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Structure-from-Motion (SfM) photogrammetry is a time and cost-effective

method for high-resolution 3D mapping of cold-water corals (CWC) reefs

and deep-water environments. The accurate classification and analysis of

marine habitats in 3D provide valuable information for the development of

management strategies for large areas at various spatial and temporal scales.

Given the amount of data derived from SfM data sources such as Remotely-

Operated Vehicles (ROV), there is an increasing need to advance towards

automatic and semiautomatic classification approaches. However, the lack

of training data, benchmark datasets for CWC environments and processing

resources are a bottleneck for the development of classification frameworks. In

this study, machine learning (ML) methods and SfM-derived 3D data were

combined to develop a novel multiclass classification workflow for CWC

reefs in deep-water environments. The Piddington Mound area, southwest

of Ireland, was selected for 3D reconstruction from high-definition video data

acquired with an ROV. Six ML algorithms, namely: Support Vector Machines,

Random Forests, Gradient Boosting Trees, k-Nearest Neighbours, Logistic

Regression and Multilayer Perceptron, were trained in two datasets of

different sizes (1,000 samples and 10,000 samples) in order to evaluate

accuracy variation between approaches in relation to the number of

samples. The Piddington Mound was classified into four classes: live coral

framework, dead coral framework, coral rubble and sediment and

dropstones. Parameter optimisation was performed with grid search and

cross-validation. Run times were measured to evaluate the trade-off

between processing time and accuracy. In total, eighteen variations of ML

algorithms were created and tested. The results show that four algorithms

yielded f1-scores >90% and were able to discern between the four classes,

especially those with usually similar characteristics, e.g., coral rubble and dead

coral. The accuracy variation among them was 3.6% which suggests that they

can be used interchangeably depending on the classification task. Furthermore,

results on sample size variations show that certain algorithms benefit more from

larger datasets whilst others showed discrete accuracy variations (<5%) when

trained in datasets of different sizes.
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1 Introduction

Cold-water corals (CWC) play an important role in deep-sea

ecosystems (Rogers 1999; Costello et al., 2005). Species such as

Lophelia pertusa (synonymized to Desmophyllum pertusum

(Addamo et al., 2016) and Madrepora oculata are formed by

three-dimensional (3D) calcareous frameworks that can baffle

bypassing sediments (Dorschel 2003; Titschack et al., 2015; Lim

et al., 2020a), and given favourable environmental conditions

(e.g., hydrodynamic regime, temperature and nutrient supply),

they can form positive topographic features such as coral patches,

mounds, reefs and giant carbonate mounds (Mortensen et al.,

1995; Freiwald, 2002;Wheeler et al., 2005a; Freiwald and Roberts,

2005; Wheeler et al., 2007; Guinan et al., 2009; Roberts et al.,

2009; Lim et al., 2017; 2020b). CWC reefs are associated with

highly diverse faunal assemblages (Rogers 1999) being often

considered “biodiversity hotspots” of deep-sea environments

(Turley, Roberts, and Guinotte 2007; Lim et al., 2018a;

Boolukos et al., 2019; Dorey et al., 2020) as they act as a

refuge and nursery for deep-sea species, including commercial

fish (Fosså, Mortensen, and Furevik 2002; Turley, Roberts, and

Guinotte 2007). The association of not only live coral frameworks

but also dead corals and coral rubbles is also considered key for

the development of microhabitats that promote enhanced

biodiversity (Luckhurst and Luckhurst 1978; Buhl-Mortensen

et al., 2010; Henry and Murray Roberts 2017; Lim et al., 2020b;

Clippele et al., 2021). However, these vital ecosystems are

impacted by anthropogenic activities such as bottom trawling,

deep sea mining and oil and gas exploration (Rogers, 1999;

Wheeler et al., 2005a; Turley et al., 2007; Boolukos et al.,

2019). Studies evidence the impact of fishery-related activities

and climate change in CWCs, suggesting that coral health is

affected by trawling and/or dredging (Rogers, 1999; Roberts et al.,

2000; Wheeler et al., 2005b; Althaus et al., 2009), ocean

acidification, CO2 emission and ocean uptake leading to a

decrease of ocean pH (Turley, Roberts, and Guinotte 2007)

and rising temperatures (Gori et al., 2016).

As 3D structures, CWCs enhance small scale spatial

variability and influence species biodiversity and nutrient

cycling (Graham and Nash 2013; Pizarro et al., 2017; Lim

et al., 2018b). However, the analysis of these environments

often rely on planar derivatives from 1D or 2D estimates of

coral reef coverage, rugosity and distribution that may disregard

key variations on coral habitats, as accurate vertical and

volumetric information may not be integrated into the

analysis (Cocito et al., 2003; Courtney et al., 2007; Goatley

and Bellwood 2011; House et al., 2018). Whilst 2D

approaches are useful to produce rapid estimates of coral reef

health (Kornder et al., 2021), they may overlook the naturally

complex 3D morphology of corals reefs and maximise the

tendency of large coral colonies to obscuring understory biota

(Goatley and Bellwood 2011; Bergh et al., 2021; Kornder et al.,

2021) represented by the so-called ‘canopy’ effect. Therefore,

there is a demand for novel mapping methods that will take into

account the 3D morphological structure of CWC in order to

better understand the key drivers and controls of CWC

environments.

Structure from Motion (SfM) is a relatively new branch of

photogrammetry that can be applied to geospatially reconstruct

seabed habitats whilst providing detailed descriptors regarding

coral reef conditions and microhabitats (Ferrari et al., 2017;

Pizarro et al., 2017; Conti, Lim, and Wheeler 2019; Price

et al., 2019, 2021; Calders et al., 2020; Lim et al., 2020c;

Urbina-barreto et al., 2021; Urbina-Barreto et al., 2022). In

contrast to traditional photogrammetry, SfM uses algorithms

such as Scale Invariant Feature Transform (SIFT) (Lowe 1999) to

identify matching features in a set of overlapping images whilst

calculating the variations in camera orientation and position of

the matched features (Carrivick, Smith, and Quincey 2016). The

process yields high-resolution 3D reconstructions of different

landscapes in the form of 3D point clouds, meshes, digital

elevation models (DEMs) and orthomosaics (geometrically-

corrected, scaled and georeferenced mosaic of images

containing RBG information) (Carrivick, Smith, and Quincey

2016). Besides requiring less time and cost resources when

compared to traditional seabed mapping techniques such as

the ‘chain-and-tape’ method (Storlazzi et al., 2016), SfM and

3D photogrammetry enables non-destructive quantitative

monitoring of: 1) biological estimates, e.g., benthic cover,

coral colony health, abundance and size (Burns J. H. R. et al.,

2015; Lange and Perry 2020; Pascoe et al., 2021); 2) physical

estimates of reef terrain features such as slope, fractal dimension,

surface and structural complexity (Burns D. et al., 2015; Figueira

et al., 2015; Leon et al., 2015; Storlazzi et al., 2016; Fukunaga and

Burns 2020; Urbina-barreto et al., 2021) up to very high-

resolution analysis at colony scale such as 3) sub-centimetre

reconstructions of individual branches and polyps (Cocito et al.,

2003; Gutierrez-Heredia et al., 2016; Lange and Perry 2020).

The application of computer vision and machine learning

(ML) methods in remote sensing has contributed to

unprecedented progress in automated spatial (Gilardi 1995;

Pal 2005; Mountrakis et al., 2011; Belgiu and Drăgu 2016;

Durden et al., 2021) and marine data analyses (Beijbom et al.,

2012; Beijbom et al., 2015; Williams et al., 2019; Summers, Lim,

and Wheeler 2021). The use of supervised and unsupervised ML

classification methods has rapidly grown, especially in the

context of underwater image analysis (Huang, Brooke, and

Harris 2011; Shihavuddin et al., 2013; Young 2018; Conti,
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Lim, and Wheeler 2019; Yu et al., 2019; Lim et al., 2020c;

González-Rivero et al., 2020). Advancements have been made

with the application of assembled ML algorithms and deep-

learning such as convolutional neural networks (CNNs) to

automate the annotation process by applying path-based

image classification techniques to assign labels automatically

to unseen images (Shihavuddin et al., 2013; Modasshir et al.,

2018; Mahmood et al., 2019) and alternatively using the classified

images to produce 3D models (Mohamed, Nadaoka, and

Nakamura 2020). Recent studies used CNNs such as

ResNET152 to generate dense labels from sparse label

annotation by extracting patches of the 3D models

(Hopkinson et al., 2020). Other studies have created a

combined approach by using CNN for sparse label annotation

through patch extraction and using the resulting classified images

to produce 3D models of the environment (Pierce et al., 2021).

Point clouds are composed by a set of points containing

coordinates (X, Y, Z) oriented in a cartographic space. 3Dmodels

derived from point clouds are useful to optimise the trade-off

between precision and geometric complexity (Poux et al., 2018).

However, the semantic segmentation of point clouds, while

having numerous real word applications, has been considered

a challenge (Poux et al., 2018; Xu et al., 2018; Yuval et al., 2021).

Deep learning has advanced in favour of image segmentation and

classification tasks, but its use towards semantic point cloud

segmentation needs to be further explored (Karara, Hajji, and

Poux 2021). Representation models such as PointNET which

learn features directly from unstructured point data, i.e., dense

clouds/point clouds are considered state-of-the-art techniques

for dense cloud classification (Qi et al., 2017). However, these

frameworks require large annotated datasets and computational

requirements for producing meaningful results (Gilardi 1995;

Yuval et al., 2021). In the context of deep-water environments,

the lack of training data available has reportedly been the

bottleneck for advances of ML algorithms (Roelfsema et al.,

2021; Walker, Bennett, and Thornton 2021; Mohamed,

Nadaoka, and Nakamura 2022). Although annotation

frameworks to gather specific data from underwater

environments have been developed (Beijbom et al., 2012;

Beijbom et al., 2015; Zurowietz et al., 2018), there is still a

need for specifically designed dataset benchmarks for the

application of robust ML methods for 3D points clouds of

deep-water environments. Additionally, researchers are

continuously working towards minimising the effects of

the “black box issue” to properly understand the machine

decision process in the classification and how parameters

and data affect the output (Gilardi 1995; Castelvecchi

2016).

In this study, we intend to tackle the automatic

classification problem with a different approach. Instead of

classifying the images to produce the 3D models, we created a

classification framework to classify the 3D models directly,

minimizing the need to provide extensive manual image

annotations. As of this moment, this study is the first of

the field to provide a comparison and performance analyses

of six ML algorithms applied in 3D point clouds of CWC reefs.

A number of studies have performed comparison analyses

using widely used ML algorithms such as Support Vector

Machines (SVMs), Neural Networks (NNs) and common

ensemble methods, e.g., Random Forests (RFs) and

Gradient Boosting Trees (GBTs) in multispectral imagery

(Dixon and Candade 2008; Liu et al., 2017; Zhang et al.,

2017; Fu et al., 2018; Jodzani, Johnson, and Chen 2019).

Although insightful contributions can be drawn from such

analyses, these studies focused on land use and classification

of urban areas. Therefore, the fundamental properties of these

algorithms for marine mapping applications are not well

understood and advancements are required in order to

progress on seabed habitat mapping of larger areas. To this

end, this research bridges the knowledge gap between ML and

CWC classification in 3D by providing a comparison of ML

algorithms, performance analyses whilst delivering an

optimised workflow the for classification of photogrammetry

derived data.

This study applies ML classification to 3D photogrammetric

reconstructions of coral reef habitats to analyse the outputs,

data requirements and constraints of the coupled application of

both methods. We aim to develop a novel classification method

using SVM, RF, k-Nearest Neighbours (kNN), Logistic

Regression (LR), GBT and Multilayer Perceptron (MLP)

algorithms. Furthermore, this paper presents the results of

an empirical comparison of seven supervised learning

algorithms and evaluated by four performance criteria (f1

score, receiver operating characteristic (ROC) curves, area

under the curve (AUC) scores and f1 scores of k-fold cross-

validations). Each algorithm was analysed based on: 1) its

suitability to the given classification task 2) their

hyperparameters and processing times, and; 3) its

performance with two datasets of different sample sizes

(1,000 and 10,000 samples) to analyse the trade-off between

accuracy, processing times and sample size.

2 Study area

The Piddington Mound is a CWC mound located in the

Belgica Mound Province (BMP), Porcupine Seabight, NE

Atlantic. The mound was selected to develop this study given

the existence of high-definition (HD) video data and bathymetric

surveys covering a large extent of the area (Lim et al., 2017), the

evidence of temporal changes in coral cover (Boolukos et al.,

2019) and dynamic sediment facies (Lim et al., 2018a; Conti, Lim,

and Wheeler 2019). The BMP is a designated Special Area of

Conservation (SAC) under the EU Habitats Directive located on
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the eastern margin of the Porcupine Seabight, southwest of

Ireland (Figures 1A,B).

The province hosts numerous CWC carbonate mounds and

reefs dominated by framework-building scleractinian species

Lophelia pertusa and Madrepora oculata (Huvenne et al.,

2002; Wheeler et al., 2005b; Mol et al., 2007). Coral mounds

in the BMP range from 3 to 10 m in height, e.g., the Moira

Mounds (Wheeler et al., 2005b; Foubert et al., 2011; Wheeler

et al., 2011), of which the Piddington Mound is one of the largest

(Lim et al., 2017), to giant carbonate mounds that are up to 150 m

high, e.g., the Challenger (Thierens et al., 2013), Therese Mound

(Mol et al., 2007) and Galway Mound (Foubert et al., 2006;

Dorschel et al., 2007). TheMoira Mounds occur between 800 and

1,100 m water depth (Wheeler et al., 2005b) and have a semi-

circular to ridge-shaped morphology with predominant

alignment to the current direction (Wheeler et al., 2011).

Comprising a small extent of 60 × 40 m in area (Foubert et

al., 2006), the Moira Mounds are divided into a northern area,

upslope area, midslope area and downslope area, where the

Piddington Mound is located (Wheeler et al., 2011; Lim et al.,

2018a). The Piddington Mound has documented current speeds

of 40 cm s−1 (Lim 2017). Previous work carried out by (Lim et al.,

2017) have identified four distinct facies in the Piddington

Mound area namely: live coral framework, dead coral

framework, coral rubble and hemipelagic sediment with

dropstones. These facies occur in a ring-like distribution, with

coral rubble, live coral and dead coral frameworks distributed

around the mound summit, forming an ‘on mound’ setting with

high presence of corals, whilst sediments and drop stones occur

where seabed becomes flat (Lim et al., 2017). These facies have

also been adopted herein.

3 Materials and methods

This study is divided into a photogrammetry workflow to

produce the 3D reconstructions of the Piddington Mound area

and the development of multiclass classifications for these 3D point

clouds. The photogrammetry process is outlined below followed by a

description of the ML workflow. An overview of the classification

algorithms, the model selection and the accuracy assessment is then

further outlined. The ML workflow was executed in Python

3.8. Processing was executed with an Intel Core i7 CPU, 32 Gb

RAMwithNVIDIAGeforce RTX 2070 (8 Gb) graphics card (GPU).

Here, the terms classificationmodel, classifier and estimator are used

interchangeably.

3.1 Photogrammetry

The data used in this study were acquired during the research

cruise CE20011 (Lim et al., 2020b). The video data were collected

with the ROVHolland 1 which is equipped with 11 camera systems.

For this survey, two of these camera systems were used, namely: the

FIGURE 1
Map of the study site (A): Porcupine Seabight location relative to Ireland. The blue box indicates the location of the Belgica Mound Province
(BMP) Special Area of Conservation (SAC) (B)Close view of the Porcupine Seabight and BMPwith the PiddingtonMound location indicated by the red
cross (C) Bathymetric map of the Moira Mounds and location of the Piddington Mound Area (red box) within adjacent mounds.
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HDTV camera (HD Insitemini-Zeus withHDSDI fibre output), and

a Kongsberg OE 14–208 digital stills camera. The ROV is also

mounted with two deep-sea lasers spaced at 10 cm for scaling.

Positioning data were acquired with a Sonardyne Ranger 2 ultra-

short baseline (USBL) beacon with accuracy of 1.3% of slant range

(measurement of relative position from time of return signal from

ROV transponder to the USBL in relation to the Turnaround Travel

Time (TAT) and underwater sound velocity) similar to (Lim et al.,

2020a; Oliveira et al., 2021). The ROV was kept at a height of

approximately 2 mabove the seabedwith a survey speed of<0.2 knots
during the video data collection. HD videos (1080p) were acquired at

a rate of 50 frames per second (FPS) and stored as *.mov files. The

section of the survey used herein was derived from one ROV dive

performed as a grid with 35 lines spaced at 5 m from each other in a

N-S direction. Previous seabed imaged acquisition studies showed

that video mosaicking of a mound or grid of spaced lines yield more

representative mosaics of CWC mounds (Lim et al., 2018a). In total,

4 h and 49min of HD videos were recorded, summing

241.7 gigabytes (GB) of video data collected in one ROV dive.

The ROV video and navigation data were used to produce and

georeference the 3D reconstructions. Video frames were extracted at a

rate of 1 FPS from the raw video data with Blender (version 2.78). For

the 3D point cloud reconstruction, frames were extracted and

imported into Agisoft Metashape Professional version 1.7.2

(Agisoft-LLC 2020). Key point limit and tie point limits were

chosen based on an empirical approach. Camera optimisation was

performed after the camera alignment to refine the exterior and

interior camera orientation parameters and triangulated tie point

coordinates (Agisoft LLC, 2020). The dense point cloud was

georeferenced with frame-relative USBL positioning data with X

and Y coordinates, depth, yaw, pitch, roll and accuracy (°). The

constant 10 cm distance from the parallel lasers of the ROV was used

for scaling the model. The laser distance provides a measurement to

scale and validate geometric uncertainties in the reconstruction

process The site was separated into an on-mound and off-mound

areas based on the depth difference between grid areas. The dense

point cloud generated in the process was used for training and

validation of the methodology.

A total of 7,301 images (1920 × 1,080 pixel resolution) were used

in the point cloud reconstruction process. Camera optimization was

applied using the focal length (f), radial distortion coefficients (K1-

K3), and tangential distortion coefficients (P1- P2). The photo

alignment process was performed with a key point limit of

20,000 and a tie point limit of 2,000. The yaw, pitch, roll and

accuracy values were set to 135°, 0°, 0°, and 2 m, respectively.

3.2 Multiclass classification of 3D point
clouds

3.2.1 Pre-processing
In this study, the point cloud created during the

photogrammetry stage was used for the development of the

ML workflow. The labelled dataset was created from the

manual segmentation of point cloud objects into four classes.

The classes were chosen to best represent the environmental

variability of the specific area. The on-mound section of the

Piddington Mound was chosen for reconstruction as it contained

the largest volume of CWC and coral rubbles. The classes were

outlined based on the analysis distribution of the regions of

interest (ROIs), in this case, live coral framework (LCF), dead

coral framework (DCF) and coral rubble (CR), apart from

sediments and drop stones (SD).

Previous studies carried out in the Piddington Mound area

have also adopted this classification scheme as it best represents

the location (Lim et al., 2017). This potentially allows further

comparisons over the temporal changes over the mound. A

detailed class description was carried out for each class based

on spatial distribution studies of the Piddington Mound and the

Porcupine Bank Canyon (Lim et al., 2017; Appah et al., 2020).

Table 1 provides a description of each class. The annotation

process was performed in CloudCompare using the high-

resolution orthomosaic as a visual aid.

The point cloud was composed of a set of points and their

relative feature values. Each point contained information of

7 features (X, Y, Z, R, G, B and NormalY) and its ground

truth label. Following the feature selection and labelling, the

point cloud was separated into two datasets, namely dataset 1,

composed of 1,000 samples and dataset 2, consisting of

10,000 samples. Each dataset was split into training and

validation sets at a ratio of 75%/25%. In addition, a test set

composed of 10,000 random samples was created from the points

that remained from the initial point cloud after the train and test

set were extracted. Therefore, the model evaluation was

performed on the validation set and an additional cross-

validation was performed on the test set.

After the training and testing splits were performed, datasets

were scaled with a MinMax scaler, which was fitted on the

training set of dataset 2 and applied to the remainder datasets

(validation set of dataset 2 and training and validation sets of

dataset 1). Synthetic Minority Oversampling Technique

(SMOTE) (Chawla et al., 2002) was applied to balance the

training set. SMOTE works by making a linear interpolation

of a randomly selected observation from the minority class with

another k-nearest neighbour of the same minority class. The new

sample is created from the interpolation of those two samples.

Previous studies have considered the oversampling approach to

be beneficial for classification results in commonly used

classifiers (Last, Douzas, and Bacao 2017) and CNNs (Buda,

Maki, and Mazurowski 2018).

3.2.2 Classification algorithms
3.2.2.1 Random Forest

The RF algorithm is a tree-based ensemble classifier where

each classifier is created using a random vector sampled from the

input vector. Each tree provides a unit vote for the most popular
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class to classify the input vector (Pal 2005). Predictions are

generated as an ensemble estimate from a number of decision

trees from bootstrap samples (termed bagging) (Hengl et al.,

2018). RF classifications have been successfully applied in a

number of marine (Robert et al., 2016; Misiuk et al., 2019;

Shang et al., 2021; Price et al., 2022) and terrestrial studies

(Schratz et al., 2019). Comparison performance studies in

land cover suggest that RF has provided the best performance

in object-based classification tasks (Ma et al., 2017).

In this study, the grid search and cross-validation was

performed to find the best number of estimators, i.e., number

of trees, and the number of maximum features to be

considered for the best split. The number of estimators

was set with options of ranging from 10 to 1,000 and the

number of features was set to a range of 1–7 for the first sets

of RFs. The Scikit-learn options ‘auto’ and ‘log2’ were also

considered. The best-performance RF model was selected

based on the accuracy considering the permutation of the

grid search parameters. The other parameters were set to the

default of Scikit-learn class. The full list of parameters can be

found on the Scikit-learn webpage. In the case of RFs, four

classifiers were trained with four different options of

parameter grids. Each of these four variations of RFs was

trained with datasets 1 and 2, resulting in 8 trained RF

models.

3.2.2.2 Gradient Boosting Trees

GBT is another popular ensemble method closely related

to RFs. The method trains an ensemble of trees based on

minimising the loss function i.e., the measure of fit between

the actual data and the modelled data, in each interaction.

Each tree is improved by attempting to minimise the error of

the previous tree (Jodzani, Johnson, and Chen 2019). Boosting

refers to combining these weak learners, i.e., single decision

trees so that the following tree model corrects the errors of the

previous one (Friedman 2001). The learning rate is also

introduced to control the robustness of the classifier.

Empirical studies have attested to the efficiency of GBTs

over other supervised learning algorithms (Caruana and

Niculescu-Mizil 2006). The decision trees in the GBT tend

to be robust with respect to the addition of irrelevant features

(Friedman 2001).

Here, the parameter grid defined to find the optimal GBT

parameters with the grid search were: learning rate, number of

estimators, the maximum depth of estimators and the subsample

rate. The learning rate was set to options of 0.0001, 0.001, 0.01,

0.1, 1. The number of estimators was defined to 10, 50, 100,

500 and 1,000. The subsample rate was set to a range of 0.5,

0.7 and 1. Although the default subsampling value in Scikit-learn

is set to 1, the range of values was expanded to include other two

values, 0.7 and 0.5, which is the suggested value of subsampling

according to Buitinck et al. (2013). It is noteworthy that, if

subsampling is set to a value >1, the classifier changes to

Stochastic Gradient Boosting (Buitinck et al., 2013). In this

study, two GBT classifiers were trained with one set of

parameter grids.

3.2.2.3 Support Vector Machines

The SVM concept is based on the construction of optimal

hyperplanes in a high dimensional space between a proximal

training sample and the separating hyperplane (Pedregosa et al.,

2011). SVMs have a regularization parameter ‘C’ and gamma

(γ) that allow the control of the decision function complexity

and the level of influence of each sample towards it. The main

advantages of the SVMs are the regularization parameter, which

allows the user to control over-fitting, the kernel trick and the

convex optimization problem (no local minima) (Liu et al.,

2017). Other studies suggested that one advantage of SVMs is

that the objective function is convex which reflects on a

relatively straightforward solution for the optimization

problem even though the training involves nonlinear

optimization (Bishop 2006). Furthermore Bishop (2006),

affirms that the number of basis functions in SVM models is

usually much smaller than the number of training points.

Although they increase with the size of the training set, it

still has the capacity to be computationally faster than other

classifiers. The choice of kernel is also an equally crucial

parameter (Burges 1998) as it gives SVMs the capacity to

insert the data into a higher-dimensional space, so that data

that is not linearly separable in the original input space can be

separable in a higher-dimensional one (Russell and Peter 2010).

The use of radial basis function (RBF) kernel has been the most

common choice in recent studies as it generally provides a good

trade-off between time efficiency and accuracy (Jodzani,

Johnson, and Chen 2019; Pedregosa et al., 2011; Friedman

2013). In this study, three options of kernels on the grid

search parameters were: polynomial, sigmoid and RBF. The

range of regularization ‘C’ and γ parameters were set to 0.1,

110,100, and 1,0.1,0.01,0.001 respectively.

TABLE 1 Class label definitions used in the study.

Class Description

1. Live Coral
Framework (LCF)

Coral presenting any signs of identifiable living parts
(polyps or mucus-covered frameworks evident)
although major proportions of the coral framework
may be dead. Coral polyps, skeletal casing are usually
bright, white or orange in colour (Appah et al., 2020)

2. Sediments And
Dropstones (SD)

Sediment (sand or mud) and dropstones, includes
sediment waves, ripples and scour marks

3. Dead Coral
Framework (DCF)

Coral framework which has no identifiable living
parts. Identified by darker gray or brown skeleton
(Appah et al., 2020)

4. Coral Rubble (CR) Coral rubble is recognisable by biogenic material
where >50% of detached dead coral fragments, shell
fragments and sediment is observed (Lim et al., 2017)
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3.2.2.4 Logistic Regression

LR, also known as logit regression orMaxEnt, is a parametric

supervised classification algorithm based on general linear

models. The concept behind LR is that the classifier takes a

set of input variables and creates an estimate probability for the

target variable. The parameter grid established for the LR grid

search was defined by a choice of penalty parameters l1, l2,

elasticnet, or none and regularization ‘C’ parameter values. The

optimisation algorithm was set to the options of liblinear, sag,

saga, lbfgswhich are termed the solvers. Empirical studies suggest

that the use of the solver depends on the amount of data available

(Buitinck et al., 2013). In small datasets, for example, liblinear can

be considered a good choice whereas saga and sag can be faster

for large datasets. The latter is also considered a good choice for

high-dimensional data. Furthermore, in multiclass problems, the

multinomial loss can only be handled by the solvers saga, sag,

lbfgs and newton-cg. The scaling is also important as the solvers

saga and sag can only reach faster convergence on features with

proximal scales (Buitinck et al., 2013). For this study, three LR

models were created with different sets of grid search parameters.

Each model was trained in datasets 1 and 2, thus leading to

6 trained LRs.

3.2.2.5 Multilayer Perceptron

MLP is a feedforward neural network composed by an input

layer, a number of hidden layers, an output layer and loss

functions. Each layer is connected to the following one and

that connection is controlled by a weight factor. The weights are

learned using gradient descent techniques such as

backpropagation during the training phase aiming to

minimise the error function (Weinmann et al., 2015). MLP is

considered a successful model as it uses parametric forms of the

basic functions in which parameter values are adapted during

training (Bishop 2006). Studies have successfully used MLPs for

point cloud segmentation of urban scenes (Weinmann et al.,

2015). In this study, MLPs models were trained with grid search

set for the maximum number of iterations of 500, 1,000 and 2000.

The optimiser options were lbfgs, sgd, adam and the choice of

activation functions were set to logistic, tanh, relu. The l2 penalty

(or α) parameter was set to the values of 0.0001, 0.001, 0.005. The

number of hidden layers was defined by doing test runs from the

default hidden-layer size and performing adjustments based on

the results of the previous run. The remaining parameters, such

as the initial learning rate and learning rate schedule for weight

updates were set with Scikit-learn default values. MLP were the

most intensively trained classifiers in the model selection. In

total, seven MLPs were created with 7 different grid search

parameter grids.

3.2.2.6 K-Nearest Neighbours

kNN is a memory-based method that works by assigning to

each test vector the same label as the closest example from the

training set (Bishop 2006). In this study, the kNN grid search

parameters were set to a number of neighbours of 3, 5, 11, 19, and

25. Note that the number of neighbours has to be an odd number

to avoid ties on the vote of neighbours. The weight options were

set to ‘uniform’ or ‘distance’ and the choice of metrics were

between Euclidean or Manhattan. Studies suggest that the choice

of either Manhattan and Euclidean distances depend on whether

the dimensions measured have similar or dissimilar properties.

Generally, Euclidean is often recommended when measuring

similar properties, whereas Manhattan is recommended for

dissimilar properties (Russell and Peter 2010). Due to the use

of distance metrics across feature dimensions, it is important to

apply normalization to the data. This prevents generating

different nearest neighbours if the scale changes across

dimensions, e.g., from metres to centimetres, as the total

distance will not be affected by the change of scales (Russell

and Peter 2010). The remaining Scikit-learn parameters were set

to default values. Here, two kNNs were trained with the same set

of grid search parameters.

3.2.3 Model selection
3.2.3.1 Grid search with cross validation

The performance of a model strongly depends on the values of

hyperparameters (Schratz et al., 2019;Wu et al., 2019). Grid search is

a method for performing hyperparameter tunning to determine

optimal values of each model. For each parameter configuration, a

5 fold-cross-validation was performed on the training set. When

fitting the grid searchmethod on a dataset, all possible combinations

of parameter values are evaluated and the best combination is

maintained. In this study, each classifier and assigned parameter

grid were trained in both dataset 1 and dataset 2. The selection of

parameter grids for the grid searches of each classifier was based on

both recommended literature and empirical analysis after each run.

Each grid search process resulted in the best accuracy classifier for

that specific parameter grid, along with the best combination of

parameters that resulted in that classification. In total, 18 variations

of the 6 classification algorithms mentioned above were trained.

3.2.4 Performance assessment
To evaluate the performance of the classification algorithms

developed in this study, the classification output of each

algorithm was compared against the ground-truth and the f1

and AUC scores were calculated. k-fold cross-validation was

applied and the f1 score for each fold was obtained with the mean

and standard deviation of the total of folds. k-fold cross

validation is a performance evaluator widely used in

supervised learning. In the validation process, the training set

is split into k smaller sets, or folds. In each split, the model is

trained using k-1 of the smaller sets of the training data and the

remaining fold is used for the validation. This is executed until

the model completes the round of k folds (Buitinck et al., 2013).

The percentage difference between two classifier accuracies was

calculated by the difference between the accuracies divided by

their average and multiplied by 100. Run times (CPU and wall
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times) for classifier training and validation were also computed as

this is also a critical factor influencing decision-making for ML

pipelines (Rudall 1978).

For the purpose of model comparisons, the classifiers were

separated into two groups: Group 1—classifiers trained with

1,000 samples and Group 2—classifiers trained with 10,000

samples. The accuracy assessment was performed in two phases,

namely: first accuracy assessment and second accuracy assessment

(k-fold cross-validation). ROC curves and AUC were produced for

each classifier to evaluate the interclass performance. The ROC

curve is obtained by a threshold variation on the discriminant values

of the classifier. The curve is a representation of the ratio of the true

positives against the ratio of false negatives (Rudall 1978), depicting

the relative trade-offs between benefits (true positives) and costs

(false positives) (Fawcett 2006). The AUC is equivalent to the

probability that the classification model will classify a randomly

chosen sample into the given class, thus giving a relative measure of

the quality of the classifier for each class (Fawcett 2006).

4 Results

4.1 3D reconstructions

The dense cloud generated from the photogrammetry

process was composed of 90,912,889 points. The depth

difference between the on-mound and off-mound parts was

approximately (±20 m). The on-mound section represents the

coral reef area, with relative higher abundance of coral colonies

and coral patches. Figure 2 shows the planar view of the 3D

reconstruction of the on-mound section and its relative ground-

truth labels generated from the expert annotation. The class

distribution of the ground-truth labels in the on-mound area

shows that the percentage of LCF (green) and DCF (yellow) are

approximately the same, 4%, SD (red) represents 32% and finally,

the class CR (blue) represented the majority of samples with 61%

(graph c) on Figure 2).

4.2 Multiclass classification results

4.2.1 Model selection
Results of the grid search show that, from the 18 classifiers,

only 6 classifiers or 33.3% obtained accuracies below <60% (red

dotted line in Figure 3).

In order to make an objective comparison of the most

efficient classifiers, the classifiers that yielded f1 > 60% on the

first accuracy assessment and f1 > 73% (lowest accuracy value

obtained) on the second accuracy assessment were selected for

an in-depth analysis. Supplementary Table S1 in

Supplementary Material summarises the results of the top

performing classifiers trained in each group with their

respective f1 accuracies of the first accuracy assessment,

f1 accuracy of the cross-validation, best combination of

parameters from the grid search and finally, the processing

time to train each model. The sections below describe the

results of the model selection of each of the groups of

algorithms trained, including parameter selection,

FIGURE 2
(A) Original 3D dense cloud reconstruction of the on-mound section of the Piddington Mound (B) its relative ground-truth labels (C)
Percentage class distribution of the reconstructed area.
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f1 accuracy of group 1 and group 2, accuracy variations and

training times.

4.2.1.1 Support Vector Machines

Two SVM classifiers were trained with two different options of

kernel parameters. The first SVM (SVC_GS_1), also referred as

support vector classifier (SVC) herein, was trained with two choices

of kernels: RBF, and sigmoid. The second (SVC_GS_2) with was

trained with 3 kernel options: RBF, polynomial and sigmoid. The

choice range of the penalty parameter C and the gamma parameter

were equal for both. Each of these SVC models was trained in

the dataset 1 and dataset 2, resulting on four different trained

classifiers: namely SVC_GS_1_1000, SVC_GS_1_10000,

SVC_GS_2_1000 and SVC_GS_2_10000. All variations of SVCs

chose the combination of ’C’: 100, ’gamma’: 1, ’kernel’: ’rbf’ as their

best parameters. Among them, the best accuracy SVCs were

SVC_GS_1_1000 and SVC_GS_2_10000 (Supplementary Table

S1). The accuracy variation between these classifiers across group

1 and group 2 was 3.62% which represented a percentage difference

of 5.51% and a 5.67% increase in f1 scores from group 1 to group 2.

In addition, the percentage difference on the cross-validation

accuracies was of 0.14%.

4.2.1.2 Random Forest

In the four RF classifiers trained, the number of estimators

varied at different ranges, going from 10 to 1,000 in steps of 10 or

10 to 100 in steps of 10. Classifiers with the highest accuracies on

the first accuracy assessment also held the larger number of

estimators (1,000). Among these classifiers the best accuracy RFs

on group 1 was RF_GS_1_1000 (’max_features’: 1,

’n_estimators’: 90) and RF_GS_2_10000 (’max_features’: 2,

’n_estimators’: 1,000) on group 2 (Supplementary Table S1).

The accuracy variation between these classifiers was 21.98% on

the first accuracy assessment, which represents a 26.38%

difference and a 30.40% increase in accuracy from the best

accuracy RF on group 1 to the best accuracy classifiers in the

group 2 (Figure 3). The overall intra-model accuracy (RF with

same model parameters trained in group 1 and group 2) also

showed an increase of 31.16% from RFs trained in group 1 to RF

trained in group 2. The difference was less pronounced on the

cross-validation accuracies, showing an accuracy difference of

0.67% and only an increase of 0.67% from the RF in group 1 to

the RF in group 2. The overall intra-model accuracy difference on

the cross-validation assessment was 0.032%. The processing time

of the RF_GS_2_10000 was the third longest of all classifiers (2 h

FIGURE 3
Bar plot showing the f1 accuracy results of all 18 classifiers grouped by algorithm type. Light blue bars represent classifiers trained in group 2
(dataset 2, 10,000 samples) and dark blue bars represent classifiers trained in group 1 (dataset 1, 1,000 samples). The red dotted line indicates f1 < 60%
threshold. Run times (in minutes) for group 1 (orange) and group 2 (green) represented in the secondary axis on the right are plotted against f1
accuracy.
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31 min 52 s), staying behind of the top-performing GBT (2 h

52 min 56 s), and MLP (1 day 8 h 25 min 8 s).

4.2.1.3 Gradient Boosting Trees

GBT was the classifier with the highest accuracy among all

classifiers, reaching an accuracy of 95.11% on the first accuracy

assessment and 80.46% on the cross-validation The top GBT,

namely GBT_GS_1_10000 was trained in group 2 with the

combination of the parameters: ‘max_depth’: 9, ‘n_estimators’:

1,000, ‘subsample’: 0.5, ‘learning_rate’: 0.1. The second GBT,

GBT_GS_1_1000 was trained in group 1 and reached an f1

accuracy of 72.15%. The combination of parameters that yielded

this classifier was ‘max_depth’: 7, ‘n_estimators’: 1,000,

‘subsample’: 0.7, ‘learning_rate’: 0.1. Both classifiers chose the

maximum number of estimators set on the grid search (1,000)

(Supplementary Table S1). The accuracy variation between both

GBTs on the first accuracy assessment was 22.95%, which

represents a 27.45% difference and a 31.81% accuracy increase

from the GBT trained in group 1 and the GBT trained in group 2.

The cross-validation percentage differences show a much lower

gap, with a decrease of <1% (0.16%) from GBT_GS_1_1000 to

GS_GS_1_10000. The processing time of the

GBT_GS_1_10000 was the second longest of all classifiers (2 h

52 min 56 s), only staying behind of the top-performing MLP

(1 day, 8 h 25 min 8 s).

4.2.1.4 k-Nearest Neighbours

The kNN was also among the top-performing classifiers, with a

f1 accuracy of 91.6% on the first accuracy assessment and 76.18% on

the cross-validation. The first of the two kNNs trained with equal

parameters, namely, KNN_GS_1_1000, trained in group 1 resulted

in an f1 accuracy of 64.9% and f1 accuracy of 76.02% on the cross-

validation. The second kNN was trained in group 2, namely

KNN_GS_1_10000, which yielded the aforementioned f1 of

91.6%. Both models chose the same set of parameters: ’metric’:

’manhattan’, ’n_neighbours’: 3, ’weights’: ’distance’ (Supplementary

Table S1). The percentage difference between the accuracies of these

classifiers was 34.18%. Overall, the accuracy of the top-performing

classifier KNN_GS_1_10000 (group 2) represented an increase of

41.14% on the accuracy relative to the KNN_GS_1_1000 (group 1).

kNNs were among the algorithms with the fastest run times,

requiring only 2.54s for training of the KNN_GS_1_10000.

4.2.1.5 Logistic Regression

Among the LRs, the best-performing classifiers provided an

accuracy of 62.4% and a 74.1% accuracy on the cross-validation for

the LR on group 2, namely LR_GS_2_10000. The combination of

grid search parameters that resulted in the classifiers were ’C’:

100,’Penalty’: ’l2’,’solver’: ’sag’. The best LR on group 1 provided

an f1 score of 60.95% and 74.01% on the cross-validation. This

classifier was created by the grid search with the following set of

parameters: ’C’: 100,’Penalty’: ’l1’,’solver’: ’liblinear’ (Supplementary

Table S1). The percentage difference between the accuracies of these

two classifiers was 2.35%. There was a 2.37% increase in the

f`1 accuracy of LR_GS_2_10000 in relation to LR_GS_3_1000.

The overall intra-model accuracy (LRs with the same model

parameters, but trained in group 1 and group 2) also showed an

accuracy increase of 3.21% for LRs trained in group 2, i.e., larger

datasets, in comparison to group 1. The overall result put the LRs

among the classifiers that yielded the lowest accuracies with an

average f1 of 60.51% and 62.4% for LRs in group 1 and group 2,

respectively. However, it was also one of the algorithms with the

fastest training times (<5 s).

4.2.1.6 Multilayer Perceptrons

Each of the seven generated MLPs was trained in both group

1 and group 2, resulting in a total of 14 trained MLPs. One of these

MLPs, theMLP_GS_7_10000 trained in group 2, was among the top

four classifiers in this study. The MLP_GS_7_10000 produced an f1

of 92.3% on the first accuracy run and 77.7% on the cross-validation.

The combination of parameters that resulted in this classifier were:

‘hidden_layer_sizes’: (200, 200, 200, 200, 200, 200, 200, 200, 200),

‘activation’: ‘tanh’, ‘solver’: ‘adam’, ‘learning rate’: ‘0.0001, ‘max_iter’:

2000, ‘early_stopping’: ‘false’. Among group 1, the best MLP was

MLP_GS_4_1000, with an f1 of 70.1% on the first accuracy

assessment and 76.9% on the cross-validation. The choice of

parameters from the grid search were: hidden_layer_sizes’: (80,

80, 80, 80, 80, 80, 80), ‘activation’: ‘tanh’, ‘solver’: ‘adam’,

‘learning rate’: ‘0.0001, ‘max_iter‘: 2000, ‘early_stopping’: ‘false’

(Supplementary Table S1). The percentage difference of the

MLP_GS_7_10000 and the MLP_GS_4_1000 was 27.33%. The

first represented a 31.66% f1 increase relative to the latter. The

overall intra-model f1 accuracy showed a 16.98% increase in the

accuracy of MLPs trained in group 2 (10,000 samples dataset), in

relation to group 1 (1,000 samples dataset). The processing time of

the MLP_GS_7_10000 was the longest of all classifiers (1 day, 8 h

25 min 8 s), followed by GBT (2 h 52 min 56 s) and RF (2 h 31 min

52 s). It was noted that there was a substantial increase in the run

time with the increase of dataset sizes. The classifierMLP_GS_7 had

a training time of 2 h 42 min 47 s on group 1.When trained in group

2, the same classifier required took 1 day, 8 h 25 min 8 s to complete

its training phase. Considering that the same exact parameters were

used, this represents a 1,094.90% increase in the run time. The run

time percentage difference of run times between the classifier of best

accuracy (GBT_GS_1_10000) and the MLP_GS_7_10000 is

167.34%, which examples the trade-off between run time and

accuracy.

4.2.2 Classification output
The classification outputs of the top four classifiers: 1)

GBT_GS_1_10000, 2) RF_GS_2_10000 3) MLP_GS_7_10000 and

4) KNN_GS_1_10000 are shown in Figure 4. In this study, classifiers

that were above our established threshold of f1 >90% were ranked as

the top-performing classifiers. The difference between the

classification results and the ground-truth was calculated for each

of the aforementioned classifiers (Figure 5).
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ROC curves were calculated for these classifiers (Figure 6)

and AUC scores were calculated for each of the four labels.

Points located on the upper right near the X axis typically

represent classifiers that make positive classifications based on

strong evidence.

Herein, classifiers with the lowest accuracies were those

below our established threshold of f1 < 60%. Note that the

ROC curves for each label are farther away from the upper

left (0, 1) (Figure 7).

5 Discussion

The Piddington Mound is a highly dynamic area with

confirmed temporal (Boolukos et al., 2019) and facies changes

(Lim et al., 2018a; Conti, Lim, and Wheeler 2019). Studies

show that mound surface changed by almost 20% from

2011 to 2015. The CR, DCF, and SD classes showed

variations of <7.5%, whereas the LCF remained similar of

the 4 years given their inherent slow growth rates (Lim et al.,

2018a). Further studies developed at species level found a

concerning decline in biodiversity in the same time interval,

especially in the percentage coverage of Madrepora oculata

with linear decline rates estimated at 0.17%/year (Boolukos

et al., 2019). This study shows that, in 2021, this section of the

Piddington Mound used had the same proportion of LCF and

DCF the on-mound area (4%) followed by the SD class,

representing 32% and finally, the class CR which

represented the majority of samples (61%) (graph c)

Figure 2).

In this study, 241.7 GB worth of data were transformed into

an ecologically meaningful and compact dataset (<5.2 gigabytes)
that allows for analyses of intra-habitat patterns of the study area.

This represents one of the key advantages of 3D photogrammetry

FIGURE 4
Classification outputs of the top four performing classifiers (f1 score > 90%). (A) Classification output of the GBT classifier GBT_GS_1_10000, f1
score: 95.1% (B) Classification output of the RF classifier RF_GS_2_10000, f1 score: 94.2% (C) Classification output of the MLP classifier
MLP_GS_7_10000, f1 score: 92.3% (D) Classification output of the KNN classifier KNN_GS_1_10000, f1 score: 91.6%.
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and SfM for seabed habitat mapping. Furthermore, 3D

reconstructions, orthomosaics and DEMs of CWC derived

from video data allows for contextualised analysis of coral

colonies and associated fauna (Price et al., 2021). The

increasing use of such datasets indicates an advancement in

relation to per-image analyses, which may hinder the

investigation of spatial patterns, volume density and structural

complexity variations.

5.1 Machine learning and 3D
reconstructions of coral reef
environments

The results show that four ML algorithms yielded f1

accuracies of >90% and were able to successfully discern

between classes (Figure 6), especially those with usually

similar characteristics, e.g., coral rubble and dead coral, which

is a task that is often challenging to both the machine and the

human eye (Bryson et al., 2013; Beijbom et al., 2015; Hopkinson

et al., 2020). Four algorithms, i.e., LR and three variations of the

MLP yielded accuracies below our minimum threshold of 60%.

Given the absence of similar studies in 3D photogrammetry and

ML in CWC habitats, the results herein contribute to delineating

the suitability of specific algorithms for initial assessments,

providing key information to future studies in CWC habitats.

5.2 Classifier performance

The classifiers GBT, RF, MLP and kNN trained in group 2

(dataset of 10,000 samples) were the most accurate classifiers on

FIGURE 5
Difference of class distribution from the ground-truth labels against the classification output labels of the top four performing classifiers
(f1 score > 90%). (A) Difference of classification output vs. ground truth of the GBT classifier GBT_GS_1_10000, f1 score: 95.1% (B) Difference of
classification output vs. ground truth of the RF classifier RF_GS_2_10000, f1 score: 94.2% (C) Difference of classification output vs. ground truth of
the MLP classifier MLP_GS_7_10000, f1 score: 92.3% (D) Difference of classification output vs. ground truth of the KNN classifier
KNN_GS_1_10000, f1 score: 91.6%.
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the first assessment, in that order. Nonetheless, the percentage

difference between the top-ranked classifier, GBT (f1 = 95.11%)

and the fourth-ranked classifier, kNN (f1 = 91.7%) in the first

accuracy assessment was low, approximately 3.65%. These results

agree with other experimental comparison studies applied to high-

resolution satellite imagery for land use/land cover (Jodzani,

Johnson, and Chen 2019). Jodzani et al. (2019) showed that

MLPs models were the most accurate for those cases. However,

there was a small difference in the classification accuracies between

these and other algorithms like SVMs and GBTs. Therefore, the

use of these algorithms is still versatile to deal with mapping of

complex landscapes (Jodzani, Johnson, and Chen 2019). The study

also showed that the use of CNNs for the same classification task

does not necessarily lead to more accurate results when compared

to common classifiers. This agrees with other studies which

compared the use of SVMs and sparse auto-encoders for

multispectral imagery classifications, where SVMs outperformed

auto-encoders (Liu et al., 2017).

Herein, the performance of MLP classifiers trained in this

study also agrees with the aforementioned studies. Whilst one of

the trained MLPs yielded one of the highest accuracies

(MLP_GS_7_10000, f1 score 92.3%), three of the 14 trained

MLPs yielded the lowest accuracies (MLP_GS_1_1000,

MLP_GS_1_1000, MLP_GS_6_1000) (Figure 3), dropping the

overall MLP average performance to 67.62%. Grid search results

showed that MLPs were prone to choose hidden layer options

with more neurons on them. In addition, all MLP classifiers

selected the solver Adam for weight optimization as the final

parameter on the grid search. Adam represents a stochastic

gradient-based optimizer (Kingma and Lei 2015). The solver

is recommended for noisy or sparse gradients and is

recommended for problems with large data or parameters

(Kingma and Lei 2015). Empirical studies performed in Scikit-

learn also suggest that Adam is highly robust for large datasets

while converging fast and giving good performances (Buitinck

et al., 2013).

FIGURE 6
ROC curves of the four best-performing classifiers (f1 > 90%). The name of the classifiers and their f1 score obtained on the first accuracy
assessment were placed on the top of their respective graph. The AUC score for each label is placed on the lower right side of each graph. Label 1 =
LCV, label 2 = SD, label 3 = DCF, label 4 = CR. (A) ROC curve of GBT classifier GBT_GS_1_10000, f1 score: 95.1% (B) ROC curve of the RF classifier
RF_GS_2_10000, f1 score: 94.2% (C) ROC curve of the output of the MLP classifier MLP_GS_7_10000, f1 score: 92.3% (D) ROC curve of the
KNN classifier KNN_GS_1_10000, f1 score: 91.6%.
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RFs have been widely applied for a number of classification

tasks in remote sensing (Pal 2005; Rodriguez-Galiano et al., 2012;

Belgiu and Drăgu 2016) and specifically, in marine and coastal

studies (Seiler et al., 2012; Gauci et al., 2016; Robert et al., 2016;

Misiuk et al., 2019; Zelada Leon et al., 2020; Price et al., 2022). In

our study, the RF was among the top four classifiers. The f1 score

average across all RFs trained was 82.9%. Our analysis showed

that using a smaller dataset resulted in models with a lower

number of estimators and lower accuracy. However, the

suitability of the RF for our classification task can be

influenced by a number of factors, one of them is the way RF

deals with decision trees in the classification. Studies affirm that

RF models reduce the correlation between the decision trees in

the ensemble by randomly sampling features, which can lead to

an increase in accuracy when compared to other ensemble

methods (Jodzani, Johnson, and Chen 2019).

SVMs have been successfully applied for remote sensing

applications (Melgani and Bruzzone 2004; Deilmai, Ahmad,

and Zabihi 2014; Liu et al., 2017) and automated image

analysis (Friedman 2013; Beijbom et al., 2012). In a few cases,

SVM-based classifications have outperformed other common

classification algorithms, such as kNN and decision trees

(Friedman 2013; Beijbom et al., 2012), especially when

considering the amount of training data available (Liu et al.,

2017). Similar to Friedman (2013) the results herein show that

the best-performance SVM was created with RBF kernel. Studies

have also suggested that SVM can perform well in cases where

there are few training samples (Melgani and Bruzzone 2004). In

this study, it was noticed that the SVM were indeed robust with

respect to sample size variations, resulting in a small percentage

increase of 5.67% when trained in group 1 and group 2.

Nonetheless, kernel methods can be sensitive to over-fitting

and the kernel choice has been considered the biggest

limitation of the SVM approach (Burges 1998; Liu et al.,

2017). Although this limitation was addressed by testing a

range of kernel options on the grid-search, the SVMs yielded

FIGURE 7
ROC curve of the worst performing classifiers (f1 < 60%). The name of the classifiers and their f1 score obtained on the first accuracy assessment
were placed on the top their respective graph. The AUC score for each label is placed on the lower right side of each graph. Label 1 = LCF, label 2 =
SD, label 3 = DCF, label 4 = CR. (A) ROC curve of MLP classifier MLP_GS_6_1000, f1 score: 50.6% (B) ROC curve of the MLP classifier
MLP_GS_1_1000, f1 score: 58.1% (C) ROC curve of output of the MLP classifier MLP_GS_1_10000, f1 score: 58.08% (D) ROC curve of the LR
classifier LR_GS_1_1000, f1 score: 59.6%.
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an undistinguished performance on the first accuracy assessment

compared to other classifiers. However, they matched the

performance of the top four algorithms on the second

accuracy assessment, i.e., k-fold cross-validation. It was noted

that one of the advantages of the SVM is that, depending on the

choice of kernel, the run times are considerably lower when

compared to the top four classifiers. However, the kernel choice

will have a considerable impact on the processing as there are

data limitations when using specific kernels in accordance with

the Big O notation (Chivers and Sleightholme 2015). For

example, the polynomial kernel is not advised when the

dataset has more than 10,000 samples as the SVM training

time scales at least quadratically with the number of samples

(Tsang, Kwok, and Cheung 2005).

kNNs yielded the 4th place in our classifiers rank (f1 score =

91.6%) whilst having the lowest training time (2.54 s). Studies

performed with ROV-derived images have found that kNN have

also outperformed SVMs and NNs in smaller datasets

(Shihavuddin et al., 2013). However, when datasets get larger,

their effectiveness reduces (Shihavuddin et al., 2013). As

mentioned previously, the choice of weighted distance for the

kNN can often be evaluated by the similarity across feature

dimensions (Russell and Peter 2010). In our grid search results,

both kNNs trained in group 1 and group 2 chose Manhattan

distance among the parameter grid of the best accuracy models.

This suggests that the classifier may have interpreted the feature

dimensions as dissimilar. kNNs can suffer with the curse of

dimensionality when facing high-dimensionality data (Russell

and Peter 2010) therefore, reducing the dimensions of the feature

space with, e.g., PCA can increase kNN accuracy (Shihavuddin

et al., 2013). A similar issue can happen with the MLPs as,

althoughMLPs can reduce the weight of irrelevant variables close

to zero, they may take a long time to converge and consequently,

to find a local minimum (Settles and Burr, 2003).

GBTwas themost successful classifier in our study, with an f1

accuracy of 95.11% on the first accuracy assessment.

Accordingly, studies suggest that GBTs have outstanding

performance when compared to RF, SVMs and NN in

different classification tasks (Caruana and Niculescu-Mizil

2006; Becker et al., 2018). In studies using bathymetric data to

predict diversity and abundance of fish, GBTs were considered

the most appropriate technique to select meaningful predictors

(Pittman, Costa, and Battista 2009). However, GTBs may be

more impacted by the amount of training data in relation to other

classifiers, like SVMs. Our study revealed that GBTs had a 31.81%

accuracy increase from the GBT trained in group 1 and the GBT

trained in group 2, which suggests that the amount of sample

data may have a strong impact on the classification. It is also

noteworthy this GBT had the second-longest processing time

(2 h 52 min 56 s).

Our results show that the LR was among the classifiers with

the worst performance on the first accuracy assessment. Studies

have shown that the parametric nature of LR classifiers can lead

to a more constrained model with limited complexity (Russell

and Peter 2010). Previous comparison studies also suggested that

Naïve Bayes, logistic regression and variations decision trees are

among the poorest-performing algorithms (Caruana and

Niculescu-Mizil 2006). However, this is dependent on the type

of task performed. Hence, generalisations should be made with

caution.

5.3 Sample size and accuracy variation

The quantity of training data is one of the biggest challenges

in effectively applying ML for automated seabed mapping

(Beijbom et al., 2012; Zurowietz et al., 2018; Williams et al.,

2019; Durden et al., 2021). Results on the 1,000 sample dataset

and 10,000 sample dataset show that voting ensemble classifiers

like kNNs, RF, GBT have better performance and benefit more

from a larger dataset than kernel methods such as SVM

(Figure 3). The small difference in f1 scores between

variations of the same algorithms like SVM (5.51%) and LR

(2.35%) suggests that these algorithms are more robust to dataset

size variations. As previously mentioned, studies affirm that SVM

can perform well in cases where there are few training samples

(Melgani and Bruzzone 2004).

Results show that RF is highly sensitive to data size, showing

a percentage increase of approximately 30.40% on the average f1

accuracy from 1,000 samples to 10,000 samples datasets. GBT

had a 31.81% increase in the average f1 accuracy when trained in

10,000 sample dataset. kNN had a 41.23% increase in the average

accuracy when trained in the 10,000 samples dataset. MLPs

showed a percentage increase of 16.98% on the accuracy when

trained in the 10,000 samples dataset. In contrast, LR showed

only a 2.37% increase on the average f1 accuracy. Although this

low variation can indicate a positive stability across different

sample sizes, it is noteworthy that the LR behaved poorly in all

test runs. Similarly, SVMs showed a regular resistance to the

dataset variations, with a difference of less than 6% (5.51%) on

the average f1 accuracy from group 1 to group 2, noting that the

overall performance was also low. The stability of SVMs against

different dataset sizes may be due to their ability to handle high-

dimensionality data with a relatively low number of training

samples (Melgani and Bruzzone 2004; Jodzani, Johnson, and

Chen 2019). This is explained by the general concept behind

SVMs, which relies on the separation of classes with a maximum

plane of separability, using boundary points to create the decision

margin, thus making it independent of the dimensionality of

feature space (Dixon and Candade 2008).

The number of parameters implies the need for more training

samples and computational requirements (Liu et al., 2017). The

amount of training data required by NNs increases exponentially

with the increase of feature dimensionality of the input data

(Dixon and Candade 2008). Similar to automated classification

studies with seabed images (Durden et al., 2021), our results show
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that overall classification is improved by increasing the size of the

training dataset.

On the other hand, cross-validation results showed that there

is an increase in the f1 scores of the classifiers in group 1. The

classifiers trained with 1,000 samples showed a better performance

in the f1 accuracy for each fold k in the k-fold cross-validation. The

opposite trend was found for group 2, the accuracy dropped and

stabilized on the same level as the classifiers of group 1. Therefore,

whilst evaluating the performance of the classifiers n parts of the

dataset, i.e., cross-validation, the performance of the classifiers of

group 1 was similar to the classifiers in group 2. This indicates that

in particular instances and metrics, such as when using cross-

validation instead of only a single validation set, the classifiers may

be used interchangeably. Additionally, cross-validation may be a

suitable approach to avoid overfitting when having small sample

sets. Overall, In the case of deep-water environments, collecting a

large number of labelled samples, dealing with naturally

imbalanced datasets and the lack of benchmark data are

limitations that need to be overcome in order to advance to the

deep learning spectrum (Beijbom et al., 2012; Durden et al., 2021).

The choice of classifiers based on their parametric or non-

parametric properties is also important when considering the

dataset sizes. In the case of parametric models, such as LR, the

number of parameters it needs to make a decision is independent

of how much data is used. This property can be useful when

datasets are small, as in this case, it is convenient to have a strong

constraint on the hypothesis to avoid overfitting (Russell and

Peter 2010). However, when the dataset is large, it is better to

have more flexible models where the data can have more

influence on the learning pattern. Hence, non-parametric

models, such as kNNs which cannot be characterized by a

delimited set of parameters, can be a better fit. As mentioned,

the disadvantage of some non-parametric methods is the amount

of data samples necessary.

Another important aspect is the training run times of

algorithms in each group. The run times of group 1 algorithms

were significantly lower than those in the group 2. It is

acknowledged that, despite the fact that MLPs are efficient, the

training is time-consuming (Dixon and Candade 2008). A relevant

example of run time differences is the classifier MLP_7. Although

this MLP had 26.8% decrease in f1 scores when trained in group 1,

the run time was 91.63% faster. These results can be taken into

consideration when evaluating not only the loss versus run time

ratio, but also the processing resources required to run MLPs and

the accuracy desired. This is supported by the grid search results,

which show that the MLPs yielded similar accuracies in both

groups, i.e., independent of the dataset size they were trained with.

As NNs, the need for a number of training samples in MLPs can

exponentially increase with the dimension of the input of feature

space (Dixon and Candade 2008). The results herein contribute to

informing the user about the ad hoc strategy to be used when

considering the accuracy variation in relation to the processing

time. Thus, the user needs to evaluate a set of variables, ranging

from the project timeframe, type of object of interest and the

computer resources available.

6 Conclusion

Six state-of-art ML classifiers were applied and evaluated for the

multiclass classification of high-resolution 3D reconstructions of

CWCs environments. A workflow for classification using

photogrammetry and ML was proposed for CWC environments

of the Irish margin. The multiclass classification results show that

certain algorithms proved to be more suited for the specific

classification task proposed here, namely: GBTs, RF, kNN, and

MLP with f1 > 90. In contrast, the worst-performing classifiers were

LR, and two variations of MLP with f1 < 60%. Furthermore, the

results suggest that the overall classification is improved by

increasing the size of the training dataset. However, it is possible

to reach high accuracy results with datasets of 10,000 samples and

medium accuracy results with datasets of 1,000 samples. The

analysis of the 3D reconstructions shows that, in 2021, this

section of the Piddington Mound used had the same proportion

of LCF and DCF the on-mound area (4%). The CR class dominated

the majority of the samples with 61%, followed by the SD class,

representing 32%. The study developed herein shows that ML and

photogrammetry enable automated classification of habitats

associated with CWC. The proposed workflow will allow for

improvements to environmental monitoring strategies by

increasing coverage area and optimising data processing.
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