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Host-associated microbiomes play important roles in host health and pathogen 

defense. In amphibians, the skin-associated microbiota can contribute to innate 

immunity with potential implications for disease management. Few studies have 

examined season-long temporal variation in the amphibian skin-associated 

microbiome, and the interactions between bacteria and fungi on amphibian skin 

remain poorly understood. We  characterize season-long temporal variation in 

the skin-associated microbiome of the western tiger salamander (Ambystoma 

mavortium) for both bacteria and fungi between sites and across salamander life 

stages. Two hundred seven skin-associated microbiome samples were collected 

from salamanders at two Rocky Mountain lakes throughout the summer and fall 

of 2018, and 127 additional microbiome samples were collected from lake water 

and lake substrate. We used 16S rRNA and ITS amplicon sequencing with Bayesian 

Dirichlet-multinomial regression to estimate the relative abundances of bacterial 

and fungal taxa, test for differential abundance, examine microbial selection, and 

derive alpha diversity. We predicted the ability of bacterial communities to inhibit 

the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd), a cutaneous 

fungal pathogen, using stochastic character mapping and a database of Bd-

inhibitory bacterial isolates. For both bacteria and fungi, we observed variation in 

community composition through time, between sites, and with salamander age 

and life stage. We further found that temporal trends in community composition 

were specific to each combination of salamander age, life stage, and lake. We found 

salamander skin to be selective for microbes, with many taxa disproportionately 

represented relative to the environment. Salamander skin appeared to select for 

predicted Bd-inhibitory bacteria, and we found a negative relationship between 

the relative abundances of predicted Bd-inhibitory bacteria and Bd. We  hope 

these findings will assist in the conservation of amphibian species threatened by 

chytridiomycosis and other emerging diseases.
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Introduction

Host-associated microbiomes can interact with their hosts in 
many ways. Specialized metabolites produced by microbes can 
influence various aspects of host biology (Sharon et al., 2014), 
and host production of antimicrobial peptides can in turn 
influence microbial community structure (McFall-Ngai et al., 
2013). Microbial communities are increasingly recognized as 
providing beneficial and necessary services for their hosts 
(Dethlefsen et al., 2007; Grice and Segre, 2011), and maintaining 
and restoring healthy microbiomes can be important for host 
health (Tosh and McDonald, 2012). Host-associated 
microbiomes can inhibit pathogens or parasites through 
competition, the activation of host immune responses, and the 
production of inhibitory secondary metabolites (Lee and 
Mazmanian, 2010; Britton and Young, 2014; Grunseich et al., 
2019). An imbalance in the host-associated microbiome can 
permit transient opportunistic pathogens and resident microbes 
with pathogenic potential to harm the host (Lee and 
Mazmanian, 2010).

Much attention has been given to the amphibian skin-
associated microbiome’s role in innate immunity for its potential 
in disease management (Walke and Belden, 2016). 
Chytridiomycosis is a devastating amphibian skin disease caused 
by the fungal pathogen Batrachochytrium dendrobatidis (hereafter 
Bd; Longcore et al., 1999; Skerratt et al., 2007). Because numerous 
amphibian skin-associated bacteria have been found to inhibit the 
growth of Bd, probiotic bioaugmentation and habitat management 
have the potential to influence susceptibility to chytridiomycosis 
(Harris et al., 2009; Kueneman et al., 2016a; Grant et al., 2018). A 
sound understanding of host-associated microbiomes and their 
natural range of variation is necessary to select effective probiotics 
for safe and successful probiotic bioaugmentation strategies (Bletz 
et al., 2013).

While amphibian skin-associated microbiomes are species-
specific, vary with life history stage, and are distinct from 
environmental microbiomes (i.e., soil, lake substrate, and lake 
water microbiomes), some variation in the microbiomes is 
attributable to location and abiotic water quality (McKenzie et al., 
2011; Kueneman et  al., 2013; Walke et  al., 2014; Bletz et  al., 
2017a,b; Ellison et al., 2019). The composition of skin-associated 
microbial communities has been found to vary between larval and 
metamorphosed life stages in both frog and salamander species, 
with community diversity being higher in the adults of these 
species than their larvae (Kueneman et al., 2013, 2016b; Sabino-
Pinto et  al., 2017). Temperature has been found to influence 
operational taxonomic unit (OTU) richness and the production 
of antifungal metabolites in amphibian skin-associated 
microbiomes (Daskin et al., 2014; Muletz-Wolz et al., 2019).

Although many studies have worked to characterize species-
specific and spatial variation in the amphibian skin-associated 
microbiome, fine-scale season-long temporal variation in natural 
systems remains a major gap in our knowledge of the amphibian 
skin-associated microbiome with few applicable studies 

(Sabino-Pinto et  al., 2017; Bletz et  al., 2017a). Since both Bd 
infection prevalence and amphibian skin-associated microbiomes 
show seasonal and year-to-year variation (Savage et  al., 2011; 
Longo et al., 2015; Familiar López et al., 2017; Douglas et al., 2021; 
Basanta et  al., 2022), season-long temporal variation in the 
amphibian skin-associated microbiome warrants investigation for 
its implications in disease management.

Using a database of amphibian skin-associated Bd-inhibitory 
bacterial isolates and their 16S rRNA gene sequences (Woodhams 
et al., 2015), Bletz et al. (2017a) found that despite significant 
changes in bacterial community structure on the skin of 
salamandrid newts, the relative abundances of bacteria with 
Bd-inhibitory potential did not change significantly during a 
12-week sampling period nor across life history stages in two of 
the three species studied. Sabino-Pinto et  al. (2017) found 
bacterial communities on the skin of two salamandrid newt 
species to change significantly between months, and also using the 
database of Woodhams et al. (2015), the study found the relative 
abundance of putative Bd-inhibitory bacteria to be higher on the 
skin of larvae compared to adults for one of the species. The 
database by Woodhams et  al. (2015) contains nearly 2,000 
bacterial isolates tested for Bd-inhibitory function in vitro assays, 
with about half of the isolates being from Central-South America. 
However, the application of this database to predict amphibian 
skin-associated microbiome Bd-inhibitory function is limited by 
our knowledge of how these bacterial isolates function on 
amphibian skin. Observing fungal responses to changes in 
bacterial abundances could assist in detecting bacterial-
fungal relationships.

Despite the focus of many amphibian skin-associated 
microbiome studies on bacteria, few studies have examined 
how bacteria interact with non-Bd fungal taxa and other 
microeukaryotes on amphibian skin (Kueneman et al., 2016b, 
2017; Belasen et  al., 2021). For example, Kueneman et  al. 
(2016b) found many correlations between bacterial and fungal 
taxa on the skin of the western toad (Anaxyrus boreas), and the 
authors proposed that larval stages of amphibians may depend 
on high relative abundances of antifungal bacteria to confer 
innate immunity before metamorphosis and the maturation of 
the host adaptive immune system (Rollins-Smith, 1998). 
Hence, the interactions between bacteria and fungi on 
amphibian skin may have substantial implications for host 
health and disease management.

Broadly, our study aims to investigate temporal variation in 
the amphibian skin-associated microbiome using the western tiger 
salamander (Ambystoma mavortium; hereafter salamander) as a 
model amphibian. In the Rocky Mountains of North America, the 
western tiger salamander serves as an apex predator in many 
fishless high alpine lakes. When the snow melts at these lakes, 
adult salamanders travel from upland to the lakes to breed, and 
some of these salamanders remain in the lakes throughout the 
early summer. During the summer months, eggs hatch and larval 
salamanders may follow several life history strategies, including 
metamorphosing during the same year as hatching, overwintering 
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as larvae and metamorphosing the following year, and becoming 
sexually mature in the larval stage as neotenes (Sexton and Bizer, 
1978). Due to their local abundance and the presence of at least 
one life stage throughout the warm months (June to September, 
hereafter warm season) at fishless high alpine lakes, the western 
tiger salamander is an ideal amphibian for consistently obtaining 
skin-associated microbiome samples throughout the warm season.

In this study, we first examine season-long temporal variation 
of both bacteria and fungi in the salamander skin-associated 
microbiome between sites and across life history stages, and 
we consider whether temporal trends are similar between sites and 
life stages. Based on these data, we identify differentially abundant 
microbes between salamander skin and the environment and 
compare the predictive ability of spatiotemporal and water quality 
covariates on microbial community composition. We then ask (i) 
whether variation in the salamander skin-associated microbiome 
influences predicted Bd-inhibitory function, and (ii) whether 
predicted Bd-inhibitory function is correlated with the relative 
abundance of Bd.

Materials and methods

Study sites

Salamanders were sampled from the largest of the Gibson 
Lakes (Franklin County, ID; 447,845 easting, 4,654,056 northing, 
NAD 83 UTM Zone 12; elevation: 2,579 m) and Ponds Lake 
(Summit County, UT; 503,020 easting, 4,503,670 northing, NAD 
83 UTM Zone 12; elevation: 3,058 m). These lakes were chosen for 
sampling due to their differences in geology, substrate, and water 
conditions. We chose to sample lakes with different environmental 
conditions in order to investigate whether temporal trends in 
microbiome composition on salamander skin were similar 
between different lake environments. Both lakes are fishless, have 
no tributaries or outlets, and are located in different subranges of 
the Rocky Mountains. Gibson Lakes is a ~ 2.5-ha shallow lake in a 
limestone basin of the Bear River Mountains. Patches of 
submerged vegetation cover much of the lake bottom, and the lake 
substrate is primarily composed of soft sticky mud. Ponds Lake is 
a ~ 2.3-ha lake in a granitic basin of the Uinta Mountains. The lake 
substrate is a thick layer of loose vegetative material, and some 
parts of the shoreline have floating mats of vegetation. The water 
in Ponds Lake is stained red with dissolved organic carbon.

In 2018, access to Gibson Lakes was blocked due to snow at 
lower elevations until June 9th, when salamander eggs were 
observed attached to submerged vegetation. By the next week, 
when field sampling began, most of the previously observed eggs 
had hatched. Data from NRCS SNOTEL sites (see 
Supplementary material) suggest that snow melted at both lakes 
at about the same time in 2018, possibly within days of each other, 
and snow typically melts at these lakes about a week apart. Based 
on these data, it is likely that salamanders laid eggs in 2018 at 
about the same time at both lakes.

Sampling design

To ensure that the sampled salamanders were distributed 
throughout the lakes, the lakes were sampled by strata. Gibson 
Lakes was assigned 4 strata and Ponds Lake was assigned 5 strata 
(Figure 1). The strata divide the lakes into regions based on natural 
landmarks for easy recognition in the field. Within a lake, all strata 
had roughly the same area, and their areas remained roughly the 
same as each other as water levels dropped throughout the warm 
season. Three age classes of salamanders could be distinguished 
based on length and weight measurements, age-0, age-1, and 
age-2+. These age classes were of distinctly different sizes, with the 
length and weight of each age class increasing throughout the 
warm season (Supplementary Figure S1). During each visit to a 
lake (hereafter sampling event), we collected up to 20 salamanders 
from each age class with a maximum of five and four salamanders 
per stratum at Gibson Lakes and Ponds Lake, respectively. Each 
lake was sampled every other week during the 2018 warm season. 
Sampling began shortly after snowmelt and continued until the 
lakes became too cold to safely catch salamanders. Sampling 
began at Gibson Lakes on June 16th and Ponds Lake on June 23rd. 
Gibson Lakes was too cold to sample on September 29th, marking 
the end of the field season.

Salamanders were considered larvae if they retained any of 
their larval gill structures, and salamanders were considered 
metamorphosed individuals once all traces of their gill structures 
were absorbed. For each age class, larval and metamorphosed 
individuals were encountered, which we refer to as life stages, and 
we refer to the six possible combinations of age class and life stage 
as stage classes. We expect most age-2+ individuals to be sexually 
mature adults, at which point gilled individuals are 
considered neotenes.

Data collection

Upon arriving at a lake, environmental microbiome samples 
and water quality data were collected. During the first visit to 
each lake, a location was selected just offshore in each stratum 
to collect these samples and data. These locations were chosen 
to have relatively homogeneous depths across strata and to 
minimize the distance which the sampling location would need 
to move with receding water levels. Water quality data was 
collected prior to collecting environmental microbiome 
samples to minimize disturbance to the water. Water 
temperature, pH, electrical conductivity, and dissolved oxygen 
(ppm and percent) were measured just below the water surface 
using handheld meters (Hannah Instruments HI98129 and 
HI9146). For sampling the lake water microbiome, 500 ml of 
lake water was collected from the water surface in a laboratory 
Nalgene bottle. Following collection of a lake water microbiome 
sample, a lake substrate microbiome sample was collected from 
the top ~10 cm of pond substrate using a small PVC clam gun. 
The substrate column was deposited into a 15-ml conical tube, 
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and excess water was decanted. The substrate was thoroughly 
stirred with a teasing needle, and ~ 1.5 ml of substrate was 
deposited into a sterile 2-ml microcentrifuge tube. The 
microcentrifuge tubes containing substrate samples were placed 
on ice in a cooler while in the field. New latex gloves were worn 
for each environmental microbiome sample, and the clam gun 
and teasing needle were rinsed with 95% ethanol between 
substrate samples. The clam gun and teasing needle were rinsed 
with 6% bleach solution followed by a thorough rinse with 
distilled water between sampling events. Nalgene bottles were 
rinsed thoroughly with distilled water and autoclaved for 
20 min at 121°C between holding lake water samples. During 
each sampling event, the depth of a predefined rock was 
measured to determine relative lake elevation, the water level 
of the lake relative to its height at the beginning of the 
warm season.

After collecting environmental microbiomes and water quality 
data for all strata, salamanders were captured for each stratum. 
Salamanders were collected by hand and dip net, and salamanders 
were stored in 5-gallon buckets filled with lake water. For each 
stratum, different age classes were stored in separate 5-gallon 
buckets to reduce the risk of smaller salamanders being harmed 
from predation or aggression from larger individuals. While 
storing salamanders from the same age class and stratum together 
in 5-gallon buckets could have allowed for microbial 
contamination between individuals, we  suspect that potential 
contamination between individuals was minimal for the following 
reasons. First, only a few individuals were stored together at a time 
(an average of 3.04 and maximum of five individuals). Second, the 
period of time which individuals were stored together was short 

(typically about 25 min). Finally, individuals tended to disperse 
themselves relatively evenly within the buckets, and contact 
between individuals and the ventral surfaces (the body region of 
interest) of others was rare.

Each salamander was handled with new latex gloves, and 
snout-vent length (SVL) and weight measurements were taken to 
verify age classes (Supplementary Figure S1). Sex was determined 
for age-2+ salamanders. The ventral surface of each salamander 
was rinsed with 50 ml of distilled water (Bletz et al., 2017a) to 
remove environmental material and transient microbes (Culp 
et  al., 2007; Lauer et  al., 2007), and the salamander’s ventral 
surface was swabbed with a sterile rayon-tipped swab (MW113 
Medical Wire and Equipment, Corsham, United  Kingdom). 
Swabbing was performed by stroking the swab across the ventral 
surface ten times (one time = an up and back stroke along the full 
length of the belly; Bletz et  al., 2017a). Swabs used to sample 
salamander skin-associated microbiomes were stored in individual 
sterile 2-ml microcentrifuge tubes and placed on ice in a cooler 
while in the field. After processing salamanders for a stratum was 
complete, the salamanders were released back into the stratum, 
and salamander collection began at the next stratum. While it is 
possible that salamanders sampled in one stratum may have been 
sampled again in another stratum during the same sampling 
event, few salamanders were observed to have swum far from their 
point of release, which was away from stratum borders.

For each sampling event, the lake was surveyed for 
salamanders for a minimum of 5 person-hours divided evenly 
among the lake’s strata. Salamanders were processed after the 
stratum minimum sampling time was reached or the maximum 
number of individuals from all available age classes had been 

FIGURE 1

Strata for Gibson Lakes (left) and Ponds Lake (right). Images of (A) a young-of-year larval salamander and (B) a metamorphosed adult salamander.
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collected, and the search for salamanders then proceeded to the 
next stratum. After field sampling and while still at the lake, wet 
and dry negative control swabs were taken. Wet control swabs 
were sprayed with 50 ml of distilled water, and nothing was done 
to the dry control swabs. Wet and dry control swabs were placed 
in individual sterile 2-ml microcentrifuge tubes and stored on ice 
in a cooler while in the field.

Following field sampling and on the same day, lake water 
samples were prefiltered through a 5.0-μm prefilter membrane to 
remove debris followed by filtration with a 0.22-μm filter 
membrane to catch microbes (Millipore Sigma SVLP02500 and 
GSWP04700, respectively). Multiple 5.0-μm prefilter membranes 
were used for each water sample as necessary, whereas samples 
which experienced clogging on the 0.22-μm filter membrane 
(three samples) were discarded. Following filtration, 0.22-μm filter 
membranes were folded and stored in 2-ml microcentrifuge tubes. 
For autoclavable filtration equipment, the equipment was rinsed 
thoroughly with distilled water between water samples followed 
by autoclaving for 20 min at 121°C. Non-autoclavable filtration 
equipment was rinsed with 6% bleach solution followed by a 
thorough rinse with distilled water between water samples. Every 
four or five sampling events, five 500-ml distilled water samples 
were filtered as negative controls.

All samples were transferred to a −80°C freezer for storage, 
and the typical time from field collection to freezer storage was 
about five-and-a-half hours. Salamanders were collected, stored, 
handled, and released according to an approved Utah State 
University Institutional Animal Care and Use Committee protocol 
(#2798), a Utah Division of Wildlife Resources Certificate of 
Registration (#2COLL10232), and an Idaho Department of Fish 
and Game Wildlife Collection/Banding/Possession Permit 
(#180110).

DNA extraction and library preparation

DNA was extracted with the DNeasy PowerSoil Pro Kit 
(Qiagen, Inc.) following the manufacturer’s protocol, and 12 
empty extractions were performed as blank negative controls. 
Substrate samples were centrifuged for 30 s at 10,000 × g, excess 
liquid was removed with a pipette, and a scoopula was used to 
collect 250 mg of substrate from each sample for DNA extraction. 
Water sample filter membranes were finely diced using scissors 
and forceps into reagent reservoirs before being transferred to 
DNA extraction tubes. Swab samples were transferred to DNA 
extraction tubes using a different pair of forceps than that used for 
water samples. Pre-DNA extraction sample preparation work was 
performed under a fume hood, and the scoopula, scissors, and 
forceps were rinsed with 95% ethanol, flamed, and rinsed 
thoroughly with distilled water between samples. Reagent troughs 
were rinsed thoroughly with distilled water and autoclaved for 
20 min at 121°C between water samples.

Following DNA extraction, two samples of ZymoBIOMICS 
Microbial Community DNA Standard (Zymo Research D6305) 

were added as mock community positive sequencing controls. 6 μl 
of a control oligo pool was added to 30 μl of full concentration DNA 
extract. The control oligo pool contained 0.01 pg/μl each of 16S and 
ITS well-specific cross contamination oligos (hereafter coligos; 
Hawkins et al., 2018) and 0.03 pg/μl each of 16S and ITS synthetic 
genes (hereafter synthgenes; Tourlousse et al., 2017). The addition 
of fixed amounts of 16S and ITS synthgenes to a constant volume 
of each sample’s DNA extract will be used later in estimating the 
amount of microbial DNA in each sample. Sample DNA 
concentrations were measured via absorption and normalized to 
10 ng/μl with an automated liquid handler. Combinatorial dual 
indexing was performed on the samples with two-stage polymerase 
chain reaction (PCR). First stage PCR amplified the 16S rRNA and 
ITS genetic barcoding regions, added unique dual index 
combinations to each sample, and added a portion of the Illumina 
Nextera adapter. For each sample, two first-stage PCR replicates 
were performed and subsequently pooled. Second stage PCR 
completed Illumina adapter addition. The 16S rRNA V4 region was 
amplified using the primers 515F (forward; Parada et al., 2016) and 
806R (reverse; Caporaso et al., 2011). The ITS1 region was amplified 
using the primers ITS1-F (forward; Gardes and Bruns, 1993) and 
ITS2 (reverse; White et al., 1990). A modified AxyPrep MagBead 
PCR Clean-up protocol was used to purify the amplified DNA after 
each PCR reaction. Library preparation occurred at the University 
of Wyoming Genome Technologies Laboratory (Laramie, WY). See 
Supplementary material for library preparation details.

DNA sequencing and processing

Paired-end DNA sequencing of pooled amplicon product was 
performed on both Illumina MiSeq (v3 600-cycle kit, 2 × 300 base 
pair [bp] reads) and Illumina NextSeq (v2 300-cycle kit, 2 × 150 bp 
reads) platforms at the Utah State University Center for Integrated 
Biosystems (Logan, UT). Both sequencing platforms offer their 
own advantages for 16S and ITS amplicon sequencing, where 
Illumina MiSeq produces longer but fewer reads than Illumina 
NextSeq. The longer MiSeq sequences provide greater taxonomic 
resolution, and the greater number of NextSeq sequences reduces 
uncertainty in relative abundance estimates. We  leverage the 
benefits of both sequencing platforms by using the longer-length 
MiSeq sequences as study-specific 16S and ITS reference libraries 
to enhance the taxonomic resolution of our shorter but more 
numerous NextSeq sequences. Illumina MiSeq produced 19 
million paired-end reads, and Illumina NextSeq produced 187 
million paired-end reads.

MiSeq reads were partitioned into 16S and ITS datasets based 
on their primer regions using a custom Perl script (version 5.18.1; 
see Data Availability for script), and index tags were removed. 
Since variable length index tags were used, MiSeq reads were 
trimmed to 290 bp using cutadapt (version 2.10; Martin, 2011) to 
ensure that non-overlapping sequences did not appear different 
simply due to read length. Using cutadapt, read pairs that 
contained Ns were removed, and forward primers and reverse 
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complements of reverse primers were trimmed (with a maximum 
error rate of 0.15, a minimum trimmed length of 1 bp, and 
discarding untrimmed read pairs), with trimming the reverse 
primer’s reverse complement being required for 16S read pairs. 
Variable length index tags reduce amplicon sequencing error on 
Illumina platforms by increasing heterogeneity in the composition 
of bases called in each cycle (Fadrosh et al., 2014).

The DADA2 bioinformatics pipeline (version 3.10; Callahan 
et al., 2016) was used in the R statistical software program (version 
4.0.2; R Core Team, 2020) for quality filtering, phiX removal, 
denoising, merging pairs, chimera removal, and taxonomic 
assignment of MiSeq reads (see Supplementary material for 
details). While 16S reads were of appropriate lengths for merging 
pairs, the variable length of the ITS region resulted in both 
overlapping and non-overlapping read pairs. DADA2 has the 
ability to work with both overlapping and non-overlapping read 
pairs, allowing for the retention of fungal taxa with long ITS genes. 
Overlapping ITS read pairs were merged, while non-overlapping 
ITS read pairs were retained in the pipeline as concatenated 
sequences with 10-N spacers, which DADA2’s implementation of 
the naïve Bayesian classifier is designed to work with. DADA2’s 
naïve Bayesian classifier (Wang et al., 2007) was used to classify 
unique sequences in the MiSeq 16S and ITS datasets using Silva 
(version 138; Quast et al., 2012) and UNITE (general dynamic 
FASTA release for fungi; version 8.2; Nilsson et al., 2019) reference 
libraries, respectively. To create study-specific 16S and ITS 
reference libraries, NextSeq-length forward and reverse reads were 
created from the classified MiSeq 16S and ITS sequences, and 
consensus taxonomies and MiSeq-length sequences (for 
predicting Bd-inhibitory function) were generated for duplicate 
reference read pairs (see Supplementary material for details). 
Integers were appended to reference taxa names to differentiate 
each amplicon sequence variant (ASV) associated with a taxon.

NextSeq reads were assigned to PCR replicate, barcode region, 
and sample (i.e., reads were demultiplexed) using Perl while 
allowing 1 bp mismatches in the index tags (index tags were 
designed to differ by at least 2 bp). Allowing 1 bp mismatches in 
the index tags allows reads which experience sequencing error in 
the index tag regions to be  retained if the index tags can still 
be uniquely identified. We note that allowing sequencing errors in 
index tag regions is not uncommon during demultiplexing. For 
example, demultiplexing in cutadapt and QIIME 2 (qiime 
cutadapt demux-paired command; version 2022.8; Bolyen et al., 
2019) allow for 10% mismatches in index tags by default. 
Following demultiplexing, phiX reads were discarded and index 
tags were removed using Perl. The following steps were performed 
sequentially on the NextSeq reads using cutadapt: reads were 
trimmed to 140 bp to make all reads the same length, read pairs 
with Ns were removed, forward primers and reverse complements 
of reverse primers were trimmed (with the same settings as the 
MiSeq data but without requiring trimming of the reverse primers’ 
reverse complements).

Using exact matching in R, 21.4 million of 54.3 million 
NextSeq 16S reads were identified to 15,792 reference sequences, 

and 60.4 million of 113.9 million NextSeq ITS reads were 
identified to 3,488 reference sequences. Of the identified NextSeq 
sequences, 17.0% of 16S sequences were coligos or the synthgene, 
and 79.5% of ITS sequences were coligos or the synthgene. All 
samples were checked for between-well cross contamination 
through use of the coligos. Three salamander samples and one 
blank control sample were removed from the 16S dataset due to 
high amounts of between-well contamination (having a ratio of 
any contaminant coligo to non-contaminant coligo greater than 
0.1 after summing coligo read counts across PCR replicates). Two 
salamander samples were removed from the ITS dataset due to 
lack of detection of any non-synthgene and non-coligo sequences 
in both PCR replicates. Coligos were removed from the datasets 
for all subsequent analyses. In the mock community samples, 
we  observed strong amplification bias in the ITS data 
(Supplementary Figure S2), and one fungal taxon was split into 
three substantial ASVs. In an effort to mitigate the potential 
impact of fungal taxa being split into multiple ASVs, we merged 
fungal ASVs which were assigned the same taxonomy into the 
same taxa. We chose to forego rarefaction of our samples as it 
increases uncertainty in relative abundances (McMurdie and 
Holmes, 2014).

We performed principal component analyses (PCAs) on 
the proportional abundances of taxa across PCR replicate and 
sample type (Supplementary Figures S3–S5). Taxa proportional 
abundances within samples were similar across PCR replicates, 
so read counts were summed across PCR replicates for each 
sample. There were ten salamander samples which grouped 
closely with wet swab and dry swab negative controls in the 
16S PCAs on sample type, so these samples were removed 
from the 16S data for all subsequent analyses. Following 
Harrison et  al. (2021), we  used synthgene read counts to 
calculate the amount of microbial DNA in each sample relative 
to the synthgene (i.e., microbial read count divided by 
synthgene read count), and we  compared the amount of 
microbial DNA in field samples to their associated negative 
controls (Supplementary Figure S6). Synthgenes were 
subsequently removed from the datasets. The final datasets for 
our field samples contained 15,690 bacterial taxa (6,529 for 
salamander, 8,873 for water, and 14,591 for substrate) and 469 
fungal taxa (289 for salamander, 224 for water, and 413 
for substrate).

Water quality between sites and through 
time

To examine how water quality changed throughout the warm 
season, we fit a linear mixed-effects model for each water quality 
parameter (i.e., temperature, pH, conductivity, and dissolved 
oxygen [ppm and %]) using the lmerTest R package (version 3.1.3; 
Kuznetsova et al., 2017). In these linear mixed-effects models, 
stratum was treated as a random effect, and site, week, and their 
interaction were included as fixed effects. Stratum was coded with 
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nine values representing the four strata in Gibson Lakes and the 
five strata in Ponds Lake. Site was treated as a categorical predictor, 
and week was treated as a continuous predictor. Week represented 
the number of weeks since June 9th, 2018. Water quality 
measurements are displayed in Supplementary Figure S7.

Predicting Bd-inhibitory function

A database of amphibian skin-associated microbiome 
Bd-inhibitory bacterial isolates (Woodhams et al., 2015) was used 
to predict which bacteria observed in our datasets exhibit 
Bd-inhibitory properties (see Supplementary material for details). 
We trimmed sequences in the database of Woodhams et al. (2015) 
to the 16S rRNA V4 region using our 16S amplification primers 
with R, and we aligned the MiSeq 16S sequences of taxa detected 
in our NextSeq 16S field samples with the Woodhams et al. (2015) 
sequences using Clustal Omega (version 1.2.4; Sievers et al., 2011). 
We used FastTree 2 (version 2.1.11; Price et al., 2010) to create a 
phylogenetic tree, and we used stochastic character mapping with 
the make.simmap function in the phytools package (version 
0.7.70; Revell, 2012) to predict the Bd-inhibition statuses of our 
observed taxa. Stochastic character mapping extends ancestral 
state reconstruction to probabilistically predict unobserved traits 
at the tips of a phylogenetic tree (Bollback, 2006). While existing 
applications of the Woodhams et  al. (2015) database tend to 
employ local alignment or clustering methods to classify bacterial 
taxa as “potentially” Bd-inhibitory (e.g., Kueneman et al., 2016b; 
Bletz et al., 2017a; Kruger, 2020), stochastic character mapping 
provides the benefit of yielding probabilistic predictions that 
bacterial taxa are actually Bd-inhibitory. We  further note that 
extended ancestral trait reconstruction is commonly applied in 
predicting the metabolic function of gut microbiomes (Langille 
et al., 2013). We visualized our phylogenetic tree with the posterior 
probabilities of our taxa being Bd-inhibitory using the Interactive 
Tree of Life (Supplementary Figure S8; version 6.5.4; Letunic and 
Bork, 2021).

The vast majority of our taxa had low confidence in their 
Bd-inhibition statuses (99.5% of posterior probabilities were 
between 47.9 and 52.5%), whereas most posterior probabilities 
which were < 40% or > 60% were also ≤10% or ≥ 90% (33 of 39). 
Therefore, we considered our bacterial taxa to be Bd-inhibitory if 
their posterior probabilities of Bd-inhibition were ≥ 90%, and 
we considered our bacterial taxa to be non-Bd-inhibitory if their 
posterior probabilities of Bd-inhibition were ≤ 10%. Otherwise, 
we  considered our bacterial taxa to have an uncertain 
Bd-inhibition status.

Microbial composition modeling

For both bacterial and fungal communities, we fit Bayesian 
Dirichlet-multinomial regression models to the salamander, 
water, and substrate microbiome data to identify differentially 

abundant microbes and to evaluate differences in overall 
community composition. Bayesian Dirichlet-multinomial 
regression estimates the effect of covariates on a set of proportions 
which sum to one (i.e., a simplex) and uses a set of counts as a 
multivariate response. In the context of microbiome data, the 
model uses read counts to estimate the expected proportional 
abundances of microbial taxa in the community, and the model 
considers the underlying uncertainty in each sample’s 
composition, which is dictated by the sample’s total read count 
(i.e., its sampling effort). Bayesian Dirichlet-multinomial models 
outperform other analyses of compositional data in detecting 
differences in community composition, and the model further 
allows for the identification of the taxa responsible for those 
differences (i.e., the model allows for differential abundance 
testing; Harrison et al., 2020).

Our Bayesian Dirichlet-multinomial regression model was 
adapted from the Bayesian Dirichlet regression model of 
Sennhenn-Reulen (2018), and we  used backwards variable 
selection by widely applicable information criterion (WAIC) to 
optimize predictive accuracy. WAIC is a Bayesian analog to AIC 
and approximates the predictive accuracy of leave-one-out cross-
validation (Gelman et al., 2014). In our model, sample read counts 
are distributed according to the Dirichlet-multinomial 
distribution. Each taxon receives a linear predictor combination, 
and the softmax function (a multivariate inverse logit) normalizes 
linear predictor combinations for all taxa into expected 
proportions. The last taxon serves as a reference category, and its 
intercept and regression coefficients are set to zero to allow for 
model identifiability. A precision parameter controls the degree of 
overdispersion relative to the multinomial distribution. See 
Supplementary material for model details.

Our Bayesian Dirichlet-multinomial regression models were 
computationally intensive to fit, with the number of model 
parameters and model run time increasing with the number of 
taxa included. To keep model run-times practical, we opted to 
select the 100 most proportionally abundant taxa from the 
salamander samples, plus an “other” category, for inclusion in the 
composition models. To select these taxa, we  calculated the 
proportion of reads of each taxon in each salamander sample. For 
each barcode region (i.e., 16S or ITS), we  then averaged each 
taxon’s proportion of reads by combinations of site and life stage. 
We then averaged across these averages, and we took the 100 taxa 
with the highest averaged proportion of reads for each barcode 
region for use in modeling. Other taxa which were not included 
in the top  100 for each barcode region had their read counts 
merged into an “other” category. By weighting each combination 
of site and life stage equally (i.e., by taking averages of averages) in 
selecting the top 100 taxa, we ensured that the top 100 taxa were 
not dominated by taxa from one site or life stage simply due to 
differences in sample size. Including the “other” category in the 
models ensures that the proportional abundances of the top 100 
taxa remain unbiased. We chose to select the top 100 taxa because 
these comprise the vast majority of reads in salamander samples 
(93.1% of bacterial and 98.6% of fungal reads). As such, we expect 
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variation in the composition of these taxa to represent most of the 
variation in community composition. Additionally, following 
initial testing, we  deemed including 101 categories in the 
composition models (the top 100 taxa plus the “other” category) 
to be near the upper reasonable limit of our computing capacity 
on a high-performance computing cluster. Ultimately, our 
Bayesian Dirichlet-multinomial regression models, coupled with 
our backwards variable selection approach, took 785 CPU days to 
run. Datasets used in the modeling of water and substrate 
microbial communities included the same taxa as used for the 
salamander modeling, plus their own “other” categories. 
Proportional abundance estimates from Bayesian Dirichlet-
multinomial regression models for water and substrate are later 
used to identify microbes which are disproportionately abundant 
on salamander skin relative to the environment. Since not all top 
microbial taxa in the salamander samples were detected in the 
water and substrate samples, the water and substrate datasets used 
in modeling had fewer than 101 taxa.

As water quality was highly correlated with space and time 
(Supplementary Figure S7), we fit models with two different sets 
of predictors. One predictor set included spatiotemporal 
covariates, while the other predictor set substituted spatiotemporal 
covariates with water quality. The spatiotemporal predictor set 
included four-way interactions between age, life stage, site, and a 
second-degree polynomial for week, all lower-level interactions, 
and the individual predictors. Stratum was also included as a 
predictor and treated as a hierarchical effect. The water quality 
predictor set included a five-way interaction between age, life 
stage, temperature (°C), pH, and dissolved oxygen (ppm), all 
lower-level interactions, and the individual predictors. Models for 
water and substrate lacked age and life stage predictors. Site and 
life stage were treated as categorical predictors, and age and week 
were treated as continuous predictors. Age took whole integers 
from zero (age-0) to two (age-2+), and week represented the 
number of weeks since June 9th, 2018.

Bayesian Dirichlet-multinomial regression models were fit in 
Stan (version 2.21.0; Carpenter et al., 2017) using the rstan R 
interface (version 2.21.2; Stan Development Team, 2020) with 
four Hamiltonian Monte Carlo (HMC) chains, 500 warmup 
iterations, 500 sampling iterations, and no thinning. Stan was 
chosen for its efficient HMC algorithm, and HMC chains were 
run in parallel on a University of Utah high-performance 
computing cluster. Gelman-Rubin convergence diagnostics (

∧
R ) 

and trace plots of the posteriors were used to assess model 
convergence. Since interpreting the effect of Dirichlet-
multinomial regression coefficients on proportional abundances 
is not straightforward (see Supplementary material for a 
discussion), we opted for a graphical interpretation of the best-fit 
models (i.e., the models selected by backwards variable selection). 
We generated posterior predictions of proportional abundances 
for each combination of non-stratum predictors observed in the 
datasets, where predictions were for the average stratum (see 
Supplementary material for prediction details). The posterior 
predictions of taxa proportional abundances were summarized 

with 95% credible intervals, 50% credible intervals, and their 
median values.

For salamander microbiomes, Hill’s diversity index with α = 2 
(Haegeman et al., 2013) was derived from the posterior predictions 
of taxa proportional abundances. By treating Hill’s diversity as a 
derived parameter from the Bayesian Dirichlet-multinomial 
regression models, we propagated the uncertainty associated with 
taxa proportional abundances to our diversity index. We chose 
Hill’s diversity (α = 2) as our alpha diversity index because it is 
insensitive to the many rare taxa expected in microbial 
communities, and can therefore be  robustly estimated from 
microbiome data (Haegeman et  al., 2013). Because of its 
insensitivity to rare taxa, we expected our grouping of rare taxa 
into an “other” category in the Bayesian Dirichlet-multinomial 
regression models to have a negligible impact on Hill’s diversity. 
We tested this expectation in the context of our data as follows. By 
grouping rare taxa into an “other” category, we created a situation 
of maximum unevenness within the group (i.e., the entire 
abundance of the “other” category was composed of a single 
taxon). We evaluated the sensitivity of Hill’s diversity to rare taxa 
by considering how evenly distributing the abundance of the 
“other” category across all of its member taxa influenced the 
index. For each HMC sample, we split the proportional abundance 
predictions of the “other” category into its individual members 
with uniform proportional abundances. We then re-derived Hill’s 
diversity and compared the posterior medians with the original 
values. After excluding a single combination of stage class and 
sampling event for bacterial communities, we observed a very 
strong correlation in Hill’s diversity estimates between the two 
methods (Pearson correlation coefficient of >0.999 for both 
bacteria and fungi). The excluded combination of stage class and 
sampling event was age-0 metamorphosed salamanders at Gibson 
Lakes on September 15th, which had a high proportional 
abundance of “other” bacterial taxa (posterior median of 0.196) 
and whose diversity estimate was found to be  sensitive to the 
grouping of rare taxa into an “other” category (Hill’s diversity 
increased by 226.6% in the described test). We  removed this 
combination of stage class and sampling event from our Hill’s 
diversity estimates for bacteria so that all remaining diversity 
estimates were reliable. The posterior distributions of Hill’s 
diversity were summarized with 95% credible intervals, 50% 
credible intervals, and their median values.

To estimate the Bd-inhibitory function of bacterial 
communities, we summed the read counts of bacteria belonging 
to each Bd-inhibition category within each sample, and we fit 
additional Bayesian Dirichlet-multinomial regression models for 
salamander, water, and substrate samples with three response 
categories representing the Bd-inhibition statuses (i.e., 
Bd-inhibitory, non-Bd-inhibitory, and uncertain Bd-inhibition 
status). These models used the spatiotemporal predictor set, and 
backwards variable selection by WAIC was again used to optimize 
predictive accuracy. We again generated posterior predictions of 
proportional abundances for each combination of non-stratum 
predictors observed in the datasets, where predictions were for the 
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average stratum. We summarized the proportional abundances of 
each Bd-inhibition category with 95% credible intervals, 50% 
credible intervals, and their median values.

To examine which taxa and Bd-inhibition categories were 
disproportionately abundant on salamander skin relative to the 
environment, we  considered the proportional abundance of 
microbes that salamanders experience in their environments to 
be  a mixture between water and substrate proportional 
abundances, with the mixing ratio being a product of salamander 
behavior. Although we do not know this ratio, we expect that the 
result of this mixture is between the lower of the 0.025 quantiles 
(the lower ends of the 95% credible intervals) and the upper of the 
0.975 quantiles (the upper ends of the 95% credible intervals) of 
the proportional abundance posterior predictions from water and 
substrate Bayesian Dirichlet-multinomial regression models, and 
we consider this range to represent the proportional abundance of 
a taxon or Bd-inhibition category in the environment. In 
determining this range, if a taxon was not detected in the water or 
substrate samples, and therefore was not included in the Bayesian 
Dirichlet-multinomial regression modeling for that sample type, 
it was considered to have 0.025 and 0.975 quantiles of proportional 
abundance predictions for that sample type of zero. The end result 
is that, if the proportional abundance of a taxon on salamander 
skin is higher than this range, then the taxon is disproportionately 
more abundant on salamander skin compared to both water and 
substrate. Conversely, if the proportional abundance of a taxon on 
salamander skin is lower than this range, then the taxon is 
disproportionately more abundant in both water and substrate 
than on salamander skin.

Relationship between Bd-inhibitory 
bacteria and Bd

We detected Bd from ITS amplicon sequencing (i.e., there 
were fungal microbiome reads which were classified as Bd) on 
salamander skin at both lakes, and since Bd was absent in all 
negative control samples, we are confident that this was not the 
result of contamination. To verify that fungal microbiome reads 
which the naïve Bayesian classifier assigned to Bd were likely 
classified correctly, we performed an online nucleotide BLAST 
search (Zhang et al., 2000) with default settings for each of the 
25 Bd ASVs which were previously merged into the Bd taxon. For 
each Bd ASV, the best-matching BLAST hit (the match with the 
lowest E-value) was a reference sequence belonging to Bd. 92% 
of Bd ASVs had 96.7% similarity or greater compared to their 
best-matching Bd reference sequence, and all ASVs had at least 
94.5% similarity compared to their best-matching Bd 
reference sequence.

We tested for a relationship between the relative abundances 
of Bd-inhibitory bacteria and Bd on the skin of metamorphosed 
salamanders by fitting a Bayesian beta-binomial regression model 
with a logit link. We restricted this analysis to metamorphosed 
individuals because cutaneous Bd infections do not typically 

produce disease in larval amphibians (Marantelli et al., 2004). In 
our samples, Bd was detected on the skin of only 2.2% of larval or 
neotenic individuals (3 of 139) compared to 57.6% of 
metamorphosed individuals (38 of 66). The Bayesian beta-
binomial regression model can be viewed as a univariate version 
of our earlier Bayesian Dirichlet-multinomial regression model. 
The Bayesian beta-binomial regression accounts for uncertainty 
in response values (i.e., the proportional abundance of Bd in 
fungal communities) by considering Bd read counts to be beta-
binomially distributed, and a precision parameter controls the 
degree of overdispersion relative to the binomial distribution. Our 
model additionally accounts for uncertainty in the predictor 
values (i.e., the proportional abundance of Bd-inhibitory bacteria 
in bacterial communities) by estimating predictor values within 
the model from Bd-inhibitory read counts. Within the model, 
Bd-inhibitory read counts are beta-binomially distributed, and the 
logit linearizes Bd-inhibitory proportional abundance estimates 
for use as predictor values. See Supplementary material for model 
details. The model was fit in JAGS (version 4.3.0; Plummer, 2003) 
using the rjags R interface (version 4.10; Plummer, 2019) with 
three Markov chain Monte Carlo (MCMC) chains, 20,000 
adaptation iterations, 20,000 warmup iterations, 100,000 sampling 
iterations, and no thinning. Gelman-Rubin convergence 
diagnostics and trace plots of the posteriors were used to assess 
model convergence.

Results

Field sampling

We observed higher amounts of microbial DNA in field 
samples compared to their associated negative controls 
(Supplementary Figure S6). Total sample counts are included in 
Table  1, and a breakdown of salamander skin-associated 
microbiome samples are displayed in Figure 2. The residency of 
different salamander age classes varied through time, and age-0 
salamanders were too small to sample during the early 
warm season.

TABLE 1 Microbiome sample counts.

Format Type Count

Swab Salamander 207

Wet negative control 11

Dry negative control 13

Water Sample 60

Negative control 20

Substrate Sample 67

Blank Negative control 12

Mock community Positive control 2

Total 392
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Based on observed sizes of males and females, most age-2+ 
salamanders – and only age-2+ salamanders – are thought to 
have been adults. Males develop swollen cloacas once sexually 
mature (Stebbins, 2003), and only one non-male age-2+ 
salamander (83 mm SVL; assumed to be female) had an SVL less 
than the smallest male (84 mm), with other small age-2+ 
salamanders in the range of 85 to 87 mm SVL being a mix of 
males (3) and females (4). Given the overlap in size between 
males and females, few subadults are expected to have been 
included in the age-2+ age class since male salamanders of this 
size were showing clear signs of sexual maturity. The absence of 
swollen cloacas from all age-0 and age-1 individuals suggests that 
only age-2+ individuals were sexually mature. 23 of 55 (41.8%) 
of sexed age-2+ salamanders were male (36.0% for Gibson Lakes 
and 46.7% for Ponds Lake).

Parameter estimates, test statistics, and p-values from the 
linear mixed-effects models for water quality are reported in 
Supplementary Table S1. These models included stratum as a 
random effect, and site, week, and their interaction were included 
as fixed effects. From the linear mixed-effects models, all water 
quality parameters (i.e., temperature, pH, conductivity, and 
dissolved oxygen [ppm and %]) changed significantly throughout 
the warm season (values of p ≤ 0.05 for all regression coefficients 
for week). We found a significant effect of site for all water quality 
parameters besides temperature, and we  found significant 
interactions between site and week for conductivity and dissolved 

oxygen (both ppm and %). These results suggest that we were 
unable to detect differences in water temperature between Gibson 
Lakes and Ponds Lake, and temperature at both lakes decreased 
throughout the warm season (βweek = −0.713, value of p < 0.001). pH 
was lower at Ponds Lake compared to Gibson Lakes (βsite = −1.048, 
value of p < 0.001) and increased throughout the warm season at 
both lakes (βweek = 0.053, value of p < 0.001; non-significant 
interaction between site and week, value of p = 0.147). For 
conductivity and dissolved oxygen (both ppm and %), temporal 
trends were dependent on the lake (p-values ≤0.05 for all site, 
week, and interaction regression coefficients). Field measurements 
of water quality are shown in Supplementary Figure S7.

Predictions of Bd-inhibitory function

Only 33 of the 15,690 taxa detected in our NextSeq 16S field 
samples were classified as Bd-inhibitory or non-Bd-inhibitory (i.e., 
posterior probabilities ≥90% or ≤ 10%; Supplementary Table S2). Of 
the 872 Woodhams et al. (2015) sequences which were used in the 
alignment, there were 361 unique sequences, and 79 of these unique 
sequences occurred across multiple bacterial isolates. We note that 
41 of these 79 sequences (51.9%) had inconsistent Bd-inhibition 
statuses (i.e., statuses varied across isolates associated with the same 
sequence). We also note that the aligned Woodhams et al. (2015) 
sequences provided limited phylogenetic coverage of the bacterial 

FIGURE 2

Counts of salamander skin-associated microbiome samples through time.
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taxa detected in our field samples (Supplementary Figure S8), with 
only 5,330 (34.0%) of our bacterial taxa belonging to phyla included 
in the Woodhams et al. (2015) database.

Microbial composition

The proportion of reads in salamander samples belonging to 
each microbial class for each combination of stage class and 
sampling event are displayed in Figures  3, 4 for bacterial and 
fungal communities, respectively. Salamander bacterial 
communities were dominated by members of the phylum 
Proteobacteria and class Gammaproteobacteria (Figure 3), which 
comprised 89.8 and 86.7% of reads, respectively. The proportion 
of reads belonging to each fungal class (Figure  4) were more 
balanced than bacteria. Among salamander fungal reads, 41.6% 
belonged to class Rhizophydiomycetes, 21.4% were unidentified 
fungi, and 15.2% belonged to class Tremellomycetes.

Bayesian Dirichlet-multinomial regression models with 
spatiotemporal predictors fit better than models with water quality 

predictors for salamander samples (Table 2), suggesting that our 
spatiotemporal predictors were better able to predict salamander 
microbial composition. All but two of the best-fitting Bayesian 
Dirichlet-multinomial regression models with spatiotemporal 
predictors included stratum as a predictor, suggesting 
compositional variation in microbial communities within the 
lakes, with the models for salamander fungal communities and 
water Bd-inhibition categories being the exceptions. Except for 
stratum in the aforementioned models, all best-fitting 
spatiotemporal Bayesian Dirichlet-multinomial regression models 
included all individual predictors or their interactions, suggesting 
that all of our measured variables contributed to our ability to 
predict the composition of microbial communities.

The ten Bayesian Dirichlet-multinomial regression models 
from the backwards variable selection process with the lowest 
WAIC values for each sample type (i.e., salamander, water, or 
substrate), predictor set (i.e., spatiotemporal or water quality), and 
microbial community type (i.e., bacterial community, fungal 
community, or Bd-inhibition categories) are included in 
Supplementary Tables S3–S7. Four best-fitting Bayesian 

FIGURE 3

Proportion of bacterial reads in salamander samples belonging to each class. The ten classes with the highest number of salamander sample reads 
are displayed along with a category for the other classes. A stacked bar chart is displayed for each combination of stage class and sampling event, 
and each stacked bar chart represents reads pooled across samples belonging to the combination of stage class and sampling event. A “G” 
proceeds the dates of sampling events at Gibson Lakes, and a “P” proceeds the dates of sampling events at Ponds Lake.
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FIGURE 4

Proportion of fungal reads in salamander samples belonging to each class. The ten classes with the highest number of salamander sample reads 
are displayed along with a category for the other classes. A stacked bar chart is displayed for each combination of stage class and sampling event, 
and each stacked bar chart represents reads pooled across samples belonging to the combination of stage class and sampling event. A “G” 
proceeds the dates of sampling events at Gibson Lakes, and a “P” proceeds the dates of sampling events at Ponds Lake.

Dirichlet-multinomial regression models had other models within 
two WAIC (i.e., the model for substrate bacterial community 
composition and models for salamander, water, and substrate 
Bd-inhibition categories). With one exception, all other models 
within two WAIC contained the same predictors or their 
interactions as the best-fitting models. For example, a model with 
age as a predictor and another model with an interaction between 
age and site both contain age. The exception was one model within 
two WAIC of the best-fitting model for Bd-inhibition categories 
in lake water, which included stratum as a predictor while the 
best-fitting model excluded it.

Throughout our results, we consider non-overlapping 95% 
credible intervals of posterior predictions to represent 
differences in taxa proportional abundances, alpha diversity, or 
the proportional abundances of Bd-inhibition categories, 
depending on the analysis. These posterior predictions are all 
from the best-fitting Bayesian Dirichlet-multinomial regression 
model (the model with the lowest WAIC) for salamander, water, 
or substrate samples for bacterial communities, fungal 
communities, or Bd-inhibition categories. The 95% credible 

intervals of posterior predictions are presented in the 
referenced figures.

The following results are from the posterior predictions of the 
best-fitting Bayesian Dirichlet-multinomial regression model for 
bacterial community composition on salamander skin. 
We observed temporal, spatial, and ontogenetic variation in the 
proportional abundances of the top 100 bacterial taxa (Figure 5; 
Supplementary Figures S9–S13), with the degree of variation 
depending on the taxon. Proportional abundance trends were 
often taxon-specific, although patterns were observed across some 
taxa. Examples of temporal variation include an increase in the 
proportional abundance of Comamonadaceae 2 (i.e., the second 
ASV classified as Comamonadaceae) through time in Gibson 
Lakes age-0 larvae and a decrease in the proportional abundance 
of Candidatus Methylopumilus 1 through time in Ponds Lake 
age-1 larvae. Ontogenetic variation is apparent among many of the 
top 100 bacterial taxa. For example, the proportional abundances 
of Comamonadaceae 3 and 6 in Ponds Lake were consistently 
higher for age-2+ metamorphosed salamanders than other stage 
classes. In Gibson Lakes age-0 individuals, we observed higher 
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proportional abundances of certain bacterial taxa on larvae 
followed by a sharp decline post-metamorphosis (e.g., 
Comamonadaceae 2, Limnohabitans 1, Methylotenera 7, 
Methylotenera 2, and Sphingorhabdus rigui 1).

Ninety of the top 100 bacterial taxa detected in salamander 
samples were also detected in environmental samples. We detected 
86 and 82 of the top 100 bacterial taxa in water and substrate 
samples, respectively. From the posterior predictions of the best-
fitting salamander, water, and substrate Bayesian Dirichlet-
multinomial regression models for bacterial community 
composition, 32 of the top  100 bacterial taxa were 
disproportionately more abundant on salamander skin relative to 
the environment for the majority of combinations of stage class 

and sampling event (Figure 5; Supplementary Figures S9–S13), 
including Sanguibacter 1 and Gracilibacteria 3. Taxa detected 
exclusively on salamander skin include Pseudochrobactrum 
kiredjianiae 1 and Roseomonas 2. None of the top 100 bacterial 
taxa had lower proportional abundances on salamander skin than 
in the environment for the majority of combinations of stage class 
and sampling event.

As for bacteria, we observed spatiotemporal and ontogenetic 
variation in the proportional abundances of the top 100 fungal taxa 
based on the posterior predictions of the best-fitting Bayesian 
Dirichlet-multinomial regression model for fungal community 
composition on salamander skin (Figure  6; Supplementary  
Figures S14–S18). Naganishia diffluens experienced an increase in 

TABLE 2 Predictors included in the best-fitting Bayesian Dirichlet-multinomial regression models for microbiome composition.

Sample 
type

Microbial 
community

Predictor 
set Best-fit model predictors

Best-fit 
model 
WAIC

Full 
model 
WAIC

Number 
of 

models 
fit

Number 
of taxa 

included

Total 
CPU 
days

Salamander Bacterial Spatiotemporal Stratum + Age + Life Stage + Site + Age:Life 

Stage + Age:Site + Life Stage:Site + Life 

Stage:Week + Site:Week + Site:Week2 + Age:Life 

Stage:Site + Age:Life 

Stage:Week + Age:Site:Week + Life 

Stage:Site:Week2 + Age:Life Stage:Site:Week2

140041.5 140505.6 196 101 105.7

Water quality Age + Life Stage + Life Stage:Temperature + Life 

Stage:pH + Temperature:pH + Life Stage:DO 

(ppm) + Age:Life Stage:pH + Age:pH:DO 

(ppm) + Age:Life Stage:Temperature:DO 

(ppm) + Life Stage:Temperature:pH:DO (ppm)

140706.1 141839.3 452 101 253.9

Fungal Spatiotemporal Life Stage + Life Stage:Site + Age:Week2 + Site:Week2 120600.2 121624.9 295 101 161.9

Water quality Age + Life Stage + Life Stage:Temperature + Life 

Stage:DO (ppm) + Age:Life Stage:pH + Age:Life 

Stage:pH:DO (ppm) + Age:Temperature:pH:DO 

(ppm)

121168.6 122711.0 476 101 257.1

Bd-inhibition 

categories

Spatiotemporal Stratum + Life Stage + Week + Week2 + Age:Life 

Stage + Age:Site + Life 

Stage:Site + Age:Week + Age:Week2 + Life 

Stage:Week + Life 

Stage:Week2 + Site:Week + Site:Week2 + Age:Life 

Stage:Site + Age:Life Stage:Week + Age:Life 

Stage:Week2 + Age:Site:Week + Age:Site:Week2 + Life 

Stage:Site:Week + Life Stage:Site:Week2 + Age:Life 

Stage:Site:Week + Age:Life Stage:Site:Week2

4998.5 5005.0 70 3 1.6

Water Bacterial Spatiotemporal Stratum + Site + Week + Site:Week + Site:Week2 44272.9 44329.3 12 87 0.7

Fungal Spatiotemporal Stratum + Week + Week2 + Site:Week + Site:Week2 29359.9 29392.3 12 68 0.6

Bd-inhibition 

categories

Spatiotemporal Site + Week + Site:Week + Site:Week2 1673.2 1676.1 16 3 0.1

Substrate Bacterial Spatiotemporal Stratum + Site + Week + Site:Week + Site:Week2 34202.2 34440.6 12 83 1.0

Fungal Spatiotemporal Stratum + Week + Site:Week + Site:Week2 51644.8 51924.2 16 92 2.1

Bd-inhibition 

categories

Spatiotemporal Stratum + Site + Week + Site:Week + Site:Week2 1391.7 1400.6 12 3 0.1

Best-fit models are those selected by backwards variable selection by WAIC, and the full model is the initial model fit during backwards variable selection which includes all predictors. 
DO is dissolved oxygen.
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FIGURE 5

Proportional abundance predictions from Bayesian Dirichlet-multinomial regression models for the first ten bacterial taxa from the top 100. 
Points, thick lines, and thin lines represent posterior medians, 50% credible intervals, and 95% credible intervals, respectively. Hatched ranges 
represent environmental proportional abundances. Taxa without hatched ranges were not detected in either water or substrate. Note the square 
root scale on the y-axis. Taxa are ordered (left to right, top to bottom) by descending average proportion of reads in salamander samples in which 
each combination of site and life stage receives equal weight. Proportional abundance prediction plots for the remaining top 100 bacterial taxa 
can be found in the Supplementary material.

proportional abundance through time for age-0 and age-2+ 
salamanders at both lakes, and the proportional abundance of 
Vishniacozyma victoriae increased through time for Gibson Lakes 
age-0 larvae. Notably, the proportional abundance of Bd in Ponds 
Lake metamorphosed individuals was very high (between 35 and 
55%) compared to Ponds Lake larvae and either life stage at Gibson 
Lakes (all <2.5%; Figure  6). In contrast, metamorphosed 
individuals at Ponds Lake had lower proportional abundances of 

Cystobasidium slooffiae compared to Ponds Lake larvae and either 
life stage at Gibson Lakes, the opposite of the pattern 
observed for Bd.

Ninety-three of the top 100 fungal taxa detected in salamander 
samples were also detected in environmental samples. We detected 
67 and 91 of the top 100 fungal taxa in water and substrate samples, 
respectively. From the posterior predictions of the best-fitting 
salamander, water, and substrate Bayesian Dirichlet-multinomial 
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regression models for fungal community composition, 27 of the 
top 100 fungal taxa were disproportionately more abundant on 
salamander skin relative to the environment for the majority of 
combinations of stage class and sampling event (Figure  6; 
Supplementary Figures S14–S18), including Candida sake, 
Wallemia muriae, and Vishniacozyma. Taxa detected exclusively on 
salamander skin include Pleosporales, Melanodiplodia 
tianschanica, and Buckleyzyma aurantiaca. Four of the top 100 
fungal taxa had lower proportional abundances on salamander 

skin than in the environment for the majority of combinations of 
stage class and sampling event, including Ascomycota, 
Basidiomycota, and Rozellomycota.

Salamander bacterial and fungal diversity (i.e., Hill’s diversity 
with α = 2 derived from the posterior predictions of the best-
fitting Bayesian Dirichlet-multinomial regression models for 
salamander bacterial and fungal communities, respectively) are 
displayed in Figure  7. Salamander bacterial diversity had the 
highest values in early-season age-1 metamorphosed individuals 

FIGURE 6

Proportional abundance predictions from Bayesian Dirichlet-multinomial regression models for the first ten fungal taxa from the top 100. Points, 
thick lines, and thin lines represent posterior medians, 50% credible intervals, and 95% credible intervals, respectively. Hatched ranges represent 
environmental proportional abundances. Note the square root scale on the y-axis. Taxa are ordered (left to right, top to bottom) by descending 
average proportion of reads in salamander samples in which each combination of site and life stage receives equal weight. Proportional 
abundance prediction plots for the remaining top 100 fungal taxa can be found in the Supplementary material.
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FIGURE 7

Hill’s diversity index (α = 2) for bacterial and fungal communities on salamander skin. Diversity estimates were derived from proportional abundance 
predictions of bacterial and fungal taxa from Bayesian Dirichlet-multinomial regression models. Points, thick lines, and thin lines represent 
posterior medians, 50% credible intervals, and 95% credible intervals, respectively. Note that bacterial diversity for age-0 metamorphosed 
salamanders at Gibson Lakes on September 15th is omitted because, for this combination of stage class and sampling event only, we found Hill’s 
diversity to be sensitive to our grouping of rare taxa (i.e., those not belonging to the top 100) into an “other” category in the Bayesian Dirichlet-
multinomial regression models.

at Gibson Lakes, age-2+ neotenes at Ponds Lake in July, and age-0 
larvae after mid-August at Gibson Lakes (Figure 7). Bacterial 
diversity for age-1 larvae increased throughout the early warm 
season at Ponds Lake when most of this stage class was observed. 
Bacterial diversity in age-2+ metamorphosed individuals tended 
to decrease through time at both lakes. In late August and early 
September, bacterial diversity was higher for age-0 larvae at 
Gibson Lakes than Ponds Lake. Patterns of microbial diversity for 
fungi differed than those for bacteria. Salamander fungal diversity 
was highest among age-0 larvae at Gibson Lakes, age-1 larvae at 
the beginning of the warm season at Ponds Lake, and late-season 
larvae at Ponds Lake (Figure  7). Fungal diversity increased 
throughout the early warm season for metamorphosed individuals 
at both lakes, with metamorphosed individuals at Ponds Lake 
having lower fungal diversity than at Gibson Lakes (Figure 7). The 
lower fungal diversity for metamorphosed individuals at Ponds 
Lake compared to Gibson Lakes may be  due to the high 
proportional abundance of a single fungal taxon – reducing 
species evenness – on Ponds Lake metamorphosed salamanders 

(the posterior medians of this taxon, Bd, ranged from 0.390 to 
0.508; Figure 6).

Based on the best-fitting Bayesian Dirichlet-multinomial 
regression models for the composition of bacterial Bd-inhibition 
categories (i.e., Bd-inhibitory, non-Bd-inhibitory, and uncertain 
Bd-inhibition status), Bd-inhibitory taxa were disproportionately 
more abundant on salamander skin relative to the environment for 
most combinations of stage class and sampling event (23 of 25; 
Figure 8). Non-Bd-inhibitory bacterial taxa were disproportionately 
more abundant on salamander skin relative to the environment for 
most combinations of stage class and sampling event at Ponds Lake 
(10 of 15), but we  were unable to detect differences in the 
proportional abundances of non-Bd-inhibitory bacterial taxa 
between salamander skin and the environment for any combination 
of stage class and sampling event at Gibson Lakes (Figure  8). 
Bacterial taxa of uncertain Bd-inhibition status were 
disproportionately more abundant in the environment compared 
to salamander skin for most combinations of stage class and 
sampling event (23 of 25; Figure 8).
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Relationship between Bd-inhibitory 
bacteria and Bd

From our Bayesian beta-binomial regression model, there is 
a > 99.9% probability that a negative relationship exists between 
the proportional abundance of Bd-inhibitory bacteria in bacterial 
communities and the proportional abundance of Bd in fungal 
communities on the skin of metamorphosed salamanders (i.e., 
> 99.9% of MCMC samples for the regression coefficient were 
negative). The posterior median of the regression coefficient was 
−2.402, and the 95% credible interval was −3.386 to −1.586. The 
modeled relationship between the relative abundances of 
Bd-inhibitory bacteria and Bd on the skin of metamorphosed 
salamanders is shown in Figure 9.

Discussion

We observed spatiotemporal and ontogenetic variation in the 
relative abundances and microbial diversity of bacterial and fungal 
taxa in the skin-associated microbiome of the western tiger 

salamander at two high alpine Rocky Mountain lakes. Our best-
fitting Bayesian Dirichlet-multinomial regression models for 
microbial community composition included all predictors or their 
interactions except for the models of fungal communities on 
salamander skin and Bd-inhibition categories in lake water, for 
which the stratum predictor was excluded (Table 2). Because rare 
taxa (i.e., not members of the top  100) were grouped into an 
“other” category in our Bayesian Dirichlet-multinomial regression 
models, variation in the relative abundances of these rare taxa 
were masked within changes in the relative abundance of the 
“other” category. Therefore, our results should be  considered 
conservative estimates of the variation in microbial community 
composition on tiger salamander skin because variation within 
the “other” category was not considered. Because our top 100 taxa 
comprise the vast majority of reads in salamander samples (93.1% 
of bacterial and 98.6% of fungal reads), we expect variation in the 
composition of these taxa, plus the “other” category, to represent 
most of the variation in salamander microbiomes. When viewed 
conservatively, our models already suggest that all of our covariates 
(except for stratum in the aforementioned cases) contribute to our 
ability to predict microbial community composition, so we expect 

FIGURE 8

Proportional abundance predictions of Batrachochytrium dendrobatidis (Bd) and Bd-inhibitory bacterial taxa from Bayesian Dirichlet-multinomial 
regression models. Points, thick lines, and thin lines represent posterior medians, 50% credible intervals, and 95% credible intervals, respectively. 
Hatched ranges represent environmental proportional abundances. Note the square root scale on the y-axis.
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FIGURE 9

Bayesian beta-binomial regression between the proportional abundances of Bd-inhibitory bacteria and Bd in bacterial and fungal communities, 
respectively, on the skin of metamorphosed salamanders. Solid and dashed lines represent the medians and 95% credible intervals of posterior 
predictions, respectively. Points represent observations from metamorphosed salamanders. Note that there is uncertainty associated with both the 
response and predictor values (i.e., proportional abundances), and the Bayesian beta-binomial regression considers this uncertainty within the 
model.

this outcome would be  largely unaffected by the inclusion of 
additional taxa outside of the “other” category.

Our findings of variation in microbial community 
composition between sites, across life stages, and through time is 
consistent with the results of other studies (Kueneman et al., 2013; 
Longo et al., 2015; Bletz et al., 2017a,b). The inclusion of stratum 
as a predictor in the best-fitting composition model of bacteria on 
salamander skin, as well as for composition models of bacteria and 
fungi in the environment, suggests that we  observed spatial 
variation in microbial community composition within lakes in 
addition to between lakes. Furthermore, the inclusion of 
salamander age as a predictor in the best-fitting models of 
bacterial and fungal community composition on salamander skin 
suggests that, within life stages, we  also observed variation in 
microbial community composition with salamander age. For 
salamander skin-associated bacterial and fungal communities, 
composition was better explained by spatiotemporal than water 
quality covariates. In agreement with other amphibian skin-
associated microbiome studies, we  found that the skin of the 
western tiger salamander is a selective environment with taxa 

disproportionately represented compared to their relative 
abundances in water and substrate (Kueneman et al., 2013; Walke 
et al., 2014; Bletz et al., 2017a).

Time or its interactions were included as predictors in all best-
fitting Bayesian Dirichlet-multinomial regression models for 
microbial community composition (Table  2), suggesting that 
microbial communities changed throughout the warm season. 
Notably, an interaction between time, salamander age, life stage, 
and lake was included in the best-fitting model for bacterial 
communities on salamander skin. Additionally, the best-fitting 
model for fungal communities on salamander skin included both 
an interaction between time and salamander age and an 
interaction between time and lake. This suggests that temporal 
trends in salamander bacterial and fungal community composition 
varied by lake and salamander stage class. While time was 
included as a predictor in the best-fitting model for Bd-inhibition 
categories on salamander skin, we failed to detect changes in the 
relative abundances of Bd-inhibitory bacteria through time for any 
stage class (i.e., within a stage class, all 95% credible intervals 
overlapped; Figure 8). This concurs with the findings of Bletz et al. 
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(2017a), which found changes in bacterial community 
composition through time but stability in predicted Bd-inhibitory 
function. We are hesitant to draw the same conclusion, however, 
both because failing to detect change does not mean that change 
has not occurred, and because we could only confidently predict 
the Bd-inhibition status of a small minority of observed bacterial 
taxa. We did detect changes in the relative abundances of common 
bacteria (e.g., Comamonadaceae 2 and Candidatus Methylopumilus 
1; Figure  5) and fungi (e.g., Naganishia diffluens and 
Vishniacozyma victoriae; Figure 6) through time on salamander 
skin. We also detected changes in bacterial and fungal diversity 
through time for stage classes at both lakes (Figure 7).

Similar to time, life stage or its interactions were also included 
as predictors in all best-fitting Bayesian Dirichlet-multinomial 
regression models for microbial community composition 
(Table 2). Notably, the proportional abundance of the bacterial 
taxon Comamonadaceae 1 was higher on the skin of 
non-metamorphosed salamanders (i.e., larval or neotenic 
individuals) than metamorphosed salamanders (i.e., 95% credible 
intervals did not overlap) throughout the warm season at both 
lakes (Figure 5). This taxon was very abundant on the skin of 
non-metamorphosed salamanders, typically comprising more 
than 20% of the bacterial community, and sometimes exceeding 
40% (Figure 5). Kueneman et al. (2013) also observed a very high 
relative abundance (>65%) of a single member of 
Comamonadaceae on a life stage of the Cascades frog (Rana 
cascadae), but the taxon dominated the skin of metamorphosed 
frogs instead of tadpoles. In our study, Comamonadaceae 1 was 
also disproportionately more abundant on the skin of 
non-metamorphosed salamanders relative to the environment, 
whereas we were unable to detect differences in the proportional 
abundance of this taxon between the environment and the skin of 
metamorphosed salamanders (Figure 5). While we compared the 
proportional abundances of microbial taxa on salamander skin to 
environmental proportional abundances in lake water and lake 
substrate, we note that metamorphosed salamanders – although 
caught from the water – may have also had access to terrestrial 
sources of microbiota (e.g., soil) which we did not sample. For 
fungi, both the proportional abundance of Cryptococcus 
uniguttulatus and community diversity were higher on the skin of 
non-metamorphosed salamanders at every time point where both 
metamorphosed and non-metamorphosed salamanders were 
observed (Figures  6, 7). This contrasts with the findings of 
Kueneman et al. (2016b), in which microeukaryote diversity was 
higher on adult western toads (Anaxyrus boreas) than tadpoles.

We detected Bd on salamander skin at both lakes, with the 
relative abundance of Bd being highest for age-1 and age-2+ 
metamorphosed salamanders at Ponds Lake (Figure  6). The 
higher abundance of Bd on the skin of metamorphosed compared 
to larval amphibians is supported by other studies and is thought 
to be  the result of increased keratin, a substrate for Bd, in 
amphibian skin following metamorphosis, during which 
structural changes to the skin occur (Berger et al., 1998; Marantelli 
et al., 2004; Frost et al., 2006). We are unsure why differences in 

the relative abundance of Bd was much less pronounced between 
larval and metamorphosed individuals at Gibson Lakes. Since Bd 
was absent in all negative control samples, we are confident that 
Bd was present at Gibson Lakes and that its detection was not the 
result of contamination from Ponds Lake samples.

We observed that Bd-inhibitory bacterial taxa were 
disproportionately more abundant on salamander skin relative to 
the environment for most combinations of stage class and 
sampling event (Figure 8). If bacterial taxa for which we have high 
confidence in their Bd-inhibition statuses can be considered a 
random sample from both salamander skin and the environment, 
then this could be taken as evidence that salamander skin selects 
for Bd-inhibitory bacteria. However, salamander skin also 
appeared to select for non-Bd-inhibitory bacteria at one lake, and 
for both lakes, bacteria of uncertain Bd-inhibition status were 
disproportionately more abundant in the environment than on 
salamander skin. Since environmental bacteria are not the focus 
of the Woodhams et al. (2015) database, we suspect that bacteria 
in this reference database are more likely to be  common on 
amphibian skin than in the environment. This could result in 
more environmental bacteria having an uncertain Bd-inhibition 
status, and Bd-inhibitory and non-Bd-inhibitory bacteria would 
subsequently appear to be disproportionately more abundant on 
salamander skin than in the environment. Still, the apparent 
selection for Bd-inhibitory bacteria on salamander skin is stronger 
than for non-Bd-inhibitory bacteria (Figure 8), suggesting that 
selection for Bd-inhibitory bacteria may indeed be  occurring. 
Despite harboring Bd, tiger salamanders have been found to 
tolerate chytridiomycosis (Davidson et al., 2003), and we suggest 
that selection for Bd-inhibitory bacteria by tiger salamander skin 
may contribute to this disease tolerance.

When viewed across combinations of stage class and sampling 
event, we  did not observe any noticeable patterns between the 
relative abundances of Bd-inhibitory bacteria and Bd (Figure 8). That 
is, across combinations of stage class and sampling event, the relative 
abundance of Bd was not high or low when the relative abundance 
of Bd-inhibitory bacteria was high or low. We did, however, observe 
a negative pattern between the relative abundances of Bd and the 
fungal taxon Cystobasidium slooffiae (i.e., the relative abundance of 
Bd was low when the relative abundance of Cystobasidium slooffiae 
was high; Figure  6). Conversely, we  observed positive patterns 
between the relative abundances of Bd and Comamonadaceae 3 and 
6 (i.e., the relative abundance of Bd was high when the relative 
abundances of these taxa were high; Figures 5, 6). Comamonadaceae 
has been found to be abundant on the skin of multiple amphibian 
species, including the tiger salamander (McKenzie et al., 2011), and 
some members show evidence of Bd-inhibition or negative 
co-occurrence with fungal taxa (Woodhams et al., 2015; Kueneman 
et al., 2016b). Despite this, Walke et al. (2015) found a very weak 
correlation between a member of Comamonadaceae and Bd, and 
we  found positive patterns between the relative abundances of 
members of Comamonadaceae and Bd. While we were unable to 
confidently predict the Bd-inhibition statuses of Comamonadaceae 
3 and 6, we  did predict one member of Comamonadaceae to 
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be Bd-inhibitory (Comamonadaceae 5). Still, we observed no pattern 
between the relative abundances of this taxon and Bd (Figures 5, 6).

Within metamorphosed salamanders, we  found strong 
evidence (> 99.9% probability from a Bayesian beta-binomial 
regression) of a negative relationship between the relative 
abundances of Bd-inhibitory bacteria and Bd in bacterial and 
fungal communities, respectively (Figure 9). We caution, however, 
that the mechanism behind this relationship is unclear from our 
data. We do not know whether Bd-inhibitory bacteria inhibit Bd 
growth, or if the opposite is true. Infection with Bd can lead to the 
restructuring of microbial communities on amphibian skin (Jani 
and Briggs, 2014; Jani and Briggs, 2018), and it is possible that Bd 
infection may directly or indirectly inhibit the growth of 
Bd-inhibitory bacteria. Our use of microbiome read counts to test 
for a relationship between Bd-inhibitory bacteria and Bd produced 
comparable results to studies which used quantitative PCR to detect 
and quantify the abundance of Bd. For example, Jiménez et al. 
(2022) found that Bd infection intensity significantly decreased on 
the skin of the eastern newt (Notophthalmus viridescens) as the 
relative abundance of putative Bd-inhibitory bacteria increased. 
Similarly, Flechas et al. (2019) found lower Bd infection prevalence 
within post-metamorphic life stages which also had high relative 
abundances of Bd-inhibitory bacteria in two frog species.

An analysis between the absolute abundances of Bd-inhibitory 
bacteria and Bd, instead of the relative abundances, would be of 
greater interest biologically. Following DNA extraction and prior to 
PCR, fixed amounts of 16S and ITS synthgenes (i.e., synthetic gene 
spike-ins) were added to a constant volume of each sample’s DNA 
extract. The synthgene read counts provide a benchmark to compare 
taxon read counts with, and can serve as the basis for absolute 
abundance estimation (Harrison et  al., 2021). While we  used 
synthgenes to estimate the amount of microbial DNA in our samples 
relative to negative controls, we were unable to use the synthgenes 
for estimating the densities (i.e., count per unit area) of microbial 
taxa on salamander skin because, as we were not aware of synthgenes 
at the time, we  did not measure swabbed area in the field. 
Furthermore, a length-weight regression suggested that salamanders 
grow allometrically (i.e., the body does not grow proportionally in 
all dimensions; see Supplementary material), so an assumption 
about salamander growth would have to be made in order to derive 
surrogates of swabbed area from length measurements (i.e., SVL 
squared could not be used as a surrogate for swabbed area). We also 
considered limitations in our swabbing protocol. Since our study 
focused on variation in microbiome composition, we adopted the 
swabbing protocol of Bletz et al. (2017a), in which a swab is stroked 
across the ventral surface of the amphibian ten times (one time = an 
up and back stroke along the full length of the belly). While 
swabbing, the ten strokes along the length of the belly were 
distributed across the belly’s width. Due to the fixed size of the swab, 
this means that the same belly area was swabbed more times for 
smaller salamanders than for larger salamanders. This implies that 
even if we had measured swabbed area, we would have to assume 
that the number of microbes collected asymptotes after a certain 
swabbing intensity, and we  must have further assumed that 

we reached this threshold of swabbing intensity. We suggest that the 
need for these assumptions can be avoided by using a different 
swabbing protocol. For example, instead of stroking a swab across 
the ventral surface a certain number of times while covering an area 
of interest, one could swab the full area of interest (e.g., the belly) a 
certain number of times and measure the swabbed area, a method 
which is already applied in studies of Bd load (North and Alford, 
2008). If such a swabbing protocol were applied, we suggest that 
taxon density on amphibian skin could be modeled using a negative 
binomial regression for rates (i.e., taxon read count per unit “time”) 
– where rate represents taxon density, and synthgene read count and 
swabbed area serve as measures of “time.”

A key aim of amphibian skin-associated microbiome 
studies relates to understanding what role microbial 
communities play in protecting their hosts against cutaneous 
diseases such as chytridiomycosis. While DNA metabarcoding 
is commonly employed to characterize the composition of 
microbial communities, we  experienced challenges relating 
community composition to functional activity. Using 16S 
rRNA gene sequences, we were unable to predict Bd-inhibition 
statuses for the vast majority of our bacterial taxa with any 
reasonable certainty. This is not surprising given that, after 
trimming to our amplicon region, the majority of sequences in 
the Woodhams et al. (2015) database which were shared across 
multiple bacterial isolates had variable Bd-inhibition statuses, 
and the isolates included in the database provided limited 
phylogenetic coverage of our bacterial taxa. Similarly, Becker 
et al. (2015) found bacterial congeners to frequently range from 
complete inhibition to facilitation of Bd. Another approach to 
exploring the functional activity of microbial communities 
involves metatranscriptomics, the sequencing of RNA within a 
microbiome to investigate gene expression (Nichols and 
Davenport, 2021). With a metatranscriptomics approach to 
exploring functional activity, antifungal secondary metabolite 
production by microbes experiencing real-world biotic and 
abiotic conditions on salamander skin could be observed, and 
a precise knowledge of community composition, while still 
informative, would not be a pre-requisite for inference.

Our study emphasizes two traditionally understudied areas of 
amphibian skin-associated microbial ecology, temporal variation 
in community composition and expanding our view of the 
microbiome to include fungi in addition to bacteria. Temporal 
variation in community composition could prove challenging for 
studies examining spatial variation, where temporal and spatial 
variation may be  confounded. We  also identified additional 
sources of variation in community composition which are not 
typically considered. Within life stages, we identified additional 
variation with salamander age, and within lakes, we identified 
additional variation between strata. Furthermore, we observed 
that the relationships between community composition and 
spatiotemporal and stage class covariates are interdependent, 
complex, and best described using interactions.

Through this study, we have gained a greater understanding 
of microbial ecology on amphibian skin through the examination 
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of season-long temporal variation of bacterial and fungal 
communities. In addition to identifying further sources of 
variation in community composition, we  have identified 
differentially abundant taxa, have examined microbial selection by 
salamander skin, have investigated alpha diversity, and have tested 
for a relationship between predicted Bd-inhibitory function and 
Bd. Ultimately, we hope our findings will assist in the conservation 
of amphibian species threatened by chytridiomycosis.
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