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Editorial on the Research Topic

Perinatal hypoxic-ischemic brain injury: Mechanisms, pathogenesis,

and potential therapeutic strategies

Perinatal asphyxia and related hypoxic-ischemic encephalopathy (HIE) remain

among the leading causes of mortality and significant long-term neurological morbidity

with an incidence of 2-4/1000 full-term and 40-148/1000 premature births (Honeycutt

et al., 2004; Hilton et al., 2006; Barrett et al., 2007; Fatemi et al., 2009; Scafidi et al.,

2009; Higgins et al., 2011; Hagberg et al., 2015). Neonates exposed to hypoxia-ischemia

(HI) injury can have poor neurological and behavioral outcomes including cerebral palsy

(CP) and incidences of learning deficits and disabilities due to the diffuse nature of

the insults. Consequently, developmental disabilities place a huge burden on families,

health systems, and society (estimated lifetime costs per person: ∼1 million dollars),

emphasizing the urgent need for identifying the causes and mechanisms underlying

HIE and improved prevention/treatment strategies to reduce perinatal brain damage

(Honeycutt et al., 2004). In this Research Topic, we summarized original research and

review articles that examine the more recent progress in pharmacological and cell

therapies for perinatal HI brain injury.

Risk factors predisposing to HIE can be antenatal, intrapartum, postpartum, or a

combination of all. However, the causes of HIE remain unidentified in more than half

of the cases (Nelson et al., 2012; Aslam et al., 2019). Maternal cigarette smoke exposure

(SE) during pregnancy is a well-documented risk factor that can worsen brain injury

and neurological outcomes in adolescent offspring (Reeves and Bernstein, 2008; Chan

et al., 2017). Recently, accumulating clinical data suggest robust sex differences in HIE,

with male infants showing a higher incidence of injury and more severe long-term
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cognitive deficits compared to females with matched degrees of

injury (Costeloe et al., 2000; Lauterbach et al., 2001; Donders

and Hoffman, 2002; Tioseco et al., 2006). The research by

Huang et al. investigated the modulation of the effect of SE

by sex of the offspring. Interestingly, they observed behavioral

deficits and neuronal loss caused by HI brain injury in female

adolescent offspring after SE (Huang et al.). In their work,

the authors showed that maternal SE worsened the deficits

in neurobehaviors such as short-term memory and motor

functions, reduced neuronal density and synaptic markers such

as ELFN2 and PSD95, and exacerbated glial activation in

adolescent females with neonatal HI brain injury, which may

be driven by the exaggerated oxidative stress and inflammatory

responses similar to their male littermates, as shown in their

previous study (Chan et al., 2017). Thus, avoiding maternal

SE during pregnancy is important to protect the brain from

perinatal brain injuries.

There is now a strong therapeutic basis to treat full-term

infants with moderate HIE with hypothermia when started

within 6 h of birth, but the degree of neuroprotection remains

incomplete, and preterm infants with HIE are excluded from

hypothermia therapy. Therefore, there remains a need for

additional therapies for the preterm population. (Gunn et al.,

1997; Shankaran et al., 2005, 2012; Gluckman et al., 2006;

Higgins et al., 2006; Stephens et al., 2010; Perrone et al., 2012;

Shankaran, 2012). These therapies should target the cellular

mechanisms that underly HI brain injury, including early phase

propagators of injury such as neuro-inflammation, cell death,

mitochondrial dysfunction, oxidative stress, and excitotoxicity,

and they should be safe for use in both term and preterm

infants. Xenon or erythropoietin (EPO) are two of the most

attractive adjunct therapies. However, treatment with xenon or

EPO alone or combined treatment with hypothermia did not

improve functional outcomes in infants with severe HIE and

extremely premature infants (Ruegger et al., 2018; Oorschot

et al., 2020).

The research conducted by Qiu et al. presents a promising

therapy that used inhibitors of the Src family kinases (SFKs)

for neuroprotection in a preterm model of HI brain injury

(Qiu et al.). They induced HI brain injury in postnatal 3-day

Sprague-Dawley (SD) rats, which corresponds to 23–32 weeks

of human gestation (Mallard and Vexler, 2015). They found

that the {4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazole [3,4-

d] pyrimidine} (PP2), an SFK inhibitor when given within

0.5 h from HI, ameliorated pathological changes and myelin

deficits and improved neuro-behaviors in the preterm rats with

exposure to HI brain injury. Therefore, targeting SFKs could

provide an additional neuroprotective approach to treating

preterm infants.

The research by Singh-Mallah et al. focuses on early

immune responses which are known to occur within minutes

after exposure to HI in the neonatal brain (Algra et al.,

2013; Li et al., 2017; Ziemka-Nalecz et al., 2017). HI

stimulates the release of damage-associated molecular patterns

(DAMPs), which activate pattern recognition receptors (PRRs)

to stimulate initial inflammatory responses (Hagberg et al.,

2015). Novel therapeutic target molecules such as pro-

inflammatory cytokines and DAMPs are continually being

identified. The high mobility group box-1 protein (HMGB1)

serves as a DAMP molecule and is an early biomarker and

pro-inflammatory mediator of brain ischemia (Kim et al., 2006;

Liu et al., 2007; Singh et al., 2016). After exposure to HI,

HMGB1 is released from brain cells into the extracellular space,

where it stimulates and initiates the early stages of sterile

inflammation (Kim et al., 2006; Liu et al., 2007; Qiu et al., 2008).

Sirtuin-6 (SIRT6), a member of the sirtuin family of NAD (+)-

dependent histone deacetylases, has been shown to protect the

brain from cerebral ischemia/reperfusion injury via regulating

inflammatory responses such as the extracellular release of

HMGB1 (Zhang et al., 2017). Furthermore, Singh-Mallah

et al. used N-acetyl cysteine (NAC), which is an antioxidant

and has been previously shown to reduce lipopolysaccharide

(LPS)-sensitized HI brain injury (Wang et al., 2007), to

further confirm that SIRT6 has protective effects on HIE,

which is at least partially associated with the regulation of

HMGB1 extracellular release since NAC restores SIRT6 and

decreases HMGB1 release in LPS-sensitized neonatal brain

following HI injury (Singh-Mallah et al.). Therefore, targeting

HMGB1 and its attendant sterile inflammatory responses

could represent a novel adjunctive therapeutic approach to

treat HIE.

Recently, phosphodiesterase type-5 (PDE5) has gained

increasing attention as a potential therapeutic target for

several central nervous system diseases, including adult

stroke and neonatal HI brain injury (Eun et al., 2000;

Chen et al., 2017; Soares et al., 2019). PDE5 expresses in

cerebrovascular endothelial cells, neurons, and glial cells (Teich

et al., 2016). Sildenafil, a highly potent selective inhibitor of

PDE5, is commonly used clinically to treat both term and

preterm infants with pulmonary artery hypertension (Samiee-

Zafarghandy et al., 2014; Martinho et al., 2020). Interestingly,

sildenafil has been demonstrated to cross the blood-brain

barrier and has been shown to exert neuroprotective effects

based on the evidence of restoring neuronal development,

preventing neuronal cell death, reducing neuro-inflammation

via reducing reactive astrogliosis and macrophage/microglial

activation, promoting functional recovery and mediating blood-

flow redistribution after neonatal HI (Charriaut-Marlangue

et al., 2014; Gomez-Vallejo et al., 2016; Moretti et al.,

2016; Yazdani et al., 2016, 2021; Engels et al., 2017).

Moreover, maternal treatment with sildenafil is anti-oxidative

and prevents neuronal death in an animal model of fetal

ischemia (Ozdegirmenci et al., 2011). A comprehensive up-

to-date review of sildenafil studies conducted on perinatal HI

brain injury were reported in the review article by Xiong

and Wintermark.
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An exciting new frontier in medicine has been ushered

in recent years that applies cell-based therapies to treat

neurological diseases. Neural, mesenchymal stem cells and

multipotent adult-derived progenitor cells (MAPCs) have been

found to improve the repair of the damaged brain (van

Velthoven et al., 2009; Bennet et al., 2012). Human cord blood

mononuclear cells (hUCBCs) contain a large population of stem

and progenitor cells (Penny et al., 2019). The administration of

hUCBCs has been demonstrated to reduce neuronal apoptosis,

neuro-inflammation, and white matter brain injury in perinatal

HI (Aridas et al., 2014; Li et al., 2016; McDonald et al.,

2018). Some clinical trial studies showed that hUCBCs therapy

improved motor function and cognitive scores in children and

adolescents with CP (Min et al., 2013; Kang et al., 2015). The

research by Lyu et al. aimed to assess the therapeutic use of

hUCBCs and its two components mononuclear cell (MNC)

and red cell fraction (RCF) for the treatment of neonatal rat

HI brain injury, focused in particular on the analysis of short-

(7 days after cell administration) and long- (1 and 3 months

after cell administration) term behavioral and neuropathological

outcomes. They found both hUCBCs, MNC, and RCF have

short- and/or long-term protective effects in neonatal rats with

HIE (Lyu et al.). The article by Lyu et al. highlights that treating

perinatal HIE with hUCBCs and its components is promising

and can be fast-tracked to clinical trials when its availability,

dosage, and timing are characterized.

Together, the investigation of additional mechanisms

underlying HIE and molecular targets will continue to be

essential for the development of new therapeutic strategies

that produce more effective treatments for HIE. We believe

that the experimental discoveries and opinions presented in

this Research Topic will have a major impact on basic and

translational research in perinatal brain injury and inspire novel

ideas in the future study.
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