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Chimeric antigen receptor (CAR)-T cell therapy represents one of the most

innovative immunotherapy approaches. The encouraging results achieved by

CAR-T cell therapy in hematological disorders paved the way for the

employment of CAR engineered T cells in different types of solid tumors.

This adoptive cell therapy represents a selective and efficacious approach to

eradicate tumors through the recognition of tumor-associated antigens (TAAs).

Binding of engineered CAR-T cells to TAAs provokes the release of several

cytokines, granzyme, and perforin that ultimately lead to cancer cells

elimination and patient’s immune system boosting. Within the tumor mass a

subpopulation of cancer cells, known as cancer stem cells (CSCs), plays a

crucial role in drug resistance, tumor progression, and metastasis. CAR-T cell

therapy has indeed been exploited to target CSCs specific antigens as an

effective strategy for tumor heterogeneity disruption. Nevertheless, a barrier

to the efficacy of CAR-T cell-based therapy is represented by the poor

persistence of CAR-T cells into the hostile milieu of the CSCs niche, the

development of resistance to single targeting antigen, changes in tumor and

T cell metabolism, and the onset of severe adverse effects. CSCs resistance is

corroborated by the presence of an immunosuppressive tumor

microenvironment (TME), which includes stromal cells, cancer-associated

fibroblasts (CAFs), tumor-associated macrophages (TAMs), myeloid-derived

suppressor cells (MDSCs), and immune cells. The relationship between TME

components and CSCs dampens the efficacy of CAR-T cell therapy. To

overcome this challenge, the double strategy based on the use of CAR-T

cell therapy in combination with chemotherapy could be crucial to evade

immunosuppressive TME. Here, we summarize challenges and limitations of

CAR-T cell therapy targeting CSCs, with particular emphasis on the role of TME

and T cell metabolic demands.
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Introduction

CAR-T cell therapy represents a novel immunotherapeutic

approach for cancer treatment. This strategy is based on the use

of T cells engineered to selectively recognize a specific tumor-

associated antigens (TAA) on cancer cells, overcoming the major

antigens’ histocompatibility complex (MHC) restriction (Sterner

and Sterner, 2021). CAR-T cells recognition of cognate antigens

on cancer cells induces the activation of cytotoxic signaling,

including the release of granzyme, perforin and cytokines, with

consequent elimination of transformed cells (Zhao et al., 2018).

The use of CAR-T cell therapy in hematological malignancies

has led to promising results, capable of encouraging the scientific

community to use this approach also in solid tumors (Li F. et al.,

2022; Qin et al., 2022; Scholler et al., 2022). Although the

advantages mentioned above, CAR-T cell therapy shows some

limitations primarily concerning severe adverse effects and the

specificity of antigen expression on cancer cells.

As firstly described in leukemic patients treated with CAR-T

cell therapy, the principal side effects concerned the onset of

cytokine release syndrome (CRS), immune cell-associated

neurologic syndrome (ICANS) and cytopenia in a

considerable number of patients (Funk et al., 2022; Morris

et al., 2022).

Similarly to hematologic malignancies, considerable

limitations have been observed in solid tumors, such as

toxicity, an heterogeneous expression of the antigen, an

impaired CAR-T cell trafficking to the tumor site, antigen

escape phenomena, an immunosuppressive tumor

microenvironment (TME) and cancer metabolism (Di Stasi

et al., 2009; Peng et al., 2010; Moon et al., 2014; Sun et al., 2018).

TME is composed by the extracellular matrix, soluble

molecules, and different types of cells that surround the

tumor, influencing cancer growth, dissemination, and

response to immunotherapy. Moreover, the tumor metabolic

rewiring induced by TME components unavoidably alters the

antitumor response.

Cancer stem cells (CSCs) constitute a cell subpopulation

within the tumor mass implicated in cancer progression and

escape from therapy. This phenomenon is explainable by the

capability of CSCs to express high levels of drug efflux pumps and

anti-apoptotic proteins, to proficiently repair DNA damage, to

enter in a quiescent state and most importantly to evade the

immune system surveillance. Moreover, failure of anti-cancer

treatments is indeed ascribable to the difficulties of standard

therapies to distinguish normal stem cells (NSCs) from CSCs.

Thus, an emerging priority is to develop new accurate strategies

to selectively eliminate CSCs (Turdo et al., 2020; Veschi et al.,

2020; Gaggianesi et al., 2021; Turdo et al., 2021).

CAR-T cells have shown the ability to recognize specific

cancer stemness markers and efficiently eradicate CSCs while

sparing NSCs (Masoumi et al., 2021). This evidence opens new

venues in the field of immunotherapy due to the potential of

CAR-T cell-based therapy to target tumor heterogeneity for an

effective cancer treatment.

However, a limitation in the use of CAR-T cells is linked to

the presence of shared antigens between CSCs and normal cells,

determining a phenomenon known as “off-target” with the

unspecific killing of non-cancerous cells. Thus, it is necessary

to identify new CSC-specific antigens that can be recognized by

CAR-T and potentiate their activity by combining multiple

treatments including chemotherapy and targeted therapies

(Wang H. et al., 2020).

In this review, we discuss the latest implementations in CAR-

T cell engineering with the scope of overcoming the influence of

TME components and ameliorate a specific cancer cell

recognition. In addition, we dissect the most powerful

therapeutic approach that target CSCs peculiarities for an

effective cancer treatment.

The structure of CAR-T cells

CAR basic design is composed of i) an extracellular domain

that consists of a single-chain variable fragment (scFv) region

with a light (VL) and heavy chain (VH) that recognizes tumor-

associated antigens (TAAs), ii) A spacer region or hinge, iii) A

transmembrane domain, which anchors CAR to the membrane

of T cells and iv) An intracellular domain composed by the T cell

activation and co-stimulatory domains.

It has been reported that the VH and VL domains can induce

an immune reaction in patients after CAR-T infusion, by

producing antibodies against scFv of CAR-T, impairing its

anti-tumor effect. To overcome this obstacle the CAR

extracellular domain was manipulated in order to insert a

single variable domain on a heavy chain (VHH), also called

nanobody. As scFv, the nanobodies owe the same properties

regarding binding affinity, specificity, stability, and solubility

after CAR-T infusion in patients (Safarzadeh Kozani et al.,

2022a).

An important advantage of CARs compared to the

conventional TCRs is the possibility to act in an human

leucocytes antigen (HLA) independent way (Brownlie and

Zamoyska, 2013). The interaction between CAR binding

domain and the specific antigen, expressed on tumor cells,

induces the activation of ζ or γ chains cross-linking that form

the chimeric receptor intracellular domain. Then, T cells lytic

pathway is activated via the releasing of cytosolic granules

containing granzymes and perforin. Perforins multimerize on

target cell surface and form pores that facilitate the movement of

granzymes into the host cells. The final result of this immune

response is the activation of the apoptotic cell death program in

the targeted cells (Boivin et al., 2009).

In order to improve the T cell signaling, different generations

of CAR have been developed over the years by modulating the

intracellular domains. The oldest version of CARs presented one
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cytoplasmic CD3 signaling domain, which allowed a mild

activation of T cells due to exhaustion and anergy of CAR-T cells.

For these reasons, the 2nd generation of CAR was engineered

by adding one co-stimulatory domain among CD28, 4-1BB

(CD137), OX40 or ICOS. This intracellular complex was more

efficient in inducing a greater T cell response in terms of

cytokines production and expansion rate in vivo (Liu et al.,

2016; Zhao et al., 2018; Rafiq et al., 2020; Mehrabadi et al.,

2022). The combination of multiple costimulatory domains, such

as CD3-C28-4-1BB or CD3−CD28-OX40, allowed the

development of the 3rd generation of CAR characterized by

increased anti-tumor activity and persistence of T cells. Based on

the 3rd generation of CAR, the 4th generation also called

TRUCKs (T cells redirected for antigen-unrestricted cytokine-

initiated killing) has been developed to express different

proinflammatory cytokines [such as interleukin (IL)-2, IL-5,

IL-12, IL-15 and IL-17] in addition to CD3 domain.

Following the binding between the CAR and the tumor

antigen, at the CAR-T cell intracellular domain, nuclear factor

of activated T cell (NFAT) is phosphorylated and, via

translocation to the nucleus, induces the expression of the

transgenic cytokines. The released cytokines have a dual effect:

autocrine because they support T cells in terms of survival and

proliferation, and paracrine by modulating the immune

microenvironment present at the tumor site. The TRUCK

strategy boosts CAR-T cell resistance to the

immunosuppressive TME and leads to the recruitment of

immune system cells to the tumor site (Dragon et al., 2020).

The last generation, the fifth, includes in addition to CD3 and a

costimulatory molecule (CD28 or 4-1BB), a truncated

intracellular IL-2Rβ domain with a STAT3 binding motif. The

link between the CAR and the cognate tumor antigen, causes the

IL-2Rβ-mediated activation of the JAK/STAT pathway with

consequent proliferation and persistence of CAR-T cells

(Tokarew et al., 2019; Xin et al., 2022).

A feature shared by the last two generations of CAR-T is

the ability to mitigate the systemic release of cytokines and to

induce pro-inflammatory cytokines release only after contact

between the T cell and the tumor cell, thus reducing systemic

toxicity and the CRS (Rafiq et al., 2020; Tian et al., 2020;

Mehrabadi et al., 2022).

In the last years, numerous efforts have been made by the

scientific community to better engineer CAR-T cells. In

particular, one of the major hurdle to be faced is the loss or

downregulation of the TAAs in cancer cells, leading to the

failure of CAR-T cell therapy (Sterner and Sterner, 2021;

Mehrabadi et al., 2022). Thus, in order to enhance the CSCs

killing and avoid the antigen escape phenomenon, it would be

necessary to combine different therapeutic approaches aimed at

targeting multiple tumor features, such as CAR-T cell-based

therapy in combination with monoclonal antibodies or with

chemotherapy.

Properties of cancer stem cells (CSCs)

Failure of standard therapies against tumors probably

depends on the presence of many clonal cell populations,

differing at genetic and phenotype level, that compose tumor

mass. In particular, the presence of tumor cell subpopulations

with stemness features, appears to be fundamental to confer

refractoriness to therapies (Bonnet and Dick, 1997; Reya et al.,

2001).

CSCs have been identified for the first time by Dick et al., in a

liquid tumor, the acute myeloid leukemia (AML), subsequently,

CSCs have been found in many solid tumors, such as colon,

breast, lung, melanoma, and pancreatic cancer (Bonnet and Dick,

1997; Batlle and Clevers, 2017). The CSCs subpopulation is

considered the seed responsible for tumor initiation and

progression. One of the most accredited hypotheses by the

scientific community is that CSCs derive from NSCs that

populate adult tissues (Shackleton, 2010; Rossi et al., 2020).

When NSCs acquire genetic and epigenetic alterations, they

lose their genome integrity, undergo deregulation of signaling

pathways, and achieve a malignant phenotype (Verona et al.,

2022). CSCs are characterized by self-renewal, asymmetrical

division capability, active telomerase expression and anti-

apoptotic pathway, activated DNA repair machinery, an

unlimited proliferative capacity, and a high number of ABC

transporters for drug efflux (Rossi et al., 2020). In fact, it has been

demonstrated that CSCs are able to generate a solid tumor within

heterogeneous cancer cells in immunodeficient mouse models

(Al-Hajj et al., 2003; Todaro et al., 2014). Moreover, CSCs are

responsible for tumor recurrence and standard therapies

resistance also due to their dormant status (Li et al., 2008;

Talukdar et al., 2019). Therefore, targeting CSCs represents a

challenge to fight cancer.

Since CSCs were discovered, it has been necessary to isolate

this population to investigate their features and role. This process

is carried out through the characterization of the CSCs surface

molecules (Huang et al., 2022). Examples of CSCs markers are

CD19 (Hosen, 2013; Zhao et al., 2017), CD34 (Aravindan et al.,

2021), CD44 (Al-Hajj et al., 2003; Zhang et al., 2008), CD44v6

(Todaro et al., 2014), CD54 (Chen et al., 2012), EpCAM (Osta

et al., 2004), CD114 (Hsu et al., 2013), CD117 (Sundberg et al.,

2009), CD133 (Bach et al., 2013), CD271 (Boiko et al., 2010), and

ALDH (Ginestier et al., 2007) (Figure 1).

However, the identification of CSCs markers is not easily

feasible, because these are often expressed also on NSCs and

normal tissue. Therefore, variable panels of markers are used to

identify the tumor stem cell populations for each type of cancer.

Markers used for the CSCs isolation are also used for the

formulation of new therapeutic approaches, such as targeted-

and CAR-T cell therapy. Therefore, continuing to deepen the

knowledge of the CSCs’ role in cancer development and the

identification of specific CSCs surface markers, easily recognized
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and detected by CAR-T cells, will allow the implementation of

more effective CAR-T cell-based therapies.

Tumor microenvironment:
Limitations and opportunities

A favorable microenvironment is required for a stronger

anti-tumor immune response. Tumors are an elaborate

ecosystem in which cancer cells and normal cells coexist in an

enriched and unique extracellular space. The contribution of the

tumor landscape is becoming increasingly relevant to define a

successful anti-tumor therapy (Gkretsi et al., 2015; Jin and Jin,

2020; Wei et al., 2020; Di Franco et al., 2021).

It is known that CSCs have a continuous interaction with the

components of solid TME, such as macrophages, cancer

associated fibroblasts (CAFs), immune, endothelial and

adipose cells, and extracellular components (Gaggianesi et al.,

2021; Belli et al., 2022). CSCs and TME components regulate

each other in a feedback loop during all the phases of

tumorigenesis, cancer promotion and progression. Stromal

cells are recruited and re-educated by CSCs to produce pro-

tumoral cytokines, growth factors and peptides that create a pro-

inflammatory and immune suppressive environment favorable

for tumor growth (Barcellos-Hoff et al., 2013).

CSCs orchestrate the formation of a protective shield against

the external environment to evade the anti-tumor immune

system response and in addition, to escape anti-cancer

therapies, such as CAR-T cell therapy (Gaggianesi et al., 2021;

Yang et al., 2021).

Adoptive immunotherapy, by engineering T cells with a

specific CAR, is profoundly affected by the presence of an

adverse microenvironment. Indeed, CAR-T cells do not act in

a strictly cell-autonomous way, but through a complex crosstalk

with the TME machinery (Marofi et al., 2021; Sterner and

Sterner, 2021).

The presence of a dense fibrotic mass in the solid tumor, a

low quantity of chemokines involved in the recruitment of

lymphocytes, reduces the migratory and penetrative capacity

of CAR-T cells (Li et al., 2018). Moreover, T cell infiltrating

activity is negatively modulated by extracellular purine

nucleosides, such as adenosine (ADN) (Ohta, 2016; Boison

and Yegutkin, 2019). There are four known ADN receptors,

A1, A2a, A2b, and A3 receptors. The A2a receptor (A2aR) is

present on the surface of T lymphocytes. Binding of ADN to its

own receptor on the CD4+/CD8+ cell surface reduces interferon-

γ (IFN-γ) and granzyme B production (Sorrentino et al., 2019).

For this reason, different methods have been developed to inhibit

A2aR and to increase the activity of T cells by overcoming the

inhibition caused by ADN in the hostile microenvironment

(Fallah-Mehrjardi et al., 2020). SCH-58261 is an A2aR

antagonist, but its inhibitory activity is hampered by poor

drug solubility and pharmacokinetic properties in vivo. To

overcome this limitation, Siriwon et al., generated engineered

FIGURE 1
Major mechanisms of anti-cancer therapy resistance of Cancer Stem Cells (CSCs). Schematic representation of the principal Cancer Stem Cells
(CSCs) characteristics, including high expression of ABC drug efflux transporter, dormant status, metabolic plasticity, deregulation of tumor-
associated antigens (TAAs), proficient DNA repair and escape of cell death mechanisms, which confer resistance to standard anti-cancer therapies.
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CAR-T cells expressing an encapsulated vesicle containing SCH-

58261, allowing drug delivery at the tumor site. These results

demonstrated that conjugating, ex vivo before the administration,

liposome multilamellar drug-loaded nanoparticles on the CAR-T

cell’s surface, augments significantly the efficacy of CAR-T

therapy reducing the delivery to other tissue sites thus

minimizing side effect phenomena (Siriwon et al., 2018).

Moreover, Masoumi et colleagues, demonstrated that

associating a gene silencing system (shRNA) against the A2aR

receptor, in the human anti-mesothelin CAR construct, could

increase CAR-T cell therapy efficacy in solid tumors (Masoumi

et al., 2020).

Tumor-associated macrophages (TAMs) are the

predominant cells of TME that contribute to tumor

progression and hamper immune response by a direct effect

on cancer cells (Yu et al., 2021). M2-like TAM exploit their

immune suppressive function by anti-inflammatory cytokines

production, the expression of immune checkpoint ligands, and

the release of immunomodulatory enzymes such as arginase I,

which is involved in the arginine degradation essential for T cell

functions (Sharda et al., 2011; Sosnowska et al., 2021). CSCs are

responsible for TAMs re-education to support tumor growth. To

redirect macrophage phenotype from M2 (pro-tumorigenic

phenotype) toward M1 (anti-tumorigenic phenotype), several

strategies have been described consisting on the use of

CD40 antagonists, PI3K inhibitors, or antibodies against the

CCR2 ligand (Pathria et al., 2019). M2-like TAMs secrete IL-6

that induces STAT3 signaling activation in CSCs promote their

survival and enhance their proliferation (Radharani et al., 2022).

In pancreatic cancer, the depletion of M2 macrophages reduced

stem cell tumor compartment improving response to

chemotherapy. Rodriguez-Garcia et al., following the

identification of folate receptor β (FRβ) as a specific marker

for the M2 TAM subtype, generated CAR-T cells directed against

this surface receptor. Targeting FRβ positive TAMs in melanoma

syngeneic mouse models resulted in a switch of TME increasing

the homing and activity of T cells and the recruitment of

monocyte with anti-tumor activity. Tumor pre-treatment with

FRβ CAR T cells may, thus, increase the anti-tumor activity of

adoptive T cells therapy (Rodriguez-Garcia et al., 2021).

CSCs and stromal cells recruited at the tumor site promotes

an inflammation state that exacerbates tumor progression by an

overexpression of cytokines and their receptors (Vlasova-St Louis

and Bohjanen, 2017; Lopez de Andres et al., 2020; Quinn et al.,

2020). In many solid tumors, the cytokine-chemokine network is

profoundly altered by the cross-talk between CSCs and other

stromal cells, with a consequent release of soluble factors that

favor an immune suppressive condition (Chen W. et al., 2018;

Reshkin and Cardone, 2020).

Cytokines and chemokines are small secreted molecules that

interfere with the survival, expansion, homing, differentiation,

and activity of T cells (Borish and Steinke, 2003). Among the

immunosuppressive cytokines, IL-4, TGFβ and IL-10 are the

most representative at the tumor site, contributing to CAR-T cell

dysfunction (Ghahri-Saremi et al., 2021). To circumvent this

limitationMohammed et al., generated a unique protein in which

the cytokine-binding domain of the IL-4 receptor was fused with

the endodomain of the IL-7 receptor involved in the

immunostimulatory signaling (Mohammed et al., 2017). The

infusion of CAR-T cells against a prostate-specific antigen

engineered to express the inverted cytokine receptor resulted

in potent and sustained anti-tumor effects (Mohammed et al.,

2017). On the contrary same efforts have been made to force the

expression of pro-immune cytokines generating “Armored”

CAR-T cells that are engineered to secrete pro-inflammatory

cytokines such as IL-12, IL-15, and IL-18 (Jorgovanovic et al.,

2020).

The non-cellular components of TME such as tenascin,

periostin, SPARC, and collagen which overall contribute to the

fitness of the tumor tissue, are mainly released by CAFs

(Chiquet-Ehrismann et al., 1986). A plethora of neoplastic

tissues, including pancreatic cancer, are characterized by a

dense desmoplastic reaction in which a large amount of

extracellular components strongly supports tumor growth

and limits drug penetration and uptake (Modica et al.,

2021). The presence of a dense stroma compartment

negatively influences CAR-T cells therapy limiting homing at

the tumor site, downregulating the expression of adhesion

molecules, and acting as a reservoir for immunosuppressive

cytokines (Gorchs and Kaipe, 2021). In the CSCs compartment,

CAFs play an important role through IGF-II/IGF1R pathway

and Wnt signaling cascade sustaining CSCs survival (Valenti

et al., 2017). Moreover, prostaglandin E2 (PGE2), produced by

CAFs, is directed against CSCs compartment in which activates

NF-κB, via EP4-PI3K and EP4-mitogen-activated protein

kinase signaling, promoting CSCs expansion (Wang et al.,

2015).

For instance, targeting CAF-derived factors such as PGE2,

may represent a strategy to weaken the CSCs compartment and

enhance immunotherapy efficacy in solid tumors (Wang et al.,

2015; Freeman and Mielgo, 2020; Safarzadeh Kozani et al.,

2022b). Conversely, Sakemura and others have developed a

strategy that directly acts on activated fibroblast by

engineering CAR-T cells to target both multiple myeloma cells

and signaling lymphocyte activation molecule family-7 (SLAM-

7) expressed in CAFs. The dual targeting of stroma components

and cancer cells, enhancing CAR-T cell cytotoxicity activity and

overcoming resistance to the anti-tumor adoptive cell therapy,

represents an encouraging therapeutic approach (Sakemura et al.,

2022).

TME is also characterized by the presence of a degenerate

vasculature consisting of vessels of abnormal size, tortuous, with

oversized pores, and without pericytes to cover the structure. The

corrupted vasculature results in a dysfunctional blood flux and

low oxygen level responsible for the hypoxic condition observed

in solid tumors. In addition, the aberrant blood flux is also
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responsible for the accumulation at the tumor site of metabolites

and toxins (Jain, 2005).

T cells activity is hampered not only by a physical barrier, due

to abnormalities of the vessels, but also by tumor-associated

endothelial cells that promote an immunosuppressive

environment by downregulation of adhesion molecules.

Intracellular adhesion molecule 1 (ICAM1) and vascular cell

adhesion molecule 1 (VCAM1) are dramatically reduced in

tumor vessels determining a critical obstacle for T cells

extravasation. On the contrary, the low expression level of

adhesion molecules promotes FoxP3+Treg accumulation

exacerbating the immunosuppressive environment (Terme

et al., 2013). Moreover, their suppression activity is boosted

by CD39 which catalyzes the hydrolysis of ATP into ADN

and contributes to FoxP3+Treg stability (Takenaka et al., 2016).

Bevacizumab, a monoclonal antibody directed against VEGF,

has been approved for the treatment of several solid tumors

inducing a re-modulation of tumor vessels, increasing B and

T cell recruitment, and improving immune response (Roviello

et al., 2017). The combination treatment of CAR-T cells with

anti-VEGF molecule resulted a significant increment in

immunotherapy efficacy (Bocca et al., 2017). T cell treatment

of solid tumors has proven to be a challenge, largely due to the

hostile solid TME. One of the active and cellular TME

components is represented by myeloid derived suppressor

cells (MDSCs). They mainly act in the peripheral blood and

at the TME site where they foster an innate and adaptive anti-

immune system response. The interplay between MDSCs and

tumor stroma is in charge of structural and functional

modification of the TME. MDSCs are in close contact to

cellular and non-cellular microenvironmental components,

they influence the blood vessel’s morphology and functionality

and interact with CSCs enhancing tumor invasion and metastasis

formation. More importantly, MDSCs settle positive feedback

loop with CSCs. MDSCs are recruited by CSCs through G-CSF at

the tumor site where in turn they prompt CSCs stemness

properties via NOTCH/STAT3 signaling cascade (Welte et al.,

2016; Ouzounova et al., 2017). In TME, MDSCs rewire their

metabolism significantly increasing metabolites uptake (such as

glucose, fatty acid, lactate and aminoacid) defining an

immunosuppressive microenvironment (Wang Y. et al., 2020).

Blocking the immunosuppressive role of MDSCs, may boost the

efficacy of CAR-T cell treatment (Holthof et al., 2021).

An important strategy based on the use of conjugated CAR-T

cells is represented by engineering the R2.4-1BB of the

TR2 receptor. This receptor class is physiologically expressed

on the TME-resident MDSCs, leading to their suppression and

lack of function. CAR-R2.4-1BB engineered structure, lead to

anti-immunity inhibition and augments intratumoral CAR-T

proliferation and clinical potential of CAR-T cell therapy in solid

tumors (Nalawade et al., 2021).

In conclusion, the active role played by TME and the

possibility to modify its structure and cell components make

it one of the most important challenges to increase the efficacy of

CAR-T-based treatments (Figure 2). Thus, the possibility to

create therapies directing CAR-T cells against TME modulator

is a promising prospect in tumor immunotherapy treatment.

Cancer stem cell metabolic rewiring:
A pivotal barrier for CAR-T

The metabolic profiles of CSCs, including all factors released

in the TME, are responsible for immunotherapy efficiency and

resistance (Chew et al., 2012). CSCs must fulfill the energy

demands for a strong synthesis of metabolites, which boosts

uncontrolled proliferation. For these reasons, cancer cells,

including CSCs, have a deregulated metabolism, a common

feature of all cancer types. According to the theory formulated

FIGURE 2
Schematic representation of the immunosuppressive role of
the tumor microenvironment (TME) on the CAR-T cell efficiency.
Immunosuppressive tumor microenvironment (TME) including
cancer-associated fibroblast (CAFs), M2-macrophages,
myeloid-derived suppressor cells (MDSCs), regulatory T cells
(Treg) negatively affect CAR-T cell activity against Cancer Stem
Cells (CSCs). The development of CAR-T cell-based strategies
against CSC-specific tumor associated antigens (TAAs), including
EpCAM, CD44v6, CD166, c-Met, CD133, or against specific TME
components antigens (A) including TR2, FRβ, SLAM-7 improve
their functions.
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by OttoWarburg, in 1927, it is believed that the tumor mass has a

purely fermentative glycolytic metabolism, which allows the

conversion of glucose into pyruvate and also, in aerobic

conditions, into lactate. In addition, glycolysis is essential for

the production of metabolic intermediates, and glucose-6-

phosphate is used for the synthesis of nucleotides (Warburg

et al., 1927; Kroemer and Pouyssegur, 2008; Turdo et al., 2020).

Many studies have subsequently shown that the tumor mass

is heterogeneous, also on the metabolic aspect. CSCs have an

intrinsic plastic metabolism to suit unfavorable conditions,

converting a hostile environment into a favorable milieu for

their survival and progression (Janiszewska et al., 2012; Sancho

et al., 2016; Chae and Kim, 2018; Mori et al., 2019; Emami Nejad

et al., 2021).

Cancer cell demand of intermediate metabolites as well as the

adverse microenvironmental conditions dictate changes in

metabolism also in CSCs subpopulation. For instance, a

mitochondrial metabolism allows CSCs to develop numerous

intermediate metabolites produced by the Krebs cycle and by

pathways connected to it, such as fatty acid metabolism.

Furthermore, the rapid metabolic change represents an escape

mechanism implemented by CSCs to standard therapies (Turdo

et al., 2020). This exaggerated demand leads to nutrient

competition of all TME components, including lymphocytes

(Chang et al., 2015). PD-L1 via PI3k/mTOR pathway plays a

critical role in regulating CSCs glucose uptake (Hudson et al.,

2020). Pembrolizumab, nivolumab, and cemiplimab, by blocking

the PD-1/PD-L1 axis, reduce glucose uptake by cancer cells,

leading to an increment of TME glucose concentration that is

necessary for CAR-T cell activation (Xu et al., 2019).

Cancer cells adapt their oxygen supply requirement to

survive and grow, as well as stemness compartment. Hypoxia

represents one of the most frequent hostile conditions to which

CSCs are subjected during tumor promotion and growth. In the

hypoxic conditions, cells undergo a cell cycle block, entering in a

quiescence state that reduces their susceptibility to conventional

therapy (Das et al., 2008; Ju et al., 2022). Therefore, the

identification of the escape mechanisms of CSCs from hostile

conditions can allow the development of artificial systems that

help in the fight against these important subpopulations.

Optimization of CAR-T cell
metabolism

T lymphocytes have a baseline metabolism of oxidative

phosphorylation and the oxidation of fatty acids (FAO).

During the activation process, based on the surrounding

environment and the type of antigen that has been

encountered, the lymphocytes proceed to differentiate with

regulatory or effector functions. Several authors show that

metabolism is a key element in regulating the proliferation

and differentiation of T cells (Kaech et al., 2002; Chang et al.,

2013; Chang et al., 2014; Kouidhi et al., 2018; Gutierrez-Arcelus

et al., 2019).

T lymphocytes reprogram their metabolism in line with their

needs (Donnelly and Finlay, 2015). One of the most activated

pathways in effector cells is the PI3K-AKT-mTOR, which

converges in the activation of c-Myc, the overexpression of

type 1 glucose transporters (GLUT1), greater glucose uptake,

and the promotion of aerobic glycolysis. Subsequently, it was also

observed that memory cells exhibit increased oxidative

phosphorylation (Frauwirth et al., 2002; Wang et al., 2011;

Zhang et al., 2021).

The regulatory T cells instead show ametabolism based more

on the FAO (Ma et al., 2019). When T cells are taken from the

patient, to be engineered with a CAR construct, they must

undergo in vitro purification and expansion processes. During

and after the in vitro expansion process, the choice of medium is

also crucial. The use of nutrient-rich media (carbohydrates and

amino acids) is required to generate sufficient CAR-T for

infusion. However, ex vivo culture conditions characterized by

excessive amounts of nutrients can compromise the survival of

CAR-T when infused in patients. Indeed, the presence of a hostile

environment and low glucose provokes an early exhausted T cell

phenotype, responsible for the failure of immunotherapy. In

addition, glucose is required for T cell activity to produce

proinflammatory cytokines, such as IFN-γ. Therefore,

accustoming CAR-T cells to a low glucose environment,

resulting in a gradual reduction in glycolysis, will allow a

higher success rate (Turdo et al., 2020; Kankeu Fonkoua et al.,

2022).

Another important precaution that must be taken during the

expansion phase of engineered T lymphocytes concerns the

pH of the medium in which they grow. According to Rodrigo

Lamas et colleagues, even small changes in pH can alter the

growth and functioning of CAR-T cells. An acid pH between

6.8 and 7.0 counteract the expansion process, while a slightly

basic pH of 7.5 supports robust expansion (Lamas et al., 2022).

Cytokines added in culture media during the expansion

phase are also fundamental element that may enhance cell

proliferation and differentiation. For example, IL-2 promotes

glycolysis, IL-7 actives the STAT5 pathway and glucose uptake,

IL-15 increases stability of mitochondrial health and down

regulates the glycolysis pathway (Wofford et al., 2008;

Secinaro et al., 2018).

In order to successfully reach tumor bulk, lymphocytes must

be able to survive in the TME and preserve their faculties by

adapting their metabolism (Beckermann et al., 2017; Ghassemi

et al., 2020). In the microenvironment, there are a plethora of

metabolic factors which act as immunosuppressive elements and

inhibit effector T lymphocyte activity.

Lactate is generated by hyperproliferating tumor cells in

presence of an inadequate tumor vascularization. The

presence of lactate in TME influence negatively T cell

functions leading to anti-tumor response inefficacy by

Frontiers in Molecular Medicine frontiersin.org07

D’Accardo et al. 10.3389/fmmed.2022.1055028

https://www.frontiersin.org/journals/molecular-medicine
https://www.frontiersin.org
https://doi.org/10.3389/fmmed.2022.1055028


preventing the activation of cytotoxic T lymphocytes and

dendritic cells (DeBerardinis and Chandel, 2016). The

metabolism of CAR-T in vitro also changes according to the

different co-stimulating domains used in the construct (CD28,

ICOS, 4-1BB, OX40 or CD27) (Maus et al., 2013; Liu et al., 2016).

For instance, CD28 enhances the glycolytic pathway, reduces cell

proliferation and secretome, and leads T cell effectors to a rapid

exhaustion. Instead, 4-1BB sustains mitochondrial oxidative

metabolism that boosts cell persistence in vivo (Pellegrino

et al., 2020). In accordance to the above mentioned role of

mitochondrial metabolism, Chowdhury PS et colleagues

observed a better and prolonged anti-tumor performance of

T cells in MC38-bearing mouse treated with PD1 blockade

therapy by improving the mitochondrial activity of T cell

(Chowdhury et al., 2018; Li and Zhang, 2020).

Interestingly, Zhao et al. compared 4-1BB-based CAR-T to

CD28-expressing CAR-T cells. In particular, 4-1BB CAR-T cells

owned a higher anti-tumor activity and longer persistence in

NCG mice engrafted with the Daudi, NALM6, Raji, and

K562 leukemia cell lines. Furthermore, through a retrospective

analysis, the performance of the two different CAR-T cells has

been examined on thirty-six patients. The retrospective study

showed that patients infused with the 4-1BB CAR-T cells showed

a higher overall survival rate and less severe adverse events as

compared to CD28 CAR-T infused in patients (Zhao et al., 2020).

In addition, CAR constructs formed by the costimulatory

proteins OX40, CD27, and ICOS have been subject of

extensive studies (Peperzak et al., 2010; Zeng et al., 2016;

Pacella et al., 2018; Weinkove et al., 2019). Non-etheless, it

has been demonstrated that OX40 determines the regulation

of glucose and lipid metabolism while CD27 appears to be

involved in the regulation of oxidative stress and glycolysis.

Conversely, ICOS allows a greater activity of GLUT-1 and

lipid synthesis (Peperzak et al., 2010; Zeng et al., 2016; Pacella

et al., 2018; Weinkove et al., 2019). As suggested by Kawalekar

et al., a promising therapeutic approach that recapitulates the

natural immune response could be to combine CAR-T cells

created with the CD28 domain, composed mainly of effector

T lymphocytes with glycolytic metabolism, with the CAR-T

created with the 4-1BB domain composed mainly of memory

T cells bearing a mitochondrial metabolism (Kawalekar et al.,

2016).

Careful and in-depth studies are needed to choose the best

CAR construct in accordance to the tumor type and the

availability of oxygen in the TME. Indeed, different metabolic

pathways have different oxygen requirements (Zhang et al., 2007;

Teijeira et al., 2018). In solid tumors, low levels of oxygen induce

TME cells to activate the hypoxia pathway. In a mouse model

recapitulating a solid tumor, T cells have shown a stabilization of

the hypoxia-inducible factor (HIF-1) with consequent rewiring

of their metabolism, promoting anti-cancer activities

(Rodriguez-Garcia et al., 2020). Recent studies showed the

possibility to exploit the hypoxic microenvironment using

CAR-T engineered for the oxygen sensible domain of HIF-1A,

which improve the CAR-T metabolism and function in low

oxygen concentration (Xu et al., 2019).

Considering the central role of metabolism in the activity,

survival, and success of CAR-T in anti-cancer treatments, full

knowledge about cell metabolism, could be a key point for

improving the immune response of CAR-T cell therapy

(Figure 2).

Targeting cancer stem cells by CAR-T
cells in pre-clinical and clinical
studies

In the last few years, the application of CAR-T cell therapy

targeting CSCs has obtained remarkable success in the treatment

of several hematologic tumors, but poor results have been

achieved in targeting malignant solid tumors. It has been

demonstrated that CAR-T cell monotherapy is not sufficient

for the complete elimination of CSCs in solid tumors, indicating

the necessity to combine it with other therapeutic approaches

(Maiuthed et al., 2018; Han D. et al., 2021). CAR-T cell therapy

efficacy is hindered by several factors such as the

immunosuppressive microenvironment, tumor heterogeneity

and CSCs plasticity and immune escape capacity (Gilham

et al., 2012; Marofi et al., 2021).

One additional adoptive T cell therapy limitation is the “on-

target off-tumor toxicity” resulting in the killing of NSCs that

share the same targeted antigens expression to CSCs. Another

adverse event is associated with the release of excessive cytokines

which cause the so-called CRS. This toxicity could be minimized

by introducing suicidal genes, like the inducible caspase 9, that

can induce apoptosis of T cells, preventing their over-activation

(Gargett and Brown, 2014).

EpCAM

EpCAM is a type I transmembrane glycoprotein, mainly

involved in cell proliferation, migration, differentiation, and cell

adhesion. Deng et al. generated EpCAM CAR-T cells to

specifically target the metastatic prostate cancer cells (PC3M)

that express high levels of the CSC antigen EpCAM. By

performing both in vitro and in vivo experiments, using

NOD/SCID mice, the authors demonstrated that EpCAM

CAR-T cells killed EpCAM-overexpressing PC3M cells.

Moreover, EpCAM CAR-T cells suppressed growth and the

metastatic capacity of PC3 parent cells expressing low

EpCAM levels (Deng et al., 2015). Recently, Zhang et al. used

third-generation CAR-T cells specific to EpCAM. This study

revealed that EpCAM CAR-T cells secreted cytotoxic cytokines,

like tumor necrosis factor-alpha (TNF-α) and IFN-γ and delayed
the cancer growth in xenograft models, showing no toxicity in
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mice (Zhang et al., 2019). Several clinical trials are still ongoing in

which EpCAM CAR-T cell’s inhibitory activity is under

evaluation alone or in combination with chemotherapy for the

treatment of many solid tumors (NCT02915445; NCT03563326;

NCT03013712; NCT02729493; NCT02725125).

CD44

CD44 is a transmembrane receptor expressed on the surfaces

of CSCs of different tumor types that binds hyaluronic acid,

regulating cell-cell and cell-matrix adhesion. It is also involved in

the epithelial-mesenchymal transition and cell proliferation

(Dalerba et al., 2007; Prince et al., 2007; Lee et al., 2008). Our

research group has shown that the v6 variant of CD44 is a key

factor in the migration, metastasis, and resistance to target

therapy of colorectal cancers (Todaro et al., 2014). Engineered

T cells targeting CD44v6 (CD44v6 CAR-T) showed an anti-

tumor effect in vitro and in vivo in various cancers such as acute

myeloid leukemia, multiple myeloma, and pulmonary and

ovarian adenocarcinoma (Casucci et al., 2013; Porcellini et al.,

2020). Currently, the use of CD44v6 CAR-T is ongoing in phase

2 clinical trials in different types of cancer (NCT04427449).

CD166 or ALCAM

Another CSCs surface marker is CD166 or ALCAM

(activated leukocyte cell adhesion molecule), a transmembrane

glycoprotein that belongs to the immunoglobulin superfamily

(Dalerba et al., 2007; Jiao et al., 2012; Yan et al., 2013).

Physiologically, it regulates hematopoiesis, neurogenesis and

inflammatory responses but it is also highly expressed and

associated with tumorigenesis in many different tumors, such

as breast, colorectal, prostate, melanoma, and pancreatic cancers

(King et al., 2004; Federman et al., 2012). In a recent study,

CD166-specific CAR-T cells were tested in vitro, in MNNG/

HOS, U2OS, MG-63 and Saos-2 osteosarcoma cell lines, and in

vivo, in NOD/SCID mice, in order to evaluate the capability of

CAR-T to selectively target CD166+ cells. Of note, CD166 CAR-T

cells hampered tumor growth without injury against healthy

tissues. These data support the use of CAR-T also in other

CD166 expressing tumors with immunotherapy and/or

chemotherapy (Wang et al., 2019).

c-Met

c-Met is a tyrosine kinase receptor, a proto-oncogene

expressed in both cancer and normal cells, activated by its

ligand, the hepatocyte growth factor (HGF). It promotes a

wide range of activities in cancer, such as angiogenesis, tumor

growth, cell motility, and metastasis. c-Met activation in cancer

occurs by overexpression, mutations, and amplification of the

gene (Boccaccio and Comoglio, 2006). Recent studies have

shown that c-Met is a putative stem/progenitor cell marker in

colorectal cancer, glioblastoma, and breast cancer (Di Renzo

et al., 1991; Li et al., 2011; Baccelli et al., 2013; Lin et al., 2019).

Recently, Kang et al. demonstrated that the c-Met CAR-T cells

co-cultured with c-Met-positive gastric cancer cells secreted IL-2

and IFN-γ, showing specific anti-cancer cytotoxicity. Moreover,

the c-Met CAR-T cells suppressed tumor growth in vivo

xenograft models, without any significant side effects in mice

(Kang et al., 2021). Of note, a phase 1 of clinical trials were

terminated using autologous T cells engineered with c-Met in

breast cancer (NCT01837602). The pharmacological treatment

with autologous T cells engineered with c-Met in metastatic

breast cancer patients, showed no side effects after intratumoral

injections. Interestingly, after resection of tumors, at the injection

site, it has been observed a considerable necrotic area with

macrophages infiltration (Tchou et al., 2017).

CD133

CD133, or prominin-1, is a pentaspan transmembrane

glycoprotein, encoded in humans by the PROM1 gene. It is a

CSCs marker in glioblastoma, colorectal, liver, and pancreatic

cancer (Liu et al., 2006; Hermann et al., 2007; Ma et al., 2008; Ren

et al., 2013). Wang et al. in a phase 1 trial (NCT02541370), have

demonstrated that using CD133CAR-T cells in refractory and

metastatic tumor patients with hepatocellular carcinoma,

achieved a 5-month tumor-free survival (Wang et al., 2018).

To increase CAR-T treatment efficacy, combining adoptive

T cells therapy with chemo/radiotherapy or other target

therapies are under evaluation.

In multiple aggressive solid tumors, CD133 is responsible for

tumor resistance to standard therapy and tumor relapse.

CD133 expression, in gastric CSCs, increases after

chemotherapy treatment indicating its potential role as a

therapeutic target. In a preclinical study, CD133 CAR-T cells

were associated with cisplatin. This combinatorial approach

inhibits in vivo growth, suggesting to explore the combination

therapy in a future clinical trial (Han Y. et al., 2021).

NKG2D

CAR-T cell therapy is an emerging and prominent strategy

also in glioblastoma, which represents the most common brain

tumors in adults with a bad prognosis. In preclinical studies,

T cells engineered with a CAR that recognized NKG2D ligand, a

neural stem cell marker, resulted in a safe therapeutic approach.

In a study described by Weiss et al. the combination of anti-

NKG2D CAR-T cells with a sub-therapeutic dose of regional

radiotherapy resulted in anti-tumor synergistic activity in two
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syngeneic mouse glioma models (Weiss et al., 2018). However,

only one clinical trial ongoing includes the treatment of

refractory glioblastoma patient with the anti-NKG2D CAR-T

approach alone (NCT05131763).

ROR1

Another example is given from a preclinical study in which

the combination of oxaliplatin and T cells expressing a CAR

direct against tyrosine-protein kinase transmembrane receptor

(ROR1) improved the anti-tumor activity of the cell therapy

increasing T cell homing to the tumor site and their survival

(Srivastava et al., 2021).

GD2

All the T cell biological functions, such as cell survival,

proliferation, differentiation, and cytotoxic activity, are

regulated by a fine balance of specific cytokine cocktails.

Modifying the cytokine network can improve CAR-T cell

anti-tumor activity. Quintarelli et al., reported that the

presence in culture medium of IL-7 and IL-15 increases long-

term in vitro proliferation and survival in SHSY5Y, and IMR-32

neuroblastoma cell lines and in vivo expansion of CAR-T cells

targeting disialoganglioside (GD2) in a NSG mice that mimic

neuroblastoma (Quintarelli et al., 2018). Moreover, IL-15

significantly reduces the expression of PD-L1 on the surface

of cancer cells. CAR construct was modified to express IL-7/IL-

15 and the suicide gene (iC9) without impairing CAR expression

and activity (Perkins et al., 2015). The iC9 gene was included in

the construct as a safe strategy for the clinical application since it

works as an “off switch” able to interrupt CAR-T cell cytotoxic

activity at the onset of severe adverse reactions. Nowadays, CAR-

T cell targeted against GD2 and expressing IL-15 and iC9 is

under evaluation in a clinical trial to treat patients with

neuroblastoma (NCT03721068).

CD19

To improve the efficacy of adoptive T cell therapy,

researchers are also working to increase the survival and the

performance of engineered T cells. Moreover, an increased

understanding of the biology of the immune system will allow

the identification of targetable modulators that play a key role in

T cell maturation and function (Uehara et al., 2017). Findings of a

study performed by Funk et al., showed that the pre-treatment of

CAR-T lymphocyte targeting CD19 antigen with a PI3K

inhibitor dramatically improve CD8 T cells expansion (Funk

et al., 2022). Moreover, the pre-treatment with PI3K inhibitor

enhanced co-stimulatory molecules expression and the

production of functional cytokines resulting in a complete

tumor clearance when injected into a mouse model of human

Burkitt’s lymphoma (Funk et al., 2022). Ex vivo expansion of

engineered T cells with PI3K inhibitor could be applied to other

T cell therapies.

The treatment with engineered T cell to recognize

CD19 ligand has reported a complete remission rate of 54%

in patients with B-cell lymphoma refractory to the standard

therapy. However, many patients do not achieve complete tumor

eradication after CD19 CAR-T treatment (Chavez et al., 2021).

To overcome T cell therapy resistance, the CAR construct has

been modified to include IL-7 and CCL-19 expression promoting

T cell homing to the lymphoma tissue and enhancing cell killing

activity. Moreover, patients with diffuse large B-cell lymphoma

were recruited in a clinical trial in which the treatment with

CD19 CAR-T expressing IL-7 and CCL-19 has been combined

with PD-1 monoclonal antibody. As a consequence of PD-1/PD-

L1 axis inhibition, the anti-tumor effect and long-term remission

from the disease has been improved (NCT04381741).

Indeed, alternative approaches have been provided to target

the multiple immunosuppressive responses within TME that

profoundly limit the success of immunotherapy strategies.

Currently, the combination of the adoptive CAR-T cell

therapy with immune checkpoint inhibitors is a promising

strategy to modulate the immune microenvironment of solid

tumors and increase the therapeutic efficacy of the cell-mediated

anti-tumor activity. Recently, Yamaguchi et al. demonstrated

that PD-L1 inhibition with atezolizumab or avelumab modulates

macrophage polarization pushing toward a more M1-like

phenotype improving CAR-T cell killing activity (Yamaguchi

et al., 2022). An ongoing clinical trial foresees the use of

CD19 CAR-T cells in combination with PD-1 monoclonal

antibody (tislelizumab) for the treatment of patients with

diffuse large B cell lymphoma that relapsed or are refractory

to the standard therapy (Figure 3) (NCT04381741) (Wang et al.,

2021).

Several clinical studies have shown that the treatment with

CD19 CAR-T alone, in a large percentage of patients, cannot

achieve complete remission. Considering the success of

CD19 CAR-T cells as anti-tumor therapy and the expression

of CD19 in the CSCs subpopulation, this specific CAR-T could be

applied to target CSCs in different type of tumors.

The above discussed clinical trials have been reported in

Table 1.

Pitfall and critical points of CAR-T cell
therapy

Although the advantages mentioned above, the use of a CAR-

T cell therapy shows some limitations. A challenge not yet

addressed concerns the tumor antigen heterogeneity,

consisting in the expression of the different types of TAAs at
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different levels in tumor cell population (Chen N. et al., 2018).

Strategies to overcome this limitation includes the engineering of

T cells to recognize multiple TAAs simultaneously expressed on

the surface of cancer cells and the use of drugs that increase the

expression of CAR-T target on tumor cells (Kailayangiri et al.,

2020).

Moreover, these treatment approaches counteract the escape

of the tumor antigen, which is a phenomenon that has been

noticed after the therapy with CAR-T based therapy. (Fry et al.,

2018; Majzner and Mackall, 2018).

One of the most frequent side effects of CAR-T cell therapy is

the toxicity caused by an excessive proliferation of lymphocytes,

following the recognition of the cognate antigen, and the

subsequent release of pro-inflammatory cytokines that

characterize CRS. Several efforts have been made by the

scientific community to overcome this issue. The modification

of the CAR structure, in particular in the hinge and

transmembrane regions have led to a reduction of cytokines

levels released and a more controlled proliferation of

lymphocytes, maintaining, at the same time, an excellent

cytolytic capacity (Sterner and Sterner, 2021). This

modification showed a favorable therapeutic response in

patients enrolled in phase 1 clinical trials (Ying et al., 2019).

In addition, in solid tumors CAR-T-based therapy is limited

because CAR-T cells are not able to reach and infiltrate tumor,

due to the secretion of immunosuppressive factors by tumor cells

and TME components (Peng et al., 2010; Moon et al., 2014). In

order to overcome T cell infiltration into solid tumors, it has been

tried to equip CAR-T cells with tumor-derived chemokine

receptors. Anti B7-H3 CAR-T cells have been engineered to

express CCL2b (Li H. et al., 2022). This construct has

demonstrated to improve anti-tumor activity and enhance

T cell trafficking in brain tumor lesions.

Based on this evidence, the scientific community is focusing

on developing new strategies to counteract the presence of

immunosuppressive factors that are released into TME, such

FIGURE 3
Potential strategies to overcome CAR-T cell-based therapies limitations. Illustrative scheme of different strategies for cancer treatment
showing four promising approaches, discussed throughout the manuscript. (1) CAR-T cell based therapies [EpCAM CAR-T (Deng et al., 2015),
CD44v6 CAR-T (Casucci et al., 2013; Porcellini et al., 2020), CD166 CAR-T (Wang et al., 2019), c-Met CAR-T (Kang et al., 2021), CD133 CAR-T (Wang
et al., 2018)]; (2) CAR-T cell based therapies plus conventional drugs [ROR1 CAR-T plus oxaliplatin (Srivastava et al., 2021), CD133 CAR-T plus
cisplatin (Han Y. et al., 2021)]; (3) CAR-T cell based therapies plusmonoclonal antibody [CD19 CAR-T plus tislelizumab (Wang et al., 2021), CD19 CAR-
T plus avelumab or atezolizumab (Yamaguchi et al., 2022)]; and (4) CAR-T cell based therapies plus TKI inhibitors [PI3K inhibitor (Funk et al., 2022)]. All
these alternative approaches are developed to improve the persistence of CAR-T cells and the improve immune response.
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as TGF-β. Recently, it has been developed a CAR construct

directed to prostate-specific membrane antigen (PSMA) with co-

expression of a dominant-negative TGF-βRII (dnTGF-βRII). The
authors observed in vitro studies a pronounced proliferation of

lymphocytes, a greater release of pro-inflammatory cytokines

and a reduced depletion in CAR-T designed with PSMA with

dnTGF-βRII compared to PSMA CAR-T alone. These data were

further confirmed in pre-clinical models, where NSG mice

treated with CAR-T PSMA with dnTGF-βRII showed stronger

prostate cancer eradication than CAR-T PSMA alone (Kloss

et al., 2018). A phase 1 study in patients with castrated advanced

resistant prostate cancer is ongoing to define the safety and

feasibility of modified autologous CAR-T PSMA-dnTGFβRII
cells (NCT03089203).

Many efforts are needed to better understand the role of TME

components in shaping CAR-T cell therapy response, and to

TABLE 1 Clinical trials using CAR-T cells specific for CSCs marker alone or in combinatorial therapy.

Cancer stem
cells (CSCs)
marker

Cancer type NCT
number

Intervention/
treatment

Center Phase Status

EpCAM Malignant Neoplasm of
Nasopharynx, Breast cancer

NCT02915445 CAR-T cells
recognizing EpCAM

West China Hospital Phase 1 Unknown *

Gastric cancer NCT03563326 CAR-T cells targeting
EpCAM

West China Hospital Phase 1 Recruiting

Colon, Esophageal, Pancreatic,
Prostate, Gastric, and Hepatic
carcinoma

NCT03013712 CAR-T cell
immunotherapy

IEC of Chengdu Medical
College

Phase 1 Phase 2 Unknown *

Liver cancer NCT02729493 EPCAM-targeted CAR-
T cells

Anhui No.2 Province
People’s Hospital

Not Applicable Unknown *

Stomach cancer NCT02725125 EPCAM-targeted CAR-
T cells

Anhui Provincial Cancer
Hospital

Not Applicable Unknown *

CD44v6 Cancers which are
CD44v6 positive

NCT04427449 CD44v6-specific CAR
gene-engineered T cells

Shenzhen Children’s
Hospital, Shenzhen
Geno-immune Medical
Institute,
Shenzhen Hospital of
Southern Medical
University,
The Seventh Affilliated
Hospital,
Sun Yat-Sen University

Phase 1 Phase 2 Recruiting

Melanoma, Breast cancer NCT03060356 T cells modified with
RNA anti-c-Met CAR

University of Pennsylvania EarlyPhase 1 Terminated

c-Met Brastcancer NCT01837602 c-Met RNA CAR T cells Abramson Cancer Center of
the University of
Pennsylvania

Phase 1 Completed

Hepatocellular Carcinoma NCT03672305 c-Met/PD-L1 CAR-T
cell injection

The Second Hospital of
Nanjing Medical University

EarlyPhase 1 Unknown *

CD133 Acute Myeloid and Lymphoid
Leukemias, Liver, Pancreatic,
Brain, Breast, Ovarian, and
Colorectal cancer

NCT02541370 anti-CD133-CAR
vector-transduced
T cells

Biotherapeutic Department
and Pediatrics Department
of Chinese PLA General
Hospital

Phase 1 Phase 2 Completed

NKG2D Hepatocellular carcinoma,
Glioblastoma, Medulloblastoma,
Colon cancer

NCT05131763 NKG2D-based CAR
T cells

Xunyang Changchun
Shihua Hospital

Phase 1 Recruiting

GD2 Neuroblastoma, Osteosarcoma NCT03721068 iC9.GD2.CAR.IL-
15 T cells

Lineberger Comprehensive
Cancer Center at University
of North Carolina

Phase 1 Recruiting

CD19 Diffuse Large B-cell Lymphoma NCT04381741 CD19–7 × 19 CAR-T
plus PD1 monoclonal
antibody

2nd Affiliated Hospital,
School of Medicine,
Zhejiang University

Phase 1 Recruiting

* Study has passed its completion date and status has not been verified in more than 2 years.
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develop new combinatorial strategies to overcome the above-

mentioned critical points.

Conclusion

In conclusion, the recent data collected from several pre-

clinical and clinical trials encourage the adoptive cell therapy

approach in the treatment of solid tumors. The association of

chemotherapy and radiotherapy with CAR-T cells may improve

patient clinical outcomes by acting simultaneously on the stem

and differentiated cancer cells that together are the constituent

of the tumor tissue. Moreover, the strategies described, to

improve CAR-T cell activity by increasing lymphocyte

survival and cytotoxic potential or inducing TME

modulation, may be considered a striking therapeutic

approach to overcome immunotherapy limitations in the

treatment of solid tumors.
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