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We present a case for low batch-size inference with the potential for adaptive

training of a lean encoder model. We do so in the context of a paradigmatic

example of machine learning as applied in data acquisition at high data velocity

scientific user facilities such as the Linac Coherent Light Source-II x-ray Free-

Electron Laser. We discuss how a low-latency inference model operating at the

data acquisition edge can capitalize on the naturally stochastic nature of such

sources. We simulate the method of attosecond angular streaking to produce

representative results whereby simulated input data reproduce high-resolution

ground truth probability distributions. By minimizing the mean-squared error

between the decoded output of the latent representation and the ground truth

distributions, we ensure that the encoding layers and resulting latent

representation maintains full fidelity for any downstream task, be it

classification or regression. We present throughput results for data-parallel

inference of various batch sizes, somewith throughput exceeding 100 k images

per second. We also show in situ training below 10 s per epoch for the full

encoder–decoder model as would be relevant for streaming and adaptive real-

time data production at our nation’s scientific light sources.
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1 Introduction

Among the leading major scientific facilities in the US Department of Energy’s

portfolio is the Linac Coherent Light Source (LCLS). As the world’s first hard x-ray free-

electron laser (xFEL), its ultra-short x-ray pulses, shorter than typical periods for most

molecular vibrations, allow its international research users to peer into the inner workings

of some of nature’s key chemical reactions [1]. The very high peak brightness of these

x-ray pulses also allow for imaging of the interior structure of material in extreme
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conditions of heat and density to elucidate the inner working of

planets [2] and are helping expose the workings of fusion energy

[3]. The breadth of scientific discovery opened by such a facility

impacts fields from novel material designs to biological function,

even helping drug design for SARS-CoV-2 [4].

There is an upgrade imminent for this xFEL, the so-called

LCLS-II [5], which will further accelerate the rapidly broadening

range of scientific-use cases. The overwhelming data-ingest rates

[6] will also be coupled with automated schemes for experimental

execution. Such automation will accommodate intermittent

updates that track the variations that are inherent to dynamic

experimental conditions. We use the example of ultra-high

throughput continuous data acquisition, analysis, and decision

streams to motivate inference acceleration directly at the data

acquisition node via direct attached co-processors. We

demonstrate the high throughput inference and training for

one of the early-streaming high data velocity detectors at the

LCLS-II such as the array of electron spectrometers described in

Ref. 7.

The xFEL pulses arise from the self-amplification of

spontaneous emission (SASE) [8], and so the time and

spectral structure of SASE pulses are typically quite

complicated, comprising many so-called SASE sub-spikes in

the phase space of time–energy joint distributions.

Characterizing complicated x-ray pulses, as are commonly

produced by xFELs, drives our pursuit of stream-processing

angular arrays of electron time-of-flight (eToF) spectrometers.

The method of attosecond angular streaking was first applied to

the xFEL in Ref. 9. It is based on the measuring angle-resolved

photoelectron spectra for noble gas atoms that are so-called

“dressed” by a circularly polarized long-wavelength optical

field. The circular polarization of the dressing laser field gives

a directional push to the x-ray photo-ionized electrons at the

instance of release from the atom. This directional push sweeps

out the full 2π revolution in one optical cycle period, 33 1/3 fs, in

the case of 10 μmwavelength. We discuss the process in depth in

Refs. 9 and 10 and outline our more simplified simulation.

We are inspired by recent successes in computational ghost-

imaging that highlight the value in using complex varied

structures as illumination sources [11, 12]. The method

achieves better results than the conventional spatial resolution

by treating the measured results statistically for signal co-

variance with shot-to-shot illumination variations, thus

leveraging the natural fluctuations of xFEL time–energy and

even polarization [13] distributions to preferentially enhance

the sensitivity to nonlinear x-ray interactions [14, 15]; inference-

based pulse reconstructions approaching 1 million frames per

second would unlock the natural advantages of our new scientific

data fire hoses, the LCLS-II and the APS-U.

Given the dynamic nature of experiments at both xFEL and

synchrotron sources, we foresee a need for model adaptation and

ultra-high throughput inference. Model adaptation or full re-

FIGURE 1
(A) Schematic of attosecond angular streaking reproduced from Ref. 9, one of the many use cases for angular array spectrometers for LCLS-II
single-shot diagnostics. Sample image of angular streaking of SASE pulses in polar (B) and Cartesian (C) representations. Panel (D) shows the
emission probability that is our desired output of the inference model.
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training can be expected to occur with the cycle of so-called

“runs” at these facilities. Owing to their exquisite stability,

synchrotrons can be expected to pass hour-long experimental

runs where environmental conditions change negligibly and the

x-ray source parameters change immeasurably other than the

potentially periodic “re-filling” of the ring which is easily

accommodated with an intensity normalization. The xFEL is a

beast of a very different color. Each shot, coming at up to

1 million per second, grows from a stochastic process and in

a dynamic environment of variability in steering magnet

currents, undulator settings, injector laser mode variation, and

thermal motion of the experimental halls. Furthermore,

variations in the experimental plan for the short 5 × 12 h

campaigns typically redirect the scientific detectors parameters

FIGURE 2
Schematic of the encoder–decoder architecture.[18].
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at the 15–20 min scale. For this reason, we target very rapid re-

training of our example model in the 10-min scale rather than the

hours scale.

On the inference side, at the xFEL, we aim to treat each of the

unique x-ray pulses individually. Since the imminent pulse rate of

the LCLS-II will quickly ramp up to 100,000 shots per second

over the course of its first year or so, we pursue inference

acceleration on a scale that can keep abreast of such an

inference rate. It should be noted that the facility is run

continuously, not in burst mode, and so small batch sizes for

inference, more typically batch size = 1, are expected to be the

norm during operation.

In this manuscript, we focus on low batch-size streaming

inference with processing rates commensurate with the expected

LCLS-II repetition rates.We also discuss data-parallel training on

a Graphcore POD16 and an NVidia DGX node, pointing to some

of the considerations that impact computing hardware

considerations when tackling high-rate training and inference.

We conclude with a discussion of high-speed accelerated

diagnostics for low-latency real-time adaptive control for a

running xFEL experiment.

2 Materials and methods

The physics behind the x-ray pulse reconstruction is based on

an external electric field with circular polarization as described in

Ref. 9. Reproduced in Figure 1A, photo-electrons are emitted

from a target gas with an energy that gets boosted toward the

instantaneous direction of the optical laser vector potential �A(t),
with itself rotating in the detector reference frame with an

angular frequency ω = 2πc/λ. We call this laser field the

“dressing” field. We typically choose an infrared wavelength

of 10 μm such that the time is encoded into an angle with a

calibration of about 0.19 radians/femtoseconds, e.g., the full

period of our clock hand turns one revolution in 33 fs which

is about three times the duration of a typically desired SASE

pulse. The resulting “images” (see Figures 1B–D) of these boosted

electrons encode SASE spikes as offset circles in polar coordinates

(B) or sinusoidal features in the un-wrapped Cartesian

representation as they are more familiar as sinograms (C) in

medical radiography imaging. We simulate images in this

manuscript based on the smooth emission distribution (D) in

order to have full knowledge of the SASE sub-spikes to be

recovered. We use this to demonstrate the principle of high

throughput inference and short training cycles in preparation for

experimental data when it becomes available in the very near

future of LCLS-II.

We simulate results for an 8-fold over-sampled angular

dimension as compared to the planned instrument described

in Ref. 7 to help draw a broader generalization of our approach

across time-series analyses such as in magnetic fusion

applications [16]. The external “dressing” field pushes photo-

ionized electrons as described previously. Our focus on simulated

sinograms [17] of representative few-spike SASE pulses provides

a known ground truth for training the inference model. We

perform a random sampling of the electron emission probability

distribution, Y (], θ), where ] is the photon energy and θ is the

emission angle. The sampling is not strictly micro-canonical

Monte-Carlo in that we do not require a statistical agreement

with the process of SASE growth from the vacuum field

fluctuation as in proper SASE pulse simulations. Rather, we

prefer an even statistical distribution, not Bolzmann

distribution, of the modes in the field such that the training

examples for our machine-learned algorithm are not biased to see

only that which is statistically more likely. Electron counts are

sampled from this distribution to yield the simulated

measurement X (], θ). Thus, we are attempting to train the

TABLE 1 Network structure of CookieNetAE.[18]. All convolution layers use ReLU activation.

Layer lYPe Kernel Channels Image shape

1 Input — 1 128 × 128

2 Convolution 3 × 3 16 128 × 128

3 Max Pooling 2 × 2 16 64 × 64

4 Convolution 3 × 3 32 64 × 64

5 Max Pool 2 × 2 32 32 × 32

6 Convolution 3 × 3 64 32 × 32

7 Max Pooling 2 × 2 64 16 × 16

8 Convolution 3 × 3 128 16 × 16

9 Convolution Transpose 2 × 2 128 32 × 32

10 Convolution Transpose 2 × 2 64 64 × 64

11 Convolution Transpose 2 × 2 32 128 × 128

12 Convolution Transpose 2 × 2 16 128 × 128

13 Convolution 1 × 1 × 16 1 128 × 128
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model, CookieNetAE [18], to input X (], θ) and reproduce the

original Y (], θ) free of the grainy Poisson statistics of the

sampling. Our encoder–decoder network—CookieNetAE

[18]—demonstrates our ability to transform the high data rate

into a latent representation at the rate of the streaming data

pipeline. The loss is computed as the mean-squared error (MSE)

between the input image and the original smooth Y (], θ)
probability distribution. Physically relevant parameters are

thus fully constrained by this Y, its recovery from X indicates

that the latent representation, at the interface between the

encoder and decoder sides, contains sufficient information for

any downstream task, be it regression or classification. In effect,

one could freeze the encoder-side weights and use the latent

representation as a feature vector input for any conceivable

downstream inference task. For the purposes of this

manuscript, we presuppose that sensor-specific calibrations

(time-to-energy) will be implemented in the signal acquisition

electronics since the time-to-energy calibration is free to be

adjusted independently for each angle of detection in the

detector system [7]. To validate the live calibrations, a fraction

of the events will be routed as raw data that bypass the upstream

pre-processing chain. Since this expected 0.1%, or 1 kHz, rate of

raw data could feed adaptive re-training, we, therefore, also use

our model to benchmark the acceleration of in situ training.

2.1 Simulation

Specifically, we use forward simulations to build from a

ground truth Y to the example X, from which we train the

inference model to generate a predicted Y′ that minimizes the

MSE (Y, Y′). The probability density function at a given

detection angle is a sum of Gaussian distributions, each

associated with a single SASE sub-spike j. This emission

energy is modified by the so-called dressing laser field

according to a sinusoidal variation discussed previously.

The angular registration, e.g., the phase ϕj, is determined by

the relative delay between jth sub-spike and the carrier field of

the dressing optical laser. The mechanism behind this

attosecond resolution in x-ray photoelectron angular

streaking is detailed in Ref. 9 and 10; and for our purposes,

we crudely, but sufficiently, simplify by writing the probability

density function for electron emission as:

P E, θ( ) � ∑n
j�1

ajN ]j, σj, θ,ϕj( ), (1)

N ]j, σj, ϕj, θ( ) � ]j + Aj cos θ + ϕj( ) + C, (2)

where n is the number of SASE sub-spikes in a given shot,

Aj is the maximum streaking amplitude, E is the energy of

detection (horizontal in Figure 1C), and θ is the angle of

detection (vertical in Figure 1C). The number of sub-spikes is

chosen via a Poisson distribution with a peak at four sub-

spikes but many shots include higher numbers of SASE spikes.

We build the ground truth probability density function

and use it as the output Y′ for training the inference

model. As input, we randomly sample that distribution P

(E, θ) as shown in Figure 1D, and use the results to fill

in a 2-dimensional histogram X image as shown in

Figures 1B, C.

FIGURE 3
(A–D) Input images and (E–H) inference output images as described in Section 1. Examples of 1-4 SASE sub-spikes are shown, respectively,
although the training set includes higher numbers of sub-spikes.
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2.2 Model and data

For the inference task, we have built a convolutional neural

network (CNN) based encoder–decoder model for predicting the

smooth probability density function Y′. We have chosen to work

with a representative CNN model architecture since the topic at

hand is not optimization of the model design, but rather the

epochs per second in training and inferences per second in

FIGURE 4
(A). Inference results versus number of accelerators used in the data-parallel operation using 1–16 IPUs and 1–8 A100 GPUs. (B). Results versus
global batch size for the case of eight accelerators, and the symbol definitions are identical with panel (A). The fitting results are given in Table 2.

TABLE 2 Coefficients for the following general formula described in Eqs. 3 and 7. The curves follow along the constant mini batch (mb) such that the
global batch size = mb × η. Note that only four or less evaluation points for the A100 case require we fit only coefficients a and b.

Case Device Precision Mini batch a b c

infer [infer/sec] IPU f16 1 13.9 0.988 −0.0575

f16 16 15.4 0.845 −0.0889

f32 1 13.2 0.933 −0.0254

f32 16 14.3 0.974 −0.0739

infer [infer/sec] A100 f32 1 10.1 0.775 –

2 10.7 0.896 –

4 11.1 0.941 –

8 11.5 0.884 –

16 11.4 0.913 –

train [sec/epoch] IPU f32 16 5.40 −0.969 0.0734

16 6.53 −0.984 0.0433

train [sec/epoch] A100 f32 16 8.74 −0.917 –

32 7.94 −0.914 –

64 7.57 −0.916 –

128 7.44 −0.956 –
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application. Our encoder–decoder model has 343,937 trainable

parameters. We use the rectified linear unit (ReLU) activation in

all layers; mean-squared error (MSE) as a loss function; and the

Adam optimizer with α = 0.001, β1 = 0.9, β2 = 0.999, and ϵ = 10–7.

We use a convolution 2D-transpose method with a stride of (2,2)

for up-sampling in the decode layers. The model takes a (128,

128, 1) small integer image as input and gives (128, 128, 1) float

image of the originating 2D probability function as output. We

note the asymmetry in our encoder–decoder as can be seen in

Figure 2. This asymmetry is partly used for future developments

of an image segmentation model that is beyond the scope of the

present manuscript. The details of the model architecture are

given in Table 1.

The model exercised here only serves to provide a sample

architecture. Since the aim of this work is to demonstrate the

performance of the hardware across a range of potential

hyper-parameters, we have not explicitly performed so-

called “hyper-parameter tuning” in order to find rapid

convergence; the training duration and inference

throughput as functions of batch size and number of

accelerators are our aim, not the accuracy of the model. We

do show an example of the performance for the hold-out set in

Figure 3, simply to show that the model is not pathological. We

run a full 50 epochs of training regardless of the fact that

convergence is achieved as early as epoch 10 for some of the

match-size configurations.

The dataset was generated using the open source simulation

tool [17]. One million samples were generated for training,

validation, and inference using a 90/5/5 split. The training

dataset had 900,000 pairs of 128 × 128 images, a grainy

(Poisson starved) input image, and a smooth target image.

The inference dataset consisted of 50,000 unique 128 ×

128 images and was repeated 10 times in the case of the

Graphcore Intelligence Processing Units (IPUs) to provide a

sufficient workload. Training and inference results for the IPU

case were collected on a direct attached Graphcore POD16—four

interconnected M2000s, each with 4 IPUs.

For the A100 graphics processing units (GPUs), only single

precision, 32-bit floating points (FP32) were tested, while on the

IPU, Accumulating Matrix Product (AMP) and Slim

Convolution (SLIC) instructions were used for high-

performance multiply–accumulate sequences for both 32-bit

(FP32) and 16-bit (FP16) precision formats [19]. The two

different mixed-precision arithmetic schemes for the IPU case

are as follows:

• FP32.32: AMP operation with FP32 input multiplicands as

well as FP32 partial sums of products

TABLE 3 Inferences per second for various conditions measured.

Device η Mini batch Global batch γ [kInfer/sec] γ [kInfer/sec]

Devices Size Size (f16) (f32)

IPU 1 1 1 15.4 9.25

2 2 28.8 16.8

4 4 51.6 32.1

8 8 84.0 53.8

16 16 125 92.3

IPU 1 16 16 43.1 20.8

2 32 73.2 37.9

4 64 110 66.6

8 128 143 97.8

16 256 169 136

A100 1 1 1 – 0.996

2 2 – 1.92

4 4 – 3.51

8 8 – 4.87

A100 1 16 16 – 2.64

2 32 – 5.13

4 64 – 9.75

8 128 – 17.6
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• FP16.16: AMP operation with FP16 input multiplicands

and FP16 partial sums of products.

In the case of the IPU, the command line utility PopRun was

used to create multiple instances and launch them as distributed

data-parallel applications on the Graphcore POD16 compute

system, either on a single server or multiple servers within the

same POD [20].

In our setup, a single host server with SDK 2.5 was used with

the number of instances being set equal to the number of model

replicas for the inference case. For training, the number of

instances was set to half the number of model replicas.

Horovod was used to distribute the inference and training

across 1-8 A100 GPUs in a single Nvidia-DGX node in

Argonne’s ThetaGPU cluster. Samples of the input images

and output predictions are shown in Figure 3.

3 Results

3.1 Inference

Our primary focus in this manuscript is the demonstration of

inference throughput that approaches compatibility with the

TABLE 4 IPU train time considered in seconds per epoch based on the average results for 50 epochs of 900 k training images per epoch.

Device Precision η Mini batch Global batch Sec/epoch Min/50 epochs

IPU f16 1 16 16 42.13 35.10

2 32 22.56 18.80

4 64 13.51 11.25

8 128 8.86 7.38

16 256 6.47 5.39

IPU f32 1 16 16 92.56 77.13

2 32 48.01 40.00

4 64 26.93 22.44

8 128 15.52 12.93

16 256 9.80 8.16

A100 f32 1 64 64 186.5 155.41

128 128 173.3 144.41

256 256 173.0 144.16

512 512 165.7 138.08

1,024 1,024 160.2 133.50

A100 f32 2 32 64 131.0 109.16

64 128 103.5 86.25

128 256 91.3 76.08

256 512 84.5 70.41

512 1,024 81.1 67.58

A100 f32 4 16 64 119.9 99.91

32 128 68.4 57.00

64 256 53.5 44.58

128 512 45.5 37.91

256 1,024 43.0 35.83

A100 f32 8 8 64 117.2 97.66

16 128 63.5 52.91

32 256 36.9 30.75

64 512 28.0 23.33

128 1,024 24.0 20.00
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eventual 1 million shots per second rate of the LCLS-II xFEL. We

used CookieNetAE [18] trained on the simulation as described

previously to process a stream of images across a range of

available instances of GPU and IPU inference accelerators.

Our results are presented graphically in Figure 4A as the

inference rate γ versus number of accelerators η used in the

data-parallel mode. Figure 4B gives an example of the inference

throughput versus the global batch size for the case of one DGX

node of eight GPUs and two interconnected POD4 nodes with

four IPUs each. We note that the GPU case is not leveraging

TensorRT for inference so as to maintain negligible code changes

for compiling models to IPU and GPU.

Table 2 presents fitted coefficients based on the pseudo-

inverse method (Eqs 3–5) for Taylor expansion fitting the log-of-

rate y = log2 γ versus the log-of-number x = log2 η. In this

logarithmic representation, 2a is the single accelerator, η = 1 is the

rate, and the coefficient b represents the scaling power law with

an increasing number of accelerators, e.g., the “slope” in the

Taylor expansion of the data around η = 1, x = 0 in log-space;Θ is

the vector of polynomial expansion coefficients (Eq. 7).

log2 γ � y � a + bx + cx2( ), (3)
y � Θ ·X, (4)

y ·X−1 � Θ · XX−1[ ] � Θ, (5)

where

y �
y0

y1

..

.

yn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, X �

1 1 / 1
x0 x1 / xn

x2
0 x2

1 / x2
n

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, (6)

Θ � a b c[ ]. (7)

We can see from Figure 4A that the fits deviate from

linear as more than two or four IPUs are used. This

deviation is seen both from coefficient b)1 and from the

quadratic term c)0. We attribute this to bandwidth

limitation in the IPU interconnect fabric as indicated by

the extrapolated trend—to be always taken with a grain of

salt—that would extend the lines toward a common

saturation at about 200 k inferences per second. Of

course, this particular saturation limit is highly

dependent on the incoming raw data geometry, even for

very similar models. Since we are targeting a rate 5 times

higher than that achieved here, we are actively pursuing a

reduced representation that alleviates this data ingestion

limitation while still preserving the image integrity and

information. Our GPU results were all run with a single

DGX machine using the eight A100 GPUs in the same data-

parallel inference mode. Inference results for all tested

configurations are presented in Table 3.

3.2 Training

Although not the principle goal for this study, the ability

to train models directly at the source for both IPUs and GPUs

motivated our investigation of the time to train these devices

in the data-parallel mode as well. From Table 4, we find a

training time for 50 epochs that accelerate from nearly an

hour with 1 IPU at batch size 16 (FP16) to only 6 min with

16 IPUs. We see in Figure 5 that the general trend of inverse

scaling (1/η) dominates until about eight accelerators for a

constant mini-batch size, e.g., the global batch size scales

linearly with the number of accelerators. One can see from

the result for constant global batch size (symbol color) for

A100 GPUs that splitting global batches across increasing

accelerators quickly suffers diminishing returns for global

batch sizes below about 128 (green, open circles). This

coincides with the rule of thumb suggesting 64 or

128 local batch sizes given the DGX configuration of eight

accelerators. With up to 16 IPUs, hosted as four

interconnected M2000 nodes, each with four IPUs, we

find a very nearly ideal expected inverse scaling 1/η as we

hold constant the mini batch size of 16 and use PopRun to

spread the workload across multiple IPUs and multiple

M2000 nodes.

Table 2 shows our log-space Taylor coefficients for training.

The coefficient bU − 1 is quite close to an ideal inverse power

law, and there is only a very small quadratic term cU0. Even

given the communications bandwidth limitation, for 16 IPUs

at FP16 precision, we find from Table 4 that we can achieve

full-model training with 50 epochs of 900 k images in under

6 min.

FIGURE 5
Training time per epoch (900 k images in set) versus number
of accelerators for various global batch sizes. We indicate FP16/
FP32 for the IPU case and note that all A100 results are based on
the FP32 tests. The trend curves follow the coefficients given
in Table 2.
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4 Discussion

The potential impact of scientific machine learning [21] for

incorporating data analysis as a streaming processing pipeline

from source to data center [22] cannot be overstated for next

generation accelerator-based user facilities such as the LCLS-II

[23] and the APS-U [24]. The growing adoption of transformer

models [25-26] even outside the domain of natural language

processing [27-29] is sure to extend to the scientific data

interpretation domain. We, therefore, expect that embedding

models will work their way upstream, eventually into the sensor

electronics themselves. For this reason, we have chosen an

encoder–decoder network, in particular, one that has no skip

connections, as our example inference workflow for the

upcoming single-shot 1 million frames per second LCLS-II

attosecond streaking x-ray diagnostic.

We demonstrate the ability to produce a latent feature vector

that fully captures the information contained in the simulated

experimental results (Figures 3A–D) while effectively removing

any impact of noise. We do so by recovering the original smooth

probability distribution (Figures 3E, F) used to create the

simulated experimental results. Our encoder–decoder model,

CookieNetAE [18], is therefore a stand-in for the upstream

encoding and embedding layers for transformer architectures.

Larger models pose challenges for streaming data processing,

particularly so for real-time control decisions. Although

CookieNetAE was used as a surrogate for transformer models,

the high fidelity in image reconstruction of Figure 3 demonstrates

that the number of composite sinusoids is fully encoded in the

latent-space feature vector. As such, one of the potential use cases

of the encoding layers of CookieNetAE could be the rapid

prediction of a particular shot’s SASE complexity from, e.g.,

Figure 3: (A) triggers simple-binned single-spike reference

accumulator, (B) triggers 2D histogram accumulation based

on double-pulse relative delay and energy separation, and (C)

and (D) trigger the full-feature vector to be stored along with

downstream detector results for offline statistical treatments.

Since the LCLS-II will quickly ramp the shot rate from few

tens of kF/sec to a million frames/sec, these data-routing

decisions must keep abreast of the rate; they must inform and

direct the path of the streaming analysis for each shot as it is

acquired [30]. Our A100 inference results are consistent with the

early expectation of 10 kF/s and the Graphcore POD16 can carry

us sufficiently beyond the 100 kF/s rate needed for the rapid

increase in the repetition rate expected. We must however

continue to develop leaner models, bandwidth efficient data

ingestion, and faster inference environments to enable the full

million frames per second rate expected in the coming few years.

In pursuing accelerated inference at the sensor edge, we also

demonstrated that models can be re-trained in situ with the very

same hardware for both GPU and IPU. Although not a requirement

for our particular case, it does however raise a significant

opportunity given the fact that 0.1% raw data could be leveraged

locally for model re-training. Combined with software-defined

memory provisioning [31], incoming anomaly events could be

held locally in system memory for inclusion in updated training

sets and used in rapid re-training of the embedding model. This

small fraction of raw data nevertheless accounts for up to 1 GB/s of

the continuous data stream. The prospect of dynamically

provisioned TB-scale local memory directly at the acquisition

node that supports accelerated local training as the experimental

conditions vary throughout an experimental shift would truly enable

a continuously adaptive autonomous experimental ecosystem.
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