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As a large agricultural and population country, China’s annual demand for food

is significant. The crop yield will be affected by various natural disasters every

year, and one of the most important factors affecting crops is the impact of

insect pests. The key to solving the problem is to detect, identify and provide

feedback in time at the initial stage of the pest. In this paper, according to the

pest picture data obtained through the pest detection lamp in the complex

natural background and the marking categories of agricultural experts, the pest

data set pest rotation detection (PRD21) in different natural environments is

constructed. A comparative study of image recognition is carried out through

different target detection algorithms. The final experiment proves that the best

algorithm for rotation detection improves mean Average Precision by 18.5%

compared to the best algorithm for horizontal detection, reaching 78.5%.

Regarding Recall, the best rotation detection algorithm runs 94.7%, which is

7.4% higher than horizontal detection. In terms of detection speed, the rotation

detection time of a picture is only 0.163s, and the model size is 66.54MB, which

can be embedded in mobile devices for fast detection. This experiment proves

that rotation detection has a good effect on pests’ detection and recognition

rate, which can bring new application value and ideas, provide new methods

for plant protection, and improve grain yield.

KEYWORDS

image recognition, object detection, rotation detection, pest detection,
plant protection
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1 Introduction

As the most populous country in the world, China’s annual

food demand is the most critical social and livelihood issue. In

recent years, urbanization has been getting faster and faster with

the rapid development of China’s economy. The immediate

problem with it is the reduction of the available agricultural area.

In order to ensure that China’s annual grain output can be

maintained at 650 billion kg above, it is necessary to improve the

efficiency of grain cultivation on limited land. Food production is

related tomany factors, such as climate, temperature, and humidity

(Dayan, 1988). Among them, the most severe threat to food every

year is the impact of pests and diseases (Guru-Pirasanna-Pandi

et al., 2018). According to the Food and Agriculture Organization

of the United Nations statistics, global food production will

decrease by 10-16% annually due to the impact of pests and

diseases. In China, surveys show that about 40 million tons of

food are lost yearly (CCTVNews,). The key to solving the problem

of grain production is promptly predicting the early formation of

pests and scientific control. Therefore, the most critical link is

accurately identifying and detecting different pests.

In recent years, traditional machine learning technology has

undergone revolutionary changes with the improvement of the

computing power of graphics cards and the rapid development

of computer software and hardware resources. More and more

experts and scholars use their computing power in image

recognition. Object detection is a branch of image recognition

based on deep learning-based CNN algorithms. At present,

CNN has made incredible breakthroughs in theoretical and

practical experiments. Current object detection algorithms are

divided into two stages and one stage. The main difference is that

the second stage forms a series of target candidate boxes and

classifies the samples according to the convolutional network;

the first stage converts the regression box prediction into a

regression problem and then performs regression and sample

classification at the same time. The two-stage mainstream target

detection algorithms are represented by RCNN (Girshick et al.,

2014), Fast RCNN (Girshick, 2015), Faster RCNN (Ren et al.,

2017), Cascade RCNN (Cai and Vasconcelos, 2018), and Mask

RCNN (He et al., 2017). The mainstream detection algorithms in

the first stage are represented by YOLO (Redmon et al., 2016;

Redmon and Farhadi, 2017; Redmon and Farhadi, 2018;

Bochkovskiy et al., 2020; Ge et al., 2021) series, SSD (Liu et al.,

2016), and RetinaNet (Lin et al., 2017).

The development of rotating object detection with

horizontal detection has also received more and more

attention from researchers. Rotation detection algorithms are

represented by R3Det (Yang et al., 2021), ReDet (Han et al.,

2021), S2A-Net (Han et al., 2022) and so on. In real

environments, most detection objects often appear irregularly,

such as text scene recognition in real life (Liao et al., 2018) and

ship detection in remote sensing image ports (Fu et al., 2018;

Yang et al., 2018; Li et al., 2018). Under these conditions,
Frontiers in Plant Science 02
achieving satisfactory results in horizontal detection is difficult.

Based on horizontal detection, rotation detection adds object

Angle prediction, which makes the application of rotation

detection more extensive. This method can adapt to any Angle

and shape transformation of object detection and has good

robustness to object localization and classification detection.

For example, Ma et al. (2022) used R3Det detection and

identification for coastal intensive marine cages. The

experimental results showed that the mean Average Precision

(mAP) in circular and square cages reached 92.65% and 98.06%,

respectively. Peng et al. (2021) applied the rotation detection

algorithm to detect insulators in the power grid. The

experiments show that R3Det can better determine the

position of insulators and reduce economic losses.

Pests live in complex and changeable natural conditions with

many species, and the growth patterns of different pests are

pretty different. At the same time, some pests are tiny in size and

have certain similarities in appearance, color, and other

characteristics, making detection and identification difficult.

Traditional crop pest detection relies on many experts’ on-site

observation, identification, and detection. On the one hand, such

detection is time-consuming and labor-intensive. On the other

hand, the crops have been seriously affected because many pests

can be observed manually, and the best control period is missed.

In recent years, the rapid development of target detection

algorithms and supporting software and hardware in the field

of deep neural network learning has brought the possibility of

quick identification and detection of pests, which has extensively

promoted the application and development of intelligent plant

protection and precision agriculture. Many domestic and foreign

scholars conduct computer vision research by processing pest

images. For example, M.A. Ebrahimi et al. (2017) proposed to

use a machine learning Support Vector Machines(SVM)

classifier to detect crops and use SVM to use differential kernel

functions to classify and detect greenhouse pests. Li et al. (2021)

improved the TPest-RCNN network structure based on the

Faster RCNN network. Its backbone uses the VGG16 network

for feature learning and uses bilinear interpolation on the

candidate coordinates instead of the ROIPool method to

generate more accurate values. Finally, classification and

coordinate regression correction predictions are performed.

Experiments show that whiteflies’ mAP reaches 95% under

greenhouse conditions. Cho et al. (2007) collected three pests

under greenhouse conditions and proposed using Prewitt for

edge detection and counting. Solis-Sánchez et al. (Solis-Sánchez

et al., 2011) an improved loss identification algorithm was used

to detect six pests under greenhouse conditions.

However, most of the above detection methods mainly

classify and identify a single pest image under greenhouse

conditions, which has certain limitations in the actual natural

environment. The current horizontal target detection network

needs more pest training samples to obtain a better recognition

rate when training multi-category pests. For example, Liu et al.
frontiersin.org
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(2019) An improved convolutional neural network (CNN) and

PestNet algorithm with a modular channel attention mechanism

were proposed to evaluate 16 pests on 80k datasets MPD2018.

The experiment proved that the result of mAP reached 75.46%.

The improved convolution network and YOLOv4 network

proposed by Tang et al. (2017) integrate attention mechanism

and crosses-stage feature fusion to improve feature extraction

and fusion capabilities. Experimental results on 28k data and 24

types of pests show that mAP and Recall achieved 71.6% and

83.5%, respectively. Wang et al. (2020) collected data on field

pests to obtain 25k pictures with 24 categories and used different

level detection algorithms to conduct comparative experiments.

Finally, the mAP of YOLOv3 reached 59.37%. The level

detection method in the above experiments is used for multi-

category experimental research under large-scale data. It can be

seen from the above that the horizontal detection method needs

extensive data when detecting pests, which takes up many

computer resources, and the final detection effect map is only

about 75%, which can not reach the practical application value.

In this paper, a multi-target pest rotation detection method is

proposed. Rotation detection is often used to detect objects with

considerable lengths and widths and dense objects, such as ships

in remote sensing ports (Fu et al., 2018; Li et al., 2018; Yang et al.,

2018). Under the same circumstances, different pests or the same

type of pests in motion obtained by the filming equipment will

also be affected by different angles, and pests easily pile up densely.

Therefore, it is difficult for the horizontal target detection

algorithm to achieve a good recognition effect on small and

dense targets. As shown in Figure 1, the target detection under

shade environment level in training will be part of the other

characteristics of objects of study, the recognition of samples have

larger interference. The rotation detection algorithm can better fit

the pest to the samples under the dense shadow, and the
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performance of the pest can achieve the effect of identifying

different poses. This paper will compare the detection

differences between different target detection algorithms and

rotation detection in different situations to provide a reference

for more agricultural pest detection in the future. The main

research work of this paper is as follows: (1) Using a variety of

horizontal and rotation detection algorithms to detect, identify,

compare and analyze field pests. (2) It is concluded that the

rotation detection algorithm is generally better than the horizontal

detection algorithm in pest detection. The best representative

algorithm of rotation detection is selected; (3) In this experiment,

a pest rotation detection dataset (PRD21) of 21 pests under the

horizontal frame and the rotating frame is constructed, and

the difficulty of data detection is classified. It is hoped that the

experiment will provide new ideas for accurately identifying pests

and diseases and intelligent plant protection, which is conducive

to the early and timely detection and prevention of pests and

diseases and minimizes economic losses.
2 Materials and methods

2.1 Introduction to agricultural pests
dataset-PRD21

This experiment ultimately needs to be detected in the

natural environment, so the experiment’s data are obtained

through the detection and insect detection and reporting

trapping equipment to get pest images under natural

conditions. As shown in Figure 2A, the insect situation

monitoring and reporting light device is placed in the actual

natural environment to trap pests for 24 hours and automatically

set to collect and take photos of pests through the camera in the
A B

FIGURE 1

The training samples of horizontal algorithm and rotation detection algorithm are different. (A) is the horizontal frame More disturbed by other
backgrounds, (B) is a rotating frame, which can better fit pest samples.
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machine every once in a while and upload them to the

background database in time. Figure 2B shows the collected

pest data samples for a certain period.

A total of 2398 pieces of valuable data were obtained in this

dataset, and the image format was unified in JPG format with a

resolution of 3840*2160 pixels. According to the pest classification

of the Ministry of Agriculture of China and the number of data

samples collected in the data set, it is divided into 21 types of pests

(Wang et al., 2020). These data are processed into computer-

trainable Pascal VOC (Everingham et al., 2010) type data, wherein

agricultural experts and lableImg label software generate the

training data set for level detection. The rotation detection data

is generated by roLabelImg software. Finally, the datasets are

divided into 1942 training sets, 216 validation sets, and 240 test
Frontiers in Plant Science 04
sets according to the ratio of 8:1:1.The detected dataset is called

Pest Rotate Detection(PRD21).

This paper aims to verify the generalization of the effect of

rotation detection in different application scenarios. It is

divided by the pest occlusion situation shown in Figure 3

shows the mutual shielding degree of pests in different

environments. Figure 4 is the name of the specific separated

different data sets, namely simple with no occlusion(SNO),

simple with occlusion(SO), interference with no occlusion

(INO), and interference with occlusion(IO). As shown in

Table 1, the collected pest species, the pest area, and the

relative size of the horizontal frame and the rotating frame are

calculated according to Formula (1) and (2). Finally, Formula

(3) calculates the severity of occlusion between pests.
FIGURE 3

This figure shows the collection of different types of data. (A) refers to the occlusion of pests, (B) refers to the partial occlusion among pests,
and (C) refers to the data type with serious occlusion.
FIGURE 2

(A) is the detection and warning light device for collecting pests. (B) shows the collected pest samples.
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HoReScale =
1
Mo

1

M
(Xmax − Xmin)*(Ymax − Ymin)=C*100% (1)

RoReScale =
1
Mo

1

M
(w*h)=C*100% (2)

a = area(GTBoxA ∩ GTBoxB)=area(GTBoxA ∪ GTBoxB) (3)

Formula 1 is the area and relative proportion of the horizontal

frame, and Formula 2 is the area and relative proportion of the

rotating frame. C is the image’s original size, and M is the total

number of instances of a specific class. Xi is the horizontal relative

position value of the corresponding pest, and Yi is the vertical value of

the corresponding pest. w and h are the width and height of

corresponding pest coordinates. The function area() represents the

area of the two pest objects,s A and B, ∩ where the two pest objects

intersect and ∪ where the two pest objects are combined. a is the

scaling factor, and its value is between 0 and 0.2. When a>0.1, it was
considered that the two pests had severe shading; when a<0.1, it was
supposed to be slightly shading. GTBox is the area of a single pest.
2.2 The algorithm model used
is introduced

This experiment uses the horizontal box target detection one-

stage algorithms RetinaNet, YOLOX, YOLOv5, YOLOv6, and two-

stage algorithms Faster RCNN and Cascade RCNN for comparison

experiments. Rotation detection includes ReDet, R3Det, Rotated

Faster RCNN, and S2ANet as comparison algorithm models.

2.2.1 Introduction to algorithm models related
to horizontal object detection
2.2.1.1 Faster RCNN introduction

This algorithm is an improved and optimized classic CNN

convolution network algorithm. First, use the convolution layers
Frontiers in Plant Science 05
for feature extraction to obtain feature maps and generate region

proposals through Region Proposal Networks. The region of

interest in Roi Pooling is extracted through feature maps and

proposals, and the accurate location and category of the

detection target are finally determined through the fully

connected layer and bounding box regression.

2.2.1.2 Cascade RCNN introduction

This algorithm further optimizes the threshold setting in

Faster RCNN, cascades multiple regressors and detectors with

different thresholds, and continuously improves the threshold

multi-cascade network structure iteratively. Ultimately, the

accuracy of detecting target locations is maximized.

2.2.1.3 YOLOX introduction

As a single-stage target detection algorithm of the You Only

Look Once(YOLO) series, positioning and classification are

performed simultaneously. The generation method of anchor

free is adopted to reduce the amount of calculation. The network

structure mainly includes four parts, 1) Input: input image and

perform data enhancement . 2) Backbone network

(CSPDarknet53 (Wang et al., 2020)): Mainly used for feature

extraction. 3) Neck: This layer uses Feature Pyramid Network

(FPN) (Lin et al., 2017) and Path Aggregation Network(PAN)

(Liu et al., 2018) as feature fusion. 4) Head: This layer predicts

classification and location results.

2.2.1.4 YOLOv5 introduction

The network structure of the algorithm can be divided into

four parts, the Input layer, the Backbone network, the Neck

network, and the Prediction layer. The backbone network

consists of Focus, CSP, and Spatial Pyramid Pooling module

layers (Zhang et al., 2022). The Neck layer uses the residual

network to improve the feature fusion ability. In the prediction

layer, the loss of the regression box is calculated by GIoU Loss

(Rezatofighi et al., 2019), and three different scale predictions are
A B

FIGURE 4

The number of pest instances and data set division. (A) is the number of instances in the data set, and (B) is the division of the training set.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1011499
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2022.1011499
obtained, divided into 80×80, 40×40, and 20×20. The

BCELogitsLoss function calculated Objectness-loss and

Classification-loss. Finally, the best prediction results are

selected according to three dimensions.

2.2.1.5 YOLOv6 introduction

As the latest algorithm of the YOLO series, many algorithm

improvements have been made. Initially, the anchor-free

method was used to generate the prediction frame and the

same data enhancement as YOLOv5. The backbone network

uses EfficientRep to replace the previous CSPDarknet for feature

extraction. Neck built Rep-PAN based on Rep and PAN for

feature fusion. The Head layer is decoupled in the same way as

YOLOX, which separates the efficient structure of regression and

category classification. The label assignment selection uses

simOTA (Ge et al., 2021) to equalize the positive and negative

samples. Finally, a new regression loss SIOU (Gevorgyan, 2022)

is introduced to reduce the degree of freedom of regression to

accelerate network convergence and further improve the
Frontiers in Plant Science 06
accuracy of regression. From the above, we can be found that

YOLOv6 combines the advantages of YOLOv5 and YOLOX.

2.2.1.6 RetinaNet introduction

As a one-stage target detection algorithm, the network

structure is backbone using (vgg, resnet) for feature extraction,

and then through Feature Pyramid Networks(FPN) to enhance

the feature map of target area information for features of

different scales, and finally predict the target frame in two

FCN layers location and category. The main innovation of this

structure is that Focal Loss is added to the one-stage detector to

optimize the sample category imbalance problem, and anchor

boxes are used to generate prediction boxes.

2.2.2 Introduction to algorithm models related
to rotating target detection
2.2.2.1 ReDet introduction

When the traditional convolution network detects objects in

any direction, it usually enhances the rotation data in the
TABLE 1 The species of pests and the proportion of relevant sizes.

Index Pest name Portrait Ho Relative
scale (%)

Ro Relative
scale (%)

Index Pest name Portrait Ho Relative
scale (%)

Ro Relative
scale (%)

2 Noctuidae 0.206 0.199 98 AnomalaexoletaFald 0.131 0.141

3 Athetis Lepigone 0.194 0.174 115 Diving Beetle 0.133 0.142

7 Spodoptera Litura 0.14 0.141 151 Cricket 0.236 0.219

8 Mole crickets 0.697 0.72 155 Sphaerodema Rustica
Fabricius

0.155 0.157

10 Snout Moths 0.117 0.107 233 Spotted Red Bug 0.132 0.16

17 Helicoverpa
Armigera

0.209 0.2 248 Marumba
Gaschkewitschii

0.998 0.981

20 Oriental
Armyworm

0.196 0.193 291 Carabidae 0.084 0.084

64 Holotrichia
Parallela

0.192 0.194 359 Cockchafer 0.13 0.134

70 Anomala
corpulenta
Motschulsky

0.264 0.284 414 Turtle Shell 0.092 0.084

71 Coleopters 0.099 0.097 445 Metaboluo
Impressifros Fairmaire

0.136 0.161

87 Tiger Beetle 0.085 0.083
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training samples, so the detection effect is poor, and more

inclined models are required. The ReDet algorithm uses the

equivariant rotation network combined with the detector to

obtain the rotation features, uses the rotation invariant RiRoi

Align space and the angle dimension to extract the features, and

finally predicts the output.

2.2.2.2 S2ANet introduction

Due to the rotation detection network ’s rotation

characteristics, sometimes the generated anchor box has a

high degree of confidence, but there is still a significant

dislocation in the instance fitting. To optimize this problem,

S2A-Net adopts RetinaNet (Lin et al., 2017) as the backbone,

plus FPN and component Feature Alignment Module (FAM)

(Wang et al., 2019) and Oriented Detection Module (ODM)

(Xie et al., 2021) modules for region selection and feature

extraction fusion.

2.2.2.3 R3Det introduction

This experiment uses the R3Det rotation detection

algorithm as a research method to compare other horizontal

detection and rotation detection. The network structure is

shown in Figure 5. The algorithm designed a refined one-

stage accurate and a fast detector that combined the anchor

points of the horizontal target detection algorithm and the

anchor points of the rotation detection algorithm. The final

effect significantly improved the adaptability of pest

recognition in different scenes. Firstly, horizontal detection

anchors are used to generate more candidate regions. Secondly,

rotating anchors are used to optimize the dense target scene

further. In the middle, the feature refinement module (FRM)

(Yang et al., 2021) is used to refine and accurately process the
Frontiers in Plant Science 07
predicted target locations. In order to achieve feature

alignment, the algorithm uses Range non-maximum

Suppression(RNMS) (Yang et al., 2021) instead of traditional

non-maximum Suppression(NMS) (Neubeck and Van Gool,

2006). This part of the improvement method sets different

filtering thresholds according to the number of samples and

appearance characteristics of different pest categories. In terms

of the loss function, the algorithm uses the approximate

SkewIoU loss function, which can be pushed to calculate the

multi-objective and multi-task rotation box. Further, it

optimizes the problem of difficult identification of small

objects and sample imbalance. The relevant calculation

formulas are shown in the following (4-6).

SkewIoU =
area(c1 ∩ c2)
area(c1 ∪ c2)

(4)

Lloss =
l1
S o

S

s=1
objs

Lreg(v
0
n, vn)

Lreg(v0n, vn)
�� �� f (SkewIoU)j j

+
l2
S o

S

s=1
Lcls(ps, ts) (5)

Lreg(v
0, v) = Lsmooth−l1(v

0
q , vq) − IoU(v0 x,y,w,hf g,v x,y,w,hf g) (6)

Where S is the number of anchor boxes when the parameter

obj is 1, it means the foreground, and when it is 0, it means the

background. v’ and v represent the ground-truth box’s prediction

vector and target vector. pn is the probability distribution of

various types, and tn is the corresponding target label. SkewIoU

is the overlapping area of the predicted and ground-truth boxes. l
is the sum of different weights and is 1. Finally, f(SkewIoU) and

Lreg are combined as the regression gradient function.
FIGURE 5

The network structure diagram of the rotation detection algorithm used in this experiment.
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2.3 Evaluation indicators

The evaluation criteria used in this experiment are single-class

Average Precision (AP), single-class Recall, all-class average

precision mAP, all-class average recall rate mean Average Recall

(mR), model parameters, and detection time comparisons analysis.

The relevant calculation formula is shown in the following (7-10).

P =
TP

TP + FP
� 100% (7)

R =
TP

TP + FN
� 100% (8)

AP =
Z 1

0
P(R)dR (9)

mAP =
1
Mo

M

k=1

AP(k)� 100% (10)

Where TP and FN are the numbers of positive and negative

samples predicted to be positive, FP is the number of negative samples

predicted to be positive, andM is the total number of classes in the data.

P is precision, R recalls, and AP is precision for a single class.
3 Experimental

3.1 Experimental environment

The operating platform of this experiment is the Ubuntu20.04.4

system. The CPU is Intel Core i9-9900K, the frequency is 3.6GHz,

and the running memory is 16G. The graphics card is NVIDIA

TITAN RTX, and the GPU memory is 24G. The CUDA version is

10.2, and the CUDNN accelerated version is 7.6.5. PyCharm

Professional Edition, Python 3.7.11 interpreter, MMCV version

1.4.0, and Pytorch 1.10 deep learning framework are used.
3.2 Experimental procedure

In the experiment, under the same training set, the number

of iterations epoch is 36, the batch size is 4, the learning rate is

0.01, and the value is dynamically optimized during the training

process. Momentum is 0.9, and weight decay is set to 0.0005.

SGD is a parameter optimizer to train and validate different

classification test datasets.

3.2.1 Comprehensive comparison
between rotation detection and
horizontal detection algorithms

In this experiment, the most representative horizontal

detection algorithms and rotation detection algorithms are

selected as comparisons. Some of them have the same
Frontiers in Plant Science 08
backbone network structure and are adjusted to Resnet101,

and the input image size is scaled to (1800, 1200) during

training. During the test, experimental verification was carried

out in 5 different scenarios, and the experimental results are

shown in Table 2.

It can be seen from the experimental results that the YOLO

series algorithm is better than other detection algorithms in

mAP. The best level detection algorithm is the YOLOv5 model,

which is 6.4%, 7.7%, 3%, and 13.9% higher than Faster RCNN,

Cascade RCNN, YOLOX, and RetinaNet at mAP0.5. Regarding

recall rate, YOLOv5 and YOLOv6 in the YOLO series are far

lower than other detection algorithms, only YOLOX can reach

more than 82%, and the algorithm with the highest recall rate for

horizontal detection is RetinaNet, which reaches 87.3%. The

experiments show that both the one-stage and two-stage target

detection algorithms have advantages and disadvantages.

Compared with the rotation detection algorithm, the best one-

stage algorithm is far lower than the RoFaster RCNN, R3Det,

and S2ANet algorithms. RoFaster RCNN is 5.7% and 3.5%

higher than Faster RCNN in mAP and Recall under the same

conditions. On the same Backbone, R3Det is 24.9%, 26.2%, and

32.4% higher than Faster, Cascade, and RetinaNet algorithms.

3.2.2 Influence of backbone network and
image input size

As seen above, rotation detection has initially demonstrated

its advantages. In practice, many factors affect the final result of

different algorithms. For example, the backbone network and the

input image size play a crucial role in the feature extraction of

the target object. This paper conducts comparative research

experiments on these two effects in different scenarios. The

same backbone network is still set to Resnet101, the YOLOv5

and YOLOv6 use CSPDarknet and EfficientRep as the backbone

network, respectively, and the image input size during training

and testing is adjusted to (1000, 600). The experimental results

are shown in Table 3.

Through the comparison of experimental results, it is found

that each algorithm has a certain degree of reduction when the

input size is reduced. When the size is reduced, YOLOv5 and

YOLOv6 mAP drop by 4.2% and 1%, respectively, under

Test240. Other horizontal detection Faster RCNN and Cascade

RCNN algorithms reduce mAP by 4.4% and 3.6% and Recall by

9.1% and 13.4%, respectively. The rotation detection algorithm

declines further; the minor reduction is 2.1% of RoFaster RCNN,

and the most significant drop is 7.9% of R3Det. Experimental

results show that the image size change substantially impacts the

final result. Except for the ReDet algorithm, other rotation

detection algorithms are still better than the horizontal

detection algorithm model. To verify the influence of the

backbone network of the algorithm, continue to join the

experiment. Keep the training image input size as (1800,1200)

while setting the backbone adjustment depth to Resnet50. The

experimental results are shown in Table 4 below.
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We can be seen from the results that when the image

training size is (1800, 1200) and the backbone network depth

is reduced to Resnet50, the horizontal detection and rotation

detection algorithms have a slight reduction. Among them, the

algorithm with the most negligible reduction is 0.8% of R3Det,

and the highest is only 1.7%. The highest reduction of the

horizontal detection algorithm above the recall rate is 7.6% of

Cascade RCNN, and the rotation detection algorithm has almost

no change. However, experiments show that when the data size

is large, the network training model has less influence on the

depth of feature extraction.

3.2.3 Analysis of recall and mAP of different
algorithms in different types of datasets

This experiment selects four algorithms with the best

detection effect for comparison. The horizontal one-stage

detection algorithm is YOLOX, the second-stage detection

algorithm is Faster RCNN, and the rotation detection

algorithm is R3Det and S2ANet. Take Test240 data as the test
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set for the model. The comparison of mAP and mean Average

Recall(mRecall) is shown in Figure 6.

Figure 6 shows that at mAP, S2ANet is higher than other

level detection algorithms for various pests under different

environmental conditions, and the mAP is only lower than

1.3% on SNO. The detection effect of R3Det in different test

sets, mAP reached 78.5%, 85.1%, 82.6%, 79%, and 70.3%,

respectively; this shows that R3Det is more efficient and

flexible in the detection of dense target pests through the

refinement module and the feature reconstruction module.

In the mRecall comparison, although the mAP of YOLOX is

higher than that of Faster RCNN, the recall rate is lower than

that of Faster RCNN. The two algorithmic models of rotation

detection outperformed the horizontal detection algorithm.

Rotation detection achieves the highest Recall of more than

95% on the SNO simple data set. The Recall calculated by R3Det

is above 86% on all types of data sets, which shows that the

horizontal anchor frame and the rotation frame used by R3Det

are combined to improve the recall rate. At the same time, the
TABLE 3 Comparison of detection results when the input image is 1000*600.

Algorithm model Backbone Test240% SNO180% SO79% INO104% IO80%

Indicators mAP mR mAP mR mAP mR mAP mR mAP mR

Faster RCNN Resnet101 49.2 76.2 50.7 76.8 55.9 72.1 52.1 78.2 42.5 74.3

Cascade RCNN Resnet101 48.7 69.8 51.0 74.1 54.8 70.0 49.3 65.2 41.2 67.3

YOLOv5 CSPDarknet 55.8 59.7 62.3 61.1 65.4 67.4 59.4 53.5 50.1 57.0

YOLOv6 EfficientRep 57.2 51.9 60.4 58.7 64.8 54.3 58.1 54.1 47.6 54.3

RoFaster RCNN Resnet101 57.2 83.0 55.0 87.1 67.7 82.2 63.9 84.7 49.9 80.8

ReDet Resnet101 44.8 76.0 51.3 85.3 53.6 74.6 46.1 74.4 37.5 66.0

S2ANet Resnet101 56.5 93.6 57.6 95.2 64.9 89.2 60.2 90.2 47.4 90.6

R3Det Resnet101 70.6 91.9 78.6 97.7 74.8 85.8 77.9 91.4 55.1 76.8
frontiersin
The bold numbers in the table indicate the highest values of the experimental results.
TABLE 2 Comprehensive model comparison results.

Algorithm model Backbone Test240% SNO180% SO79% INO104% IO80%

Indicators mAP mR mAP mR mAP mR mAP mR mAP mR

two-stage

Faster RCNN Resnet101 53.6 85.3 56.1 84.1 62.0 82.5 56.8 84.3 44.7 68.2

Cascade RCNN Resnet101 52.3 83.2 54.9 83.4 58.2 77.2 53.6 77.6 45.9 70.2

one-stage

RetinaNet Resnet101 46.1 87.3 50.6 94.3 48.0 80.3 47.6 88.1 34.0 72.3

YOLOX CSPDarknet 57.0 82.0 61.3 82.6 65.5 78.2 53.4 72.2 47.8 75.6

YOLOv5 CSPDarknet 60.0 63.0 62.5 57.3 65.9 67.4 62.2 61.8 53.4 57.0

YOLOv6 EfficientRep 58.2 54.7 60.5 54.3 66.4 51.4 64.6 53.0 50.8 52.3

rotation detection

RoFaster RCNN Resnet101 59.3 88.8 58.6 81.2 69.1 81.4 65.3 86.8 53.6 82.0

ReDet Resnet101 54.4 87.9 54.6 87.2 60.3 77.7 51.6 83.4 43.4 73.5

S2ANet Resnet101 60.2 94.7 60.0 95.7 69.0 92.2 63.8 90.6 54.2 93.4

R3Det Resnet101 78.5 93.6 85.1 99.1 82.6 89.7 79.0 91.9 70.3 85.0
The bold numbers in the table indicate the highest values of he experimental results.
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approximate SkewIoU loss function is used to achieve more

accurate rotation. Finally, the results show that the recall rate can

be significantly improved, which has good results under austere

conditions and overcomes the problem of dense scenes.

In summary, whether a one-stage or two-stage target

detection algorithm, the detection effect is not as good as

rotation detection in various environments. In contrast, other

rotation algorithms, such as S2ANet and RoFaster RCNN, have

an excellent recognition ratio. In particular, the R3Det algorithm

still performs well in environments with severe occlusion and

more complex backgrounds, which shows that the rotation

algorithm has good results in remote sensing data and a

reasonable recognition rate in pest detection in different fields

in the field and generalization rate.

3.2.4 Analysis of a single type of pest
The total categories of the data set in this experiment are 21

categories. The growth shape and other characteristics of

different pest types have specific differences, and some

attributes of some categories are similar. In order to provide a

theoretical reference for identifying more varieties of pests in the

future, this paper analyzes the influence of characteristics of
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different pests. Figure 7 shows the aspect ratio and relative size of

a single category of pests. The algorithm model is trained with

horizontal detection and rotation detection. The single-category

AP50 of different algorithms is calculated, and the results are

shown in Table 5.

It can be seen from Table 5 that under the same data

conditions, the aspect ratio of the rotating frame is larger than

the scale of the horizontal structure, and the relative proportion

of the rotating frame is lower than that of the horizontal frame.

In general, the area occupied by pests is small. It shows that the

detection and recognition of tiny pests are complex, and the

training samples of the rotating frame can better fit the target

object. The interference of other environmental factors on the

models during training in different scenarios is also reduced.

Therefore, the rotation detection algorithm can still achieve

good results under more complex or denser conditions.

The table shows the single-class experimental results for the

selected model comparisons. It can be concluded from this table

that when the aspect ratio of pests is greater than 2, only one pest

is the 151st pest, and the mAP of this pest is 90%. When the ratio

is [1.75, 2), the mAP of the 8th class of pests is 89.7%. When the

ratio was [1.65, 1.75], including the 87th, 20th, and 115th types
A B

FIGURE 6

Left panel (A) shows the mAP of the four algorithms on the Test datasets, and correct panel (B) shows the Recall of the corresponding
algorithms and datasets.
TABLE 4 Comparison of detection results when the input picture is 1800*1200.

Algorithm model Backbone Test240% SNO180% SO79% INO104% IO80%

Indicators mAP mR mAP mR mAP mR mAP mR mAP mR

Faster RCNN Resnet50 52.5 82.5 53.8 74.5 59.3 77.9 57.7 67.7 45.2 66.1

Cascade RCNN Resnet50 53.1 75.6 56.2 86.3 58.6 71.4 53.2 84.4 43.3 77.1

RoFaster RCNN Resnet50 58.3 85.6 59.0 87.2 68.1 87.4 64.1 86.3 52.9 83.2

ReDet Resnet50 52.7 87.0 55.0 86.3 59.9 78.6 53.3 85.7 41.6 69.7

S2ANet Resnet50 58.8 95.6 59.2 97.2 68.4 91.6 63.5 92.2 51.7 94.7

R3Det Resnet50 77.7 94.0 76.1 98.2 72.9 87.8 74.0 91.5 59.0 79.1
frontiersin
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of pests, the mAP was 79.7%, 89.6%, and 83%, respectively.

When the ratio was [1.55, 1.65), there were 6 species of pests; the

highest was 86% of class 233, and the lowest was 62.8% of class

291. There are also six classes where the ratio is [1.50, 1.55),

where the best detections are 97.9% for class 445 and 96.3% for

class 359. When the ratio was lower than 1.5, there were four

classes, 2, 248, 3, and 64, with mAP of 76.5%, 81.8%, 55.6%, and

73%, respectively.

After analysis, there were 15 types of detected pests with

aspect ratios between [1.5, 1.75], accounting for 71.4% of the

total detected pest species. The R3det rotation detection

algorithm is generally more effective than other horizontal

detection algorithms in detecting these categories. When it is

lower than 1.5, the rotation detection still performs well.

Experiments show that the rotation algorithm detection not

only has a good effect on detecting pests at a high aspect ratio but

also has a reasonable recognition rate when the ratio is low. For

example, in comparing 21 categories of total pests, R3det is the
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highest in 19 pests, second only to Cascade RCNN in the 248th

category of pests, but still achieves an mAP of 81.8%. The

analysis results further demonstrate that the R3det model can

detect most pests.

3.2.5 Comparative analysis of detection speed
and parameter quantity

Regarding recognition rate, the rotation detection algorithm

has shown better results than the horizontal detection. However,

timely detection of changes before and after pests and diseases and

making correct judgments are the key to agricultural control.

Therefore, the detection time is also an important indicator. On

the other hand, different detection algorithm models finally need

to be transplanted to specific hardware devices for mobile

deployment. However, due to the limited resources of various

hardware devices, they cannot carry large capacities; Therefore,

the model’s size is also one of the essential considerations when

choosing a suitable algorithm. Finally, as shown in Table 6, we
A B

FIGURE 7

Left panel (A) shows the aspect ratio data of A single class of pests, and right panel (B) shows the proportion of the relative original size of A
single type of pest.
TABLE 5 AP50 for a single class.

Method 2 3 7 8 10 17 20 64 70 71 87 98 115 151 155 233 248 291 359 414 445

Faster RCNN 32.4 37.3 32.9 74.3 28.8 59.4 61.1 54.8 81.6 60.8 54.7 60.1 47.4 68.0 58.7 26.4 88.1 17.7 53.3 42.4 85.3

Cascade RCNN 30.0 34.0 15.3 77.0 24.8 44.8 61.8 63.1 77.7 61.4 50.2 44.9 40.9 68.1 53.3 55.5 92.7 18.5 68.6 41.1 75.5

RetinaNet 28.2 29.1 6.6 73.4 29.6 48.2 47.8 53.2 76.1 58.2 51.7 47.1 30.4 74.0 54.1 41.2 59.5 14.7 58.0 27.1 59.6

YOLOX 47.5 37.9 56.8 77.2 40.4 49.0 54.5 56.5 76.0 63.7 26.9 63.0 44.8 59.5 57.2 69.1 70.0 23.6 74.8 60.3 87.4

YOLOv5 32.3 26.5 33.0 71.1 35.4 49.2 52.1 52.6 80.7 64.4 50.0 71.6 35.8 63.6 58.1 71.9 81.9 21.4 72.6 55.5 86.3

RoFaster RCNN 27.9 46.3 36.4 80.2 36.7 64.4 56.9 63.6 78.4 66.3 62.5 62.3 52.5 75.4 66.3 46.8 85.5 25.0 74.3 54.4 82.8

ReDet 27.0 43.5 14.1 80.4 28.7 53.2 52.2 55.2 75.4 60.2 53.7 51.7 42.6 68.3 57.1 46.9 85.7 20.5 62.0 50.5 76.7

S2ANet 28.0 35.2 29.8 85.7 39.6 65.1 58.1 61.4 83.8 71.2 58.2 61.6 57.0 76.5 70.9 53.1 90.7 23.4 70.7 62.6 80.6

R3Det 76.5 55.6 14.7 89.7 77.8 86.0 89.6 73.0 87.1 85.7 79.7 88.3 83.0 90.0 90.4 72.7 81.8 62.8 96.3 69.7 97.9
fro
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compared the model parameters and detection time of different

models under different backbone network depth conditions and

when the image input size changes during training.

It can be seen from the experimental results that on the same

backbone network, the rotation detection algorithm is slightly lower

than the horizontal detection algorithm in the detection speed of a

single image. The maximum time of the rotation detection

algorithm for a single image is only 0.163s, which can meet the

requirements of practical detection applications. Similarly, in terms

of the number of algorithm models, the parameters of RoFaster,

ReDet, and S2ANet algorithms are all lower than those of the

horizontal detection algorithm. The performance of R3Det is

slightly higher than that of the horizontal detection algorithm, but

the amount of parameters is only 66.54MB. The practice has proved

that the algorithm can be flexibly applied to the embedded mobile

deployment of pest-monitoring lights.

3.2.6 Pest detection visualization comparison
Through the above comparative studies in different aspects, it

is found that rotation detection algorithms such as R3det have

better detection results. In this experiment, to verify the detection

effect in the actual scene, the Faster RCNN and Cascade RCNN

with the best horizontal detection effect were selected, and the

rotation detection was compared with R3det and S2ANet as the

representative algorithms. The threshold was set to 0.5, and

the test data included small targets, dense and occlusion type 3,

the detection effect is shown in Figure 8, and Figure 9 compares

the decreasing trend of the loss of different algorithms.

It can be seen from the comparison effect that R3det can

detect all pests in small target detection. The detection results

of Faster RCNN and S2ANet are the same. Meanwhile, Cascade

RCNN has the worst detection performance, only detecting a

few pests. In dense scenarios, the horizontal detection

algorithm can only detect a few pests, which is far from

meeting the actual needs. The rotation detection algorithm

shows its superior detection ability in a dense environment.

And the detection capability is much higher than horizontal
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detection, and more pests can be detected in this environment.

In practical situations, pests are prone to occlusion when they

appear in piles. The horizontal detection algorithm is prone to

be disturbed by other target features during training and has a

seriously missed detection rate. In this case, rotation detection

can better fit the pest samples under different postures and

accurately identify the blocked pests. Among them, the R3det

algorithm can account for both small targets and occluded

pests in the case of occlusion.
4 Discussion and conclusion

Detecting agricultural pests has always been a complex

problem for many experts and scholars. Insect pests will not

only eventually reduce crop yield but also may impact the

ecological balance of a specific area. Therefore, accurate

identification and detection of pests in complex scenarios is the

key to the environmental protection of crops. Traditional reliance

on agricultural experts for on-site inspection and testing is

inefficient and time-sensitive, often missing the optimal period

of protection. In the current research on deep learning object

detection, it is found that horizontal detection has a certain effect

on the simple background of a single pest. However, the product is

difficult to meet the actual requirements in complex multi-

category environments. In this paper, the rotation detection

algorithm is firstly proposed to be applied to the pest

detection field of the constructed pest datasets PRD21, and

good detection results have been achieved, which provides a

new solution for pest detection in the early stage of agriculture.

Among them, the R3Det algorithm uses its refinement module to

improve the recognition rate and approximate SkewIoU loss to

improve the recall rate. Finally, the detection comparison in the

actual environment proves its superiority and strong adaptability.

The overall experimental conclusions are as follows:

1) This paper uses rotation and horizontal detection

algorithms to research pest detection and identification.
TABLE 6 Comparison of detection speed and parameter amount of the same backbone network algorithm.

Algorithmmodel Backbone Resnet 50 1800*1200
(1800*1200)

Backbone Resnet 101 1000*600
(1000*600)

Backbone Resnet 101 1800*1200
(1800*1200)

FPS Single graph
detection time/s

GFLOPs/
MB

FPS Single graph
detection time/s

GFLOPs/
MB

FPS Single graph
detection time/s

GFLOPs/
MB

Faster RCNN 13.5 0.074 41.23 25.3 0.040 60.22 10.1 0.100 60.22

Cascade RCNN 12.0 0.083 68.99 21.1 0.047 87.98 9.2 0.109 87.98

RoFaster RCNN 12.5 0.08 41.14 22.1 0.045 60.14 9.5 0.105 60.14

ReDet 8.8 0.114 40.23 16.8 0.060 58.22 6.7 0.149 58.22

S2ANet 10.8 0.092 38.63 20.8 0.048 57.62 8.4 0.119 57.62

R3Det 7.2 0.138 47.54 14.0 0.071 66.54 6.1 0.163 66.54
fro
The bold numbers in the table indicate the highest values of the experimental results.
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Under different natural image detection environments,

rotation detect ion reflects the advantages of good

generalization and strong adaptability. The R3det algorithm

can still achieve a recognition rate of more than 70% under

more occlusion and serious background interference, and the

Recall also reaches 86.0%. It achieves 85.1%, 82.6 and 79%

under the other classification test data sets, SNO, SO,

and INO.

2) In single-class detection, the performance of rotation

detection is the highest in 19 of the 21 categories. The highest
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category is the 445th category, which reaches 99.7%, and the

other category achieves 81.1%. The detection effect shows that

the rotation algorithm has good robustness to multi-category

targets in addition to the influence of environmental factors.

3)Since pests may increase over time over large areas, it is

necessary to detect and identify pests in the exact location within

a short period. Through experiments, it has been found that the

detection time of a single image of the rotation detection

algorithm is less than 0.17s, which can realize rapid

identification and detection.
FIGURE 8

Comparison between horizontal algorithm and rotation algorithm. The algorithm model for comparison is Faster RCNN, Cascade RCNN,
S2ANet and R3Det. Test figure (A) represents small-target pest detection, (B) represents intensive pest target detection, and (C) represents
interpest occlusion type detection.
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The above experiments prove that rotation detection has

practical application value on pests. However, at the same

time, there are some deficiencies. For example, the detection

effect of category 7 pests is low, and there is still room for

improvement when the environment is the most complex. In

the future, we will further collect samples of various pests in

different environments and add specific pest categories to

expand the training sample database of pests in other regions.

In addition, the algorithm is optimized, improved, and

innovated. Ultimately, it provides a new research method

for intelligent plant protection and detecting crop diseases

and insect pests.
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FIGURE 9

Left panel (A) shows the Loss comparison of multiple algorithms, and right panel (B) shows multiple Loss curves of the R3Det algorithm.
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