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Objective: In this study, we  aimed to characterize the plasma metabolic 

profiles of brain atrophy and alcohol dependence (s) and to identify the 

underlying pathogenesis of brain atrophy related to alcohol dependence.

Methods: We acquired the plasma samples of alcohol-dependent patients and 

performed non-targeted metabolomic profiling analysis to identify alterations 

of key metabolites in the plasma of BA-ADPs. Machine learning algorithms and 

bioinformatic analysis were also used to identify predictive biomarkers and 

investigate their possible roles in brain atrophy related to alcohol dependence.

Results: A total of 26 plasma metabolites were significantly altered in the 

BA-ADPs group when compared with a group featuring alcohol-dependent 

patients without brain atrophy (NBA-ADPs). Nine of these differential 

metabolites were further identified as potential biomarkers for BA-ADPs. 

Receiver operating characteristic curves demonstrated that these potential 

biomarkers exhibited good sensitivity and specificity for distinguishing BA-

ADPs from NBA-ADPs. Moreover, metabolic pathway analysis suggested that 

glycerophospholipid metabolism may be highly involved in the pathogenesis 

of alcohol-induced brain atrophy.

Conclusion: This plasma metabolomic study provides a valuable resource for 

enhancing our understanding of alcohol-induced brain atrophy and offers 

potential targets for therapeutic intervention.

KEYWORDS

alcohol, brain atrophy, cognitive dysfunction, glycerophospholipid metabolism, 
metabolomic

TYPE Original Research
PUBLISHED 13 December 2022
DOI 10.3389/fnmol.2022.999938

OPEN ACCESS

EDITED BY

Giulia Abate,  
University of Brescia,  
Italy

REVIEWED BY

Vidhya Kumaresan,  
Boston University,  
United States
Hui Li,  
Beijing Center for Disease Prevention and 
Control (Beijing CDC), China

*CORRESPONDENCE

Xuhui Zhou  
330115@hnucm.edu.cn

†These authors have contributed equally to 
this work

SPECIALTY SECTION

This article was submitted to  
Brain Disease Mechanisms,  
a section of the journal  
Frontiers in Molecular Neuroscience

RECEIVED 21 July 2022
ACCEPTED 16 November 2022
PUBLISHED 13 December 2022

CITATION

Zhang Z, Zhang S, Huang J, Cao X, Hou C, 
Luo Z, Wang X, Liu X, Li Q, Zhang X, Guo Y, 
Xiao H, Xie T and Zhou X (2022) Association 
between abnormal plasma metabolism and 
brain atrophy in alcohol-dependent 
patients.
Front. Mol. Neurosci. 15:999938.
doi: 10.3389/fnmol.2022.999938

COPYRIGHT

© 2022 Zhang, Zhang, Huang, Cao, Hou, 
Luo, Wang, Liu, Li, Zhang, Guo, Xiao, Xie 
and Zhou. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnmol.2022.999938%EF%BB%BF&domain=pdf&date_stamp=2022-12-13
https://www.frontiersin.org/articles/10.3389/fnmol.2022.999938/full
https://www.frontiersin.org/articles/10.3389/fnmol.2022.999938/full
https://www.frontiersin.org/articles/10.3389/fnmol.2022.999938/full
https://www.frontiersin.org/articles/10.3389/fnmol.2022.999938/full
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://doi.org/10.3389/fnmol.2022.999938
mailto:330115@hnucm.edu.cn
https://doi.org/10.3389/fnmol.2022.999938
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Zhang et al. 10.3389/fnmol.2022.999938

Frontiers in Molecular Neuroscience 02 frontiersin.org

Introduction

Excessive and chronic alcohol consumption, caused by 
addictive behaviors in alcoholic patients, is closely related to the 
reduced viability of neuronal cells (neurons and glial cells) and 
axonal degradation, thus resulting in brain atrophy (Sutherland 
et al., 2014; Angebrandt et al., 2022). It has been reported that the 
degree of brain atrophy correlates with the rate and amount of 
alcohol consumed over a lifetime (de la Monte and Kril, 2014). 
Moreover, the latest research has detected negative relationships 
between alcohol consumption and gray and white matter volumes 
across the brain (Daviet et  al., 2022). Abnormal patterns of 
macroscopic and microstructural changes in the brain, especially 
brain atrophy, are closely related to the cognitive dysfunction of 
alcoholics in the clinical setting (Zahr et  al., 2011). Cognitive 
impairment, including deficits in memory, executive abilities, 
visuospatial processing, speed of processing and, to a lesser extent, 
attention and general intelligence, may dramatically influence a 
patient’s social function and quality-of-life (Godin et al., 2019). In 
view of the high prevalence of alcohol-related brain atrophy 
(ARBA) and its associated cognitive dysfunction, a comprehensive 
analysis of the mechanisms underlying ARBA and the 
identification of potential biomarkers for this disease are 
urgently needed.

Metabolomics, a systematic method for the qualitative and 
quantitative analysis of all low-molecular-weight metabolites, is 
suitable for identifying metabolic indicators and can provide a 
basis for individualized diagnosis and treatment (Ribbenstedt 
et al., 2018). Moreover, the discovery of new markers can provide 
new ideas for the diagnosis and treatment of difficult diseases and 
can provide a useful guide for clinical diagnosis and treatment 
(Vuckovic, 2018). Metabolomic research based on untargeted/
targeted mass spectrometry (MS) and proton nuclear magnetic 
resonance (1H-NMR) spectroscopy approaches may represent a 
valuable research tool to identify the underlying pathogenesis of 
alcohol-related disorders. Mittal and Dabur previously studied the 
influence of an aqueous extract of Tinospora cordifolia on the 
urinary metabolic signature of chronic alcohol using liquid 
chromatography–tandem mass spectrometry (LC–MS/MS; Mittal 
and Dabur, 2015). In another study, Zhu et  al. identified 
discriminatory metabolic profiles between healthy and alcohol 
dependent individuals by using metabolomics technology (Zhu 
et al., 2021). To our knowledge, no previous study has identified 
alterations in the metabolic and protein profiles of plasma samples 
taken from alcohol-dependent patients with brain atrophy.

Machine learning, as a field of artificial intelligence (AI), 
provides intelligent data processing while facilitating reasoning 
and the initial settings to determine functional relationships (Deo, 
2015). Due to the diversification of algorithms, machine learning 
is gradually emerging in the field of multi-omics, including 
artificial neural networks (ANNs), and random forest (RF) 
algorithms (Liebal et al., 2020). The main applications of machine 
learning in disease-related multi-omics data analysis include (1) 
the stratification of patients to discover various subtypes of human 

diseases and to discover different treatment/prognostic outcomes, 
and (2) the investigation of various diseases by identifying 
biomarkers of omics features under various state (Nicora et al., 
2020). Traditional methods for processing metabolomics data 
tend to only focus on bridging sample differences within groups. 
However, in applied pharmaceutical research (such as candidate 
target discovery and drug sensitivity), we also need to consider 
data perturbation and sensitivity to sample size (Schrimpe-
Rutledge et al., 2016). Based on their specific characteristics, a 
combination of traditional single evaluation and machine learning 
algorithms could provide an efficient means of evaluating the 
performance of metabolomics data processing from multiple 
perspectives (Mirza et al., 2019; Picard et al., 2021). Specifically, 
this strategy can achieve effective data processing from five 
relatively independent directions: reducing within-group sample 
differences, differential metabolic analysis, the stability of marker 
identification, classification accuracy, and the consistency of 
biological gold standards.

In this study, we used a LC–MS/MS-based metabonomics 
approach to provide a robust technical platform to investigate the 
profiles of plasma metabolites in ARBA patients and identify 
characteristic metabolites that can be used to discriminate ARBA 
from non-ARBA. MetaboAnalyst version 5.0 was then used to 
identify metabolites and metabolic pathways showing significant 
enrichment in ARBA. Then, machine learning algorithms were 
used to identify the most important distinctive metabolites that 
might be associated with patients with ARBA. The findings of the 
present study may help to identify the molecular mechanisms that 
underlie ARBA.

Materials and methods

Study design and participants

This study was approved by the Ethics Committee of the 
Hunan Brain Hospital (Reference: 2016121). Signed and informed 
consent was obtained from each patient.

A total of 126 patients with alcohol addiction were enrolled 
from Hunan Brain Hospital between March 2019 and January 
2020. Brain MRI were performed in all patients to evaluate the 
extent of brain atrophy.

The inclusion and exclusion criteria were described in our 
previous publication (Liu et  al., 2020). Briefly, the inclusion 
criteria were as follows: (1) age 18–60 years, Han Chinese; (2) no 
contraindications for MRI. The exclusion criteria were as follows: 
(1) patients had any general medical conditions or neurological 
disorders, including infectious, hepatic, or endocrine disease; (2) 
patients with a history of severe head injury with skull fracture or 
loss of consciousness of more than 10 min; (3) patients had any 
current or previous psychiatric disorder; (4) patients had a family 
history of psychiatric disorder. The diagnosis of alcohol 
dependence was made according to the Structured Clinical 
Interview (SCID) based on the Diagnostic and Statistical Manual 
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of Mental Disorders DSM-IV criteria (Battle, 2013). Alcohol-
dependent patients were divided into two subgroups based on 
whether they have brain atrophy (the experimental group) or not 
(the control group).

Evaluation of brain atrophy

Brain MRI were performed in all patients after blood samples 
collection. The extent of brain atrophy was evaluated by at least two 
independent neuroradiologists using the global cortical atrophy 
scale (Pasquier et  al., 1996). Both cortical regions (frontal, 
temporal, parietal and occipital) and subcortical regions (peri-
insular, basal, and vault) were assessed. The severity of atrophy 
(low, moderate, or severe) was detected by the widening of sulci 
and narrow of gyri, as well as the reduction in amplitude of the 
respective regions. Figure 1 shows examples of different severity of 
brain atrophy.

Sample collection and preparation

Blood samples were taken from all inpatients after hospital 
admission but prior to starting treatment. Blood samples were 
taken from the experimental and control patients between 6:00 
and 6:30 am and placed into plasma collecting tubes. Samples were 

then centrifuged at 3,000 rpm for 10 min at 4°C and the plasma 
was aliquoted into 1.5 ml microcentrifuge tubes and immediately 
stored at −80°C.

For LC–MS, we removed 100 μl of each plasma sample and 
added 0.4 ml of pre-cooled 0.2% methanol-acetonitrile mixture 
(1:1, v/v); this was followed by vortex-mixing and ultrasonic 
extraction on iced water. Next, the solution was centrifuged at 
13,000 × g for 15 min at 4°C; 400 μl of the supernatant was taken 
and dried with nitrogen. Finally, 100 μl of acetonitrile water (1:1, 
v/v) was added and the re-dissolved solution was injected into a 
sample bottle for detection. Quality control samples (a mixture of 
equal quantities of all sample extractions) were injected after every 
10 analytical samples to monitor the stability of the LC–MS system.

LC–MS data acquisition and processing

Data acquisition was performed by UPLC-Q-TOF-MS/MS 
with the following parameter settings: an ethylene bridged hybrid 
C18 column (2.1 mm × 100 mm id, 1.7 μm; Waters), mobile phase A 
(water with 0.1% formic acid), and mobile phase B (acetonitrile with 
0.1% formic acid). The gradient of the mobile phase was consistent 
with our previous metabolomic studies (Zhang et al., 2020). The MS 
signal was acquired in positive-ion and negative-ion modes.

Raw files for the acquired LC–MS/MS data were imported 
into the metabolomics-processing software Progenesis QI 

FIGURE 1

Axial T1 weight (up) and T2 weight (down) magnetic resonance images showing different extent of brain atrophy in Alcohol-dependent patients. 
From left to right, columns represent absent, low, moderate and sever brain atrophy. In low brain atrophy, sulcal opening peripherally (yellow 
arrows) is observed. In moderate brain atrophy, widening along the length of the sulcus (green arrows) are observed. In severe brain atrophy, gyral 
thining (red arrows) is observed.
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(Waters) to obtain matched and aligned peak data. Subsequently, 
peak data containing retention time (RT), molecular formula, 
along with accurate relative molecular mass and peak area 
information, were imported into Microsoft Excel so that we could 
normalize the peak area for further analysis.

Analyses of metabolomics data and 
pathways

Following normalization of the peak area, data were subjected 
to principal component analysis (PCA), partial least squares 
discriminant analysis (PLS-DA), and orthogonal partial least 
squares discriminant analysis (OPLS-DA). The variables showing 
the most significant differences were identified by selecting those 
with a VIP > 1 from an S-plot and p < 0.05 from an independent 
samples t-test. Based on the Human Metabolome Database 
(HMDB) and secondary fragment ions, we  were then able to 
identify differential variables. Then, we  performed metabolic 
pathway analysis for differentially expressed metabolites with 
MetaboAnalyst version 5.0 to gain insight into the pathogenesis of 
ARBA, as described previously (Zhang et al., 2020).

Machine learning methods for biomarker 
screening

Three machine learning methods (Extreme Gradient Boosting 
(XGBoost), random forest (RF), and AdaBoost Classifier) were 
used to identify potential biomarkers from differential metabolites 
or proteins. The five most important metabolites were identified 
by XGBoost, RF and AdaBoost, and then combined for subsequent 
analysis. Machine learning was then performed using the Extreme 
Smart Analysis Platform.1

The sensitivity and specificity of the combined biomarkers 
were further analyzed using logistic regression analysis and 
receiver operating characteristic (ROC) curves. In ROC analysis, 
the area enclosed by the curve and the x-axis (x = 1 line) was 
defined as the area under the curve (AUC). Logistic regression 
analysis was performed using OmicStudio.2

Results

Baseline characteristics of the study 
population

A total of 226 participants were recruited for the present 
study: 62 were assigned to the NBA-ADP group, 64 were assigned 
to the BA-ADP group, and 100 were assigned to the Healthy 

1 https://www.xsmartanalysis.com/

2 https://www.omicstudio.cn/tool/58

Control (HC) group. Clinical and demographic characteristics 
were summarized in Table 1. The sex, age, and duration of alcohol 
dependence between NBA-ADP and BA-ADP group were 
equivalent. There was no statistical difference in Repeatable 
Battery for the Assessment of Neuropsychological Status (RBANS) 
scores between two groups. However, the RBANS scores 
(including attention, delay memory, immediate memory, 
language, visuospatial) in BA-ADP group were all slightly higher 
than these in NBA-ADP group.

Global metabolomic profiling

A total of 13,601 peaks were obtained, including 6,189 
positive-mode features and 8,432 negative-mode features. A total 
of 178 positive-mode and 253 negative-mode metabolites were 
annotated and mapped to public databases. Corresponding to the 
two modes, 52 and 84 metabolites were, respectively, annotated 
and mapped to the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database. These metabolites belonged to 15 different 
KEGG compound classifications. Figure  2A shows that these 
metabolites were mainly classified as phospholipids. According to 
the KEGG database, these metabolites belonged to 25 different 
KEGG pathways (Figure  2B). Of these, the lipid metabolism 
pathway was the pathway that contained the most metabolites.

According to the HMDB version 4.0 database, 431 selected 
metabolites belonged to 9 predominant super-classes (Figure 3A) 
and 21 subclasses (Figure 3B). The former included lipids and 
lipid-like molecules (63.03%), organic acids and derivatives 
(11.61%), organoheterocyclic compounds (7.21%), and organic 
oxygen compounds (6.98%). The latter includes 
glycerophosphocholines (10.00%), amino acids, peptides, and 
analo (9.07%), fatty acids and conjugat (8.14%), bile acids, alcohols 
and deves (6.98%), and glycerophosphoethanolamines (5%).

TABLE 1 Demographic and baseline patient characteristics.

Characteristics NBA-ADPs BA-ADPs

n = 62 n = 64

Gender

Male (n) 62 64

Female (n) 0 0

Age (years) 40.71 ± 9.01 38.63 ± 9.21

Duration of alcohol dependence (years) 11.94 ± 6.80 13.11 ± 8.63

Duration of alcohol dependence (g) * 147.02 ± 67.81 153.41 ± 71.06

RBANS total score 77.87 ± 12.33 77.58 ± 8.08

Attention 84.79 ± 13.99 83.48 ± 9.86

Delay memory 78.47 ± 19.52 77.04 ± 16.57

Immediate memory 73.19 ± 11.90 73.03 ± 15.30

Language 78.56 ± 11.83 76.90 ± 13.56

Visuospatial 76.14 ± 14.65 75.63 ± 13.47

Abbreviations: NBA-ADPs, Alcohol-dependent patients (ADP) without brain atrophy; 
BA-ADPs, Alcohol-dependent patients (ADP) with brain atrophy; HC, Heathy controls. 
RBANS, Repeatable Battery for the Assessment of Neuropsychological Status. Data are 
shown as mean ± SD. *p < 0.05.
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Identification of dysregulated 
metabolites

A total of 172 significant differential metabolites (FDR < 0.05) 
among the three groups were detected by analysis of variance 
(ANOVA). To further identify group differences in the metabolic 

profiles between groups, we performed OPLS-DA score plots; 
these identified notable separations between both the BA-ADP 
and HC group and between the NBA-ADP and HC group 
(Figure 4).

Differentially expressed metabolites were identified using 
multivariate and univariate statistical significance criteria (VIP > 1 

A B

FIGURE 2

The KEGG classification of metabolites identified in all plasma samples. The classification criteria were: (A) KEGG Compound Classification; 
(B) KEGG Pathway.

A B

FIGURE 3

The HMDB classification of metabolites identified in all plasma samples. Pie chart illustrating the abundance ratio of different classes of plasma 
metabolites detected with untargeted metabolic profiling. The classification level was: (A) Superclass; (B) Subclass.
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A

B

FIGURE 4

OPLS-DA score plots of alcohol-dependent patients (ADP) versus healthy controls. (A) OPLS-DA score plots of NBA-ADP vs. HC; (B) OPLS-DA 
score plots of BA-ADP vs. HC.

and FDR < 0.05). In total, 139 metabolites were identified to 
be significantly different between the NBA-ADP and HC group 
and 26 metabolites between the BA-ADP and NBA-ADP group 
(Figure 5; Table 2).

Functional analysis of differentially 
expressed plasma metabolites from 
alcohol-dependent patients

To gain a further understanding of the metabolic disturbances 
between the NBA-ADP and HC group and between the BA-ADP 
and NBA-ADP group, we performed KEGG pathway enrichment 
analysis; we also used MetaboAnalyst version 5.0 to perform a 
functional analysis of plasma metabolites.

As shown in Figure  6A, primary bile acid biosynthesis 
(map00120), taurine and hypotaurine metabolism (map00430) 
were the most important metabolic pathways that showed 
alterations in the alcohol-dependent patients (both the NBA-ADP 

group and the BA-ADP group) when compared with the HC 
group. In contrast, pentose and glucuronate interconversions 
(map00040) and glycerophospholipid metabolism (map00564) 
were detected in the BA-ADP group when compared with the 
NBA-ADP group (Figure 6B).

Screening of potential metabolic 
biomarkers for alcohol-dependent 
patients with brain atrophy

The five most important metabolites selected by AdBooST 
were Sulfolithocholylglycine PC (16:0/18:2(9Z,12Z)), 
Allolithocholic acid, MG(0:0/22:1(13Z)/0:0), and 
Cyclopassifloic acid E (Figure 7A). The five most important 
metabolites selected by Random forest were PC 
(16:0/18:2(9Z,12Z)), N-[(3a,5b,7a)-3-hydroxy-24-oxo-7-
(sulfooxy)cholan-24-yl]-Glycine, Cyclopassifloic acid E, 
2,4-Dihydroxyacetophenone 5-sulfate, and Allolithocholic 
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acid (Figure  7B). The five most important metabolites 
selected by Naive Bayes were Deoxycholic acid 3-glucuronide, 
Sulfolithocholylglycine, Cholic Acid, N-[(3a,5b,7a)-3-
hydroxy-24-oxo-7-(sulfooxy)cholan-24-yl]-Glycine, and 
2,4-Dihydroxyacetophenone 5-sulfate (Figure  7C). Nine 
metabolites (Cholic Acid, PC (16:0/18:2(9Z,12Z)), 
allolithocholic acid, sulfolithocholylglycine, N-[(3a,5b,7a)-3-
hydroxy-24-oxo-7-(sulfooxy)cholan-24-yl]-Glycine, 
cyclopassifloic acid E, MG(0:0/22:1(13Z)/0:0), deoxycholic 
acid 3-glucuronide, 2,4-Dihydroxyacetophenone 5-sulfate) 
were identified as potential metabolic biomarkers for alcohol-
dependent patients with brain atrophy. As shown in 

Figure 7D, the AUC of the ROC curve reached was 0.7719 for 
distinguishing between BA-ADP and NBA-ADP patients.

Discussion

It is well-known that alcohol can causes serious health 
problems, long-term abuse, and irreversible alterations in the 
structure and function of the brain (Rehm et  al., 2017; 
Kranzler and Soyka, 2018). However, to the best of our 
knowledge, this is the first study that sought to identify 
potential plasma biomarkers of alcohol-dependent patients 

A

B

FIGURE 5

Differential plasma metabolic profiles of alcohol-dependent patients vs. healthy controls. The hierarchical clustering and heat map in the left panel 
shows the top 30 metabolites that were significantly differentially abundant between NBA-ADP and HC (A), and 26 metabolites that were 
significantly differentially abundant between BA-ADP and NBA-ADP (B). The histogram in the right panel represents variable importance in 
projection (VIP) scores derived from the OPLS-DA model for each metabolite. ∗∗∗ indicates P < 0.001.
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TABLE 2 Differentially expressed endogenous metabolites detected by UHPLC-QTOF/MS.

Metabolite Library ID M/Z Formula RT log2FC -log10(p_value)

Positive-ion mode

Taurodeoxycholic Acid HMDB0000896 464.282 C26H45NO6S 5.113 0.074 1.394

LysoPC(P-18:0) HMDB0013122 508.375 C26H54NO6P 8.648 0.017 2.404

Cholic Acid HMDB0000619 373.273 C24H40O5 5.377 0.06 1.555

Hebevinoside IV HMDB0036060 587.427 C36H60O7 9.547 −0.016 1.329

PC(16:0/18:2(9Z,12Z)) HMDB0007973 758.568 C42H80NO8P 10.753 0.007 2.103

Allolithocholic acid HMDB0000381 394.33 C24H40O3 9.127 0.035 1.599

Muricatacin HMDB0038685 591.459 C17H32O3 9.57 −0.016 1.626

LysoPC(20:0/0:0) HMDB0010390 574.383 C28H58NO7P 9.48 −0.021 1.432

Erythrodiol 3-decanoate HMDB0034510 635.482 C40H68O3 9.326 −0.03 1.672

Negative-ion mode

Sulfolithocholylglycine HMDB0002639 512.269 C26H43NO7S 6.36 0.072 1.821

N-[(3a,5b,7a)-3-hydroxy-24-oxo-7-

(sulfooxy)cholan-24-yl]-Glycine

HMDB0002496 528.264 C26H43NO8S 4.687 0.066 2.229

N-[(3a,5b,7b)-7-hydroxy-24-oxo-3-

(sulfooxy)cholan-24-yl]-Glycine

HMDB0002409 528.264 C26H43NO8S 5.624 0.044 1.456

Taurochenodeoxycholate-7-sulfate HMDB0002498 288.62 C26H45NO9S2 4.118 0.078 1.636

Chenodeoxycholic acid sulfate HMDB0002522 471.242 C24H40O7S 6.13 0.104 2.529

Hexadecanedioic acid HMDB0000672 285.207 C16H30O4 7.344 0.041 1.884

Riesling acetal HMDB0037562 271.155 C13H22O3 4.938 0.098 2.829

Suberic acid HMDB0000893 173.081 C8H14O4 2.983 0.029 1.426

D-Glucuronic acid HMDB0000127 193.035 C6H10O7 0.614 0.034 2.152

Cyclopassifloic acid E HMDB0036298 597.365 C31H52O8 6.291 0.124 1.981

10Z-Nonadecenoic acid HMDB0013622 341.27 C19H36O2 7.023 −0.123 1.312

MG(0:0/22:1(13Z)/0:0) HMDB0011552 457.353 C25H48O4 9.031 −0.041 1.669

LysoPE(0:0/20:2(11Z,14Z)) HMDB0011483 550.314 C25H48NO7P 7.504 −0.054 1.487

Deoxycholic acid 3-glucuronide HMDB0002596 567.318 C30H48O10 5.601 0.057 1.904

Vanillin HMDB0012308 151.039 C8H8O3 2.576 0.064 1.811

2,4-Dihydroxyacetophenone 5-sulfate HMDB0041646 230.996 C8H8O6S 2.576 0.157 2.999

(Z)-6-Tetradecene-1,3-diyne-5,8-diol HMDB0038996 255.114 C14H20O2 1.707 0.052 1.586

Abbreviations: FC: fold change, as determined by average relative quantitation obtained from group BA-ADPs/NBA-ADPs; RT (min): retention time.

who have brain atrophy by applying non-targeted 
metabolomics and machine learning.

In this study, a total of 26 metabolites were found to show 
significant changes between the BA-ADP and NBA-ADP group. 
Each of the identified metabolites were searched against synonyms 
in HMDB. These metabolites covered a range of chemical classes; 
lipids and lipid-like molecules were ranked highest and featured 
22 of the metabolites. The obtained metabolites were classified 
based on the KEGG compound annotation database.3 
Phospholipids and phospholipid metabolism were ranked first in 
the secondary classification category of KEGG compounds. As the 
main substance of the brain, lipids not only act as the building 
blocks of all membrane structures but also act as the repository for 
chemical energy and play a significant role in cellular signaling 
pathways (Holthuis and Menon, 2014; Van Deijk et al., 2017). 
Characteristic alterations in lipid—including structure, 

3 https://www.kegg.jp/kegg/compound/

composition, or distribution—are thought account for alterations 
in neuronal function, synaptic signaling, and neurotransmitter 
transmission. A previous lipidomics study investigating the links 
between chronic alcohol infusion and whole brain lipid profile, 
demonstrated that specific lipid categories, mainly PS, PC and PE, 
appeared to be related to neuro-pathology (Wang et al., 2019). To 
further identify the potential metabolic biomarkers of BA-ADP, 
machine learning was used and nine metabolites ((Cholic Acid, 
PC (16:0/18:2(9Z,12Z)), Allolithocholic acid, 
Sulfolithocholylglycine, N-[(3a,5b,7a)-3-hydroxy-24-oxo-7-
(sulfooxy) cholan-24-yl]-Glycine, Cyclopassifloic acid E, 
MG(0:0/22:1(13Z)/0:0), Deoxycholic acid 3-glucuronide, 
2,4-Dihydroxyacetophenone 5-sulfate) were identified. The AUC 
of these metabolite biomarkers was 0.7719, thus indicating an 
acceptable correlation using metabolite biomarkers and an 
outstanding correlation using protein biomarkers.

Of the nine differential metabolites identified in this study, 
there were several different species of bile acids, including cholic 
acid, allolithocholic acid, and deoxycholic acid 3-glucuronide. Bile 
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acids readily cross the blood–brain barrier and their receptors are 
expressed in central tissues, suggesting that they may have 
important functional roles (Romanazzi et al., 2021). The bile acid 

signaling pathway plays an extremely important role in diseases 
and is a target for drug intervention. Drugs related to bile acids 
include chenodeoxycholic acid and its derivatives, ursodeoxycholic 

A B

FIGURE 6

Metabolite pathway changes identified using MetaboAnalyst 5.0. Pathway analysis of the differential plasma metabolites between NBA-ADP vs. HC 
(A), and BA-ADP vs. NBA-ADP (B). The y axis shows the p-values and the x axis, representing pathway impact values; node color is based on its 
p-value and node size reflects the pathway impact values.

A B

C D

FIGURE 7

Screening of potential plasma metabolite biomarkers of alcohol-dependent patients with brain atrophy. The nine most important metabolites 
selected by Naive Bayes (A), AdaBoost (B), and Random Forest (C). The AUC value of the ROC curve of potential plasma metabolite biomarkers for 
distinguishing BA-ADP patients from NBA-ADP (D).
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acid and its derivatives, bile acid sequestrants (such as 
cholestyramine), and apical sodium-dependent bile acid 
transporter (ASBT) inhibitors. In the nervous system, ASBT-
mediated bile acid reabsorption significantly increases the level of 
bile acid in the serum and brain tissue, reduces the acidity of the 
intestinal cavity, increases the pH of the intestine, and promotes 
the conversion of intestinal ammonium into ammonia, thus 
resulting in abnormally increased levels of neurotoxic ammonia 
and cytotoxic bile acid in the blood and brain. Previous studies 
have confirmed that changes in bile acid occur in patients who 
progress from cognitive impairment to Alzheimer’s disease, and 
the relationship between this change and cognitive decline is well 
documented. In addition, our study identified two metabolites 
related to bile acids. The expression of these two-acyl glycine and 
bile acid-glycine conjugates varied significantly between the 
BA-ADP and NBA-ADP group. Therefore, we assumed that bile 
acids may strongly associated with alcohol-related brain atrophy. 
And additional targeted absolute quantitative analyze of the bile 
acid spectrum in future studies may be helpful.

Interestingly, another class of potential metabolic biomarkers 
here we identified are lipid metabolites. It is widely documented 
that the homeostasis of lipid metabolism plays a significant role 
in the central nervous system. Many lipidomic-based studies 
have reported the relationship between the dysregulation of 
specific lipids and pathological conditions, including diabetes, 
Alzheimer’s disease, hypertension, and cancer. It has been 
reported that long-term alcohol exposure significantly modifies 
the serum lipid profile, especially the metabolic pathways 
involving glycerophospholipid, sphingolipid and glycerolipids. 
Alcohol exposure can dramatically influence the lipidome of 
both the prefrontal cortex and striatum, thus leading to alcohol-
related neurotoxicity and neuroplasticity. In the present study, 
by applying metabolomics analysis, we  found that some 
glycerophospholipid (GP) metabolites, such as PC(P-
16:0/18:2(9Z,12Z)), were significantly altered in alcohol-
dependent patients with brain atrophy. GPs are the main 
components of the membrane structure. Different cell types, 
organelles, and inner/outer membranes in mammalian 
mitochondria, are known to have distinct glycerophospholipid 
compositions; these differences relate to the specific biological 
functions of these structures (Klaming et  al., 2019). As GPs 
provide neural membranes with stability, fluidity and 
permeability, they are necessary for the normal biological 
function of integral membrane proteins, receptors, and 
ion-channels. Our present results suggest that chronic alcohol 
exposure may lead to brain atrophy and affect brain functionality 
by altering the composition of GPs. Alterations of the GP 
composition in neural membranes could therefore be related to 
neurological disorders. In addition, we  found that some 
glycerolipids, such as MG(0:0/22:1(13Z)/0:0), were significantly 
altered in alcohol-dependent patients with brain atrophy. 
Further research now needs to investigate the key metabolic 
enzymes that mediate alcohol-induced dysfunction of lipidome 
profiling in the brain.

Based on the identified metabolites, we further identified two 
significantly altered metabolic pathways (primary bile acid 
biosynthesis, and taurine and hypotaurine metabolism) that were 
most closely related to alcohol dependence irrespective of whether 
brain atrophy was involved or not. As endogenous signaling 
molecules, bile acids are synthesized in the liver and secreted into 
the gastrointestinal tract for postprandial nutrient absorption and 
to control the overgrowth of microbial growth. In addition, gut 
microbes metabolize bile acids and in doing so, determine the 
composition of the circulating bile acids, thus regulating host 
metabolism (Chiang and Ferrell, 2019). Patients with acute 
alcohol intake exhibit increased serum levels of bile acids and 
cholestatic liver injury; alcohol intake also increases bile acid pool 
size and reduces bile acid flow and fecal excretion (Donepudi 
et al., 2018). Wang et al. found that the abundance of firmicutes 
and clostridium was notably increased in alcohol-addicted mice, 
and the levels of secondary bile acids produced by firmicutes had 
increased (Wang et  al., 2018). In conclusion, compared with 
healthy individuals, there are certain changes in the expression 
levels of bile acid metabolites (including tauroursodeoxycholic 
acid, cholic acid and allocholic acid) in alcohol-addicted patients. 
The analysis showed that regulation of bile acid biosynthesis is 
likely to contribute to the occurrence and development of alcohol-
related diseases.

As for taurine and hypotaurine metabolism, taurine has already 
been shown to protect mice with alcoholic liver injury by reducing 
hepatic oxidative stress and interrupting the alcohol-induced renal 
inflammatory cycle (Tang et al., 2019). It is well known that taurine 
can also prevent and repair liver damage and balance liver lipid 
metabolism indicators in a mouse model of alcoholic liver disease. 
The mechanism involved in this protection may be related to the 
regulation of related enzymes and transcriptional regulators involved 
in lipid metabolism (Latchoumycandane et al., 2014). In another 
study, Xia et al. suggested that the metabolic pathways of ascorbic 
acid, taurine, and hypotaurine, may play an active role in the 
protection against Antrodin A secreted by Antrodia camphorata and 
thus protect against alcoholic liver injury (Yi et al., 2021). Our present 
study also found that the BA-ADP group showed an elevation in 
taurine, compared with the NBA-ADP group. Thus, those imply that 
the metabolic pathways of taurine and hypotaurine may be  also 
associated with alcohol-related brain atrophy.

To further identify the potential pathways that may 
be  associated with alcohol-related brain atrophy, the KEGG 
pathway analysis using difference metabolites between BA-ADP 
and NBA-ADP was performed. We found that glycerophospholipid 
metabolism, along with pentose and glucuronate interconversions, 
were significantly associated with alcohol-related brain atrophy. 
This finding is in line with previous studies that demonstrated the 
impact of glycerophospholipid metabolism on neurodegenerative 
changes (Frisardi et al., 2011). Previous studies have shown that 
the degradation products of glycerophospholipids have 
pro-inflammatory effects and that their production is often 
accompanied by the activation of astrocytes and microglia and the 
release of inflammatory cytokines; these changes lead to oxidative 

https://doi.org/10.3389/fnmol.2022.999938
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org


Zhang et al. 10.3389/fnmol.2022.999938

Frontiers in Molecular Neuroscience 11 frontiersin.org

stress and neuroinflammation (Bonelli et al., 2020). Changes in 
glycerophospholipid metabolism have also been shown to lead to 
changes in cell membrane permeability and ion homeostasis, thus 
leading to oxidative stress and neurodegenerative changes (Fuller 
and Futerman, 2018). Increased small vascular disease load was 
linked to changes in glycerophospholipid metabolism, as seen by 
increased white matter hyperintensity volume, decreased mean 
diffusivity normalized peak height, increased brain atrophy, and 
decreased cognition (Harshfield et al., 2022). Previous report has 
found that pentose and glucuronate interconversions is associated 
with the cognitive impairment in Alzheimer disease (He et al., 
2020). In the present study, we  report, for the first time, that 
pentose and glucuronate interconversions are also associated with 
alcohol-related brain atrophy. However, the precise role of these 
two regulatory metabolic pathways in the pathophysiological 
mechanism of alcohol dependence-related brain atrophy requires 
further investigation.

Limitations

This study has several limitations that need to be considered. 
First, the metabolomic analysis performed in the present study 
did not provide absolute quantification. If this model is to 
be applied clinically, more rigorous quantification and extensive 
validation of metabolites would be  needed. Targeted 
metabolomics could be used to validate these specific plasma 
metabolomic biomarkers. Second, the sample size of this study 
was rather small, particularly in proteomic analysis; thus, 
additional patients are required for future analysis. Third, only 
XGBoost, RF, and AdaBoost Classifier were used to screen for 
potential biomarkers. Other machine learning methods, such as 
Support Vector Machine and Boruta could be used in future 
analyses. Fourth, due to the complex genetic and 
microenvironmental backgrounds of our patients, other 
biofluids, such as urine, serum, and cerebrospinal fluid, could 
also be used to identify additional novel biomarkers. This will 
provide a more to comprehensive understanding of the 
pathogenesis of brain atrophy in alcohol-dependent patients. 
Last, we failed to reveal any differences in cognitive tests between 
control patients and those identified as having brain atrophy in 
this study, more detailed cognitive tests may be  help in 
future research.

Conclusion

This was the first attempt to conduct a metabolomic analysis 
of plasma samples from healthy control groups and alcohol-
dependent patients. Our data showed that patients with alcohol-
dependent brain atrophy had distinct metabolic profiles compared 
with healthy controls and alcohol-dependent patients who do not 
have brain atrophy. Furthermore, bioinformatic analysis suggested 

that alterations in the metabolome may be involved in disease 
pathogenesis. Although further research is needed, our results 
offer useful diagnostic and therapeutic clues for the management 
of alcohol-dependent patients with brain atrophy.
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