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The atypical Markov decision processes (MDPs) are decision-making for

maximizing the immediate returns in only one state transition. Many complex

dynamic problems can be regarded as the atypical MDPs, e.g., football

trajectory control, approximations of the compound Poincaré maps, and

parameter identification. However, existing deep reinforcement learning (RL)

algorithms are designed to maximize long-term returns, causing a waste

of computing resources when applied in the atypical MDPs. These existing

algorithms are also limited by the estimation error of the value function, leading

to a poor policy. To solve such limitations, this paper proposes an immediate-

return algorithm for the atypical MDPs with continuous action space by

designing an unbiased and low variance target Q-value and a simplified

network framework. Then, two examples of atypical MDPs considering the

uncertainty are presented to illustrate the performance of the proposed

algorithm, i.e., passing the football to amoving player and chipping the football

over the human wall. Compared with the existing deep RL algorithms, such

as deep deterministic policy gradient and proximal policy optimization, the

proposed algorithm shows significant advantages in learning e�ciency, the

e�ective rate of control, and computing resource usage.

KEYWORDS

reinforcement learning, atypical Markov decision process, flight trajectory control,

uncertain environments, continuous action space

Introduction

Inspired by the learning pattern of humans, i.e., learning by interacting with the

external environment, the concepts of reinforcement learning (RL) were first proposed

by Minsky (1954). Subsequently, Bellman (1957) presented a method to define an RL

problem using Markov decision processes (MDPs). As a result, an RL problem can

be described clearly in terms of states, actions, and rewards. In recent years, with

an in-depth combination of deep learning, traditional RL has evolved into deep RL.

Generally speaking, deep RL algorithms can be subdivided into value-based algorithms

and policy gradient algorithms. Deep Q Network (DQN) was the first exploration for
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value-based algorithms (Mnih et al., 2015). It solved the

dimension explosion problem. Subsequently, various improved

DQN algorithms were developed, such as Double DQN (Van

Hasselt et al., 2016), Dueling DQN (Wang et al., 2016), etc.

However, value-based algorithms could only be applied in

discrete rather than continuous action space. In contrast, policy

gradient algorithms could solve the RL problemwith continuous

action space, as an independent actor was constructed to output

actions. Note that policy gradient algorithms were generally

divided into stochastic policy algorithms and deterministic

policy algorithms. The stochastic policy algorithms could

output the probability distribution of the actions, such as the

asynchronous advantage actor-critic (A3C) (Mnih et al., 2016)

and proximal policy optimization (PPO) (Schulman et al.,

2017). The deterministic policy algorithms could output the

deterministic actions, such as deep deterministic policy gradient

(DDPG) (Lillicrap et al., 2015). Due to the advantages of

model-free, great self-learning ability, etc., the RL has shown

excellent performance in the application of complex control

processes. For example, the RL methods were applied to

robot manipulators to solve trajectory planning under complex

environments (Chen et al., 2022). Tutsoy and Brown studied

the RL in problems with Chaotic dynamics and proved that

a reasonable discount factor could avoid singular learning

problems (Tutsoy and Brown, 2016). Pan et al. (2023) designed

a controller for a three-link biped robot using the twin

delayed deep deterministic policy gradient algorithm (TD3).

Sharbafi et al. designed controllers based on the RL for

their football robots and won third place in the 2011 world

games (Sharbafi et al., 2011). Massi et al. (2022) increase the

learning speed of a navigating robot to improve its performance

using the RL method. Even in the financial sector, the RL

could be used to learn investment trading policy (Lee et al.,

2021). Such trading systems based on RL improved trading

performance effectively.

Indeed, the above application scenarios belong to the

standard MDPs, containing a series of state transitions.

However, the atypical MDP case, which involves only one state

transition in continuous action space, can also arise in the

engineering field, such as the stamping process (Wang and

Budiansky, 1978), directional blasting (Zhu et al., 2008), football

trajectory control (Myers and Mitchell, 2013), approximations

of the compound Poincaré maps (Li et al., 2020), etc. In

such atypical MDPs, the control goal is to maximize the

immediate returns rather than the long-term returns. Therefore,

compared to the standard MDPs, the atypical MDPs can

exhibit many new characteristics. Furthermore, to the best

knowledge of the authors, all existing RL algorithms are

designed for the standardMDPs to maximize long-term returns.

Applying the existing RL algorithms to the atypical MDPs

shall lead to the following problems. On the one hand,

the existing RL algorithms are also limited by their open

problem, i.e., the estimation error of the value function. For

example, the sampling errors caused by incomplete samplings

will lead to bias for the estimated state-value function (e.g.,

A3C and PPO) (Mnih et al., 2016; Schulman et al., 2017).

For the estimated action-value function, DQN and DDPG

can cause the overestimation due to the max operation in

off-policy temporal-difference (TD) learning (Mnih et al.,

2015; Van Hasselt et al., 2016). In comparison, the TD3

and double DQN may lead to underestimation as the

minimum output of two independent target critic networks is

selected to update the action-value function (Lillicrap et al.,

2015; Fujimoto et al., 2018). Furthermore, the uncertain

environment may bring a high variance for the estimated

value functions as the uncertainties can lead to entirely

different rewards for the same state-action pair. Since the

policy gradient formulation is directly related to the value

function, the estimation error of the value function can lead

to a poor policy and limit the performance of the existing

RL algorithms. On the other hand, as the atypical MDPs

focus only on immediate returns, the common designs for

calculating long-term returns are redundant in the existing RL

algorithms. It may result in a waste of computing resources.

Moreover, existing algorithms do not notice the difference

between estimating the state-value function and the action-

value function in atypical MDPs. Such difference determines

which approach is more suitable for dealing with atypical

MDPs. Thus, regarding the above problems of the existing

RL algorithms, this paper aims to propose an immediate-

return RL algorithm for atypical MDPs with continuous

action space.

On this basis, this paper further takes the football trajectory

control as the illustration example to present the superior

performance of the proposed algorithm. Indeed, the football

trajectory control shall be an ideal test case for the proposed

algorithm. The reasons are as follows. As the whole process

contains only one state transition from take-off to end and its

action, i.e., the football’s initial velocity, is continuous, football

flight is an atypical MDP case with continuous action space.

Meanwhile, the aerodynamic model of football is strongly non-

linear and has no analytical solutions (Myers and Mitchell,

2013; Javorova and Ivanov, 2018), which involves many complex

physical laws (Horowitz and Williamson, 2010; Norman and

McKeon, 2011; Javorova and Ivanov, 2018; Kiratidis and

Leinweber, 2018). It is difficult for the traditional control method

to control football flight (Hou andWang, 2013; Hou et al., 2016).

Thus, as a challenging task, football trajectory control is an ideal

example to test the proposed algorithm. In addition, related

researches also have practical application value. The accuracy

of the shot is a key of the football robot. Designing a high-

performance controller based on the proposed algorithm can

promote the development of high-level football robots in the

Robot world cup (Sharbafi et al., 2011).
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The main contents and contributions of this paper are

summarized as the following aspects. Firstly, the characteristics

of the atypical MDPs are analyzed systematically based on

the RL theory. The disadvantage of estimating the state-value

function in the atypical MDPs is explained qualitatively, i.e.,

the large samples requirement and the unavoidable sampling

error. These studies indicate the way to the development of

RL algorithms in the atypical MDPs. That is, the deterministic

policy has natural advantages in dealing with the atypical

MDPs in continuous action space. Secondly, based on the

deterministic policy and estimated action-value function, an

immediate-return RL algorithm is proposed for the atypical

MDPs. In the proposed algorithm, the average reward method

is developed to construct an unbiased and low variance target

Q-value. Compared with existing RL algorithms, e.g., DDPG

and PPO, the proposed algorithm reduces the estimation

error significantly. More details are introduced in following

Section Immediate-return RL algorithm for the atypical

MDPs. Meanwhile, a simplified network framework is also

designed for the proposed algorithm. Thus, the proposed

decreases both the space complexity and time complexity.

The comparison tests also demonstrate that the computing

resource consumed by the proposed algorithm is lower than

the DDPG and PPO. Thirdly, two challenging scenarios of

the football trajectory control, i.e., passing the football to a

moving player, and chipping the football over the human

wall (chip kick), are presented to test the feasibility of the

proposed algorithm. These scenarios can be used as the

benchmark to test the algorithms designed for the atypical

MDPs. Meanwhile, the controllers based on the proposed

algorithm in this paper can improve the football robot’s

shot accuracy in competitions, such as the Robot world cup

(Sharbafi et al., 2011). In the above scenarios, existing RL

algorithms (i.e., DDPG, PPO) are also tested as references.

Numerical results demonstrate that the immediate-return RL

algorithm has higher learning efficiency, a higher effective rate of

control, and lower computing resource usage than the reference

RL algorithms.

The rest of the present work is organized as follows.

In Section The atypical MDPs, the analysis of the atypical

MDPs is introduced. Then, the immediate-return RL

algorithm for the atypical MDPs is proposed in Section

Immediate-return RL algorithm for the atypical MDPs. In

Section Illustration examples: Football trajectory control

for different scenarios, two illustration examples in MDPs,

i.e., passing the football to a moving player and chipping

the football over the human wall, are designed. In Section

Comparison and discussion, the feasibility and high

performance of the RL controllers are demonstrated by

simulation tests. And the advantages of the immediate-return

RL algorithm are discussed by comparison with the existing

RL algorithms. Lastly, the conclusion of this paper is drawn in

Section Conclusion.

The atypical MDPs

Atypical MDPs: Definition and
characteristic analyses

For the standard MDP, it can be described by the states

st , actions at , and rewards rt (immediate return). Thus, the

trajectory of a standardMDP case contains a series of contiguous

state transitions, which can be expressed as follows.

(s0, a0, r0) → . . . → (st , at , rt) → (st+1, at+1, rt+1) →

. . . → ster (1)

where ster is the termination state. Based on RL theory, the state-

value function Vπ and action-value function Qπ in standard

MDPs is defined as follows (Watkins, 1989; Sutton and Barto,

2018).

Vπ (st) =
∑

at
π(at|st)

∑

st+1,rt
p
(

st+1, rt
∣

∣st , at
)

[

rt + γVπ

(

st+1
)]

(2)

Qπ (st , at) =
∑

st+1,rt
p
(

st+1, rt
∣

∣st , at
)

[

rt + γ
∑

at+1
π(at+1|st+1)Qπ

(

st+1, at+1
)

]

(3)

where p is the state transition probability and γ is the reward

discount factor (Sutton and Barto, 2018). As shown in Equations

(2), (3), both Vπ (st) and Qπ (st , at) are closely related to

the value of its possible successor states (or state-action pairs)

(Sutton and Barto, 2018). Then, the control goal in a standard

MDP case is achieving the optimal expected long-term returns.

The optimal policy π∗ can be written as follows (Sutton and

Barto, 2018).

π∗ (st) = argmaxatǫAQ π∗ (st , at) (4)

In contrast, the atypical MDP case considered in this

paper involves continuous action space and has only one state

transition from the initial state st (t = 0) to the termination state

ster . That is, for any state st , its next state st+1 is identical to the

termination state ster after a state transition, i.e., st+1 ≡ ster . Its

trajectory can be expressed as follows.

(st , at , rt) → ster (5)

As defined in Equation (5), due to st+1 ≡ ster , the

whole process of an atypical MDP case only contains one

reward rt (immediate return). Thus, in the atypical MDPs,

only the immediate return rather than the long-term return

should be considered. Note that the atypical MDP case

involving continuous action space is common in engineering

field, e.g., stamping process, directional blasting, football

trajectory control, approximations of the compound Poincaré

maps, etc.
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Then, the characteristics of atypical MDPs will be analyzed

by comparing the differences between the standard value

functions in Equations (2), (3) and the value functions of the

atypical MDPs. As defined by Sutton et al., both the state-value

and the Q-value at the termination state ster are identical to zero

(Sutton and Barto, 2018), i.e., Vπ (ster) ≡ 0 and Qπ (ster) ≡ 0.

Since st+1 ≡ ster in the atypical MDPs, the state-value function

VA
π in the atypical MDPs can be written as follows.

VA
π (st) =

∑

at
π (at|st)

∑

st+1,rt
p
(

st+1, rt
∣

∣st , at
)

rt

=
∑

at
π(at|st)R(st , at) (6)

In atypical MDPs, VA
π (st) denotes the expected immediate

return of the state st under the policy π . R(st , at) is the expected

immediate return for the state-action pairs. Compared to theVπ

in standard MDPs [see Equation (2)], although computing the

value of VA
π in the atypical MDPs is independent of its successor

state-valueVπ

(

st+1
)

, VA
π is still a function of the policyπ in the

atypical MDPs. Due to the operation
∑

at
π(at|st) in Equation

(6), estimating VA
π (st) should traverse the whole action space

A under the current policy π . It means that approximating the

VA
π (st) requires large amounts of samplings when the policy

π is stochastic. A finite number of samplings may ignore the

huge un-sampled action space and cause an enormous sampling

error. Here, suppose that the whole action space A consists of

the sampled action space As and the un-sampled action space

Aun, i.e., A = As + Aun. Based on Equation (6), there must

be a sampling error err(st) between the estimated state-value

function VE
π and true state-value function VA

π , i.e.,

VA
π (st) = VE

π (st) + err(st) (7)

where, VE
π (st) and err(st) can be expressed as follows:

VE
π (st) =

∑

at∈As
π(at|st)R(st , at) (8)

err(st) =
∑

at∈Aun
π(at|st)R(st , at) (9)

Actually, in standard MDPs, such sampling errors also exist

in the estimation of the Vπ and Qπ since they are also the

functions of the policy π . This sampling error introduces the

bias for the estimated VE
π (st) and further negatively affect

the stochastic policy update. Based on the actor-critic method

with baseline (Sutton and Barto, 2018; Levine et al., 2020),

the estimated stochastic policy gradient ĝE can be written as

follows when the biased estimate VE
π is used (Sutton et al., 1999;

Schulman, 2016).

ĝE = E

[

∞
∑

t=0

(rt + γVE
π

(

st+1
)

− VE
π (st))∇ω logπω(at| st)

]

= E

[

∞
∑

t=0

(

rt + γ

(

VA
π

(

st+1
)

− err
(

st+1
)

)

−
(

VA
π (st)

−err(st)))∇ω logπω(at| st)
]

= E

[

∞
∑

t=0

(

(rt + γVA
π

(

st+1
)

− VA
π (st))−

(

γerr
(

st+1
)

−err (st)))∇ω logπω(at| st)
]

= ĝ + E

[

∞
∑

t=0

(err (st) − γerr(st+1))∇ω logπω(at| st)

]

(10)

where ĝ is the true stochastic policy gradient. The biased estimate

VE
π causes an ineradicable policy gradient error ĝerr between the

estimated ĝE and true ĝ, i.e.,

ĝerr = E

[

∞
∑

t=0

(err (st) − γerr(st+1))∇ω logπω(at| st)

]

(11)

This error ĝerr may cause negative effects on policy updates.

Under the theory of RL, the action-value function QA in the

atypical MDPs can be written as follows.

QA (st , at) =
∑

st+1,rt
P

(

st+1, rt
∣

∣st , at
)

rt = R(st , at) (12)

In the atypical MDPs, QA (st , at) denotes the expected

immediate return of the state-action pairs (st , at). And the

action-value function QA is also unrelated to the value of its

successor state-action pairs as same as the VA
π in Equation (6).

However, it should be particularly stressed that the action-value

function QA in the atypical MDPs is a function independent of

policy π , which is different from the Vπ in Equation (2), Qπ

in Equation (3), and VA
π in Equation (6). Thus, it brings a set

of new characteristics for the QA as follows. Firstly, the value of

the QA (st , at) will not be changed in policy updating. However,

with the policy π updating, the state-value function VA
π in the

atypical MDPs will be changed accordingly. That is, compared

to approximating the QA, approximating the VA
π requires more

samples and more training steps. Meanwhile, since there is no
∑

at
π (at|st) operation in Equation (12), it is unnecessary for

estimating the action-value function QA to traverse the whole

action space. It also indicates that much more samples are

required to estimate VA
π (st) than to estimate QA (st , at) in

an atypical MDP case. This also indicates that estimating the

VA
π (st) in an atypical MDPs requires more samples than the Q-

function. Thus, estimating the state-value function can lead to

the low learning efficiency of the RL algorithms. Secondly, the

bias caused by sampling error will not exist in the estimated

action-value function QE as Equation (12) does not contain

operation
∑

at
π (at|st). In contrast, such bias is inevitable for
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the estimated state-value function VE
π , as discussed in Equation

(7). Based on the above analysis, estimating the QA (st , at)

is easier than estimating the VA
π (st) in the atypical MDPs.

Generally speaking, the stochastic policy algorithms rely on the

estimated state-value function VE
π , and the deterministic policy

algorithms rely on the estimated action-value function QE.

Thus, when dealing with the atypical MPD case, deterministic

policy algorithms can show more natural advantages than the

stochastic policy algorithms.

In addition, the new characteristic of the atypical MDP case

is also shown in its policy π∗. Based on the definition of the

action-value function QA in Equation (12), the optimal policy

π∗ under the atypical MDPs can be expressed as follows.

π∗ (st) = argmax
at∈A

∑

st+1,rt
P

(

st+1, rt
∣

∣st , at
)

rt

= argmax
at∈A

R (st , at) (13)

That is, in the atypical MDPs, the goal of the optimal policy π∗ is

achieving the maximal expected reward rather than the maximal

expected long-term returns. And the long-term returns can be

ignored for policy update in the atypical MDPs.

Limitations of existing RL algorithms in
the atypical MDPs

When dealing with the atypical MDP cases in continuous

action space, the existing RL algorithms are limited by their

open problems as well as by the special problems caused by the

characteristic of the atypical MDP case. Note that the value-

based algorithms will not be discussed here as they are only

applicable to discrete action space.

The estimation error of the estimated value function,

i.e., bias and variance, is an open problem that limits the

performance of RL algorithms. The bias may be introduced to

the estimated value function based on TD learning due to the

off-policy TD learning’s max operation, chosen imperfect policy,

and uncertainties (Sutton and Barto, 2018). TD learning method

is an important estimation method for the value function and

is widely used in existing RL algorithms, e.g., PPO, DDPG,

etc. Especially for deterministic policy algorithms, e.g., DDPG,

TD learning’s max operation may lead to an overestimated

Q-value (Van Hasselt et al., 2016), bringing negative effects

to the policy update. Although the TD3 (Fujimoto et al.,

2018) improves the overestimation, TD3 may lead to the

underestimated Q-value and increase the complexity of the

algorithm significantly. Additionally, as analyzed in Equation

(7), sampling error caused by incomplete samplings can further

increase the bias for the stochastic policy algorithms that rely on

the estimated state-value function VE
π , e.g., A3C, PPO, etc. Note

that some complex scenario involving uncertain environments

may generate completely different response results for the same

state-action pair. Such complex and uncertain responses can

bring a high variance for the estimated value functions, leading

low reliability of controller. However, existing RL algorithms do

not solve this problem very well.

As analyzed in Equation (13), a characteristic of the atypical

MDPs is that they focus only on the maximum immediate

return. And there is no focus on the long-term return. However,

there are many designs for estimating long-term returns in

existing RL algorithms. For example, based on Equations (2),

(3), many existing RL algorithms, such as PPO, DDPG, etc., have

an operation to calculate the successor state-value (or Q-value).

When dealing with an atypical MDP case, such an operation is

redundant and increases the time complexity of the algorithms,

e.g., PPO. Especially for deterministic policy algorithms, e.g.,

DDPG and TD3, they contain a set of complex target networks

to calculate the successor Q-value. It shall increase a great of

both time complexity and space complexity. Such limitations

can increase computing resource usage, which is not conducive

to applying RL algorithms to complex problems.

Immediate-return RL algorithm for
the atypical MDPs

The immediate-return RL algorithm

As analyzed in Section The atypical MDPs, deterministic

policy shows more advantages than stochastic policy in atypical

MDPs. Thus, the immediate-return RL algorithm is proposed

based on the deterministic policy method and actor-critic

framework for the problems in atypical MDPs. The new

equations involved in this algorithm are highlighted in “⇐”.

As shown in Figure 1, two networks, i.e., actor network with

weights θµ and critic network with weights θQ, are designed

to construct the actor-critic framework. Here the actor network

plays a role as the policy. It can output deterministic action

at = µ
(

st
∣

∣θµ
)

based on the inputted state st . The critic network

is used as the estimated action-value function. It can evaluate the

performance of the actor network by outputted the estimated Q-

value Q
(

st , at
∣

∣θQ
)

according to the inputted state-action pair

(st , at). Compared to other deterministic policy algorithms (e.g.,

DDPG), the proposed algorithm’s network framework has been

simplified significantly due to no target networks. It means less

computing resource usage.

As analyzed in Equation (12), the true action-value function

QA in atypical MDPs is equal to the expected reward R(st , at).

As shown in Equation (13), the immediate reward rt (i.e.,

immediate return) is the unbiased estimation for the expected

reward R(st , at).

Ert ,st+1 [rt] =
∑

st+1,rt
P

(

st+1, rt
∣

∣st , at
)

rt = R(st , at) ⇐ (14)

When the environment is deterministic, the generated next state

st+1 and immediate reward rt are also deterministic under
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FIGURE 1

The framework of the immediate-return RL algorithm. Yellow solid arrows: the actor network interacts with the environment. Blue solid arrow:
update for critic network. Blue hollow arrow: update for actor network.

the specified state-action pair (st , at). Under this condition,

the immediate reward rt is equal to its expectation, i.e.,

rt = R(st , at). Thus, rt is the ideal target Q-value y+t
of the estimated action-value function in an atypical MDP

with a deterministic environment. However, the uncertain

environments (e.g., dynamic systems with uncertainties) may

generate different immediate rewards rt even given the same

state-action pair (st , at). A randomly generated reward value

rt cannot represent the expected reward R(st , at) under the

specified state-action pair (st , at). Due to the complexity of the

uncertainties, the probability distribution of these generated

reward values is also unknown. Therefore, using rt as the critic

network’s target Q-value will result in a high estimation variance

when considering uncertainties. The high variance may lead to

instability in the learning process, making the policy less reliable

(Fujimoto et al., 2018; Sutton and Barto, 2018). Based on the

law of large numbers, the average reward r̂t is proposed as the

target Q-value to solve the problem of high variance caused by

uncertain environments. r̂t can be expressed as follows.

r̂t =
1

K

∑K

k=1
rkt ⇐ (15)

That is, a specified state-action pair (st , at) will be performed

multiple times K in the uncertain environment. And a set

including multiple immediate rewards
{

rkt

}

will be obtained.

This immediate reward set
{

rkt

}

can reflect the probabilistic

characteristics of the uncertain environment’s responses under

the state-action pair (st , at). Then, the average reward r̂t

is constructed by averaging the immediate reward set
{

rkt

}

.

According to the law of large numbers, the average reward r̂t

is closer to the expected reward R(st , at) than one randomly

generated reward rt . Thus, there will be minor variance, when

the average reward r̂t is used to estimate the expected reward

R(st , at). Note that the average reward r̂t is still the unbiased

estimation for the expected reward R(st , at) due to the average

operation. In practical application, the repetition number K is

suggested to be 3 based on experience. In the football trajectory

control problems considered in this paper, setting the repetition

number K to 3 can significantly improve the training results

compared to setting the number of repetitions to 1. When

K continues to increase, the algorithm’s performance cannot

be significantly improved. Based on the above analysis, these

improvements provide an unbiased and low variance target Q-

value for the critic network. It can make the proposed algorithm

more reliable in uncertain environments. The problem of

the estimation error in the existing RL algorithms, e.g.,

overestimation in DDPG, can also be overcome. The numerical

tests in Section Controller’s performance will prove this. Then,

the new target Q-value y+t of the immediate-return RL is

expressed as

y+t = r̂t ⇐ (16)

It should be noted that the average reward r̂t applies only to

the atypical MDP case, as the successor state st+1 relying on the

current state-action pair (st , at) does not exist.

The off-policy method (Levine et al., 2020) is also adopted

in the proposed algorithm. All training samples generated from

the trial and error should be stored in the experience memory. It

should be stressed that the atypical MDP case does not focus on

the successor state st+1, and its trajectory contains only one state
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transition. Hence, only the initial samples of each trajectory, i.e.,

(st , at , r̂t), t ≡ 0, should be stored. SamplingN training samples
∑N

i = 1

(

si, ai, r̂i
)

, the loss function for updating critic network is

expressed as follows.

LC =
1

N

∑N

i = 1
(y+i − Q(si, ai|θ

Q))
2

∣

∣

∣
y+i = r̂i (17)

where N is the size of the min-batch. Symbol i is the label

number of the sample. Byminimizing the loss function, the critic

network weights θQ can be updated. Meanwhile, as analyzed in

Equation (13), the policy should be updated in the direction of

maximizing the expected reward. Thus, the purpose of updating

the actor network µ is to maximize the estimated Q-value

outputted by the critic network. Referring to Lillicrap et al.

(2015), the gradient for updating actor network weights θµ is

expressed as follows.

∇θµ |si =
1

N

∑N

i=1
∇aiQ

(

si, ai = µ (si)
∣

∣

∣
θQ

)

∇θµµ
(

si
∣

∣θµ
)

(18)

Furthermore, the delaying policy update (Fujimoto et al., 2018)

is also introduced for the immediate-return RL algorithm. It

can reduce the frequent policy updates and further result in low

variance (Fujimoto et al., 2018). After successful training, the

actor network will be the RL controller.

In summary, due to the proposed average reward method,

the open problem of the estimation error can be improved

significantly in the proposed algorithm. Compared to existing

RL algorithms, the proposed algorithm will show high

performance. This point will be certified in two football

trajectory control scenarios (see Section Comparison and

discussion). Besides, based on the characteristics of atypical

MDPs, a simplified network framework is designed for the

proposed algorithm to reduce computing resource usage. Then,

the complete pseudocode of the immediate-return RL algorithm

is shown in Algorithm 1.

Complexity analysis

The computing complexity, i.e., space complexity and time

complexity, can reflect the requirement of the algorithm for

computing resources. To verify the low computing resource

requirement of the immediate-return RL algorithm, the

computing complexity of the proposed algorithm will be

analyzed in this section. Meanwhile, the representative of the

stochastic policy algorithms, i.e., PPO, and the representative

of the deterministic policy algorithms, i.e., DDPG, will also be

analyzed as references. For the details of DDPG and PPO, please

see Lillicrap et al. (2015), Schulman et al. (2017). In the following

analysis, the single network’s detailed architectures in Section

Training process will be used as an example for clarity.

1: Randomly initialize actor network µ with weights θµ

2: Randomly initialize critic network Q with weights θQ

3: Initialize the experience replay memory E

4: For step t= 1, T do

5: Generate initial state st in the environment

6: Output action at = µ
(

st
∣

∣θµ
)

+β based on current policy and

random noise

7: Initialize average reward r̂t = 0

8: For k= 1, K do

9: Running the state-action pair (st , at) in environment on the

kth times

10: Observe the reward rk
t
, and r̂t = r̂t + rk

t
⇐

End Loop K

11: Calculate average reward r̂t = r̂t/K⇐

12: Store the sample (st , at , r̂t) in E

13: Extract random a minibatch of N samples
∑N

i=1

(

si, ai, r̂i
)

from E

14: Obtain the target Q-value y+i = r̂i ⇐

15: Construct the loss function LC of the critic network:

LC = 1
N

∑N
i=1 (y

+
i − Q(si, ai|θ

Q))
2

16: Update the critic network weights θQ by minimizing the loss

LC

17: If t mod d then

18: Update the actor network weights θµ using the gradient:

∇θµ |si =
1
N

∑N
i=1 ∇aiQ

(

si, ai = µ (si)
∣

∣θQ
)

∇θµµ
(

si
∣

∣θµ
)

End IF

End Loop T

Algorithm 1 The immediate-return RL algorithm.

Since the algorithms mentioned above are composed of

networks, their space complexity depends on the total parameter

of all networks. According to Han et al. (2015), the whole space

complexity of a single network is:

space ∼ O

(

∑L−1

l = 1
NlNl+1+Nl+1

)

(19)

where L=5 is the total layer number of the networks. Nl

represents the total node number of the l layer. As shown

in Table 1, both the proposed algorithm and PPO have two

networks (Schulman et al., 2017), and the DDPG contains four

networks (Lillicrap et al., 2015). Thus, the space complexity of

the proposed algorithm is similar to PPO and is reduced by 50%

compared to DDPG.

The time complexity of the RL algorithms depends on

both the network framework and the calculation process (i.e.,

sampling process and update process). Generally, floating point

operations (FLOPs) is used to evaluate the algorithm’s time

complexity. Referring to He and Sun (2015), the time complexity

of a single network is:

time ∼ O(
∑L−1

l = 1
2NlNl+1) (20)
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TABLE 1 The space and time complexity analysis.

The proposed algorithm DDPG PPO

Space complexity Actor network 199,558 199,558 200,332

Critic network 200,449 200,449 198,913

Target networks \ 400,007 \

Total 400,007 800,014 399,245

Time complexity (FLOPs) Actor network 397,312 397,312 398,848

Critic network 399,104 399,104 396,032

Target networks \ 796,416 \

Once Sampling 397,312 397,312 398,848

Once network Update 796,416 1,592,832 (794,880∼1,190,912)

Then, the time complexity of one sampling and one network

update will be discussed separately (see Table 1). For the three

algorithms discussed in this article, only the actor network

is working when sampling. Thus, the time complexity of the

three discussed algorithms can be regarded as the same in one

sampling and is equal to the actor network’s time complexity (see

Table 1). Note that although the state-action pair (st , at) will be

performed many times in the environment (Algorithm 1 Line 8

to Line 10), the proposed algorithm’s time complexity will not

be increased in one sampling, as its actor network only runs

once. Regarding the time complexity of network updates, only

the network’s forward computation is considered according to

He and Sun (2015). When the proposed algorithm and DDPG

(Lillicrap et al., 2015) update their networks, all their networks

will be used once. Here, the proposed algorithm has 2 networks,

and DDPG has four (Lillicrap et al., 2015). Thus, the proposed

algorithm reduces the time complexity of each network update

by 50% than DDPG (see Table 1). In each network update, the

actor network and critic network of PPO should estimate π(st)

the V(st), respectively (Schulman et al., 2017). Besides, for the

same batch of samples that are trained multiple times, the critic

network should be used once to estimate V(st+1) due to the

TD learning method (Schulman et al., 2017). That is, the fewer

times the same batch of samples are trained, the greater the time

complexity of each network update. When a batch of samples

is used only once, the proposed algorithm can reduce the time

complexity of each network update by 33.1% than the PPO (see

Table 1). Thus, based on the above analysis, when the sampling

times and the network update times are constants, the time

complexity of the proposed algorithm is 40% lower than the

DDPG and 0–24.9% lower than the PPO.

It should be stressed that computing resources are

limited and precious. Especially for some actual complex

tasks involving vision, the usage of computing resources

is enormous. Based on the above analysis, the immediate-

return RL algorithm has lower computing complexity

than the existing RL algorithms, reducing computing

resource usage. Such statements will be verified in

the following Section Computing resource usage by

detailed comparisons.

Illustration examples: Football
trajectory control for di�erent
scenarios

The football flight is an atypical MDP case. To test

the immediate-return RL algorithm, two highly challenging

scenarios involving the flight control of the football, i.e., passing

the football to a moving player, and chipping the football over

the human wall, will be examined. These scenarios can be

used as the benchmark to test the algorithms designed for the

atypical MDPs. Meanwhile, regarding research results can be

used to develop high-level football robots in the Robot world

cup (Sharbafi et al., 2011). The controllers based on the proposed

algorithm in this paper can significantly increase the accuracy of

the football shot.

Under the above two scenarios, the proposed controllers will

be trained to output accurate initial velocities for the football

to achieve the specified flight purposes and reduce the time of

football flight. In the following sections, the experimental model

will be introduced in Section Experimental model: Aerodynamic

model of football with parameter uncertainties first. Then, other

detailed designs corresponding to the two different scenarios,

including the actions designs, states designs and constraints, the

termination events definitions, and the reward function designs,

will be introduced in Section Scenario 1: passing the football to a

moving player and Section Scenario 2: chipping the football over

the human wall.

Experimental model: Aerodynamic model
of football with parameter uncertainties

Here, an aerodynamic model of football under windless

conditions is directly reproduced here from Myers and Mitchell
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TABLE 2 The fitting coe�cients of the drag coe�cient function (Kiratidis and Leinweber, 2018).

Balls ac vc vs bmin bmax vmin vmax br

Tango12 0.5452 12.8600 1.3040 0.1657 0.1953 16.2200 35.0000 0.5332

Teamgeist 0.4927 12.5800 1.0710 0.1440 0.1540 23.1700 35.0000 0.5140

Brazuca 0.4740 12.9200 1.0000 0.1657 0.2112 14.6100 35.0000 0.5397

These fitting coefficients are derived from the actual wind tunnel data of famous footballs, including Tango12, Teamgeist and Brazuca.

(2013), Javorova and Ivanov (2018). On this basis, parameter

uncertainties are newly introduced into the aerodynamic model

of the football. Thus, the football flight process can be regarded

as an uncertain environment. This aerodynamic model will

be adopted directly as the simulation environment to further

generate the training data for the RL controllers.

The external forces acting on the ball include gravity G,

drag force FD, lift force FL, and drag moment MD. Thus, the

aerodynamic model of football can be expressed as follows

(Myers and Mitchell, 2013; Javorova and Ivanov, 2018).

m̃ẍ = −KDẋ

√

ẋ2 + ẏ2 + ż2 + KL

(

ẋ2 + ẏ2 + ż2
)

(

ωY ż − ωZ ẏ
)

(21)

m̃ÿ = −KDẏ

√

ẋ2 + ẏ2 + ż2 + KL

(

ẋ2 + ẏ2 + ż2
)

(ωZ ẋ− ωX ż) (22)

m̃z̈ = −KDż

√

ẋ2 + ẏ2 + ż2 + KL

(

ẋ2 + ẏ2 + ż2
)

(

ωX ẏ− ωY ẋ
)

− m̃g (23)

ω̇X = −ηωX (24)

ω̇Y = −ηωY (25)

ω̇Z = −ηωZ (26)

where parameters KD and KL are specified as follows.

KD = 0.5C̃dρ̃π r̃2 (27)

KL = 0.5CLρ̃π r̃2
1

|ω × v|
(28)

here, m̃ is the football’s mass, g is the gravitational acceleration,

ρ̃ is the air density, r̃ is the radius of the football, v=(ẋ, ẏ, ż) is the

linear velocity, andω= (ωX ,ωZ ,ωY ) is the angular velocity. The

attenuation coefficient η is assumed to be 0.05. Furthermore, the

dimensionless lift coefficient CL is adopted from Kiratidis and

Leinweber (2018) as follows.

CL =
(

1− ∂v2
)

Sp
β (29)

here, the parameter ∂ is chosen as 2.5 × 10−4, and β is 0.83

(Kiratidis and Leinweber, 2018). The spin parameter is Sp =
r̃ω
v , where ω = |ω| and v = |v|. The dimensionless drag

coefficient is expressed as C̃d, which is an important factor

for the sudden change of linear velocity of football in flight

(Horowitz and Williamson, 2010; Norman and McKeon, 2011).

TABLE 3 The range of the uncertain parameters.

Uncertainparameters Unit Minimum value Maximum value

Air density ρ̃ kg/m3 1.000 1.205

Mass m̃ kg 0.42 0.45

Radius r̃ m 0.1090 0.1106

Its fitting function is adopted from Kiratidis and Leinweber

(2018) as follows.

C̃d
(

v, sp
)

=
ac − bmin

1+ e
v−vc
vs

+ bmin +
v− vmin

1+ e
−v+vmin

vs

bmax − bmin

vmax − vmin

+brSp (30)

where ac, bmin, bmax, br , vmin, vmax, vc, and vs, are the fitting

coefficients of the above function (see Table 2).

Next, parameter uncertainties, i.e., air density ρ̃, mass m̃,

radius r̃, and drag coefficient C̃d, in the aerodynamic model

of football will be introduced. Here, m̃, ρ̃, r̃, and C̃d, are

internal parameters, and ρ̃ is external parameter. All parameters

with uncertainties are random and parametric. The following

parameters, i.e., ρ̃, m̃, and r̃, can change in very small intervals

according to the international federation of association football

(FIFA) standards, and these details are shown in Table 3. In

addition, the different fitting coefficients of the drag coefficient

functions (Kiratidis and Leinweber, 2018) corresponding to

three kinds of footballs, i.e., Tango12, Teamgeist, or Brazuca,

are considered in this paper (see Table 2). That is, when giving

specified initial conditions and simulating Equations (21)–(26)

in the training or testing procedures, values of the ρ̃, m̃, and

r̃ will be selected randomly from Table 3, and one set of the

fitting coefficients of the drag coefficient function will be selected

randomly from the Table 2. Note that slight changes in the

above parameters can significantly impact the flight trajectories,

although the football has the same initial condition. In order to

analyze the impact of the parameter uncertainties, 20 random

initial conditions are generated to test. Based on Equations (21)–

(26), each initial condition is simulated 100 times and produces

100 flight trajectories. In each initial condition, the average

landing position of these 100 flight trajectories is set as the target

position. Then, the average relative error of the 100 landing

positions relative to the target position can be calculated to assess
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FIGURE 2

The e�ect of parameter uncertainty on flight trajectory.

FIGURE 3

Passing the football to a moving player.

the impact of the parameter uncertainties. The results of 20 tests

are shown in Figure 2. Here, the maximum average relative error

is 66.97%. The average value of 20 average relative errors is

10.63%. Thus, parameter uncertainties can have a non-negligible

impact on the flight trajectory and pose a significant challenge to

the controller design.

Scenario 1: Passing the football to a
moving player

The schematic diagram of the first scenario is shown in

Figure 3. And this scenario simulates the dynamic passing

situation between the players in reality. That is, the moving

player moves when the football flies and stops when the football

lands. Here, two control targets, i.e., passing the football to a

moving player and reducing the time of the football flight, are

set for the RL controller.

The action outputted by the RL controller is the initial

velocities of the football, i.e., initial linear velocity and initial

angular velocity. This action is designed as follows.

A0 =
(

vx, vy, vz , ωx,ωy,ωz
)

(31)

It should be noted that both the linear and angular velocities

should be limited according to the practical data of the

professional players (Neilson, 2003), i.e., |v| ∈ [0, 34] m/s and

|ω| ∈ [0, 62.8] rad/s.

In this scenario, the initial position of the moving player

will be set at the coordinate origin for convenience, i.e.,

(xm, ym, zm) = (0, 0, 0). Thus, the conditions when the football

takes off, i.e., state S1, can be described as follows.

S1 =
(

x0, y0, z0, vmx, vmy
)

(32)

where (x0, y0, z0) is the football’s initial take-off position. The

(vmx, vmy) is the moving speed of the moving player. Then, the

constraints for the state S1 are set as follows. Firstly, according

to the player’s sprint speed (Djaoui et al., 2017), the maximum

speed of moving players is limited to 10 m/s, i.e.,

vm =

√

vmx
2 + vmy

2 ≤ 10 (33)

Secondly, considering the size of the sports field, the

constraint on the choice of the take-off position is defined

as follows.

dm =

√

(x0 − xm)
2 + (y0 − ym)

2 + (z0 − zm)
2 ≤ 30 (34)

Note that the destination
(

xd, yd, zd
)

of the football in this

scenario is defined as the end position of the moving player, i.e.,

(xm+ vmxtf , ym+ vmytf , zm). tf is the football’s flight time. That

is, the destination is not a constant pre-defined in the state S1

and unknown for the RL controller. Thus, passing the football to

a moving player is a challenging scenario.

To generate reasonable trajectories, some termination events

of the simulations should be set according to the constraints

required. Any of termination events are triggered, the flight

process will be stopped. In this scenario, the ground floor ZLB =

0 and maximum height ZLH = 12 are set as the constraints

for flight trajectories. Therefore, the termination events for

this scenario are defined as zf = ZLB or zf = ZLH . Here,

the
(

xf , yf , zf

)

denotes the football’s final position when the

termination event is triggered.

For the purpose of learning an excellent policy to predict

proper initial velocities, the RL controller needs to be guided

by an appropriate reward function. Here, a monotonic power

function (i.e., y = 1 − xb) is selected as the basic function to

design the reward function. For this basic function, the closer

x is to 0, the greater the change in the gradient
dy
dx
. Thus, the

reward function based on this power function can provide very

large positive rewards for a small number of correct samples in
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some complex scenarios. It may provide more precise guidance

for RL algorithms. Note that other function forms may also have

similar effects, and the proposed basic functions only offer an

effective solution. In this scenario, two sub-reward functions

based on this basic function are designed for two independent

control targets, i.e., passing the football to a moving player,

and reducing the time of football flight, respectively. Then, two

sub-reward functions will be combined into one united reward

function by reward shaping (Brys et al., 2017) to integrate these

two control targets.

For the first control target, i.e., passing the football to

a moving player, the relative error δ between the football’s

final position
(

xf , yf , zf

)

and the destination
(

xd, yd, zd
)

is a

reasonable parameter to evaluate the flight results. It can be

expressed as follows,

δ = 1d/dd (35)

where, 1d is the absolute error between the football’s final

position and the destination, i.e.,

1d =

√

(

xd−xf

)2
+

(

yd − yf

)2
+

(

zd − zf

)2
(36)

dd indicates the distance between the take-off position and the

destination, i.e.,

dd =

√

(

x0 − xd
)2

+
(

y0 − yd
)2

+
(

z0 − zd
)2

(37)

Then, the first sub-reward function is designed as follows,

r1,1 = 1− δ0.4 (38)

where constant-coefficient 0.4 is an empirical parameter by error

and trial. For the sub-reward function r1,1, the smaller the

relative error, the faster the reward increases. This character

will benefit the convergence of the networks in the proposed

algorithm. For the second control target, i.e., reducing the time

of football flight, the unit time cost index ts is defined as follows.

ts = tf /dm (39)

where tf is the football’s flight time and parameter dm can be

found in Equation (34). Then, the second sub-reward function

is defined as follows:

r1,2 = 1− (max(ts − t0, 0))
0.15 (40)

where symbol t0 = 0.055 s/m is the empirical value based

on simulations, which indicates the expected unit time cost. As

defined by the sub-reward function r1,2, the lower the unit time

cost index, the higher the value of the reward. Then, the united

reward function will be shaped as Equation (41).

R1 =
14

9
r1,1 +

4

9
r
1,2,

zf = ZLB or zf = ZLH (41)

FIGURE 4

Distribution of the value of the reward function R1 on the
parameter ts and parameter δ.

where the value of the reward function R1 is restricted from

0 to 2 according to the recommended value of the Henderson

et al. (2018). Considering the importance of the first control

target and the value limitation of the R1,
14
9 and 4

9 are

selected the shaping weights for r1,1 and r1,2, respectively.

Since the different control targets have different sensitivities

in reward value, reasonable shape weights are helpful to find

the optimal policy that can satisfy multiple control targets.

However, these weights in reward shaping usually originate in

practical experience. The pretest results also demonstrate that

changing the shaping weights value will decrease the proposed

controllers’ performance. After shaping, the distribution of the

reward function R1 on relative error δ and unit time cost index

ts is shown in Figure 4.

Scenario 2: Chipping the football over
the human wall

The schematic diagram of chipping the football over the

human wall is shown in Figure 5. In this scenario, the football

is required to fly over (rather than through) the human wall

and reach at the goal. Indeed, this scenario simulates the free

kick situation in the football game. Similar as the first scenario,

the action outputted by the RL controller is the football’s initial

velocities, which are defined in Equation (31). Here, two control

targets, i.e., chipping the football into the goal and reducing the

time of the football flight, are set for the RL controller.

In this scenario, the goal is defined as perpendicular to the

positive Y-axis and the projection of the goal’s central point

on the X-Y plane is set at the coordinate origin (0, 0, 0). Thus,

the central point of the goal will be always regarded as the

destination, i.e.,
(

xd, yd, zd
)

= (0, 0, 1.22) (The height of the goal
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FIGURE 5

Chipping the football over the human wall.

is 2.44m based on the FIFA standards). Then, a 2.4× 6m human

wall parallel to the goal is placed between the goal and take-off

position of football. Here, the projection points of the human

wall’s central point, the goal’s central point, and the football’s

take-off position on the X-Y plane are assumed to be collinear.

Thus, the conditions when the football takes off in this scenario,

i.e., state S2, can be described as follows.

S2 =
(

x0, y0, z0, dr, xw, yw, zw
)

(42)

where, the
(

x0, y0, z0
)

can be found in Equation (32). The
(

xw, yw, zw
)

represents the central point of the human wall. The

parameter dr represents the specified direction requirement for

flight trajectories. Namely, dr = 1 is left side of the human

wall, dr = 2 is top of the human wall, and dr = 3 is right side

of the human wall. Then, the constraints for the state S2 are

defined as follows. The constraints for take-off position are set as

x0 ∈ [−20, 20] and y0 ∈ [−15,−25]. Note that z0 ≡ 0. Based on

the free-kick rules, the constraint for the human wall’s position

is defined as follows,

√

(x0 − xw)
2 + (y0 − yw)

2 ≥ 9.15 (43)

Due to the human wall, the flight trajectories of footballs

are required to specified shapes. Meanwhile, multiple specified

direction requirements are considered, which means more

functional requirements. Thus, the complexity of this scenario

is significantly increased more than the first scenario.

In this scenario, another two termination events should be

defined, besides two termination events zf = ZLB or zf = ZLH

described in Section Scenario 1: Passing the football to a moving

player. Here, the third termination event triggered by the human

wall (yf = yw) is required. That is, the football bumps into the

human wall. Based on the parameter dr, the third termination

event has three triggering conditions, which can be expressed

as follows.















xf ≥ xw − 3 , when dr = 1 and yf = yw
∣

∣

∣
xf − xw

∣

∣

∣
> 3 or zf ≤ 2zw, when dr = 2 and yf = yw

xf ≤ xw + 3, when dr = 3 and yf = yw

(44)

Then, the fourth termination event indicates that the football

reaches at the two-dimensional surface corresponding to the

goal, which is written as yf = 0.

Since the complexity of the control requirements in the

second scenario, three independent reward functions, i.e., R2,1,

R2,2, and R2,3, are designed respectively depending on the

triggering four termination events. Note that triggering the

fourth termination event yf = 0 is the essential precondition for

chipping the football into the goal. Thus, only when the fourth

termination event is triggered, reducing the time of football

flight should be considered, and the relevant reward function

R2,3 is set from 0 to 2. And other reward functions R2,1 and

R2,2 are defined between −2 and 0 to ensure the coherence of

the reward’s guidance (see Figure 6). Since each reward function

only works on a specified termination event, a simple linear

function (i.e., y = kx + b) is also selected as the reward’s basic

function besides the power function.

When the first and second termination events are triggered,

i.e., zf = ZLB or zf = ZLH , the first reward function is designed

as follows to guide the football close to the destination.

R2,1 = −2δ, zf = ZLB or zf = ZLH (45)

where δ can be found in Equation (35). When the third
termination event takes effect, that is, the football hits the human
wall, the second reward function should guide the ball to fly over
the human wall. Based on the definition of the third termination
event’s triggering conditions in Equation (44), the second reward
function can be expressed as follows.

r2,2 =















−0.17
(

xf − xw + 3
)

,

−0.17
(
∣

∣xw − xf
∣

∣ − 3
)

− 0.5,

−0.21
(

2zw − zf
)

,

−0.17
(

xw + 3− xf
)

,

dr = 1, yf = yw, xf ≥ xw − 3

dr = 2, yf = yw,
∣

∣xf − xw
∣

∣ > 3

dr = 2, yf = yw, zf ≤ 2zw

dr = 3, yf = yw, xf ≤ xw + 3

(46)

When the fourth termination event is triggered yf = 0, two

independent sub-reward functions are designed for chipping the

football into the goal and reducing the time of the football flight,

respectively. The first sub-function r2,3a is used to guide the

football toward the goal, which is designed as follows.

r2,3a =















−0.068
∣

∣

∣
xf − xd

∣

∣

∣
+ 0.75,

−0.14
(

zf − zd

)

+ 1.1708,

−0.26d + 3,

yf = 0,
∣

∣

∣
xf − xd

∣

∣

∣
> 3.66

yf = 0, zf − zd > 1.22

yf = 0, else

(47)

here d can be found in Equation (36). The second sub-function

r2,3b is used to optimize the flight time. Referring to the Equation

(40), it can be expressed as follows.

r2,3b = 1− (max(ts − t0, 0))
0.15, yf = 0 (48)

where the unit time cost index ts is defined as ts = tf /dd.

The dd can be found in Equation (37). And t0 can be found
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FIGURE 6

Distributions of the value of the reward function R2 on the
sports field. (A) The specified direction dr = 1. (B) The specified
direction dr = 2. (C) The specified direction dr = 3.

in Equation (40). Then, the third reward function are shaped as

Equation (49).

R2,3 =
1

2
r2,3a +

1

2
r2,3b , yf = 0 (49)

where 1
2 and

1
2 are the shaping weights. Note that the value of the

third reward function is designed to be larger than the first and

second. This design can effectively guide the football reaching to

the goal. Under the requirements of three specified directions,

the distributions of the value of the reward function R2 on the

sports field are shown in Figure 6. Actually, reward function

design is an experienced-based work (Dewey, 2014; Henderson

et al., 2018; Silver et al., 2021). The constant-coefficients of

the Equation (38), Equation (40), Equation (41), and Equations

(45-49) are all determined by error and trial. And the pretest

results verify that the proposed reward functions have strong

guidance for optimizing control strategy under the effects of

these constant-coefficients.

Comparison and discussion

In this section, the advantages of the immediate-return

RL algorithm for atypical MDPs will be discussed and

demonstrated. Meanwhile, PPO (the representative of the

stochastic policy algorithms) and DDPG (the representative of

the deterministic policy algorithms) are chosen as the references

for the proposed algorithm. All these algorithms will train

corresponding controllers for two football flight scenarios. Then,

the advantages of the proposed algorithm will be discussed and

analyzed from the training process, training results (i.e., the

performance of the controllers), and computing resource usage

by comparing with these reference algorithms.

Training process

For the control problems of the football trajectory, the

proposed algorithm’s detailed network framework is designed

in Figure 7, including an independent actor network and an

independent critic network. Here, the proposed algorithm’s

actor network and critic network have the same hidden layers

and node numbers, i.e., the same network architectures. Indeed,

each independent network in the three discussed algorithms

shares the same network architectures to avoid the influence

of the network architectures on the test results. Similarly, all

discussed algorithms use the same reward function designed

in Section Illustration examples: Football trajectory control

for different scenarios. Furthermore, it should be noted that

different deep RL algorithms have different sensitivities to

hyperparameters (Henderson et al., 2018). Based on the trial

and error and the experience of Dewey (2014), Henderson et al.

(2018); and Silver et al. (2021), the detailed hyperparameters

of each algorithm are selected (see Table 4). Under the premise

of ensuring the algorithm’s performance, each algorithm’s

hyperparameters are set to the same value.

Then, all algorithms, i.e., the proposed algorithm, DDPG,

and PPO, will train the corresponding controllers for these two

scenarios. Here, the learning efficiency of the algorithm can

be evaluated by the consumption of the training steps. After

450,000 training steps, all reward curves in these two scenarios

are shown in Figure 8. In both scenarios, the reward curves of

the proposed algorithm (red line in Figure 8) converge to the
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FIGURE 7

Detailed network architectures of the proposed algorithm.

TABLE 4 The hyperparameters of the discussed deep RL algorithms.

Learning rate for actor Learning rate for critic Discount factor Soft target updates

The proposed algorithm 1e-4 1e-4 \ \

DDPG 1e-4 1e-4 0.9 0.01

PPO 5e-6 1e-5 0.9 \

high-level reward value after 300,000 training steps. Then, the

suitable controllers can be obtained. Although the reward value

of the DDPG algorithm also has risen during training (green

line in Figure 8), DDPG’s learning efficiency is worse than the

proposed algorithm from the perspective of convergence speed.

As shown in Figure 8, DDPG needs about 450,000 training steps

to converge the reward curves. That is, the learning efficiency

of the proposed algorithm is 1.5 times that of the DDPG.

And the convergency reward value of the DDPG is also less

than the proposed algorithm. As a stochastic policy algorithm,

PPO shows poor learning ability in football trajectory control.

As show in Figure 8, 450,000 training steps do not allow the

PPO to converge. Actually, PPO can also be converged after

consuming about 1,500,000 training steps. That is, the learning

efficiency of the proposed algorithm is 5 times that of the PPO.

Furthermore, the final convergency reward values of the PPO are

far less than the proposed algorithm. Note that themore training

steps, the more samples are required. Thus, the training process

confirms the analysis in Section Atypical MDPs: Definition

and characteristic analyses. That is, PPO’s learning efficiency is

low in the atypical MDPs, as estimating a state-value requires

more samples. The above training process demonstrates that

the proposed algorithm converges faster and consumes fewer

samples compared to DDPG and PPO. That is, the proposed

algorithm shows better learning efficiency. Actually, it is a

significant advantage for the proposed algorithm, as the samples

are difficult to obtain in many atypical MDP cases.

Controller’s performance

In this section, the performance of the controllers will

be analyzed from three aspects, i.e., accuracy, unit time cost,

and reliability. As described in Section Illustration examples:

Football trajectory control for different scenarios, two control

targets, i.e., shooting the football to the destination and reducing

the time of football flight, are considered for each scenario. Thus,

accuracy and unit time cost are the core index for evaluating

the control performance of the controllers. Actually, the control

performance is closely related to the value function’s estimation

bias. Besides, the considered aerodynamic model of football

is an uncertain environment. That is, the football trajectory

may be completely different under the same state-action pair,

bringing a high variance for the value function. To evaluate

the effect of variance caused by the uncertain environment on
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FIGURE 8

The reward curves of di�erent algorithms. (A) The first scenario.
(B) The second scenario.

the controller, the reliability is set as another index for the

controller’s performance.

Here, Monte Carlo tests are applied to analyze the

control performance of the controllers. In each scenario, 1,000

independent state will be chosen randomly and a set of initial

velocities will then be generated by the tested controller for each

chosen state. Then, only one flight trajectory will be generated

for the chosen state and the outputted initial velocities. Here, the

effective rate of control Re is defined as follows to evaluate the

accuracy of the RL controller.

Re = NRe/1000 (50)

where NRe is the number of the flight trajectories successfully

controlled in 1000 tests.

For the first passing scenario, if the relative error δ is less

than 5%, the flight control will be regarded as success. Here, the

relative error δ is defined as follows.

δ =

√

(xd − xf )
2 + (yd − yf )

2

√

(xd − x0)
2 + (yd − y0)

2
(51)

As shown in Figure 9A, the effective rate of control Re of

the proposed controller in the first scenario, i.e., passing the

football to a moving player, is 98.2%. In particular, there are

36.0% tests with relative error less than 1%, 56.6% tests with

relative error from 1 to 3%, and 5.6% tests with relative error

between 3 and 5%. Under the same tests, the DDPG controller’s

Re is 79.3%, and the PPO controller’s Re is 80.5%. For the second

scenario, scoring goals are regarded as the successful controls.

The effective rate of control Re of the proposed controller

for chipping the football over the human wall is 97.7% (see

Figure 9B). Meanwhile, the DDPG controller’s Re and PPO

controller’s Re are 91.1 and 24.1%, respectively. Compared to

DDPG and PPO, the good accuracy of the proposed controller is

verified in both two scenarios.

Based on 1,000 Monte Carlo tests, the average unit time cost

ta of 1,000 tests is used to evaluate the unit time cost, which can

be written as.

ta =
∑1000

1
ts/1000 (52)

here, ts is the unit time cost index, which can be found in

Equation (39). For the sake of comparison and evaluation, the

proposed controllers without the time cost optimization are also

trained for two scenarios. In the first scenario, the proposed

controller reduces the average unit time cost ta from 0.2080s

to 0.0483s, comparing to the proposed controller without the

time cost optimization (see Figure 10). Meanwhile, the DDPG

controller can reduces the unit time cost ta to 0.0484s. And

the PPO controller can reduce the unit time cost ta to 0.074.

In the second scenario, adding the time optimization has

little effect on flight time. However, the unit time cost of the

proposed controller is the lowest compared to the DDPG and

PPO controllers.

As analyzed in Section Limitations of existing RL algorithms

in the atypical MDPs, the estimated value functions in existing

RL algorithm, e.g., DDPG and PPO, is biased due to the

TD learning method. Meanwhile, the sampling error err(st)

can further increase the estimation bias of the state-value

function for the stochastic policy algorithms, as analyzed in

Section Atypical MDPs: Definition and characteristic analyses.

These estimation biases have adverse effects on the policy

update. However, due to the average reward method (see

Section The immediate-return RL algorithm), an unbiased

target Q-value is provided for the proposed algorithm. Thus,

the disadvantages of the estimation bias can be overcome.

According to the above test data, the effective rate of control

Re of the proposed controller in the first scenario is increased

by 18.9% than the DDPG controller and increased by 17.7%

than the PPO controller. In the second scenario, the effective

rate of control Re of the proposed controller is increased

by 6.6% than the DDPG controller and increased by 73.6%

than the PPO controller. The proposed algorithm also shows

better time cost optimization than DDPG and PPO in both
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FIGURE 9

The accuracy tests. (A) The accuracy test’s results in the first scenario. (B) The accuracy test’s results in the second scenario.

FIGURE 10

The average unit time cost in flights. (A) The first scenario. (B) The second scenario.

two scenarios. Thus, the high accuracy and low unit time

cost of the proposed controllers can be verified. This also

means that the immediate-return RL algorithm has better

performance than existing RL algorithms in deal with the

atypical MDPs.

In the reliability tests, several specified states will be chosen

for the tested controllers in each scenario (see Figure 11). For

each chosen state, the only set of definite initial velocities will

be outputted by the corresponding controller. Then, in the

uncertain environment, 200 different flight trajectories will be

generated based on the same chosen states and the same initial

velocities. To evaluate the reliability of the controllers, the

reliable rate Rr is defined as the effective rate of control of the

repeated 200 tests on the same chosen state, which is written as

Equation (53)

Rr = NRr/200 (53)

where NRr is the number of the flight trajectories controlled

successfully in 200 reliability tests.

In the first scenario, a point is selected as the initial position

of the moving player. The moving player is assumed to move

along the four directions marked by the orange arrows in

Figure 11A now. That is, four states are chosen for the tested

controllers. According to Figure 12, the average reliable rate

of the proposed controller for the first scenario is 100.00%.
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FIGURE 11

Reliability tests. (A) The first scenario. Blue circle is the allowed landing range. (B) The second scenario. Blue plane is the human wall. Black
wireframe is the goal.

FIGURE 12

The results of the reliability tests.

The average reliable rates of the DDPG controller and PPO

controller are 84.88 and 96.88% respectively. In the second

scenario, one point is selected as the initial take-off position of

the football (Figure 11B). In this initial take-off position, three

specified directions where the football flies over the human wall

are tested. That is, three states are constructed in the second

scenario to test controllers. In this scenario, only 4 trajectories

are not control in the total of 600 trajectories under the effect

of the proposed controller. The average reliable rate of the

proposed controller is 99.33%. The DDPG’s average reliable

rate in the second scenario is 96.17%. Notice that the PPO

controller do not finish the reliability tests due to its terrible

control policy.

The reliability in uncertain environments is also an

important index to evaluate the controller’s performance. In

this paper, the aerodynamic model of football with parameter

uncertainties is regarded as the uncertain environment. Due to

the strong non-linear of the football model, there may be more

than one set of initial velocities to meet the requirements of the

specified flight purpose. Meanwhile, the same initial velocities

may generate different trajectories due to the parameter

uncertainties. Thus, high reliability means that the expected

reward under the specified state-action pair can be estimated

accurately. And the controller can find a good set of initial

velocities from multiple possible initial velocities, reducing the

effects of the parameter uncertainties on the flight trajectories.
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TABLE 5 Computing resources usage tests.

CPU utilization Memory utilization (GB) Computing time (s) Size of the networks weights (KB)

The proposed algorithm 26% 1.4 2,359 4,682

DDPG 32% 1.9 3,342 6,243

PPO 30% 1.6 2,408 5,455

According to test data in Figure 12, the reliabilities of the

proposed controllers are approaching or equal to 100% in both

two football flight scenarios, which is significantly better than

DDPG and PPO controllers. The above results verify that the

proposed controllers have great reliability and can find the

best initial velocities to resist the adverse effects of uncertain

environments. As analyzed in Section The immediate-return

RL algorithm, the great reliability of the proposed controllers

come from the average operation for reward. For the sake of

comparison, two controllers based on the proposed algorithm

without using the average reward are also trained. As shown in

Figure 12, the reliable rate of the controller without the average

reward is reduced by 6.37% in the first scenario and reduced

by 3.83% in the second scenario. Numerical results indicate

that the average reward method can improve the reliability of

the controller.

Computing resource usage

As analyzed in Section Complexity analysis, compared

to existing RL algorithms, the network framework of

the immediate-return RL algorithm is greatly simplified,

and its complexity is reduced significantly. That is,

when solving the same problem in the atypical MDPs,

the immediate-return RL algorithm may consume

fewer computing resources than existing RL algorithms.

Therefore, taking the first scenario of the football

trajectory control as an example, the computational

resource requirements of different algorithms, i.e.,

immediate-return RL algorithm, DDPG, and PPO,

are analyzed.

In these tests, the hardware is a normal computer with Intel

I5 8600k processor and Nvidia GPU RTX2060. And all networks

are built by the Tensroflow. For unity, 300,000 training steps

are provided for each tested algorithm. Then, the computing

resources consumed by three tested algorithms are shown in

Table 5. As can be seen, the immediate-return RL algorithm

reduces the CPU utilization by 18.8%, the memory utilization

by 26.3%, computing time by 29.4%, and size of the networks

by 25.0% than the DDPG. Compared to PPO, the immediate-

return RL algorithm also reduces the CPU utilization by 13.3%,

the memory utilization by 12.5%, computing time by 2.0%,

and size of the networks by 14.2%. It should be noticed that

the number of training steps is limited to 300,000 in all tests.

However, the computing resource usage of the algorithms also

depends on the number of training steps required. Since the

convergence speed of both DDPG and PPO is slower than the

proposed algorithm, they require much more training steps

than the proposed algorithm in actuality (see Figure 8). As

analyzed in Section Training process, the number of training

steps used by the proposed algorithm is 66.7% of the DDPG and

20% of the PPO. That is, the advantage of proposed algorithm

in computing time is greater than that shown in the Table 5.

Thus, the test data demonstrates that, when dealing with the

same problem in the atypical MDPs, the immediate-return

RL algorithm trains faster, occupies less CPU and Memory,

and generates fewer networks than existing RL algorithms.

Furthermore, it should be noted that the transfer processes

of data between CPU and GPU also consumes computing

resources. The simulations of the football flight also affect the

usage of computing resources. Thus, the differences between

the comparison results and the theoretical analysis in Section

Complexity analysis are acceptable.

Conclusion

The atypical MDPs exist widely in the engineering field,

which involves one state transitionwith continuous action space.

The control goal of the atypical MDPs is to maximize the

immediate returns. However, the existing RL algorithms are

designed for standard MDPs to maximize long-term returns.

Thus, they can cause significant estimation errors for the value

function and a waste of computing resources when dealing

with the atypical MDPs. To solve such problems, this paper

analyzes the characteristics of the atypical MDPs systematically

and explains the differences between estimating the state-

value function and estimating the action-value function. On

this basis, the immediate-return RL algorithm was proposed

to deal with the atypical MDPs. In the proposed algorithm,

the method of average reward is developed to provide the

unbiased and low variance target Q-value. Thus, the problems

of large estimation errors can be overcome. And a newly

designed network framework is designed for the proposed

algorithm, which can significantly reduce computing resource

usage. Then, two scenarios of the football trajectory control,
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i.e., passing the football to a moving player, and chipping the

football over the human wall, are designed as the benchmark

to test the algorithms designed for the atypical MDPs.

Numerical results demonstrate that the learning efficiency of

the proposed algorithm is 1.5 times that of the DDPG and

5 times that of the PPO. For the controllers based on the

proposed algorithm, their effective rates of control are more

than 97.7%, and their reliabilities are approaching 100%. Such

performance is far superior to DDPG and PPO. As the proposed

controller increases the shot’s accuracy significantly, it can

promote the development of high-level football robots in the

Robot world cup. Furthermore, the proposed algorithm can

also consume fewer computing resources than existing RL

algorithms. Thus, the immediate-return RL algorithm has higher

learning efficiency, higher performance, and lower computing

resource usage than the existing RL algorithms, such as PPO

and DDPG.

It should be pointed out that the immediate-return RL

algorithm can output only one determined action. This

determined value can be seen as the best solution according

to the specified rewards function. However, a single best

solution based on the specified rewards function is impractical

for many complex engineering problems (e.g., strongly non-

linear dynamic system with parameter uncertainties). As one

focus of the future work, efforts will be made to improve

the algorithm to find a proper basin which corresponds to

the specified scenario. After that, the action output shall be

more practical. In the future, we will devote ourselves to

expand the use of the proposed immediate-return RL algorithm

and achieve more engineering applications, such as stamping

process, directional blasting, approximations of the compound

Poincaré maps, etc.
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