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Background: Adrenocortical carcinoma (ACC) is a rare malignant endocrine

tumor derived from the adrenal cortex. Because of its highly aggressive

nature, the prognosis of patients with adrenocortical carcinoma is not

impressive. Hypoxia exists in the vast majority of solid tumors and

contributes to invasion, metastasis, and drug resistance. This study aimed

to reveal the role of hypoxia in Adrenocortical carcinoma and develop a

hypoxia risk score (HRS) for Adrenocortical carcinoma prognostic

prediction.

Methods: Hypoxia-related genes were obtained from the Molecular Signatures

Database. The training cohorts of patients with adrenocortical carcinoma were

downloaded from The Cancer Genome Atlas, while another three validation

cohorts with comprehensive survival data were collected from the Gene

Expression Omnibus. In addition, we constructed a hypoxia classifier using a

random survival forest model. Moreover, we explored the relationship between

the hypoxia risk score and immunophenotype in adrenocortical carcinoma to

evaluate the efficacy of immune check inhibitors (ICI) therapy and prognosis of

patients.

Results: HRS and tumor stage were identified as independent prognostic

factors. HRS was negatively correlated with immune cycle activity, immune

cell infiltration, and the T cell inflammatory score. Therefore, we considered the

low hypoxia risk score group as the inflammatory immunophenotype, whereas

the high HRS group was a non-inflammatory immunophenotype. In addition,

the HRS was negatively related to the expression of common immune

checkpoint molecules such as PD-L1, CD200, CTLA-4, and TIGIT,

suggesting that patients with a lower hypoxia risk score respond better to

immunotherapy.

Conclusion: We developed and validated a novel hypoxia risk score to predict

the immunophenotype and response of patients with adrenocortical carcinoma

to immune check inhibitors therapy. These findings not only provide fresh

prognostic indicators for adrenocortical carcinoma but also offer several

promising treatment targets for this disease.
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1 Introduction

Adrenocortical carcinoma (ACC) is a rare endocrine

malignant tumor that is accompanied by clinical

manifestations caused by the excessive production of adrenal

steroid hormones (Pittaway, 2019). The annual incidence of ACC

is 1 -2 per million people, accounting for 0.2% of cancer deaths

(Cronin et al., 2018). Moreover, the incidence peak in children

younger than 10 years old and female aged 40–50 (Mcateer et al.,

2013). Due to the highly invasive nature of ACC, the prognosis of

patients is not optimistic even after radical surgery, which is the

predominant treatment of ACC (Puglisi et al., 2020). Once

metastasis and recurrence occur, the effects of endocrine

therapy and chemotherapy are limited (Puglisi et al., 2018).

Mitotane is the only drug widely accepted to be appliable for

the treatment of patients with advanced or postoperative residual

ACC, however, most patients experienced only temporary and

partial remission (Puglisi et al., 2020). Identically, according to a

multicenter study, the overall survival rate of mitotane in

combination with EDP (etoposide, doxorubicin and

doxorubicin) or streptomycin remains poor (Fassnacht et al.,

2012). Hence, a more effective treatment is required for patients

with ACC.

In recent years, immunotherapy has shown significant

superiority in a variety of cancers (Guirgis, 2018; Nakamura,

2019; Marinelli et al., 2020), and the research of immunological

events of ACC has progressed. The majority studies focused on

the treatment outcome of programmed death-1 (PD-1) and

programmed death-ligand 1 (PD-L1) expression, microsatellite

instability (MSI) and tumor mutational burden (TMB) (Li et al.,

2020). In the clinical trial of avelumab, the patients with higher

PD-L1 mRNA expression were associated with stronger immune

response (Billon et al., 2019). However, under the treatment of

pembrolizumab, the expression of PD-1 was not apparently

associated with the infiltrating immune cell of ACC patients

(Habra et al., 2019). In addition to immune statues, the prognosis

of various immunotherapies in ACC remains controversial (Fay

et al., 2015; Raj et al., 2020). At this point, it is necessary to

distinguish patients who are sensitive to immunotherapy.

Furthermore, immune cells within the tumor

microenvironment (TME) are indispensable in the process of

recognizing and attacking cancer cells, which results in a

powerful response to immunotherapy (Yost et al., 2019).

Hypoxia is the most common condition in the TME because

of rapid tumor cell proliferation and inadequate angiogenesis

(Jing et al., 2019). Hypoxia contributes to the genetic and

epigenetic changes that are associated with cellular biological

behaviors and physiological functions, ultimately accelerating

tumor generation, metastasis, and drug resistance. Increased

hypoxia-inducible factor 1α (HIF-1α) expression, a critical

hallmark of hypoxia, has been reported in various neoplasms,

including lung carcinoma (Yang et al., 2016), breast cancer (De

Heer et al., 2020) and melanoma (Malekan and Ebrahimzadeh,

2021). There is also increasing evidence indicating that HIF-α is a
major regulator of immune actions (Jing et al., 2019). Non-

etheless, the effect of hypoxia on ACC immunotherapy is unclear.

In this study, our purpose was to explore the role of hypoxia

in the TME of ACC and its predictive effect. After unsupervised

classification, the TCGA-ACC cohort was divided into two

clusters. According to the immune statues in TME, the cluster

2 was considered as an inflammatory immune phenotype,

whereas cluster 1 was a non-inflammatory immune

phenotype. Then we conducted a hypoxia risk assessment and

associated it with immunological and clinical characteristics.

Subsequently, the correlation was analyzed between hypoxia

risk score (HRS) and immune checkpoint inhibitor (ICI)

response for providing an alternative treatment for ACC.

2 Methods and materials

2.1 Data collection and preprocessing

We downloaded the fragments per kilobase per million

mapped fragments (FRKM) and clinical information of ACC

patients from The Cancer Genome Atlas (TCGA) (https://portal.

gdc.cancer.gov/). The FRKMwas then rendered into a transcripts

per kilobase million (TPM) value. Three validation cohorts with

mRNA expression matrix and GPL data, including GSE19750

(GPL570), GSE33371 (GPL570), and GSE76019 (GPL13158),

were retrieved from the Gene Expression Omnibus (GEO)

(https://www.ncbi.nlm.nih.gov/geo/) by the “GEOquery” R

package. Clinical data are summarized in Supplementary

Table S1.

2.2 Unsupervised clustering for hypoxia-
related genes

Hypoxia-related genes were collected from the Molecular

Signatures Database (MSigDB, version 7.0). We included

191 hypoxia-related genes for further analysis because of nine

gene symbol mismatches in TCGA-ACC (Supplementary Table

S9). Unsupervised cluster was used to distinguish different

hypoxia conditions by the Consensus Clustering algorithm

(maxK = 5, reps = 100, pItem = 0.8, distance = “euclidean”,

clusterAlg = “km”) implanted in the “ConsensusClusterPlus” R

package (Kiselev and Andrews, 2019; Chengquan et al., 2021).
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Finally, TCGA-ACC cohort was divided into cluster 1 and

cluster 2.

2.3 Identification of hypoxia-related
differentially expressed genes (DEGs) and
functional analysis

We applied the “LIMMA” package to determine DEGs

between clusters 1 and 2. The filtering criteria of DEGs were

false discovery rate adjusted p < 0.05 and absolute log2 fold

change (log2 FC) > 1. Based on the identified genes, we then used

Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene

Ontology (GO) through the gene set enrichment analysis

(GSEA), and the enrichment of the interferon-γ (IFN-γ)
pathway between the two clusters was determined also using

GSEA. The gene sets of KEGG and GO were downloaded from

https://www.gsea-msigdb.org/gsea/index.jsp, and the IFN-γ gene
sets were collected fromMariathasan’s study (Hänzelmann et al.,

2013) (Supplementary Table S2).

2.4 Identification of immunological
characteristics of the TME in ACC

There are several critical procedures included in the cancer

immunity cycle, and the activities of these processes were

gathered from http://biocc.hrbmu.edu.cn/TIP/. It can be

roughly summarized as the release and presentation of cancer

cell antigens (steps 1 and 2), activation of the immune response

(step 3), recruitment and invasion of immune cells (steps 4 and

5), and identification and killing of cancer cells by effector T cells

(steps 6 and 7) (Chen, 2013). We then estimated the abundance

of tumor-infiltrating immune cells in the TME using a single-

sample gene set enrichment analysis algorithm (ssGSEA) (Wang

et al., 2020), and the relevant immune cell gene sets acquired

from Charoentong et al. (2017) (Supplementary Table S3). For

the sake of persuasion, we applied six other algorithms

incorporated in TIMER (Li et al., 2017), EPIC (Yang et al.,

2021a), Cibersort-ABS (Tan and Wang, 2022), Quan-Tiseq

(Plattner et al., 2020), x-Cell (Tan and Wang, 2022), and

Mcp-counter (Becht et al., 2016) to validate the tumor

immune cell infiltration level of which EPIS, Quan-Tiseq,

TIMER, and x-Cell were applied by the “immunedeconv” R

package, while we downloaded LM22 from http://cibersort.

stanford.edu/and used the “MCPcounter” R package for

verification (Li et al., 2017; Plattner et al., 2020; Xu et al.,

2021) (Supplementary Table S3). We also made the

correlation analysis between MSI, TMB and HRS.

2.5 Generation and validation of the HRS

According to the univariate Cox analysis, we selected

143 DEGs as prognostic for hypoxia. Then, using the least

absolute shrinkage and selector operation (LASSO) regression

analysis and cross validation, we screened out six genes (SLC7A4,

ISL1, SLC30A10, HOXC11, LHX2, and ZIC2) to calculate the

HRS. The random survival forest model is an ensemble tree

method used for survival analysis (Jamet et al., 2021). We

generated the HRS on the basis of six genes with optimal

predictive value using the rfsrc function performed by the

“randomForestSRC” R package (kogalur.github.io/

randomForestSRC) (Jamet et al., 2021). Taking the

intermediate value of HRS as the cut-off point, we divided the

cohort into high-risk and low-risk score groups. The Kaplan-

Meier method and log rank test were applied for survival and

statistical significance analyses between risk groups, respectively.

Moreover, we evaluated the accuracy of the HRS using receiver

operating characteristic curves visualized by the area under the

curve. The prognostic value of the HRS was further verified using

three external validation cohorts (GSE19750, GSE33371, and

GSE76019).

2.6 Clinical characterizes combined with
HRS for prognosis prediction

Multivariate Cox analyses were conducted to determine

whether age, sex, tumor node metastasis stage, and HRS were

prognostic factors for ACC. The results were displayed by the

“forestplot” R package. The nomogram depicted the degree of

contribution of the clinical factors and HRS to the survival

probability at different time points. To further validate the

predictive performance of nomogram, we made decision curve

analysis (DCA).

2.7 Statistical analyses

We explored the correlation between immune status and

HRS, and the expression of immune check point molecules and

the HRS, using Spearman coefficients and a Pearson correlation

analysis. Continuous variables between binary groups were

compared using either the t-test or Mann-Whitney U test.

Comparisons of classification variables were performed using

Chi-square or Fisher tests. Statistical tests were two-sided, and

the level of significance was set at p < 0.05. All statistical data

analyses were performed using R software, version 4.0.3 (http:

www.r-project.org).
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FIGURE 1
Hypoxia clusters correlated with immune phenotypes. (A) The TCGA-ACC cohort was divided into two distinct cluster when k = 2. (B) Survival
analysis between cluster 1 and cluster 2. Cluster 1, red. Cluster 2, yellow. (C) Comparison of immune cycle activity involved in seven steps between
cluster 1 and cluster 2. Cluster 1, red. Cluster 2, blue. (D)Comparison of various immune cell infiltration score between cluster 1 and cluster 2. Cluster
1, red. Cluster 2, blue. (E) The enrichment score of IFN-γ pathway in cluster 1 and cluster 2. |NES| > 1 and p < 0.01 were considered as statistically
significant.
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FIGURE 2
Hypoxia related DEGs and functional analysis. (A) A heatmap depicts the between DEGs cluster1 and cluster 2. Higher expression DEGs with
are displayed in red, and lower expression are displayed in blue. (B) A volcano plot depicts the DEGs between cluster 1 and cluster 2. DEGs with
log2(FC)≥1 were shown in red while the genes with log2 (FC)≤ -1 were shown in blue, and the genes with indiscriminate expression were shown in
gray. (C–F) GO and KEGG analysis of DEGs between cluster 1 and 2. (C) The pathway in GO functional enrichment comparison between
cluster 1 and cluster 2. (D) The pathway in KEGG functional enrichment comparison between cluster 1 and cluster 2.
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3 Results

3.1 Hypoxia clusters correlated with
immune phenotypes

According to the expression of hypoxia-related genes, we

found that when K = 2, unsupervised classification was the most

effective. Hence, TCGA-ACC cohort was divided into two

independent clusters: cluster 1 (50 patients) and cluster 2

(29 patients) (Figure 1A, Supplementary Figures S1 A–E). The

survival analysis indicated that the overall survival (OS) rate in

cluster 2 was greater than in cluster 1 (p = 0.0023) (Figure 1B).

Next, we explored the relationship between clustering and

immune phenotypes. Throughout the immune cycle, several

steps in cluster 2 involved releasing and presenting cancer cell

antigens, extensive recruitment of immune cells, such as

CD8 T cells, macrophages, B cells, natural killer (NK) cells,

and killing of tumor cells, was more active in cluster 2 than

cluster 1, so cluster 2 might be an inflammatory

immunophenotype (Figure 1C). Furthermore, we compared

the number of infiltrating immune cells between the two

hypoxia clusters and found that the enrichment of NK cells,

macrophages, dendritic cells (DCs), and neutrophils involved in

the innate immune response in cluster 2 was significantly higher

than cluster 1 (Figure 1D). In addition, activated CD8 T cells,

B cells, or Th1 and Th17 cells connected with specific immunity

were richer in cluster 2 than in cluster 1 (Figure 1D). Hypoxia

cluster 2 was considered an inflammatory immune phenotype,

whereas hypoxia cluster 1 was a non-inflammatory immune

phenotype. In the anti-tumor immune cycle, IFN-γ is a

pivotal modulator induced by active T cells and NK cells, and

promotes cancer cell death (Alspach and Lussier, 2019). Our

results showed that the IFN-γ pathway in cluster 1 was inhibited

compared to that in cluster 2. Therefore, we reasonably presumed

that cluster 2 was more sensitive to immunotherapy (Figure 1E).

3.2 Hypoxia related DEGs and functional
analysis

We screened out 405 DEGs between the two hypoxia clusters,

as shown in the heatmap (Figure 2A) and volcano plot

(Figure 2B) (Supplementary Table S4). The expression levels

of hypoxia-related genes between the clusters were almost the

opposite. Furthermore, the GO analysis demonstrated the

pathway containing adaptive immune response, leukocyte

chemotaxis and adhesion, antigen receptor mediated signaling

were suppressed in cluster 1 (Figure 2C). In addition, the T cell

activation and regulation, T cell mediated cytotoxicity, signaling

receptor and cytokine activity were down-regulated in cluster 1

(Supplementary Table S10). According to the results of the

KEGG analysis, pathways involving chemokine signaling,

natural killer cell mediated cytotoxicity, antigen processing

and presentation and T cell receptor signaling were

suppressed in cluster 1 (Figure 2D) (Supplementary Table

S11). In view of the above results, we provided favorable

evidence that hypoxia-related DEGs between the two clusters

are strongly linked to immune activity and the immune response

pathways were restrained in cluster 1 compared to cluster 2,

which further confirmed that cluster 2 was more

immunologically active.

3.3 Development of the HRS and its role in
clinical prognosis prediction

First, we selected 143 hypoxia related genes that were

independently associated with the prognosis of TCGA-ACC

discovery cohorts (Supplementary Table S7). Next, we

screened out the optimal predictive genes: SLC7A4, ISL1,

SLC30A10, HOXC11, LHX2, and ZIC2 (Figures 3A, B).

Figure 3C shows that these six signatures were independent

prognostic factors, and all but SLC7A4 were risk factors.

Ultimately, we generated an HRS and used it to divide TCGA

discovery cohort into high and low HRS groups. Obviously,

patients in the low-risk group had better survival than those in

the high-risk group (Figure 3D). In addition, the accuracy of the

HRS in predicting 1-, 3-, and 5-year OS was 0.8 0.92, and 0.88,

respectively (Figure 3E). Based on the excellent predictive

performance, we combined the HRS with clinical

characteristics for predicting the clinical outcome. A

multivariate Cox analysis revealed that tumor stage and HRS

were crucial independent risk factors (Figure 3F). Furthermore,

our nomogram showed that the later the clinical stage and the

higher the HRS, the worse the prognosis (Figure 3G). To be more

convincing, we also tested whether the input data of independent

prognostic analysis follow PH assumption. All of them follow PH

assumption as expected (Supplementary Figure S10A)

(Supplementary Table S12). Besides, we have analyzed the

relationship between HRS and the clinicopathological

characteristics of the patients. HRS were found to be

significantly higher in high T and M stages, which indicates

the important clinical predictive value. It also suggests that

hypoxia in tumor microenvironment is more serious in ACC

with higher stage (Supplementary Figure S2). Moreover, the

DCA of nomogram indicated that the nomogram model we

constructed was feasible to make valuable and profitable

judgments for the survival rate of 3 or 5 years (Supplementary

Figure S10B).

3.4 External validation of the HRS

To confirm the performance of the HRS, the GSE76019,

GSE19750, and GSE33371 cohorts were used for external

validation. Unsurprisingly, compared with the low-risk group,
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FIGURE 3
Development of HRS and the role in clinical prognosis prediction. (A) LASSO coefficient profiles of 143 hypoxia-related prognostic DEGs (B) Ten-fold
cross-validation for tuning parameter selection in the LASSOmodel. The twodottedvertical lines are drawnat theoptimal valueusing theminimumcriteria.
Optimal hypoxia genes with the best discriminative capability (6 in number) were selected for generating the HRS (C) Forest plot of hazard rations for six
optimal hypoxia-related prognostic genes. (D) Survival analysis between the two different risk score group. Risk score high is shown red and risk score
low group is shown yellow. (E) The predictive accuracy of the HRS for survival. (F) Results of univariate Cox analysis by integrating the HRS and
clinicopathological characters. (G) The nomogram used to predict the 12-month,36-month, 60-month overall survival.
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FIGURE 4
External validation of the hypoxia risk score. (A, B) Validation of the hypoxia risk score in GSE76019 (C, D) Validation of the hypoxia risk score in
GSE19750 (E, F) Validation of the hypoxia risk score in GSE 33371.
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FIGURE 5
Differences in immunological characteristic between HRS groups. (A, B) Spearman correlation analysis of HRS with activity of cancer immunity
cycle and immune cell in TME analyzed by ssGSEA. The positive correlation is shown in solid line. The negative correlation is shown in dotted line. The
association strength was represented by the thickness of the lines. The different colors of the lines represent different p-values. (C) The associations
between the HRS and the several anti-tumor immune cell in six different algorithms. (D) The correlations between HRS and immune
checkpoint. (E) The correlations between HRS and T cell inflamed score. (F) A heatmap was drawn to depict the differences in cytotoxic effector
molecule between high-risk score group and low-risk group.
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patients in the high-risk group had worse OS in the

GSE76019 cohort (Figure 4A). The predictive accuracies for 1-

, 3-, and 5-year OS were 0.63, 0.73, and 0.7, respectively

(Figure 4B). In GSE19750, the OS of the high-risk group was

poorer than that of the low-risk group (Figure 4C), and the

predictive accuracies for 1-, 3-, and 5-year OS were 0.61, 0.73, and

0.79, respectively (Figure 4D). Consistently, the high-risk score

group showed a lower OS rate in GSE33371 (Figure 4E). The

predictive accuracies for 1-, 3-, and 5-year OS were 0.7, 0.74, and

0.73, respectively (Figure 4F). Besides, we have mademultivariate

regression analysis in the GEO datasets. Unfortunately, we only

verified the independent prognostic value of HRS in GSE76019,

but not in the other two GEO datasets (Supplementary

Figure S3).

3.5 HRS correlated with the immune
phenotype and immune checkpoint
molecule expression

Similarly, we connected the HRS to immune cycle activation.

As expected, several steps involved in the immune cycle,

including T cell recruitment, Th1 cell recruitment, DC

recruitment, macrophage recruitment, and infiltration of

immune cells, were negatively correlated with the HRS (All

p < 0.05) (Figure 5A) (Supplementary Table S6). In addition,

the infiltration of most antitumor immune cells, including

activated B cells, activated CD8 T cells, activated DCs,

memory T cells, macrophages, and NK cells, were inversely

related to the HRS (All p < 0.05) (Figure 5B) (Supplementary

Table S6). To be persuasive, an additional six algorithms were

used (Supplementary Figures S4–S9). Overall, all algorithms

indicated that CD8 T cells were lacking in the high HRS

group. In addition, many of the algorithms showed

macrophages and DCs were negatively correlated with HRS

(All p < 0.05) (Figure 5C). Based on these findings, we infer

that the low HRS group exhibited an inflammatory phenotype

with prominent anti-tumor ability. Inflammatory phenotype

tumors generally show high expression of immune checkpoint

molecules (Trujillo et al., 2018). Indeed, the HRS was negatively

correlated with the expression of several common immune

checkpoint molecules such as CD274 (PD-L1), CD200, CTLA-

4, TIGIT (All p < 0.001) (Figure 5D) (Supplementary Table S8).

The gathering factors involved in the T cell inflamed score also

suggest an inflammatory TME (Hu et al., 2021). Consistently,

HRS was negatively related to T cell inflammatory score (TIS)

(All p < 0.01) (Figure 5E) (Supplementary Table S8). Effector

molecules of cytotoxic lymphocytes play an indispensable role in

killing tumor cells (Martinez-Lostao et al., 2015). Thus, we found

that most of the effector molecules were significantly increased in

the low HRS group (Figure 5F). It was regrettable that HRS was

positively correlated with TMB and not related to MSI

(Supplementary Figures S10C, D).

4 Discussion

Hypoxia is a pivotal hallmark in most solid tumors owing to

an imbalance in oxygen supply and demand (Jing et al., 2019).

Throughout the process of tumorigenesis, hypoxia plays an

indispensable role in cell-intrinsic oncogenic and TME

suppression, which induces changes in cellular biological

functions, ultimately leading to poor prognosis (Roma-

Rodrigues et al., 2019). On the one hand, hypoxia contributes

to cancer cell phenotype changes such as the epithelial-to-

mesenchymal transition, resulting in invasion and metastasis

(Hapke, 2020). On the other hand, HIF-α overexpression not

only drives the activation of immune-suppressor cells, such as T

regulatory cells, but also inhibits anti-immune cell and antigen-

presenting actions involving CD8 T cells, NK cells, and DCs. This

tends to impair immune surveillance and anti-tumor ability

subject to the TME (Vaupel and Multhoff, 2018). In this

study, we constructed a hypoxia risk assessment that might

serve as an overall immune status predictor in ACC for

evaluating immune phenotype and the response to immune

checkpoint inhibitors (ICIs) to ultimately achieve ACC patient

prognosis prediction.

Due to the development of bioinformatics, numerous studies

have uncovered the effect of hypoxia gene signatures and

pathways in the progression, prognosis, and curative effects in

various tumors. Zhang et al. selected three hypoxia-associated

genes (PDSS1, CDCA8, and SLC7A11) to construct a model for

liver cancer diagnosis, prognosis, and recurrence (Zhang et al.,

2020a). In advanced and high-risk clear cell renal cancer, Chen

et al. found that the expression of four hypoxia-related long non-

coding RNAs was decreased (Chen et al., 2021). Liu et al.

discovered that HIF1α upregulation in glioma was associated

with disease severity and drug resistance (Liu et al., 2020a). In

triple-negative breast cancer patients, Yang et al. established a

comprehensive index of hypoxia and immune genes for risk

stratification (Yang et al., 2021b). In our study, we selected six

optimal hypoxia-related genes. Among these, ISL-1 was reported

to drive gastric and breast cancer progression (Zhang et al., 2018;

Guo et al., 2019). The long non-coding RNA-SLC30A10 was

associated with the colorectal tumor proliferation (Hou et al.,

2020). Cui et al. (2020) found that HOXC11 functions as a novel

oncogene in colon adenocarcinoma and kidney renal clear cell

carcinoma. The down-regulating of LHX2 was able to inhibit the

nasopharyngeal carcinoma growth (Liang et al., 2019). Besides,

the role of ZIC in different tumors remains controversial (Lu

et al., 2017; Liu et al., 2020b). Nevertheless, the relationship

between these predictive genes and ACC had not been reported.

The morbidity of adrenal neoplasms is about 3%–10% (Else

et al., 2014), but only a minority are malignant (Crona, 2019).

Furthermore, the 5-year survival for ACC in situ is

approximately 60%–80%, though this is reduced sharply to

30% in advanced ACC, and the recurrence rate is up to 75%

even after complete resection (Fassnacht et al., 2009; Fassnacht
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et al., 2010). Recently, increasingly studies have focused on

targeted therapy for ACC. Ruggiero et al. revealed that

hampering VAV2 may be a new approach to inhibit

metastatic progression in ACC (Ruggiero et al., 2017).

Fiorentini et al. found a 17α-hydroxylase inhibitor capable of

restraining the vitality of ACC (Fiorentini et al., 2016).

Nevertheless, the curative effect of ICIs in patients with ACC

remains controversial. Parise et al. found that high CD8T cell

counts in pediatric ACC are persuasive evidence for immune

response activation (Parise et al., 2019). In a phase 1b clinical

trial, Le Tourneau et al. (2018) discovered that some patients

could benefit from PD-1/PD-L1 inhibitors. In contrast, Fay et al.

(2015) reported that PD-L1 expression in ACC was not

associated with clinical pathology parameters or the survival

rate. At the same time, some studies have found that patients with

ACC have an inconsistent prognosis in response to

immunotherapy related to immune escape, molecular

alterations and the level of glucocorticoid (Araujo-Castro

et al., 2021). Consequently, it is essential to identify patients

with ACC who are responsive to immunotherapy.

In our study, we clustered ACC patients with 191 hypoxia-

related genes into immune inflammatory and non-inflammatory

phenotypes, indicating that hypoxia is a potential prognostic

factor for ACC. However, the number of genes that needed to be

tested was too large to be feasible. As a result, we selected six

optimal gene signatures for constructing the risk score by

Random Forests, though there are also many manuscripts

recommending the LASSO method (Tibshirani, 1997; Zhang

et al., 2020b). Random Forests harbors the property of

collecting vital predictors without restricting their pairwise

correlation, while the mutual exclusion of highly correlated

variables in LASSO modeling is likely to skip crucial variables

that cause predictive performance impairment (Zhu et al., 2015).

We found that the HRS can also be used to effectively evaluate the

prognosis of patients with ACC. In addition, the tumor stage is

generally negatively correlated with prognosis. According to the

results, we discovered that both tumor stage and HRS were

independent risk factors for ACC. Therefore, we can infer that

patient with advanced stage ACC and a high HRS are expected to

have a worse prognosis.

Subsequently, we evaluated whether the HRS predicted

performance in the immune status and ICI response. Our

results showed that the HRS was negatively associated with

anti-cancer immune activity and immune cell infiltration.

However, it is worth noting that M2 macrophages have a

negative correlation with HRS in our study. A large number

of studies have shown that M2 macrophages play an

important role in the microenvironment of tumor

immunosuppression (Xia et al., 2020). Nevertheless, the

focus of our study is on the inflammatory and non-

inflammatory typing of the tumor microenvironment. But

the increase of anti-inflammatory immune cells, such as

M2 macrophages, making no influence on overall

inflammatory microenvironment. Hence, we infer that

there is more infiltration of various pro-inflammatory

immune cells in the inflammatory tumor

microenvironment, resulting in the corresponding increase

of anti-inflammatory immune cells. Furthermore, the

majority of factors involved in TIS were low in high HRS

status, among which CCL5 and CXCL9 strongly enhanced

CD8 T cell chemotaxis (Romero et al., 2020). Collectively, the

high HRS group indicated that the non-immune phenotype

presented with increased anti-tumor immunity, while the low

HRS group showed a reverse trend. Increasing evidence

suggests that ICI treatment is more effective in patients

with an inflammatory phenotype (Nishino et al., 2017;

Petitprez et al., 2020). In patients with ACC, we found no

significant correlation between PD-1 and HRS, probably

because of inadequate clinical data. Nevertheless, it should

be point out that the expression of several other critical

immune checkpoint molecules, such as PD-L1, CD200,

CTLA-4 and TIGIT were negatively correlated with HRS.

Hence, we believe that ICIs are a potential and promising

treatment for ACC patients with low HRS. However, the

prediction ability of HRS in TMB and MSI were limited on

account of inconsistent inspection standards and different

algorithms. Combined with other results illustrated in our

texts, HRS was able to predict the TMB subtypes effectively.

Regrettably, since there is no data on ACC immunotherapy,

we were not able to directly use HRS to predict the efficacy of

immunotherapy, which is one of the limitations of our study.

It should be pointed out that there were several other

limitations in our study. Primarily, all of our data came from

public databases. Thus, the experimental evidence and clinical

material were not directly available. Second, the credibility of our

findings is weakened because of the rarity of ACC medical

records. Third, we set the median as the optimal cutoff value

of the HRS. This was a subjective decision and requires further

careful consideration.

5 Conclusion

In summary, our study revealed that hypoxia is associated

with immune status in ACC. Taking this into account, we

developed an HRS for use of risk classification to predict the

immune phenotype, ICI response, and prognosis in ACC. It not

only provides novel prognostic indicators for ACC but also offers

some promising treatment targets for this disease.
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Glossary

TME tumor immune microenvironment

ACC Adrenocortical carcinoma

TIS T cell-inflamed score

ICI Immune checkpoint inhibitor

HRS hypoxia risk score

ROC receiver operating feature

AUC area under the ROC curve

RSF Random survival forest

GSEA Gene Set Enrichment Analysis

FPKM fragments per kilobase per million mapped fragments

TPM transcripts per kilobase million

FDR false discovery rate

log2 FC log2 Fold change

KECG Genes and Genomes

GO Gene Ontology

BP biological process

CC cellular component

MF molecular

GEO Gene Expression Omnibus

MSigDB Molecular Signatures Database

ssGSEA single-sample gene-set enrichment analysis interferon-γ
(IFN-γ)
LASSO least absolute shrinkage and selector operation

K-M Kaplan-Meier

DEGs differentially expressed genes

OS Overall survival

TNM Tumor Node Metastasis

Th1 cell Type 1 T helper cell

Th17 cell Type 17 T helper cell NK: nature killer

DC dendritic cell

CTL cytotoxic T lymphocyte.

MSI Microsatellite instability

TMB tumor mutational burden

DCA decision curve analysis

HIF-1α hypoxia-inducible factor 1α
PD-1 programmed death-1

PD-L1 programmed death-ligand 1

M2 Macrophage 2.
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