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Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guizhou, China, 5Beijing
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Background: Ischemic cerebral infarction is the most common type of stroke

with high rates of mortality, disability, and recurrence. However, the known

diagnostic biomarkers and therapeutic targets for ischemic stroke (IS) are

limited. In the current study, we aimed to identify novel inflammation-related

biomarkers for IS using machine learning analysis and to explore their

relationship with the levels of immune-related cells in whole blood samples.

Methods: Gene expression profiles of healthy controls and patients with IS

were download from the Gene Expression Omnibus. Analysis of differentially

expressed genes (DEGs) was performed in healthy controls and patients with IS.

Single-sample gene set enrichment analysis was performed to calculate

inflammation scores, and weighted gene co-expression network analysis was

used to analyze genes in significant modules associated with inflammation

scores. Key DEGs in significant modules were then analyzed using LASSO

regression analysis for constructing a diagnostic model. The effectiveness and

specificity of the diagnostic model was verified in healthy controls and patients

with IS and with cerebral hemorrhage (CH) using qRT-PCR. The relationship

between diagnostic score and the levels of immune-related cells in whole

blood were analyzed using Pearson correlations.

Results: A total of 831 DEGs were identified. Both chronic and acute

inflammation scores were higher in patients with IS, while 54 DEGs were also

clustered in the gene modules associated with chronic and acute inflammation

scores. Among them, a total of 9 genes were selected to construct a diagnostic
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1046966/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1046966/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1046966/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1046966/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1046966/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1046966/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.1046966&domain=pdf&date_stamp=2022-12-13
mailto:lyf619@aliyun.com
mailto:zengzhirui@gmc.edu.cn
mailto:elite2005gg@163.com
mailto:yqzhaoprc@sina.com
https://doi.org/10.3389/fimmu.2022.1046966
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.1046966
https://www.frontiersin.org/journals/immunology


Ren et al. 10.3389/fimmu.2022.1046966

Frontiers in Immunology
model. Interestingly, RT-qPCR showed that the diagnostic model had better

diagnostic value for IS but not for CH. The levels of lymphocytes were lower in

blood of patients with IS, while the levels of monocytes and neutrophils were

increased. The diagnostic score of the model was negatively associated with

the levels of lymphocytes and positively associated with levels of monocytes

and neutrophils.

Conclusions: Taken together, the diagnostic model constructed using the

inflammation-related genes TNFSF10, ID1, PAQR8, OSR2, PDK4, PEX11B,

TNIP1, FFAR2, and JUN exhibited high and specific diagnostic value for IS and

reflected the condition of lymphocytes, monocytes, and neutrophils in the

blood. The diagnostic model may contribute to the diagnosis of IS.
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1 Introduction

Cerebral vascular disease is characterized by acute

neurological disease, resulting in a high mortality, disability,

and recurrence (1, 2). Among them, ischemic cerebral infarction

is the most common type of stroke in clinical settings (3) and a

leading cause of long-term disability and death worldwide (4).

Currently, the main approved treatment for this type of stroke is

revascularization, which has a strict therapeutic window (<

4.5 h) (5). Nevertheless, the vast majority of patients cannot

receive thrombolytic therapy upon hospital admission (6, 7).

Therefore, earlier and faster identification of acute IS is

important, as thrombolytic therapies are time-sensitive (8);

blood biomarkers provide a possibility for identification,

especially in circumstances where access to brain imaging is

limited (9). However, there are currently no blood biomarkers

used for the diagnosis of IS due to the required characteristics of

high sensitivity and specificity in this heterogeneous disorder

and a fast turnaround (10).

As a result of cerebral ischemia, both experimental animal

models and patients with stroke experience a strong

inflammatory response (11) involving the release of

dangerous/damage-associated molecular patterns (DAMPs),

highly immunogenic cellular components, from the brain into

the systemic circulation (12). Activating these DAMPs causes

adaptive and peripheral innate immune cells to migrate to

ischemic brain areas, and the inflammatory response in

ischemic regions shows a variable positive and negative

influence, depending on IS phase, and variable involvement of

inflammatory cells (13). A toxic effect is generated when
02
proinflammatory cytokines, proteases, and reactive oxygen

species are produced by inflammatory cells. In the penumbra,

it may cause secondary damage, causing neuronal death and

orchestrating an immune response comprising glial activation

and recruitment of peripheral immune cells (14). The protective

effects consist of clearance of injured tissue by myeloid cells and

the establishment of a regenerative environment. In this way, a

large number of researchers have revealed that anti-

inflammatory strategies hold great promise in extending the

therapeutic window and preventing major brain damage during

reperfusion (5, 15). Thus, it is crucial to identify inflammation-

associated blood biomarkers in patients with IS that could either

enhance the beneficial effects or dampen toxic effects,

improving outcome.

In recent years, high-throughput technologies have been

rapidly developed, including microarrays and RNA

sequencing, and, with their respective data-analysis methods,

have provided valuable and effective methods to study the

molecular underpinnings of complex diseases (16). For

instance, Li et al. (17) reported that SLAMF1, IL-7R, and

NCF4 may be novel therapeutic targets to promote functional

recovery after IS; Zheng et al. (18) identified four reliable serum

markers for the diagnosis of IS and concluded that immune cell

infiltration plays a crucial role in the development and

progression of IS. Herein, we sought to identify the

inflammation-related diagnostic blood biomarkers of patients

with IS and their relationship with the levels of immune-related

cells in the blood using multi-informatics algorithms to find

effective targets for the treatment of IS and lay the groundwork

for the development of diagnostic options.
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2 Materials and methods

2.1 Data source and preprocessing

The gene expression profiles in the GSE22255 (including 20

patients with IS and 20 healthy controls) and GSE16561

(including 39 patients with IS and 24 healthy controls) datasets

were extracted from the public database Gene Expression

Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo). GSE22255

and GSE16561 were normalized, and differences between

batches were removed before defining the integrated gene

expression profile. The gene expression profiles were normalized

using the limma package. Interbatch differences for the GSE22255

and GSE16561 datasets, including 59 samples from patients with

IS and 44 from healthy controls, were eliminated by the ComBat

function in the “sva” package in R software.
2.2 Identification of DEGs

The limma package in R was used to analyze DEGs between

samples from patients with IS and healthy controls. DEGs (|FC|

≥ 1.2 and adjusted P-values < 0.05) were identified and plotted in

volcano plots and heatmaps.
2.3 Determination of inflammation
scores in each sample

Seventeen genes of chronic inflammation and 113 genes of

acute inflammation were obtained in the gene set

“GOBP_CHRONIC_INFLAMMATORY_RESPONSE” and

“GOBP_ACUTE_INFLAMMATORY_RESPONSE” from the

Gene Set Enrichment Analysis (GSEA; http://www.gsea-

msigdb.org/gsea/index.jsp) (Supplementary Table 1). A single-

sample GSEA (ssGSEA) algorithm was used for calculating the

inflammation scores in each sample based on the gene signature.

The differences in acute/chronic inflammation scores between

the sample groups was determined using an unpaired t test, and

P-values < 0.05 were considered statistically significant.
2.4 Construction of weighted gene co-
expression network analysis and
identification of modules significantly
associated with inflammation

Weighted gene co-expression network analysis (WGCNA)

was performed to identify co-expression modules using the R

package “WGCNA” (v. 4.0.2). Prior to performing WGCNA, a

scale-free network was constructed by removing outlier samples.

To further calculate the adjacency values between genes with

variance greater than all quartiles of variance, a standard scale-
Frontiers in Immunology 03
free network was used to approximate the appropriate soft

threshold power (b = 6). Then, the adjacency values were

transformed into a topological overlap measure (TOM),

following which the dissimilarity (1-TOM) values were

induced. Finally, modules were obtained using the hierarchical

clustering tree algorithm and assigned random colors using 1-

TOM dissimilarity. An analysis of Pearson correlations was used

to identify modules with biological significance between

modules and clinical characteristics. Modules with a |co-

relationship| (|R|) ≥ 0.4 and P < 0.05 were considered

clinically significant. Further analysis was conducted on genes

in clinically significant modules with module membership (MM)

≥ 0.6 and gene significance (GS) ≥ 0.05.
2.5 Enrichment analysis of interesting
modules

Kyoto Encyclopedia of Genes and Genomes and Gene

Ontology enrichment analysis of the genes were submitted to

the online database of Enrichr (http://amp.pharm.mssm.edu/

Enrichr/) to conduct functional and pathway enrichment

analysis. The cut-off for significance was set at P < 0.05.
2.6 Construction of the diagnostic model
for IS

Least absolute shrinkage and selection operator (LASSO)

algorithms were used to identify the key genes with the best

diagnostic value for IS (19). A LASSO logistic regression

analysis was performed using the “glmnet” package, and the

response type was binomial (a = 1). To minimize bias, we

selected the fittest l and deleted some genes that partially

exhibited collinearity. After multivariate logistic regression

analysis of the influences generated by the LASSO regression,

we selected the relevant parameters with p-values less than 0.05

as the final parameters of the diagnostic model. We calculated

risk scores by multiplying each inflammation-associated gene

expression level by a linear combination of the corresponding

tolerance limits. Finally, to evaluate the diagnostic performance of

this model, we used R software and the “pROC” package to

determine the area under the curve (AUC) of each receiver

operating characteristic (ROC).
2.7 Collection of whole blood samples

Participants were recruited from the Seventh Medical Center

of the Chinese PLA General Hospital. All patients with IS or CH

underwent detailed and rigorous neurological examination. The

diagnostic criteria for IS are based on the International

Classification of Diseases (9th Revision), and patients with IS
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are classified into different subtypes according to the modified

TOAST classification. Patients with a history of blood disorders,

type 1 diabetes, autoimmune, thyroid, tumor, kidney or liver

disease are excluded. Finally, whole blood specimens (samples to

be discarded after remaining clinical examination) from 15

healthy individuals, 34 cases of IS, and 16 patients with CH

were collected and stored at -80°C for further analysis. The study

procedures were developed based on the 2008 revision of the

Declaration of Helsinki of 1975 (http://www.wma.net/en/

30publications/10policies/b3/) and approved by the Ethics

Committee of Seventh Medical Center of the Chinese PLA

General Hospital (No: 2022-182).
2.8 RT-qPCR

RNAprep Pure High Efficiency Total RNA Extraction Kit (Cat

no. DP443, TianGen, Beijing, China) was used to extract total RNA

in blood serum. Briefly, 800 ng total RNA of each sample was used

to perform reverse transcription to synthesis the first chain cDNA

using TAKARA PrimeScript RT reagent Kit (Cat no. RR037,

TAKARA, Japanese). Then, SYBR green reagent (TAKARA,

Japanese) was used to determine the expression of target genes

during process of amplification. GAPDH was used as reference to

determine loading controls, while 2-detadeta T formula was used to

calculate the relative expression of target genes. Primers used for

th e p r e s en t s tudy wa s shown a s f o l l ow ing : 5 ’ -

TGCGTGCTGATCGTGATCTTC-3’ (TNFSF10 forward

primer), 5’- GCTCGTTGGTAAAGTACACGTA-3’ (TNFSF10

reverse primer), 5’-CTGCTCTACGACATGAACGG-3’ (ID1

forward primer), 5’-GAAGGTCCCTGATGTAGTCGAT-3’ (ID1

reverse primer), 5’-AGCTCTTCCGGGAGCCTTA-3’ (PAQR8

forward primer), 5’-GACCACCTCGTTGTGTTTCTG-3’

(PAQR8 reverse primer)5’-TCCGCCTAAGATGGGAGACC-3’

(OSR2 forward primer), 5’- GGTAAAGTGTCTGCCGCAAAA

-3’ (OSR2 reverse primer), 5’- GGAGCATTTCTCGCGCTACA-3’

(PDK4 forward primer), 5’- ACAGGCAATTCTTGTCGCAAA

-3’ (PDK4 reverse primer), 5’- AGAAACAGATTCGACAACTG

GAG-3’ (PEX11B forward primer), 5’-TGATAGGTGAACA

GCTCTTTTGG-3 ’ (PEX11B r eve r s e p r imer ) , 5 ’ -

GTTCAACCGACTGGCATCCAA-3’ (TNIP1 forward primer),

5’-AGACGCACCCTCTTTGTTGC -3’ (TNIP1 reverse primer),

5’-CCGTGCAGTACAAGCTCTCC-3’ (FFAR2 forward primer),

5’- CTGCTCAGTCGTGTTCAAGTATT-3’ (FFAR2 reverse

primer), 5’-TCCAAGTGCCGAAAAAGGAAG-3’ (JUN forward

primer), and 5’- CGAGTTCTGAGCTTTCAAGGT-3’ (JUN

reverse primer).
2.9 Statistical analysis

Statistical analysis was performed using SPSS (V. 27.0; ICM

Corp., Armonk, NY, USA.) and R software (V. 3.6.2). One-way
Frontiers in Immunology 04
analysis of variance combined with Bonferroni test was used to

determine the differences of genes in multi-groups, a P-value less

than 0.05 was considered statistically significant. ROC curves

were calculated to evaluate the reliability of the diagnostic

models, while area under the curve (AUC) more than 0.7 and

a P-value less than 0.05 were considered significance.
3 Results

3.1 Data preprocessing and identification
of DEGs

Following standardization of the data formats, addition of

missing values, and removal of outliers, normalized gene

expression profiles of the GSE22255 and GSE16561 datasets

were generated. Then, after data merging and eliminating

interbatch differences between the datasets, the combined

expression matrix, including 39196 gene symbols, was

obtained from the samples from 59 patients with IS and 44

healthy controls in the training set (Figures 1A, B). Then, we

performed DEG analysis to explore DEGs between these groups.

A total of 579 up-regulated genes and 252 downregulated genes

(Supplementary Table 2) were identified (Figures 1C, D).
3.2 Exploration of gene modules
associated with inflammation by WGCNA

We analyzed acute and chronic inflammation scores in healthy

controls and patients with IS using ssGSEA. It was demonstrated

that both acute and chronic inflammation scores were higher in the

IS samples (Figure 2A). WGCNA was then performed to

determine whether gene modules can simultaneously associate

with the acute and chronic inflammation scores. Through

preliminary estimates, we found that there were no outliers with

cutheight > 60, and all samples were suitable for performing

WGCNA (Figure 2B). In WGCNA, the soft threshold (b score)

was set at 6, which can meet the scale-free topology ≥ 0.85

(Supplement Figure 1A), and mean connectivity was close to

zero (Supplement Figure 1B). Therefore, a total of 15 co-

expression gene modules including black, blue, dark green, dark

red, green, green-yellow, grey 60, light cyan, light green, light

yellow, magenta, midnight blue, royal blue, tan, and yellow were

obtained, while genes without co-expression relationships were all

clustered into grey modules (Supplement Figure 1C). In these

modules, there was the lowest adjacency in blue–light green and

magenta–royal blue module pairs (Supplement Figure 1D).

Moreover, we analyzed the relationship between gene

modules and inflammation scores. We found that the blue

module was simultaneously and positively associated with acute

(R = 0.74, P < 0.001) and chronic inflammation scores (R = 0.70, P

< 0.001; Figure 3A), while the light green module was
frontiersin.org

http://www.wma.net/en/30publications/10policies/b3/
http://www.wma.net/en/30publications/10policies/b3/
https://doi.org/10.3389/fimmu.2022.1046966
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ren et al. 10.3389/fimmu.2022.1046966
simultaneously and negatively associated with acute (R = -0.40, P

< 0.001) and chronic inflammation scores (R =-0.59, P < 0.001;

Figure 3A). Among 395 genes in the blue module, 262 genes met

the cut-off of MM ≥ 0.6 and gene GS ≥ 0.05 for acute

inflammation scores (Figure 3B); similarly, 262 genes met the

cut-off of MM ≥ 0.6 and gene GS ≥ 0.05 for chronic inflammation

scores (Figure 3C). In these two parts, all of the 262 genes

overlapped, and these 262 genes (Supplementary Table 3) were
Frontiers in Immunology 05
set as hub genes in the blue module (Figure 3D). Furthermore,

among 58 genes in the light green module, 49 met the cut-off of

MM ≥ 0.6 and gene GS ≥ 0.05 for acute inflammation scores

(Figure 3E); similarly, 53 genes met the cut-off of MM ≥ 0.6 and

gene GS ≥ 0.05 for chronic inflammation scores (Figure 3F). In

these two parts, the 49 genes overlapped, and these 49 genes

(Supplementary Table 4) were set as hub genes in the light green

module (Figure 3G). These 311 hub genes in significant modules
A B

FIGURE 2

Identification of modules associated with acute and chronic inflammation scores (A) ssGSEA was performed to determine acute and chronic
inflammation scores in patients with IS and healthy controls; (B) WGCNA was performed to identify co-expressed gene modules in the gene
expression data of peripheral blood specimens from patients with IS and healthy controls.
DA

B

C

FIGURE 1

Identification of DEGs in IS (A, B) Merged and normalized gene expression profiles of GSE22255 and GSE16561 datasets; (C, D) Identification of
DEGs between healthy controls and patients with IS.
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associated with acute and chronic inflammation scores were used

for further study.
3.2 Enrichment analysis for hub genes
that were differentially expressed
between IS and healthy controls

Among the 311 hub genes in significant modules, 54 of them

were also DEGs between patients with IS and healthy controls

(Figure 4A). Through biological process enrichment analysis, we

found that these genes were enriched in “regulation of

apoptosis,” “regulation of protein phosphorylation,” “cellular

response to external stimulus,” “reactive oxygen species

metabolism,” and “regulation of inflammation response”

(Figure 4B). For molecular function enrichment analysis, these
Frontiers in Immunology 06
54 genes were enriched in “cytokine activity,” “cytokine receptor

binding,” “mitogen-activated protein kinase,” “TNF receptor

binding,” and “DNA binding repressor” (Figure 4C).

Moreover, we found that these 54 genes were enriched in the

pathways including the “IL-17 signaling pathway,” “NF-kappaB

signaling pathway,” “NOD-like receptor signaling pathway,”

“TNF signaling pathway,” and “Toll-like receptor signaling

pathway” (Figure 4D).
3.3 Selection of core genes and
construction of a diagnostic model for IS

LASSO analysis was performed on the 54 key inflammation-

related genes. After removing the collinearity genes, 17 genes

including ZFP3, TNFSF10, SLC2A3, ID1, PAQR8, OSR2, TNF,
D

A

B

E F G

C

FIGURE 3

Module relationships with clinical traits (A) Identification of significant modules associated with clinical traits; the genes of the blue and light
green modules were significantly correlated with acute and chronic inflammation scores; the relationship between gene significance (GS) and
module membership (MM) in the blue (B, C) and light green modules (E, F); Venn diagram of the hub gene intersection analysis between acute
and chronic inflammation in patients with IS of the blue (D) and light green modules (G).
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SGK1, GABARAPL1, TNFAIP3, PDK4, PEX11B, TNIP1, FFAR2,

MXD1, JUN, and UBR4 were retained (Figures 5A, B). Then,

multivariate LASSO regression analysis was performed, and 9

genes were selected as hub genes for IS, including TNFSF10, ID1,

PAQR8, OSR2, PDK4, PEX11B, TNIP1, FFAR2, and JUN

(Figure 5C). These genes were then used to construct a

diagnostic model based on their expression and tolerance

limits. The diagnostic model was 0.29 × TNFSF10 + 0.45 ×

ID1 - 0.207 × PAQR8 + 0.268 × OSR2 + 0.332 × PDK4 - 0.233 ×

PEX11B + 0.425 × TNIP1 + 0.235 × FFAR2 + 0.234 × JUN.

Through ROC analysis, we found that the diagnostic value of

this model (AUC = 0.81) was significantly higher than for each

single gene (Figure 5D).
3.4 Validation of gene expression and
diagnostic model performance in whole
blood samples

To verify the effectiveness of diagnostic model, we collected

whole blood from healthy controls (n =15), patients with IS (n =

34), and patients with CH (n = 16). For IS, 6 patients had large-

artery atherosclerotic stroke (LAA), 4 had cardiac cerebral
Frontiers in Immunology 07
embolism (CE), 10 had small arterial lacunar stroke (SAA), 11

had stroke of other undemonstrated etiology (SUE), and 3 had

stroke from other causes (SOE) (Supplementary Figure 2). As

shown in Figure 6A, the expression levels of TNFSF10, PDK4,

TNIP1, FFAR2, and JUN were significantly higher in the

patients with IS compared to healthy controls, and the

expression levels of PAQR8 and PEX11B were lower (p <

0.01). However, the expression levels of ID1 and QSR2 were

not significantly different between the patients with IS and

healthy controls. Moreover, reduced expression of PAQR8 and

PEX11B and elevated expression of FFAR2 were observed in

patients with CH compared to healthy controls (p < 0.05).

However, there was no difference in expression of TNFSF10,

ID1, PAQR8, OSR2, PDK4, TNIP1, FFAR2, and JUN between

subtypes of IS (LAA, CE, SAA, SUE and SOE) (Supplementary

Figure 2). Only the expression of PEX11B was lower in CE, SUE,

and SOE compared with LAA and SAA (Supplementary

Figure 2). These results may indicate that TNFSF10, PDK4,

TNIP1, and JUN may be real and specific biomarkers for IS,

while PAQR8, PEX11B, and FFAR2 may be universal

biomarkers for brain diseases with inflammation.

Furthermore, ROC analysis was performed, and the AUC

values of TNFSF10, ID1, PAQR8, OSR2, PDK4, PEX11B,
D

A B

C

FIGURE 4

Functional enrichment analysis of the module core genes (A) Venn diagram of the hub gene intersection analysis between acute/chronic
inflammation and DEGs in IS; (B) The intersection hub genes enriched in BPs; (C) The intersection hub genes enriched in MF; (D) Kyoto
Encyclopedia of Genes and Genomes pathway enrichment analysis of the intersection hub genes.
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TNIP1, FFAR2, and JUN for stroke were 0.756, 0.645, 0.762,

0.616, 0.784, 0.824, 0.806, 0.787, 0.752, and 0.752, respectively, in

validation samples (Figure 6B). We then plugged the gene

expressions of TNFSF10, ID1, PAQR8, OSR2, PDK4, PEX11B,

TNIP1, FFAR2, and JUN into the formula of the diagnostic

model. Interestingly, the diagnostic model using these combines

gene expression levels exhibited extremely high diagnostic value

for IS (AUC = 0.933) and was superior to using any single gene

(Figure 6B). Even though the combined diagnostic model

exhibited a certain diagnostic value for CH (AUC = 0.733),

however, it was not superior to using any single gene

(Figure 6C). These results may indicate that the diagnostic

model constructed with TNFSF10, ID1, PAQR8, OSR2, PDK4,

PEX11B, TNIP1, FFAR2, and JUN expression data can be a

useful tool for the diagnosis of IS.
3.5 The diagnostic score can reflect the
condition of immune-related cells in
patients with IS

In order to determine whether the diagnostic model score

can reflect the condition of immune-related cells in patients with
Frontiers in Immunology 08
IS. We reviewed the results of blood routine tests of healthy

controls and patients with IS, we found that the levels of

lymphocytes were decreased in patients with IS compared to

healthy controls, while the levels of monocytes and neutrophils

were increased (Figure 7A). Interestingly, we found that the

score calculated by the diagnostic model was negatively

associated with the levels of lymphocytes (Figure 7B), while it

was positively associated with the levels of monocytes

(Figure 7C) and neutrophils (Figure 7D). These results

suggested that the diagnostic model score can reflect the

condition of the immune-related cells in patients with IS.
4 Discussion

IS affects millions of people annually across the world (20).

Survivors of stroke often struggle to live independently, and they

are more likely to develop additional neurological sequelae, such

as dementia (21), which causes a heavy burden on patients’

families and society as a whole (20). Investigators have realized

that further understanding of the pathological mechanisms of IS

can reveal valuable blood biomarkers for rapid and early

diagnosis and widens the time window for thrombolytic
D

A B

C

FIGURE 5

Selecting the optimal key inflammation-related genes to construct the final diagnostic model (A) Screening of the optimal parameters and the
vertical lines were drawn; (B) LASSO coefficient profiles of the 17 key inflammation-related genes; (C) Multivariate logistic regression determined
independent candidate diagnostic biomarkers; (D) ROC analysis showing that this diagnostic model had good diagnostic performance.
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therapy. Currently, however, there is little research on whether

genes and proteins involved in inflammation could serve as

diagnostic biomarkers of IS.

There is evidence that IS and other acute brain diseases are

characterized by an inflammatory reaction in brain tissue (22).

As a result of this inflammation, multiple cytokines are released

in both damaged cerebral tissue and peripheral blood (23). In the

current work, each sample from the GSE16561 and GSE22255

datasets were scored based on the genes associated with acute/

chronic inflammation using the ssGSEA algorithm and showed

higher acute/chronic inflammation scores in patients with IS

than in healthy controls; inflammatory responses may

contribute to the pathological processes of IS. In addition,

gene enrichment analysis indicated that these key genes from

the interaction analysis were mainly involved in inflammatory or
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immune-related signaling pathways. Upon further analysis, nine

inflammation-related genes (TNFSF10, ID1, PAQR8, OSR2,

PDK4, PEX11B, TNIP1, FFAR2, and JUN) were selected to

construct a diagnostic model, and the model exhibited

remarkable diagnostic value for IS with an AUC of 0.81.

TNFSF10, also called TNF-related apoptosis-inducing ligand

(TRAIL), is a member of the tumor necrosis factor (TNF) ligand

family (24). TRAIL indeed plays a role in the regulation of innate

and adaptive immunity, making it a highly intriguing molecule for

several immunological disorders (25), including IS (26). Earlier

studies have shown that an increased level of TRAIL on the surface

of CD4+ T cells was strongly correlated with plaque instability in

carotid atheroma tissues (27); TRAIL exerted pleiotropic activation

effects on endothelial cells, vascular smooth muscle cells, and

inflammation cells (28); and low levels of TRAIL were linked to a
A

B C

FIGURE 6

Validation of the diagnostic model in IS and CH samples. (A) The relative expression levels of TNFSF10, ID1, PAQR8, OSR2, PDK4, PEX11B, TNIP1,
FFAR2, and, JUN in healthy controls, patients with IS and, patients with CH; (B, C) ROC curve analysis of TNFSF10, ID1, PAQR8, OSR2, PDK4,
PEX11B, TNIP1, FFAR2, JUN, and diagnostic model constructed by these combines gene expression levels in IS and CH. **P<0.01; *P<0.05.
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poor prognosis in individuals with acute myocardial infarction,

according to multiple clinical trials (29). A recently published study

revealed that low serum TRAIL levels were associated with acute IS

severity (30), while its diagnostic value was not assessed. Pyruvate

dehydrogenase kinase 4 (PDK4), a member of the PDK family,

regulates pyruvate dehydrogenase complexes in the CNS,

which have important effects on neuron–glia metabolic

interactions (31). A recent bioinformatic study identified it as an

autophagy-related gene and diagnostic marker of major depressive

disorder with an AUC of 0.62 (32). TNFa-induced protein 3-

interacting protein 1 (TNIP1), is increasingly being recognized as a

key blocker of inflammatory signaling, and its dysfunction or

deficiency may predispose healthy cells to inflammatory

responses (33). Some researchers have shown that anti-

inflammatory therapeutic targets based on TNIP1 may be

developed and tested in the future (33). Free fatty acid receptor 2

(FFAR2) is involved in immune responses and is expressed in white

blood cells (34). We identified TNIP1 and FFAR2 as inflammation-

related genes in the current work, and these could serve as

diagnostic biomarkers in IS, although there are no studies on the

relationships between TINP1/FFAR2 and IS. As one of the most

extensively studied proteins of the activator protein-1 (AP-1)

complex, c-JUN is involved in a multitude of cellular functions,

including proliferation, apoptosis, survival, tumorigenesis, and

tissue morphogenesis (35). Increasing evidence has been shown

for the interaction of Notch with NF-kB, HIF-1a, JNK/c-JUN,
Pin1, and p53 in stroke, while their specific regulatory mechanisms

have not been elucidated (36). In the future, understanding the

relationship between JUN and IS from the perspective of the
Frontiers in Immunology 10
inflammatory response may be a new research direction. In our

own validation cohort, five of the abovementioned genes

(TNFSF10, PDK4, TNIP1, FFAR2, and JUN) were also found to

be highly expressed and of high diagnostic value in patients with IS,

with AUCs all greater than 0.7. In particular, the FFAR2 expression

level was also increased in patients with CH and had good

diagnostic value (AUC = 0.842).

As a member of the progestin and adipoQ receptor (PAQR)

family, PAQR8 regulates a wide range of cognitive,

neuroendocrine, neuroimmune, and neuroprotective functions

(37). One study suggested that baicalin and/or jasminoidin

alleviated cerebral ischemia through upregulating PAQR8

expression in the rat hippocampus (38). Peroxisome

membrane protein 11B (PEX11B) participates in the

proliferation and division of the peroxisome itself, and the

peroxisome is an organelle that contains a variety of enzymes

that scavenge reactive oxygen species (39). It has been shown

that a rapid increase in reactive oxygen species production after

acute IS rapidly overwhelms antioxidant defenses, causing

further tissue damage (40). Consistent with what we found in

our validation cohort, PAQR8 and PEX11B were downregulated

in both patients with IS and those with CH. This suggests that,

on the one hand, inflammation is one of the broad-spectrum

drivers in multiple brain injury diseases, and, on the other hand,

a single gene as a biomarker has the limitation of low specificity.

ID1, named DNA binding inhibitor 1, is highly expressed in

the central nervous system (CNS) during embryogenesis and

throughout adulthood, and it may play a role in the molecular

mechanisms regulating the cellular responses to TNFa and CNS
D
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FIGURE 7

The diagnostic model can reflect the condition of immune-related cells in patients with IS. (A) The levels of immune-related cells such as
lymphocytes, monocytes, eosinophils, basophilic granulocytes and neutrophils in the whole blood of healthy controls, patients with IS, and
patients with CH. (B) The co-expression relationship between the diagnostic model score and levels of lymphocytes. (C) The co-expression
relationship between the diagnostic model score and levels of monocytes. (D) The co-expression relationship between the diagnostic model
score and levels of neutrophils. **P<0.01; ns, no significance, P>0.05.
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inflammation (41). OSR2, odd-skipped related transcription

factor 2, plays a critical role in cellular proliferation and

quiescence under epigenetic regulation (42). Additionally, Ma

et al. identified OSR2 as an immune infiltration-associated gene

in sciatica with high diagnostic value (43). However, the

relationship between ID1 and IS has not been reported in the

literature. Unfortunately, there was also no significant change in

the expression level of ID1/OSR2 in our validation cohort

compared with healthy controls, and further studies in a larger

sample are needed.

Interestingly, we found that the current diagnostic models

had a higher diagnostic value than using single genes. In

addition, the diagnostic model constructed based on IS had

better diagnostic performance than that based on CH (AUCIS =

0.933, AUCCH = 0.733), suggesting that the novel diagnostic

model constructed using inflammation-related genes had a

better diagnostic specificity. Although some single-gene

biomarkers have shown excellent diagnostic value, they are not

good at distinguishing disease traits. IS is a complex

(multifactorial) polygenic disease that results from the

interaction of risk factors and genetic components caused by

polymorphic genes acting independently or fueling each other.

Therefore, these data can be combined in multivariate analyses

in the future, using factors such as oxidative stress and

endothelial activation, to determine the best diagnostic

markers for IS and optimize the diagnostic value of single genes.

Increasing evidence indicates that peripheral immune-

inflammatory pathways are activated following stroke, which

play a critical role in neurological outcomes (44). Studies on

immune responses following stroke have revealed that

CD4+CD25+Foxp3+ regulatory T cells play crucial and

complex roles in controlling the inflammatory damage caused

by stroke as well as modulating immunosuppression (45). For

instance, in a rat model of stroke, the depletion of T-

lymphocytes led to smaller volumes of cerebral infarction and

better recovery of neural function compared to controls (46); in

patients with acute IS, T cells are activated in the peripheral

blood (47, 48). Monocytes in the blood may mediate

neuroinflammatory responses and strongly influence IS

outcomes (49, 50). We found that lymphocyte levels were

lower in patients with IS compared with healthy controls,

while the levels of monocytes and neutrophils were higher. In

addition, this diagnostic model could reflect the main immune-

related cell status of IS patients to a certain extent, suggesting

that we can understand disease status us ing this

diagnostic model.

We should acknowledge that there are some limitations to

the present work. First, the data we analyzed were from public

databases and the sample size was small, although we integrated

two datasets. Second, although the AUC of the model exhibited

acceptable diagnostic ability, the model performance needs to be

improved. For example, the current diagnostic model cannot
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provide relevant information on the severity and subtype of IS.

Because of the limited data we collected, some biomarkers were

not ideal for the subtype analysis. We could only demonstrate

that these biomarkers had good specificity in the diagnosis of IS.

However, for the subtype analysis, a larger sample is still needed

for further analysis. Finally, the current diagnostic model targets

only inflammation-related genes, but similar in-silico studies of

oxidative stress and endothelial activation are needed to develop

optimal diagnostic markers for IS.
5 Conclusions

In summary, the diagnostic model constructed by the

inflammation-related genes TNFSF10, ID1, PAQR8, OSR2,

PDK4, PEX11B, TNIP1, FFAR2 and JUN exhibited high and

specific diagnostic value for IS, and reflected the condition of

lymphocytes, monocytes and neutrophils in blood. The novel

diagnostic model may contribute to the diagnosis of IS.
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