2). In family
2, the proband presented with complete aniridia, while her
brother, who carried the same mutation as the proband, was
only found to have ectropion of the iris pigment epithelium
in the right eye and iris coloboma in the left eye. In family
1, although all the patients presented with complete aniridia,
nystagmus was present in only four members, and the lens
abnormalities were variable among the affected individuals. We
also observed spontaneous ALC rupture in the patients with
aniridia who had total cataracts in family 1, which has not
previously been reported. We think that the occurrence of ALC
rupture in aniridia is reasonable because it has been discovered
that the ALC of patients with aniridia is thinner and more
fragile (31–33). Moreover, the intumescence of total cataracts
can also facilitate the rupture of the thinner and fragile ALC.
This phenotypic variability is not correlated with the location
or the nature of the mutation (13). It is still far from clear
how PAX6 mutations translate into variable expressivity among
individuals with aniridia from the same or different families
(13, 22).

Thus far, most PAX6 pathogenic mutations are PTC
mutations, including nonsense, frame-shift, and splice-site
mutations, which are predicted to produce truncated proteins
(Figure 6). It is now accepted that mutations leading to PTC
located up to 50 bp upstream of the last exon of PAX6 will give
rise to NMD (34). NMD is a process by which abnormal mRNAs
resulting from a PTC are degraded before large quantities of
truncated proteins are produced (35–37). This is considered
a protective mechanism by which abnormal aggregation of
truncated protein products in the cell can be prevented. This
mechanism illustrates the etiology of aniridia in the families
enrolled in this study. All four mutations detected in our study
were PTC mutations located before the last 50 bp upstream
of the last exon junction and would theoretically activate
NMD, which will produce a mutant null allele, resulting in
haploinsufficiency (loss of function of one copy). The mRNA

transcribed from a single functional allele will lead to a 50%
reduction in the PAX6 protein level, which is insufficient to
trigger the transcription of its downstream target genes, and
consequently, hinder normal eye development and lead to
aniridia (38–41).

Conclusion

For the first time, we report spontaneous ALC rupture
in aniridia and detected three recurrent mutations
(c.112del, p.Arg38Glyfs∗16; c.299G > A, p.Trp100∗; and
c.718C > T, p.Arg240∗) and one novel mutation (c.278_281del,
p.Glu93Alafs∗30) of PAX6 in families with aniridia. Our results
expanded the phenotype and genotype spectra of aniridia and
can help us better understand the disease.
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