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Understanding the altitudinal patterns of plant stoichiometry in seeds is critical 

for characterizing important germination and dormancy strategies, soil seed 

bank composition, seed predation probability, efficiency of seed dispersal and 

seedling performance, and to predict how biodiversity might be  influenced 

by climate change. However, our understanding of the altitudinal patterns 

of seed stoichiometry is extremely limited. In this study, we  measured the 

concentrations of carbon (C), nitrogen (N) and phosphorus (P) in the seeds 

of 253 herbaceous species along an altitudinal transect (2,000–4,200 m) on 

the eastern Tibetan Plateau, China, and further to characterize seed C:N:P 

stoichiometry. The geometric means of C, N, and P concentrations were 

569.75 mg/g, 34.76 mg/g, and 5.03 mg/g, respectively. The C:N, C:P, and 

N:P ratios were 16.39, 113.31, and 6.91, respectively. The seed C, N, and P 

concentrations and C:N:P ratios varied widely among major plant groups and 

showed significant altitudinal trends. In general, C, N, and P concentrations 

increased, whereas seed C:N:P ratios decreased with elevation. These results 

inform our understanding of the altitudinal patterns of seed stoichiometry and 

how to model ecosystem nutrient cycling.
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Introduction

Ecological stoichiometry provides a framework for understanding plant strategies 
dependent on or influenced by the differential allotment of multiple chemicals in different 
organs. This framework is important because it sheds light on ecosystem functionalities 
and is a valuable method for indirectly assessing the biogeochemical cycling of terrestrial 
ecosystems (Elser et al., 2000; Sterner and Elser, 2002; Wang et al., 2022a). Carbon (C), 
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nitrogen (N), and phosphorus (P) are the three essential elements 
and play important roles in regulating plant growth and 
development (Aerts and Chapin, 2000; Vitousek, 2004). For 
example, the C:N:P ratios of plant organs have been used to 
evaluate potential terrestrial nutrient limitations (Güsewell, 2004; 
Reich and Oleksyn, 2004) and to characterize biogeochemical 
cycling of ecosystems (Güsewell and Gessner, 2009; Wang et al., 
2015). In addition, the C:N:P ratios of plant organs vary 
significantly among different environmental gradients (McGroddy 
et al., 2004; Reich and Oleksyn, 2004; Yuan et al., 2011; Wang 
et al., 2020a). Therefore, evaluating the patterns of C:N:P ratios of 
plant organs along environmental gradients can improve our 
understanding the effects of climate change on global C, N, and P 
coupling cycles.

Changes in elevation are correlated with changes in a number 
of environmental factors including temperature, CO2 
concentration, light, precipitation, and soil-type, which in turn 
can lead to differences in plant C, N, and P concentrations and 
their ratios (Sundqvist et al., 2011; Wang et al., 2020b). These 
environmental differences are also correlated with changes in the 
types of selection pressure on plant survival, growth and 
physiological function, thereby resulting in different adaptions 
(Lord, 1994). For example, leaf N and P concentrations decline 
and N:P ratios increase with increasing elevation as a result of low 
temperature suppression of soil nutrient mineralization and the 
decomposition of organic matter, both of which limit root nutrient 
uptake (Reich and Oleksyn, 2004). Moreover, increasing elevation 
is reported to affect the accumulation of inorganic P in leaves with 
an attending downward trend in N:P (Reich and Oleksyn, 2004). 
Similarly, fine root N and P concentrations decrease with 
increasing elevation, whereas fine root N:P ratio increasing (Zhao 
et al., 2016). Climate and soil variables jointly influence fine root 
C, N, and P concentrations and their ratios (Yuan et al., 2011; 
Wang et al., 2021a).

The effects of elevation on specific plant organs, such as leaves 
(Soethe et al., 2008; Hoch and Körner, 2012; Zhao et al., 2014), 
stems (Yao et al., 2015; Wang et al., 2018, 2022b) and roots (Yuan 
et al., 2011; Wang et al., 2022c) as well as soil microbes (He et al., 
2019; Wang et al., 2021b) have been widely investigated and have 
significantly improved our understanding of plant responses to 
differences in elevation. However, our understanding of the effects 
(if any) on seed C:N:P stoichiometry is poor. Yet, during the 
earlier stages of plant ontogeny, many developmental and 
physiological processes depend on seed reserves (Bewley et al., 
2013). For example, the C, N and P reserves in seeds are critical 
components affecting growth (Bu et al., 2018) because C is the 
most abundant component of dry matter, whereas N affects 
protein synthesis and P is essential for the synthesis of nucleobases 
(Elser et  al., 2000; Sterner and Elser, 2002). Therefore, seed 
reserves might influence seed dormancy, germination, and 
survival with different nutrient elements having different effects 
on each stage. Given the importance of C, N and P to seedling 
growth and survival, it is important to evaluate see C:N:P 
stoichiometry, particularly along elevational gradients.

The goal of this paper was to evaluate the effects of 
elevation on seed stoichiometry in the eastern Tibetan Plateau, 
which represents one of the largest alpine meadows in the 
world, covering more than 60% of the area of the alpine steppe 
and alpine meadow (Yang et  al., 2015). In this study, 
we compiled a dataset on C, N and P seed concentrations for 
253 herbaceous species along an altitudinal gradient to 
determine the seed C, N, and P concentrations and C:N:P 
ratios across different plant groups, and examine the elevational 
patterns of the seed C, N, and P concentrations and 
C:N:P ratios.

Materials and methods

Study area description

This study area is located on the eastern edge of the Tibetan 
Plateau in China (100°44′-104°45′E, 33°06′-35°34′N; Figure 1). 
The climate is cold and humid, and the elevation rises from 2000 
to 4,200 m. The mean annual temperature ranges from 1.2°C-
4.6°C and the mean annual precipitation increased from 450 to 
780 mm and growing season is short (from late May to late 
September; Bu et al., 2016, 2018). The main vegetation types in 
typical alpine meadow dominated by various graminoids (e.g., 
Cyperaceae and Poaceae) and herbs (e.g., Asteraceae, Fabaceae, 
Gentianaceae, Polygonaceae, Ranunculaceae, and 
Scrophulariaceae). All these factors make it an optimal site to 
explore the altitudinal patterns of seed C:N:P stoichiometry.

Seed collection and measurements

The mature seeds of 253 species from 37 families were 
examined along an altitudinal gradient from late August to 
September in 2015. The time of collection was based on prior 
extensive field observations on seed development and dispersal 
time. See maturity was determined using a number of physical 
cues including see color, pericarp consistency, and the ease of 
detaching them. Mature seeds were sampled randomly from over 
30 individual of each species from sites differing in 50 m across the 
elevational gradient. Intact seeds were stored in envelopes and 
oven-dried at 50°C to constant weight after which seeds were 
ground into a fine powder and C, N, and P concentrations were 
measured. Dry combustion in an elemental analyzer (Elementar 
TOC Vario, Germany) was used to measure C and N 
concentrations. The parts of fine powder were digested using 
microwave heating, and volumes of 5 ml of HNO3 65% and 1 ml 
of H2O2 30% were added for the digestion. The molybdenum blue 
method on an automatic flow injection analyzer (Lachat 
Quickchem 8500, United  States) was used to measure P 
concentrations as described by Wang et  al. (2020b). The 
stoichiometric ratios of C:N, C:P and N:P ratios were calculated 
on a mass basis.
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Data analysis

The plant species were divided into two life-form groups (i.e., 
annual and perennial), two functional groups (i.e., forb and 
graminoid), two N-fixing groups (i.e., N-fixing and non-N-fixing), 
and two phylogenetic groups (i.e., monocotyledons and eudicots). 
We compared the differences in C, N, and P concentrations and 
C:N:P ratios of seeds across major functional groups using 
one-way analysis of variance (ANOVA) least-significant difference 
with (LSD) post hoc tests. The relationships between seed C, N, 
and P concentrations and C:N:P ratios and elevation were 
explored by ordinary least squares (OLS) regressions analysis after 
the seed C, N, and P, concentrations and C:N:P ratios were 
log-transformed to normalize frequency distributions. All 
statistical analyses were performed using R 2.15.2 (R Development 
Core Team, 2015).

Results

The geometric mean values of seed C, N, and P concentrations 
were 569.75 mg/g, 34.76 mg/g, and 5.03 mg/g, respectively (Table 1 
and Figure  2). The C concentration ranged from 501.23 to 
575.9 mg/g, N concentration ranged from 21.54–57.17 mg/g, 
whereas P concentration ranged from 2.87–5.18 mg/g (Table 1). 
The C:N:P ratios ranged from 8.77 to 24.65 for C:N, 99.11 to 
185.27 for C:P, and 6.36 to 11.3 for N:P (Table 1). Seed C:N:P 
ratios differed significantly across different major plant groups. 

Seed C:N and C:P ratios were the highest in graminoids, whereas 
N-fixing species had the highest N:P ratios. In contrast, seed C:N 
and C:P ratios were the lowest in N-fixing species, whereas annual 
species had the lowest N:P ratios (Table 1).

Seed C, N, and P concentrations and C:N:P ratios were 
significantly correlated with altitude (p < 0.05; Figure 3). C, N, and 
P concentrations increased significantly with elevation (p < 0.05; 
Figures  3A–C), whereas seed C:N:P ratios decreased with 
increased elevation (p < 0.01; Figures 3D–F).

Discussion

Variations of seed C, N, and P and C:N:P 
ratios

Our results indicate that seed C, N and P concentrations on 
the eastern Tibetan Plateau have geometric means that are 
569.75 mg/g, 34.76 mg/g, and 5.03 mg/g, respectively, and thus 
higher than that of leaves (435 mg/g, 29.2 mg/g, and 2 mg/g, 
respectively) reported by He et  al. (2006) and fine roots 
(447.6 mg/g, 11.09 mg/g, and 0.91 mg/g, respectively) reported by 
Geng et al. (2014) for herbaceous species in an alpine meadow. 
These findings support the fact that compared to leaves or fine 
roots, germinating seeds manifest higher metabolic activity and 
thus require higher amounts of nutrients for germination and 
primary growth (Bu et  al., 2008) until seedlings become 
established and autotrophic (Soriano et al., 2011; Bewley et al., 

FIGURE 1

The study area and sampling sites along the elevation gradients.
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2013; Cheng et al., 2015). For example, P reflects nucleic acid 
content, which is required for the synthesis of the sugar-phosphate 
intermediates of photosynthesis and respiration (Sterner and 
Elser, 2002). P content can provide sufficient ribosomes for seed 
germination and rapid initial growth (Elser et al., 2003). Higher 
C, N, and P content in seeds may also reflect an adaptive strategy 
for survival and preservation. In contrast, the seed C:N, C:P, and 
N:P ratios on the eastern Tibetan Plateau have a geometric mean 
of 16.39, 113.31, and 6.91, respectively, which are lower than that 
fine roots (40.36, 491.87, and 6.91, respectively) reported by Geng 
et al. (2014) for herbaceous species in an alpine meadow. The 
lower C:N:P ratios of seeds supports the growth rate hypothesis, 
which postulates that fast-growing species have higher P content 
and lower C:P and N:P ratios because higher growth rates requires 
more P supported by P-rich rRNA than N to ensure rapid protein 
synthesis (Elser et al., 2000; Sterner and Elser, 2002).

Seed C, N, and P concentrations and C:N:P ratios differ across 
major plant groups (Table  1). These differences may reflect 

different nutrient availability strategies among different plant 
groups. We  found significantly higher N concentrations for 
perennial species compared with annual species. This result is 
consistent with a previous study (Bu et al., 2008), suggesting that 
higher seed N content is positively correlated with germination 
success (de Frenne et al., 2011). The lower C:N ratios in perennial 
species than annual species is likely mainly due to larger N 
concentrations in perennial species. Forb species have markedly 
higher C, N, and P concentrations than graminoid species. These 
results might be attributed to forbs generally having more rapid 
germination rates and more vigorous seedlings compared to the 
seeds of grasses (Ching and Rynd, 1978). Similarly, eudicots 
generally have higher seed C, N, and P concentrations than 
monocotyledon, perhaps as a consequence of differences in their 
ability to store nutrients (Bonfil, 1998). The N concentrations of 
seeds was significantly higher in N-fixing species than non-N-
fixing species owing to the ability to absorb N in fine roots 
(McCormack et al., 2015) and also perhaps because of the high 

TABLE 1 Geometric means and standard deviations of seed C, N, and P concentrations and their ratios for major plant groups.

Taxonomic group n C (mg/g) N (mg/g) p (mg/g) C:N C:P N:P

All 711 569.75 ± 71.14 34.76 ± 13.02 5.03 ± 2.36 16.39 ± 6.16 113.31 ± 75.07 6.91 ± 3.50

Life from groups

Annual 175 570.24 ± 84.03a 31.22 ± 8.31b 4.91 ± 2.22a 18.26 ± 5.58a 116.13 ± 65.65a 6.36 ± 4.34a

Perennial 536 569.58 ± 66.47a 36.01 ± 13.91a 5.08 ± 2.42a 15.82 ± 6.26b 112.41 ± 77.95a 7.11 ± 3.17a

Functional groups

Forb 681 571.52 ± 71.77a 35.51 ± 12.83a 5.15 ± 2.34a 16.10 ± 5.75b 110.88 ± 70.43b 6.89 ± 3.64a

Graminoid 30 530.98 ± 35.04b 21.54 ± 9.39b 2.87 ± 1.76b 24.65 ± 8.62a 185.27 ± 118.66a 7.52 ± 4.13a

N-fixation groups

N-fixing 55 501.23 ± 47.14b 57.17 ± 13.28a 5.06 ± 2.14a 8.77 ± 2.08b 99.11 ± 47.91b 11.30 ± 4.63a

Non-N-fixing 656 575.90 ± 69.63a 33.34 ± 11.24b 5.03 ± 2.39a 17.27 ± 5.86a 114.59 ± 76.70a 6.63 ± 3.12b

Phylogeny groups

Monocotyledon 54 533.02 ± 48.95b 25.86 ± 11.67b 3.50 ± 1.65b 20.61 ± 8.75a 152.29 ± 101.24a 7.39 ± 3.32a

Dicotyledon 657 572.88 ± 71.76a 35.62 ± 12.88a 5.18 ± 2.37a 16.08 ± 5.73b 110.59 ± 71.35b 6.88 ± 3.51a

n represents the number of samples. Different letters denote significant differences at the 0.05 level.

A B C

FIGURE 2

Frequency distribution of seed carbon (C) (A), nitrogen (N) (B) and phosphorus (P) concentrations (C) for all 253 herbaceous species on the eastern 
Tibetan Plateau.
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metabolic cost of N-fixation (Wardle and Greenfield, 1991). 
Interestingly, the seed N:P ratios in our study do not vary across 
the major plant groups, with the exception of N-fixers. This 
phenomenon may reflect a fundamental constraint on seed N and 
P concentrations and N:P ratios.

Altitudinal patterns of seed C, N, and P 
concentrations and C:N:P ratios

Seed C, N, and P concentrations and C:N:P ratios are closely 
correlated with the elevational patterns on the eastern Tibetan 
Plateau (p < 0.05). The variations of climate and the limitation of 
nutrient availability along an elevational gradient may interact to 
shape the elevational patterns of seed C, N, and P concentrations 
and C:N:P ratios. Seed C concentration increases significantly 
with altitude, supporting the notion that plant growth in higher 
elevations experiencing more stressed conditions require more 
non-structural C, including starch, low molecular weight sugars, 
and storage lipids to maintain cellular osmotic pressure and to 
resist freezing (Hoch et al., 2002; Millard et al., 2007; Hoch and 
Körner, 2012). Likewise, seed N and P concentrations increase 
with elevation, suggesting that for rapid initial growth, species 
from high elevation areas would take the opportunity to recruit 
seedlings. Thus, the high content of N and P in seeds of these 
species might be the result of natural selection for rapid initial 
growth. These patterns also support the Temperature-Plant 
Physiology and the Soil Substrate Age hypotheses (Reich and 
Oleksyn, 2004). Plants growing in high elevations tend to have 

greater N and P concentrations purportedly as a defense against 
the effects of low temperatures. This speculation is consistent with 
mechanisms that reduce N-rich enzymatic efficiency at low 
temperatures and P-rich RNA that can compensate for decreased 
rates of metabolic reactions (Weih and Karlsson, 2001; Reich and 
Oleksyn, 2004). In addition, our data indicate that seed C, N, and 
P concentrations are highly associated with one another (p < 0.01; 
Figure 4). This result indirectly supports the observation that seed 
C, N, and P concentrations follow the same trends along an 
elevational gradient.

The data presented here indicate that seed C:N:P ratios 
decrease along an elevational gradient. Previous studies have 
shown that low temperatures can depress soil microbe activity, 
resulting in the slow decomposition of organic matter, thereby 
reducing the availability of N and P in soils and thus limiting N 
and P uptake by roots (Körner, 1989; Wang et al., 2019; Long 
et  al., 2020, 2022). Moreover, aggravated P leaching in soils 
caused by the increased precipitation at higher elevations can 
reduce P availability (Hedin et al., 2003). The decreasing seed 
N:P ratio along an elevational gradient indirectly supports the 
Temperature-Physiological hypotheses, which states that leaf 
N:P ratios decrease with mean annual temperature (MAT) at a 
global scale as a result of both physiological acclimation and 
adaptation to temperature (Reich and Oleksyn, 2004; Lin et al., 
2021; Wang et  al., 2022d). Collectively, these elevational 
patterns probably are the result of the collective influences of 
climate and soil drivers that lead to a gradual shift in seed C:N:P 
stoichiometry from low to high elevations. However, due to the 
lack of data of soil nutrients (e.g., soil total C, N, and P) in our 

A

D

B

E

C

F

FIGURE 3

Changes in seed C, N, P (A-C) and C:N:P (D-F) ratios with the elevational gradients.
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dataset, our understanding of the mechanisms driving the 
elevational patterns of seed C:N:P stoichiometry on the eastern 
Tibetan Plateau is still severely limited and warrants 
further investigation.

Conclusion

In summary, this study provides a comprehensive 
documentation of the seed C:N:P stoichiometry across 
different plant groups in an alpine meadow on the eastern 
Tibetan Plateau. The results presented indicate that the seed 
C, N, and P concentrations and C:N:P ratios differ across 
major plant groups. Seed C, N, and P concentrations and 
C:N:P ratios also exhibited a statistically robust elevational 
pattern on the eastern Tibetan Plateau. These results advance 
our understanding of plant stoichiometry and have important 
implications for ecosystem functioning across large 
environmental gradients.
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