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Alzheimer′s disease (AD) is an irreversible progressive neurodegenerative 

disease affecting approximately 50 million people worldwide. It is estimated 

to reach 152 million by the year 2050. AD is the fifth leading cause of death 

among Americans age 65 and older. In spite of the significant burden the 

disease imposes upon patients, their families, our society, and our healthcare 

system, there is currently no cure for AD. The existing approved therapies 

only temporarily alleviate some of the disease’s symptoms, but are unable to 

modulate the onset and/or progression of the disease. Our failure in developing 

a cure for AD is attributable, in part, to the multifactorial complexity underlying 

AD pathophysiology. Nonetheless, the lack of successful pharmacological 

approaches has led to the consideration of alternative strategies that may help 

delay the onset and progression of AD. There is increasing recognition that 

certain dietary and nutrition factors may play important roles in protecting 

against select key AD pathologies. Consistent with this, select nutraceuticals 

and phytochemical compounds have demonstrated anti-amyloidogenic, 

antioxidative, anti-inflammatory, and neurotrophic properties and as such, 

could serve as lead candidates for further novel AD therapeutic developments. 

Here we  summarize some of the more promising dietary phytochemicals, 

particularly polyphenols that have been shown to positively modulate some 

of the important AD pathogenesis aspects, such as reducing β-amyloid 

plaques and neurofibrillary tangles formation, AD-induced oxidative stress, 

neuroinflammation, and synapse loss. We also discuss the recent development 

of potential contribution of gut microbiome in dietary polyphenol function.
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Introduction

AD is a complex disease, which makes its pathophysiology difficult to decipher and 
consequently challenging to treat or cure. The classical pathologic hallmarks of AD include 
extracellular accumulation of β-amyloid (Aβ) and intracellular Tau protein aggregation 
which lead to, respectively, neuritic plaques and neurofibrillary tangles’ formation in the 
brain. The amyloid plaques and tau tangles aggregate trigger successive deleterious events 
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and other chronic aberrant central nervous system (CNS) features 
such as hyperactive inflammation, oxidative stress, and sub-optimal 
energy metabolism which eventually lead to synapse loss and 
neuronal death. These cellular damages manifest in patients as a 
progressive neurocognitive impairment accompanied by language 
alterations and a progressive deterioration of a person’s ability to 
perform everyday activities (Alzheimers Dement, 2020).

Aging is the greatest risk factor for AD. Many genetic risk 
factors have also been identified, with ApoE4 being the biggest 
known genetic risk factor. However, there are also lifestyle and 
environmental risk factors for AD, including lifestyle conditions 
associated with diabetes and cardiovascular diseases and 
environmental factors leading to traumatic brain injuries and 
depression (Armstrong, 2019). Aging and, to a large extent, 
genetic risk factors, are not amenable to modification (Riedel 
et al., 2016). In contrast, lifestyle and environmental risks are more 
readily modifiable. Moreover, there is increasing evidence 
implicating specific lifestyle factors (e.g., dietary factors such as 
specific phytochemicals) or environmental factors (e.g., exercise) 
may protect against AD mechanisms (Xu et al., 2015; Dominguez 
et al., 2021; Guasch-Ferré and Willett, 2021; Zhang et al., 2021). 
There is increasing interest in novel AD treatments targeting select 
relevant lifestyles or environmental factors. In this review, we will 
focus our discussion on a specific subclass of protective dietary 
phytochemicals, namely polyphenols, with promise for 
AD therapeutics.

Dietary components have a direct molecular impact on 
AD. Over the past decade, a widely distributed subclass of dietary 
components, polyphenols, have raised great interest in the scientific 
community for their potential role in protection against 
AD. Substantial number of clinical trials have been conducted to 
assess their clinical benefits against AD and associated cognitive 
impairments using diverse source of polyphenols: either in the form 
of whole fruit or fruit products such as blueberry, grape juice, 
pomegranate juice (Krikorian et al., 2010; Krikorian et al., 2012; 
Bookheimer et al., 2013; Krikorian et al., 2022), or in the form of 
extracts such as curcumin, grape seed polyphenol extract (GSPE), 
or pure synthetic material such as resveratrol (Baum et al., 2008; 
Kennedy et al., 2010; Patel et al., 2011; Mecocci and Polidori, 2012; 
Ringman et al., 2012; Turner et al., 2015; Moussa et al., 2017). The 
historical interest in dietary polyphenols is attributed to their high 
abundance in general food supplies and their antioxidant properties 
(Scalbert et al., 2005). However, current research of the benefits of 
dietary polyphenols is largely focused on their interaction and 
modulation of metabolic pathways regulating inflammation (Maleki 
et al., 2019; Ansari et al., 2020), endothelial function (Patel et al., 
2018; Li et al., 2019; Parsamanesh et al., 2021), fatty acids, amino 
acids and carbohydrates metabolism (Hanhineva et  al., 2010;  
Wang S et al., 2014; Naveed et al., 2018; Rothenberg et al., 2018; 
Różańska and Regulska-Ilow, 2018). Collectively, polyphenols’ 
ability to block free radicals’ activity, repair DNA damage, modulate 
the gene expression involved in metabolism, and act as signaling 
molecules to promote antioxidant defense support the development 
of dietary polyphenols in AD and other diseases (Azqueta and 

Collins, 2016; Hussain et al., 2016; Jiang, 2019; Maleki et al., 2019; 
Prasanth et al., 2019; Xing et al., 2019; Ohishi et al., 2021; Shen 
et al., 2022).

In this review, we  summarize the major molecular 
mechanisms that correlate the health benefits of dietary 
polyphenols in AD physiopathology, focusing on the potential 
effects of these polyphenols to protect against Tau- and 
Aβ-mediated pathogenesis, oxidative stress, inflammation, 
synapse loss and memory deterioration.

Polyphenols

Polyphenols are a class of organic compounds characterized 
by the presence of more than one phenol structural unit (several 
hydroxyl groups on aromatic rings). These phytochemicals have a 
protective role in plants involving in defense against ultraviolet 
radiation or pathogens invasion. They are mainly found in plant-
based food diet (Manach et al., 2004; Maraldi et al., 2014). The 
number of phenol rings in their molecular structure will define 
the chemical subclass they belong to. More than 8,000 naturally 
occurring polyphenols exist and can be grouped in 4 chemical 
subclasses: flavonoids, phenolic acids, stilbenes, and lignans 
(Manach et al., 2004; Maraldi et al., 2014).

Flavonoids

Flavonoids are the largest and most widespread groups of plant-
derived secondary metabolites, with a 15-carbon skeleton, that have 
been described to exert beneficial effects in the prevention of 
neurodegenerative diseases (Dai et al., 2006; Kuriyama et al., 2006). 
Their highly reactive hydroxyl group is largely responsible for their 
ability to scavenge free radicals and/or chelate metal ions (Kumar 
et al., 2013; Kumar and Pandey, 2013). Flavonoids can be subdivided 
into different subgroups: Flavonols, with quercetin and kaempferaol 
as the representative compounds, are found in all types of food, 
with higher quantity in onions, broccoli, kale, blueberries and red 
wine (Herrmann, 1976). In comparison, flavones (luteolin and 
apigenin) are much less present in fruits and vegetables. Isoflavones 
are phytoestrogens mainly found in legume such as soya (Coward 
et al., 1993; Reinli and Block, 1996). Catechin and epicatechin are 
the basic units of flavanols and they form various oligomers and 
polymers through C4-C8 or C4-C6 interflavan bonds. Flavanols are 
found in many types of fruit and in red wine, however green tea and 
chocolate are the richest sources (Lakenbrink et  al., 2000). 
Anthocyanins (cyanidin, malvidin, etc.) and chalocone (phloretin, 
arbutin, etc.) are mostly abundant in fruits and vegetables.

Phenolic acids

Phenolic acids are the most abundant group of bioactive 
compounds present in almost all plants (Rashmi and Negi, 2020). 
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Phenolic acids are hydroxyl derivatives of benzoic and cinnamic 
acid. Hydroxybenzoic acid is found in very low quantity in plants. 
Hydroxycinnamic acids mainly consist of coumaric, sinapic, 
caffeic and ferulic acids. The richest dietary source of 
hydroxycinnamic acids are cherries, apples, berries and kiwi 
(Fleuriet et  al., 1990). Caffeic acid is the most abundant 
hydroxycinnamic acid in many fruits and ferulic acid is mostly 
found in grains (Krzysztof et al., 1982; Rouau et al., 1997).

Lignans

Lignans are mostly found in plant seeds and are precursors to 
phytoestrogens. They are a class of secondary plant metabolites. 
There is a growing interest in lignans in recent years due to their 
strong bioactivities in antioxidation, anti-inflammation and 
neuroprotection (Saleem et al., 2005; Teponno et al., 2016). The 
richest dietary source of lignans are linseeds (Thompson 
et al., 1991).

Stilbenes

Stilbenes are poorly present in the human diet. The most 
known and studied is resveratrol, for which anticarcinogenic 
effects have been shown in medicinal plants screening. Resveratrol 
is found in wine at a very low quantity (Bertelli et al., 1998; Bhat 
and Pezzuto, 2002; Vitrac et al., 2005).

Polyphenols modulate Aβ 
production, oligomerization, and 
clearance

Senile plaques are mainly composed of β-Amyloid protein 
(Aβ; Masters et  al., 1985) that results from proteolysis of the 
amyloid precursor protein (APP) by the enzymes β-secretase 
(BACE) and γ-secretase through amyloidogenic pathway. The 
non-amyloidogenic process is initiated by α-secretase rather than 
BACE leading to the formation of soluble APPα and C-terminus 
fragments and preventing Aβ generation. Both enzymes compete 
in APP proteolysis and their activities strongly affect 
Aβ production.

Several studies have demonstrated that polyphenols can 
modulate Aβ production by either increasing α-secretase activity 
or inhibiting BACE. (−)-Epicatechin, epigallocatechin, 
epigallocatechin-3-gallate (EGCG) and curcumin are potent 
inhibitors of amyloidogenic processing (Wang X et al., 2014; Cox 
et al., 2015; Guo et al., 2017). In vitro experiments conducted in 
neuronal cell line expressing human APP showed that treatment 
with EGCG significantly decreased Aβ production (Rezai-Zadeh 
et al., 2005). These results have been reproduced in vivo, where 
intraperitoneal injection of epigallocatechin-3-gallate in Tg2576 
mouse model of AD decreased Aβ levels and favored the 

non-amyloidogenic α-secretase mediated pathway (Rezai-Zadeh 
et al., 2005). Another study demonstrated that curcumin treatment 
increases α-secretase activity (Narasingappa et  al., 2012). 
Curcuminoids and epigallocatechin-3-gallate treatment inhibit 
BACE activity in neuronal cells (Wang X et  al., 2014). While 
EGCG alone (Cheng et al., 2012) failed to abolish BACE activity 
in vivo, in combination with ferulic acid (FA), a BACE modulator 
(Mori et al., 2013), epigallocatechin-3-gallate could block BACE 
activity in APP/PS1 AD mice and reduced amyloidosis and 
improved cognitive function (Mori et  al., 2019). The flavones 
apigenin (Zhao et al., 2013) and nobiletin (Nakajima et al., 2015) 
were also shown to significantly reduce soluble and insoluble Aβ 
as well Aβ deposits in the brain in AD mice (Onozuka et al., 2008). 
Similarly, chronic administration of the flavone baicalein decreases 
Aβ production (Zhang et  al., 2013). Quercetin 
(3,5,7,3′,4′-pentahydroxyflavone) is a dietary flavonol widely 
distributed in plants, fruits and vegetables, and it is also effective 
at modulating contents of soluble and insoluble Aβ in the brain 
(Sabogal-Guaqueta et al., 2015; Moreno et al., 2017). Altogether, 
these results show that select polyphenols can modulate 
α-secretase or BACE activities and reduce Aβ production both in 
vitro and in vivo, however, there has been very few research on 
mechanisms of action and how select polyphenols promote 
non-amyloidogenic or inhibit amyloidogenic processing of APP.

Aβ monomers can assemble into soluble and insoluble Aβ 
oligomers. Insoluble forms of Aβ mostly deposit into extracellular 
plaques, while the soluble oligomers are now considered the most 
toxic species in driving Aβ-mediated synaptic toxicity and 
neuronal death (Kumar et  al., 2013). Polyphenols have been 
shown to prevent Aβ oligomerization or to remodel Aβ oligomers 
into nontoxic forms. Ehrnhoefer et al. showed that EGCG inhibits 
Aβ fibrillogenesis leading to unstructured Aβ oligomers. It 
promotes the assembly of newly formed oligomers into smaller 
and amorphous nontoxic protein aggregates (Ehrnhoefer et al., 
2008). Another group showed (−)-epigallocatechin-3-gallate 
could bind to preformed fibrils or large oligomers and remodel 
them into less toxic assemblies (Bieschke et al., 2010). Curcumin 
can substantially block Aβ oligomerization in a dose dependent 
manner (Yang et al., 2005; Reinke and Gestwicki, 2007) and it is 
able to inhibit fibril formation and destabilize preexisting fibrils 
(Doytchinova et  al., 2020). Resveratrol does not prevent Aβ 
oligomerization, however it can reduce Aβ cytotoxicity by 
remodeling the oligomers into nontoxic forms (Feng et al., 2009; 
Ladiwala et al., 2010; Fu et al., 2014). Wang et al., demonstrated 
that moderate red wine consumption could reduce Aβ aggregation, 
and improved cognitive function when administered to AD mice 
(Wang et  al., 2006). The same group investigated the specific 
compounds responsible for Aβ-lowering activity and 
demonstrated that dietary supplementation with grape seed 
polyphenolic extract (GSPE), largely composed of catechin and 
epicatechin monomer, oligomer and polymer, significantly 
attenuated the development of AD-type Aβ-related cognitive 
deterioration (Wang et al., 2008). Further investigation revealed 
that GSPE is a potent inhibitor for the oligomerization of Aβ 
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peptides. These observations demonstrate that by modulating or 
remodeling of Aβ oligomers, polyphenols can interfere with the 
formation of soluble toxic forms of Aβ that are responsible for 
AD-associated neuronal damages.

Polyphenols can also reduce Aβ pathology by enhancing Aβ 
clearance. For example, resveratrol was shown to facilitate Aβ 
clearance in vitro (Marambaud et al., 2005; Vingtdeux et al., 2010) 
but the mechanism remains poorly understood. Several hypothesis 
have been proposed, for example resveratrol may promote 
intracellular degradation of Aβ via mechanism that involves the 
autophage and lysosome (Marambaud et al., 2005). Resveratrol 
may also stimulate the brain insulin-degrading enzyme activity 
(Rege et  al., 2015) which in return will degrade Aβ thereby 
facilitating Aβ clearance.

Polyphenols modulate Tau 
phosphorylation

Aberrant aggregation of microtubule-associated protein Tau 
is another contributor to AD pathology. Tau phosphorylation 
regulates its ability to bind microtubules. Hyper phosphorylated 
Tau forms paired helical filaments (PHF) and neurofibrillary 
tangle (NTF) inclusions that not only alter the cytoskeletal and 
associated transport system, but also affect cellular signaling and 
mitochondrial function (Johnson et al., 2016; Bejanin et al., 2017; 
Kametani and Hasegawa, 2018).

Tau phosphorylation in neuronal cells is regulated by the 
balance of the dephosphorylation catalyzed mainly by phosphatase 
2A (PP2A; Gong et al., 1993) and phosphorylation catalyzed by 
cdk5, GSK-3β, PKA and other kinases (Medina et  al., 2011; 
Cavallini et  al., 2013). Select polyphenols can modulate Tau 
hyperphosphorylation and subsequent NFTs formation through 
inhibiting AD-tau kinases or promoting PP2A. Resveratrol has 
been shown to inhibit the hyperphosphorylation of Tau (He et al., 
2016); additionally, in the senescence accelerated mice P8 
(SAMP8), resveratrol inhibits Ser396 Tau phosphorylation by 
GSK-3β (Porquet et al., 2013). Resveratrol can also modulate Tau 
hyperphosphorylation by increasing PP2A activity, which leads to 
Tau dephosphorylation (Schweiger et al., 2017). Similarly, in an 
okaidic acid-injection model for AD, curcumin treatment 
inhibited Tau hyperphosphorylation through activation of 
GSK-3β pathway (Wang et al., 2019). Oral GSPE supplementation 
is also effective in significantly modulating Tau-mediated 
pathogenic phenotypes, including Tau hyperphosphorylation, 
misfolding into fibrillar polymers and subsequently aggregation 
into AD-type NFT in various tauopathy mouse models (Ho et al., 
2009; Wang et al., 2010; Ksiezak-Reding et al., 2012; Santa-Maria 
et  al., 2012). GSPE is largely composed of proanthocyanidin 
(PAC) catechin and epicatechin in monomeric, oligomeic and 
polymeric forms. Bioavailability studies conducted in rats by 
Ferruzzi et  al. (2009) demonstrated that methylated and 
glucuronidated catechin and epicatechin can be  found in the 
plasm following oral administration of GSPE. Moreover, they also 

reported that following single oral dosing, these polyphenol 
metabolites were not found in the brain, however, following 
repeated dosing, these metabolites could be detected in the brain 
(Ferruzzi et  al., 2009). Similar studies were conducted in AD 
mouse showing that catechin and epicatechin metabolites can only 
be found in the brain of the mouse fed with monomeric fraction 
of the GSPE, but not the polymeric fraction of the GSPE. Moreover, 
they reported that only the monomeric fraction were effective in 
reducing amyloid neuropathology and improving cognitive 
function in AD mice (Wang et al., 2012).

Biophysical studies demonstrated that polyphenols may 
structurally change Tau protein and prevent its self-association. 
For example, in the presence of arachidonic acid, Tau self-
assembles into β-sheet containing filaments, but in the presence 
of curcumin, arachidonic acid-mediated filament formation is 
abolished (Rane et  al., 2017). Similarly, epicatechin-3-gallate, 
myricetin(Taniguchi et al., 2005) and rosmarinic acid could also 
inhibit Tau β-sheet formation (Cornejo et al., 2017).

Polyphenols modulate 
AD-associated oxidative stress

The brains of AD patients show significant oxidative stress-
associated damage including protein oxidation, lipid peroxidation, 
DNA damage suggesting the imbalance of free radical generation 
and antioxidant activity in the brain (Christen, 2000). In AD 
brain, the main sources of oxidative stress are from the free 
radicals generated from mitochondria and redox-active metals. 
Lipid peroxidation occurs when these oxidants attack 
polyunsaturated fatty acids (Ramana et al., 2014). Free radical-
induced lipid peroxidation is widespread in AD brain. Reactive 
oxygen species (ROS) can also attack amino acid side chains or the 
protein backbones and generate protein carbonyl derivatives 
(Butterfield and Stadtman, 1997). Protein carbonyl content was 
found to be  significantly increased in the hippocampus and 
inferior parietal lobule in AD subjects comparing to normal 
controls (Hensley et al., 1995; Aksenov et al., 2001). ROS-induced 
oxidation of key enzymes or structural proteins can significantly 
impair their cellular function leading to neurodegeneration and 
cell death (Hensley et al., 1995; Butterfield and Stadtman, 1997; 
Aksenov et al., 2001). ROS can also leading to base alteration, 
single and double strand breaks or DNA-protein crosslinkings 
(Sohal and Weindruch, 1996; DNA Oxidation in Alzheimer's 
Disease, 2006).

The therapeutic efficacy of flavonoids is historically attributed 
to their antioxidant potency and natural free radical scavenging 
properties (Mercer et  al., 2005). Chronic administration of 
nobiletin to AD mice for 2–3 months significantly reduced brain 
ROS (Nakajima et al., 2015) and other oxidative stress markers 
(Nakajima et al., 2013). Quercetin has been shown to be strongly 
effective at scavenging free radicals and preventing oxidant-
induced apoptosis (Rice-Evans et al., 1995; Heijnen et al., 2002; 
Choi et al., 2003). In addition to its high oxygen radical scavenging 
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properties, quercetin also has the ability to inhibit lipid 
peroxidation (Fiorani et al., 2010) and to chelate iron and other 
metal ions that could be detrimental to the brain (Rice-Evans 
et al., 1995; Salganik, 2001). Chronic administration of the flavone 
apigenin to an AD mouse model induced a significant decrease of 
oxidative stress accompanied by increased superoxide dismutase 
and glutathione peroxidase activities (Rice-Evans et  al., 1995; 
Fiorani et al., 2010; Zhao et al., 2013). Curcumin is another strong 
antioxidant and can effectively stabilize ROS (Basnet and Skalko-
Basnet, 2011). It acts on the inner membrane of mitochondria, 
facilitating their depolarization, thus preventing the formation of 
ROS (Zhu et al., 2004). It was also shown to stop the free radical 
proliferation when administered intravenously to rodent (Jiang 
et al., 2007). Resveratrol can increase the superoxide dismutase 
enzyme activity hence reduce ROS formation in vivo (Chen et al., 
2016). In vivo studies have shown that catechin and epicatechin 
can prevent ROS formation and lipid peroxidation in AD models. 
A single oral dose of epicatechin could effectively prevent 
Aβ-mediated lipid peroxidation and ROS formation in 
hippocampal formation in rats (Cuevas et al., 2009). Blueberry is 
rich in anthocyanins and proanthocyanidins. Blueberry extract 
was shown to be able to increase redox buffer glutathione and 
protect amyloid toxicity through inhibition of MAP kinase and 
CREB-mediated ROS signaling (Brewer et al., 2010). In humans, 
it was shown that blueberry supplementation protects against 
cognitive decline in people with high risk for developing dementia 
(Krikorian et al., 2022).

Polyphenols modulate 
AD-associated inflammation

There is increasing consensus that immunological 
perturbations are major contributors to AD pathogenesis. This is 
supported by the genome-wide association studies linking 
myeloid cell-specific genes, such as TYROBP, TREM2 and CD33, 
with late-onset AD (LOAD). The phenomenon called 
neuroinflammation is a critical factor in AD pathogenesis. While 
the exact role of inflammation in AD remains to be investigated, 
it has been suggested that acute and systemic inflammation, 
manifested by microgliosis and astrogliosis, can accelerate 
AD  progression and worsen cognitive impairments (Holmes 
et al., 2009).

Many dietary polyphenols have demonstrated their anti-
inflammatory activities both in vitro and in vivo. Among these, 
curcumin and resveratrol are the most studied molecules for their 
potential application in AD treatment. Curcumin was shown to 
be able to block NF-kappa B action and associated inflammation 
cascade (Singh and Aggarwal, 1995; Hackler et  al., 2016). In 
addition, curcumin also has the ability to inhibit Aβ-induced 
pro-inflammatory cytokines and chemokines release (Sundaram 
et  al., 2017). Resveratrol attenuates Aβ-mediated microglia 
inflammation through inhibition of the TLR4/NF-κB and/or 
NLRP3 and STAT signaling pathway (Capiralla et al., 2012; Feng 

and Zhang, 2019). Resveratrol can also activate SIRT1 both in vitro 
and in vivo (Herskovits and Guarente, 2014; Favero et al., 2018). 
SIRT1 is a histone deacetylase that can epigenetically reprogram 
inflammation. In animal models, resveratrol treatment improved 
spatial memory, reduced neuroinflammation and increased 
neurotrophins in the brain of AD mice (Gong et al., 2010; Sun 
et al., 2019; Broderick et al., 2020). In humans, resveratrol was 
shown to modulate neuroinflammation and induce adaptive 
immunity in patients with AD (Moussa et al., 2017). Subjects with 
mild–moderate AD treated with synthetic resveratrol showed 
significant decrease of MMP9 in the cerebral spinal fluid (CSF). 
MMP9 is a protein that interferes with the blood brain barrier 
(BBB) function. The decrease of CSF MMP9 in AD suggest that 
resveratrol may mitigate inflammatory responses in the brain by 
reducing the permeability of CNS and lower infiltration of 
leukocytes and other inflammatory agents into the brain. Other 
polyphenols such as flavonoids fisetin, quercetin and luteolin were 
also shown to decrease inflammation in different AD mouse 
models and reduce astrogliosis and microgliosis (Sharma et al., 
2007; Currais et al., 2014; Currais et al., 2018). Blueberry and its 
extract have also been shown to be  able to inhibit amyloid-
mediated microglia activation through attenuation of p44/42 
MAPK signaling both in vitro and in vivo mouse model (Joseph 
et al., 2003; Zhu et al., 2008).

Polyphenols modulate synaptic 
function and memory

Selective polyphenols also showed promising effects in 
rescuing cognitive function in transgenic AD mouse models. For 
example, old 5xFAD mice chronically treated with 
7,8-dihydroxyflavone (7,8-DHF) reduced synapse loss in the brain 
and performed better at the working memory Y maze test (Devi 
and Ohno, 2012; Zhang et  al., 2014). Oral administration of 
apigenin led to increased activation of ERK/CREB signaling and 
learning and memory improvement in 2xFAD mice (Zhao et al., 
2013). Learning and memory were improved in both the 1 × FAD 
and 3xFAD mouse models of AD following treatment with 
nobiletin (Onozuka et  al., 2008; Nakajima et  al., 2015). Mice 
treated with fisetin showed increased activation of ERK/MAPK 
signaling, increased expression of synaptic proteins and improved 
cognitive function (Currais et  al., 2014; Ahmad et  al., 2017; 
Currais et al., 2018). Flavonoid rutin, a quercetin molecule with 
the addition of disaccharide rutinose, was also found to 
be effective in improving cognitive function through increased 
expression of brain derived neurotrophic factor (BDNF) in rats 
injected with Aβ (Moghbelinejad et al., 2014). Green tea contains 
high levels of EGCG can prevent the loss of synaptic proteins and 
cognitive impairments in a 1xFAD mouse model (Walker et al., 
2015). On the same note, anthocyanins were also found to be able 
to reduce synaptic protein loss and improve memory function (Ali 
et al., 2017; Kim et al., 2017). Anthocyanin from grape juice was 
shown to rescue oligomeric Aβ-induced long term potentiation 
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(LTP) deficit in hippocampal slices (Wang et al., 2014a). Wang 
et al. explored the effect of cocoa flavanols on AD pathogenesis 
(Wang et al., 2014b). In their study they showed that catechin and 
epicatechin enriched cocoa extracts interfered with Aβ 
oligomerization and prevented synaptic deficits. They 
demonstrated that application of cocoa extracts on mice 
hippocampal slices could prevent Aβ-induced LTP deficit (Wang 
et al., 2014b). Cocoa was also shown to prevent Aβ oligomer-
induced neurite dystrophy by activating BDNF in neuronal 
cultures (Cimini et al., 2013). These observations have also been 
corroborated by clinical studies demonstrating that cocoa 
flavanols enhance the dentate gyrus function and reduces 
cognitive decline in humans (Crews et al., 2008; Desideri et al., 
2012; Scholey and Owen, 2013; Brickman et al., 2014). Blueberry 
was shown to improve memory function in APP/PS1 AD mice 
through increase of ERK signaling and neural sphingomyelin-
specific phospholipase C activity (Joseph et al., 2003).

Polyphenols and gut microbiome

The biological activity of dietary polyphenols largely depends 
on the bioavailability of the bioactive forms of the parent 
compounds in the target organs. Once ingested, polyphenols are 
absorbed and metabolized first in the gastrointestinal tract and 
then are further modified in the liver through glucuronidation, 
sulfonation, or methylation, before entering the blood stream. The 
biological activities of their metabolites can be very different from 
the parent compounds. For example, Serra et  al. explored this 
relationship between dietary polyphenols and gut metabolism 
using an anthocyanin-rich extract obtained from Portuguese 
blueberries and a simulated gastrointestinal digestion process. 
Both the digested and non-digested extracts displayed different 
chemical compositions and had different effects on 
neuroinflammation (Serra et  al., 2020). Gut microbiome is 
receiving increased attention due to their potential role in health 
and disease (Durack and Lynch, 2019). Recent studies have 
demonstrated strong links between polyphenol metabolism and 

the gut microbiome (Hervert-Hernández and Goñi, 2011; Fraga 
et al., 2019). The gut microbiota can influence the process and 
metabolism of polyphenols, which may influence the production 
and diversity of polyphenol metabolites; Polyphenols have the 
ability to influence the intestinal environment, which allows them 
to modulate the composition of gut microbiome (De Bruyne et al., 
2019). Moreover, there is also bidirectional communications 
between gut microbiota and the central nervous system, the 
so-called gut-brain axis and currently, the gut-brain axis is one of 
the favorable targets for therapeutic treatment of neurodegenerative 
disorders including AD due to their bidirectional interactions that 
may affect brain function (Carabotti et  al., 2015; Reddy et  al., 
2020). Curcumin, for example, exhibits beneficial effects against 
AD despite having limited blood–brain barrier penetration. It is 
postulated that curcumin becomes a more effective neuroprotective 
agent after undergoing metabolism by gut microbial and its 
interaction with the gut-brain axis also allows it to react indirectly 
with the CNS and exerts its neuroprotective activity (Di Meo et al., 
2019; Reddy et al., 2020).

Conclusion

Pathological mechanisms involved in Alzheimer’s 
pathogenesis include both Aβ and Tau toxicity. Therapeutic 
strategies aiming at targeting one or the other continue to fail in 
clinical trials. Polyphenols offer a new approach that can 
simultaneously target Aβ, Tau, neuroinflammation and oxidative 
stress, which could lead to better outcomes.

Dietary factors and diet composition can play a critical role 
in AD prevention. Our review lists few of the numerous 
polyphenols, considered as confirmed or promising therapeutic 
candidates due to their potent anti-inflammatory, antioxidant 
properties and AD-disease modifying activities (Table 1). AD 
is a multifactorial disease and the current lackluster 
performance of clinical studies is, in part, due to the prevailing 
approach targeting individual pathogenic mechanisms. Most 
of the polyphenolic compounds have exhibited pleiotropic 

TABLE 1 Role of polyphenols in modulating AD-type neuropathology.

Polyohenol Activity Mechanism Model Dose Reference

Epicatechin Aβ↓ BACE↓ TASTPM 15 mg/day Cox et al., 2015

ROS↓ - Aβ injected rat 30 mg/kg Cuevas et al., 2009

EGCG Aβ↓ α-secretase ↑ Tg2576 20 mg/kg Rezai-Zadeh et al., 2005

Aβ↓/memory↑ BACE↓ SAMP8 15 mg/kg Guo et al., 2017

Aβ fibril↓ - in vitro - Ehrnhoefer et al., 2008; Bieschke et al., 2010

Curcumin Aβ ↓ BACE↓ Drosophila Melanogster 1 mM Wang et al., 2014

Aβ oligomer↓ Aβ aggregation↓ Tg2576 25 mg/kg Yang et al., 2005

Tau phosphorylation↓ GSK-3β↑ okadaic acid AD model 10 μg i.p. Wang et al., 2019

neuroinflammation↓ NF-κB↓ in vitro - Singh and Aggarwal, 1995

neuroinflammation↓/Memory↑ CDK5↓ p25Tg 0.8 g/kg Sundaram et al., 2017

Apigenin Aβ↓/ROS↓/memory↑ BACE↓ APP/PS1 40 mg/kg Zhao et al., 2013

(Continued)
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bioactivities (Table  1) which may have advantages over 
conventional pharmaceutical drugs for the treatment of AD. In 
spite of their multi-targeting features, clinical development of 
polyphenols for AD is hampered by their poor absorption and 
limited brain bioavailability. Moreover, most of the available 
polyphenol metabolite forms, following digestive and hepatic 
activity, may not have the same biological activity as the native 
compound. Therefore, the in vitro biological activities of 
“parental” polyphenol forms may not relevant to biological 
activities in vivo, which is the ultimate arbitrator of therapeutic 
benefit. Future advancement of polyphenols in AD prevention 
and/or treatment will largely rely on the development of select 
polyphenols or their derivatives with better brain bioavailability 
while preserving their multi-targeting bioactivities.
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Polyohenol Activity Mechanism Model Dose Reference

ROS↓ SOD↑/GPx↑ in vitro - Rice-Evans et al., 1995; Fiorani et al., 2010

Nobiletin Aβ↓/ROS↓/memory↑ - 3xTg 30 mg/kg Nakajima et al., 2015

Aβ↓/memory↑ ERK 

phosphorylation↑

APP-SL 7–5 Tg 10 mg/kg i.p. Onozuka et al., 2008

Tau phosphorylation↓/ROS↓/

memory↑

- SAMP8 10–50 mg/kg Nakajima et al., 2013

Quercetin Aβ↓/memory↑ BACE↓ 3xTg 25 mg/kg Sabogal-Guaqueta et al., 2015

neuroinflammation↓/memory↑ - SAMP8 25 mg/kg Moreno et al., 2017

ROS↓ - in vitro - Choi et al., 2003; Heijnen et al., 2002; Rice-

Evans et al., 1995; Fiorani et al., 2010

Resveratrol Aβ oligomer toxicity ↓ - in vitro - Feng et al., 2009; Ladiwala et al., 2010; Fu 

et al., 2014

Aβ ↓ - in vitro - Marambaud et al., 2005

Aβ clearance ↑ AMPK/mTOR 

autophage

APP/PS1 350 mg/kg Vingtdeux et al., 2010

Aβ clearance ↑ IDE↑ in vitro - Rege et al., 2015

Tau phosphorylation↓/memory↑ ADAM-10↑/GSK-

3β↑/CDK5↓

SAMP8 1 g/kg Porquet et al., 2013

neuroinflammation↓/Aβ 

oligomer↓/memory↑

NF-κB↓ SAMP8 4 g/kg Broderick et al., 2020; Gong et al., 2010; Sun 

et al., 2019

Fisetin neuroinflammation↓/ROS↓/

memory↑

CDK5↓/SAPK/JNK↓ SAMP8 25 mg/kg Currais et al., 2018

neuroinflammation↓/memory↑ CDK5↓ APPswe/PS1dE9 25 mg/kg Currais et al., 2014

GSPE Aβ oligomer↓/memory↑ Aβ aggregation↓ Tg2576 200 mg/kg Wang et al., 2008

tau aggregation↓ - in vitro - Ho et al., 2009; Ksiezak-Reding et al., 2012

Tau phosphorylation↓ ERK1/2↓ TMHT 200 mg/kg Wang et al., 2010

Tau phosphorylation↓/tau 

aggregation↓/motor function↑

- JNPL3 150 mg/kg Santa-Maria et al., 2012

EGCG: epigallocatechin-3-gallate; GSPE: grape seed polyphenolic extract.

TABLE 1 (Continued)
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