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Colchicine is a bioactive alkaloid originally from Colchicum autumnale and

possesses excellent antiproliferative activity. However, colchicine-associated

severe toxicity, gastrointestinal side effects in particular, limits its further

therapeutic use. In the current study, we thus designed and synthesized a

novel hybrid (CMH) by splicing colchicine and magnolol, a multifunctional

polyphenol showing favorable gastrointestinal protection. The antitumor

activity of CMH in Lewis lung carcinoma (LLC) was then evaluated in vitro

and in vivo. Biologically, CMH inhibited the growth of LLC cells with an IC50 of

0.26 μM, 100 times more potently than cisplatin (26.05 μM) did. Meanwhile, the

cytotoxicity of CMHwas 10-fold lower than that of colchicine in normal human

lung cells (BEAS-2B). In C57BL/6 mice xenograft model, CMH (0.5 mg/kg)

worked as efficacious as colchicine (0.5 mg/kg) to inhibit tumor growth and

2 times more potently than cisplatin (1 mg/kg). In terms of mortality, 7 out of

10 mice died in colchicine group (0.75 mg/kg), while no death was observed in

groups receiving CMH or cisplatin at 0.75 mg/kg. Mechanistic studies using

Western blot revealed that CMH dose-dependently suppressed the protein

expression of phosphorylated ERK. Molecular docking analysis further indicated

that CMH was well fitted in the colchicine binding site of tubulin and formed

several hydrogen bonds with tubulin protein. These results enable our novel

hybrid CMH as a potential antineoplastic agent with lower toxicity, and provide

perquisites for further investigation to confirm the therapeutic potentiality of

this novel hybrid.
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1 Introduction

Lung cancer represents a kind of very common malignant

tumor that seriously threatens human life with a persistently

high morbidity and mortality rate (Sun and Yan, 2020).

Among them, non-small cell lung cancer accounts for the

vast majority proportion. Although there are multiple avenues

of therapeutic interventions in recent decades, including

surgery, chemotherapy and radiation, alone or in

combination, the compromised or even destroyed immune

system of patients could be often observed in clinical practice

(Zhou et al., 2022). Therefore, there is an urgent need to

develop an alternative anti-cancer drug or therapy with

increased efficacy and reduced toxicity.

Colchicine 1) is a bioactive alkaloid originally isolated

from Colchicum autumnale and has long been used as a

treatment for gout (Deng et al., 2021). Besides, there is

extensive evidence that colchicine has displayed excellent

antiproliferative potential in a variety of cancer cell lines

against colon, breast, skin melanoma, liver and pancreas

(Malik et al., 2022; Song et al., 2022; Wang et al., 2022),

and thereby entered into different stages of clinical trials as an

anti-cancer agent. Mechanistic studies have revealed that

colchicine arrests cell division and kills tumor cells by

favorably binding to the colchicine binding site of tubulin

and interfering with microtubule formation (Dubey et al.,

2017). However, colchicine treatment is always accompanied

by serious gastrointestinal side effects (Papageorgiou et al.,

2017), including vomiting, diarrhea and abdominal pain

nausea, which limits its further clinical application or even

causes treatment discontinuation in patients.

Magnolol 2) is a polyphenolic compound from Magnolia

officinalis and possesses various pharmacological activities

including antioxidation, anti-inflammation and

antiangiogenesis (Peng et al., 2022; Xie et al., 2022). Most

notably, magnolol has shown favorable gastrointestinal

protection in a wide range of experimental paradigms

associated with acute gastrointestinal injury and diarrhea (Xia

et al., 2019; Lin et al., 2021; Mao et al., 2021).

Since that colchicine exhibits strong antiproliferative ability

and magnolol is able to protect against gastrointestinal injury, a

common side effect with colchicine treatment, we assume that

the drug combination of colchicine and magnolol may provide

additive antitumor potential with lower toxicity. Recently, we

completed a concise asymmetric synthesis of (–)-colchicine (Pu

et al., 2022a) and developed a series of new C-10-modified

colchicinoid and evaluated their inhibitory activity on key

proteases of 2019-nCoV replication and acute lung injury (Pu

et al., 2022b).

While, in order to find new antitumor colchicine analogues

with improved activity and lower toxicity, we expect to create a

novel C-7-modified colchicinoid with single structure by splicing

colchicine and magnolol (Figure 1). In this current study, we thus

developed a novel colchicine-magnolol hybrid (CMH) and

further evaluated its anti-proliferative potential in vitro and in

vivo as well as the molecular mechanisms involved.

2 Results and discussions

2.1 Efficient synthesis of novel synthesized
a novel hybrid

Small molecules that hit colchicine binding site could exert

their efficient biological effects by inhibiting tubulin assembly

and suppressing microtubule formation (Lu et al., 2012),

numerous modifications of the colchicine chemical structure

have been thus made to develop new anti-cancer candidate

drug molecules (Gracheva et al., 2020). However, there were

few reports about the hybridization of colchicine with other

bioactive natural molecules. In this current study, we designed a

new type of C-7-modified colchicinoid which was a hybrid of

colchicine and magnolol with simple amino acid as the linker.

As shown in Scheme 1, the synthesis of CMH was

commenced with the SN2 reaction of magnolol with ethyl

bromoacetate, and compound 3 was isolated in 78% yield.

The ester was hydrolyzed with NaOH to generate the acid

4 which was used directly without further purification. In

FIGURE 1
The design of the colchicine-magnolol hybrid (CMH).

Frontiers in Chemistry frontiersin.org02

Li et al. 10.3389/fchem.2022.1094019

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1094019


addition, a three-step sequence was employed to remove the -Ac

group at C(7) of colchicine (Lagnoux et al., 2005; Yasobu et al.,

2011). Furthermore, the amino group was then acylated with

compound 4 to give the novel hybrid CMH.

2.2 CMH inhibited the proliferation of
Lewis Lung Carcinoma cells 100 times
more potently than cisplatin did

We then evaluated the antitumor activity of colchicine,

CMH and cisplatin (positive control) in Lewis lung

carcinoma (LLC) cells. As shown in Figure 2, the cell

viability of LLC cells was greatly reduced after 24 h

treatment with three compounds. Specifically, the half-

maximal inhibitory concentration (IC50) of colchicine,

CMH and cisplatin against LLC cells was 0.06, 0.26 and

26.05 μM, respectively. It was evident that our novel hybrid

CMH inhibited proliferation of LLC cells 100 times more

potently than cisplatin did. In consistent with the cell

viability results, images from confocal microscopy showed

that compared to the control group, a lower density and

rounder shape were observed in LLC cells incubated with

different concentrations of CMH (Figure 3). Moreover,

CMH remarkably decreased the number of FDA-stained

viable cells (Figure 3). These results indicated that the

proliferation of LLC cells was inhibited to a larger extent

by CMH treatment.

SCHEME 1
The synthetic route of novel hybrid CMH.

FIGURE 2
CMH inhibited the proliferation of LLC cells 100 times more
potently than cisplatin did. LLC cells were incubated with
colchicine, CMH, or cispatin (positive control) for 24 h, and then
measured for cell viability.
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2.3 CMH caused lower toxicity to BEAS-2B
cells compared to colchicine

Next, we further used normal lung epithelial BEAS-2B cells to

evaluate the toxicity of CMH and its parent molecule colchicine. As

shown in Figure 4, CMH did not show any toxicity until its

concentration reached 1 μM. Specifically, 24 h exposure of BEAS-

2B cells to CMHat 1 μMdecreased cell viability from (100.00 ± 1.48)

% to (72.59 ± 3.17) %. In comparison, colchicine began to induce

toxicity at the concentration of 0.1 μM, colchicine at 0.1 μM

decreased cell viability to (73.27 ± 3.89) %. These results

indicated the cytotoxicity of CMH might be 10-fold lower than

that of colchicine in normal human lung cells.

FIGURE 3
CMHmarkedly decreased the number of FDA-stained viable cells in a dose-dependent manner. LLC cells were incubated with CMH (0.25 μM,
0.5μM, 1 μM) for 24 h, and then stained with FDA for 5 min, and observed under a confocal laser scanning microscopy.

FIGURE 4
CMH induced lower toxicity in normal BEAS-2B cells
compared to its parent molecule colchicine. BEAS-2B cells were
incubated with dimethyl sulfoxide (Control), equal concentrations
of CMH or colchicine for 24 h, and then examined for cell
viability. ##, p < 0.01, colchicine group versus Control; **, CMH
group p < 0.01 versus Control.

FIGURE 5
CMH at high concentration inhibited GSK3β activity. 1 ng
GSK3β, 0.2 μg/μl substrate, 25 μM ATP and CMH (final
concentration, 100 μM) or staurosporine (0.1 μM, positive control)
were incubated in each well of 384-well plate for 60 min.
ADP-Glo™ and kinase detection reagent was introduced
successively into the well and luminescence was read. **, p <
0.01 versus Control.
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2.4 CMH at high concentration inhibited
the activity of GSK3β

Glycogen synthase kinase-3β (GSK3β) is a serine-threonine

kinase that is responsible for promoting cancer cell survival,

growth and proliferation (Domoto et al., 2020). It has been well

documented that aberrant GSK3β activity is firmly associated with

multiple tumor-related diseases and that GSK3β is generally

accepted as a potential anti-tumor target (Bai et al., 2022; Fan

et al., 2022; You et al., 2022). In light of this, we extended our effort

to test the possibility that CMH may provide antiproliferative

capacity through the direct inhibition of GSK3β enzyme activity.

As shown in Figure 5, CMH at 100 μM decreased enzyme activity

to approximately 40% of control, while failed to inhibit GSK3β at

concentrations below 100 μM (data not shown). Since CMH

showed toxicity in normal lung epithelial BEAS-2B cells when

its concentration exceeded 1 μM, we speculate that GSK3β may

not be the critical mechanism underlying CMH-mediated

antitumor efficacy and some other potential targets are

expected to be explored.

2.5 CMH downregulated the protein
expression of phospho-ERK in LLC cells

There is extensive evidence that the phosphorylation of

mitogen-activated protein kinases (MAPKs), extracellular

signal-regulated kinase (ERK) subtype in particular, is

closely associated with the growth and proliferation of

tumor cells in cellular and animal experimental paradigms

(Yang et al., 2022; Yu et al., 2022). Specifically, the increase of

FIGURE 6
CMH strongly down-regulated the protein expression of phospho-ERK in LLC cells. LLC cells were incubated with CMH (0.25 μM, 1 μM) for
24 h, and thenmeasured for protein expression. **, p < 0.01 versus Control. (A) Representative bands of p-ERK, t-ERK and GAPDH. (B) The statistical
analysis.

FIGURE 7
CMH interacted with tubulin at the colchicine binding site.
The interaction between colchicine (A) or CMH (B) with tubulin.
CMH was well fitted in the colchicine binding site of tubulin with
binding energies of -8.04 kcal/mol, in comparison to the
colchicine ligand (-5.93 kcal/mol).
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phospho-ERK level was usually observed in cancer cell lines

such as LLC cells, particularly those treated with pro-

tumorogenic compounds (Stoyanov et al., 2012), bio-

molecules that could down-regulate ERK phosphorylation

may thereby offer effective anti-tumor efficacy (Shi et al.,

2022; Yuan et al., 2022).

In our cell system, the protein level of phospho-ERK (p-ERK)

was evaluated using Western blot and the results in Figure 6

showed that CMH at 0.25 μM and 1 μM declined this

phosphorylated protein to (0.61 ± 0.11) and (0.57 ± 0.13),

respectively, compared to the control group (1.00 ± 0.20).

This phenomenon was consistent with earlier findings where

FIGURE 8
Effects of colchicine (Col, 0.5 mg/kg), CMH- (0.5 and 0.75 mg/kg) and cisplatin (1.0 mg/kg) on the tumor volume andweight in the xenografted
mice during the entire experimental period. (A)Representativemacroscopic viewof LLC tumors in different groups. (B)Quantitative analysis of tumor
volume. (C) Quantitative analysis of tumor weight. ***p < 0.001 versus control group.

TABLE 1 Inhibitory effects of compounds on tumor weights and tumor volume in the C57BL/6 mice xenografted LLC cells.

Groups Avg. tumor weights (g) Avg. tumor volume (cm3) %TGI Mortality

Control 3.29 ± 0.90 1.29 ± 0.75 0 0/9

Col (0.5 mg/kg) 0.70 ± 0.42a 0.27 ± 0.23a 78.81 1/9

Col (0.75 mg/kg)b — — — 7/9

CMH (0.5 mg/kg) 0.92 ± 0.34a 0.27 ± 0.15a 79.37 0/9

CMH (0.75 mg/kg) 0.66 ± 0.10a 0.19 ± 0.079a 85.44 0/9

Cisplatin (1 mg/kg) 0.90 ± 0.49a 0.27 ± 0.16a 79.22 0/9

ap < 0.001 versus the Control group.
bColchicine was extremely toxic at 0.75 mg/kg, %TGI was thus not determined.

Frontiers in Chemistry frontiersin.org06

Li et al. 10.3389/fchem.2022.1094019

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1094019


this phosphorylated protein level in LLC cells greatly declined in

the presence of anti-tumorogenic chemicals (Kim et al., 2007; Xie

et al., 2018) and indicated that the inhibition of p-ERK may be a

critical mechanism that underlied the anti-tumor effects of CMH.

2.6 CMH was well fitted in the colchicine
binding site of tubulin and formed several
hydrogen bonds with tubulin

Microtubules, which maintain the shape of the cell through the

dynamic assembly of tubulin heterodimers, are generally accepted as

an attractive target for the development of anti-cancer drugs (Andres

et al., 2022). Specifically, colchicine binding site agents bind to

colchicine binding domain and prevent the polymerization of

tubulin proteins, thereby destabilize microtubules and provide

antitumor potential (Wang et al., 2016; Sueth-Santiago et al.,

2017). We then tested the possibility that our novel hybrid CMH

could occupy colchicine binding site. Results fromdocking studies of

compounds with tubulin protein (PDB entry: 1SA0) showed that

both colchicine and CMH were well fitted in the colchicine binding

site of tubulin. Specifically, colchicine molecule formed a hydrogen

bond to Asn258 of tubulin protein with an estimated binding free

energy of -5.93 kcal/mol, an observation consistent with an earlier

study (colchicine docking score: −5.5 kcal/mol) (Dwivedi et al.,

2022). In contrast, the best-docked conformation of CMH in the

tubulin showed that the methoxy and the phenolic hydroxyl group

of this ligand from the colchicine fragment and B fragment

interacted with Asn258 and Thr353 through several hydrogen

bonds with an estimated binding free energy of -8.04 kcal/mol

(Figure 7). These results suggested that our novel CMH could be

served as an effective colchicine binding site inhibitor.

In this docking system, CMH showed better docking score

than the standard inhibitor colchicine, on the other hand, CMH

(IC50 = 0.26 μM) displayed anti-proliferative potential 4 times less

potently than colchicine (IC50 = 0.06 μM, Figure 2). This

discrepancy could be explained by the existence of some other

possible targets, such as taxane, vinca, laulimalide binding domains

of tubulin, that CMH or colchicinemay hit. Such interesting topics

will be further investigated in our future projects.

2.7 CMH exhibited robust suppression of
tumor growth in C57BL/6 mice
xenografted with LLC cells

Finally, the antitumor ability of CMH was verified in C57BL/

6 mice xenograft model. As shown in Figure 8, CMH exhibited

promising antitumor efficacy, with a tumor growth inhibition (TGI)

of 79.37% and 85.44% at the dosages of 0.5 mg/kg and 0.75 mg/kg,

respectively. No mortality was observed in the group treated with

CMH. For a reference, cisplatin (positive control) at 1.0 mg/kg

inhibited tumor growth by 79.22% and colchicine at 0.5 mg/kg

inhibited tumor growth by 78.81%. However, colchicine treatment

was accompanied with a high risk of mortality. It was obvious that

7 out of 10 mice (colchicine group, 0.75 mg/kg) and one out of

9 mice (colchicine group, 0.5 mg/kg) were dead during 10 days of

drug treatment (Table 1). These findings taken together suggested

that CMH inhibited tumor growth 2 times more potently than

cisplatin, and that CMH displayed antitumor capacity with a lower

mortality and an efficacy comparable or even superior to colchicine.

3 Conclusion

In conclusion, we herein designed and synthesized a novel

hybrid CMH by splicing colchicine and magnolol. CMH

exhibited excellent antiproliferative effects in LLC cells (IC50 =

0.26 μM) and robustly suppressed tumor growth in C57BL/

6 mice xenograft model. Meanwhile, CMH showed lower

toxicity in normal human lung BEAS-2B cells and in mice

when compared to its parent molecule colchicine. Mechanistic

studies revealed that CMH provided its antitumor potential

mainly through suppressing ERK signaling pathway and

occupying colchicine binding site of tubulin concurrently.

These results identify our novel hybrid CMH as a potential

antineoplastic agent with lower toxicity, and provide

perquisites for further investigation to confirm the therapeutic

potentiality of this novel hybrid.
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