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Steroid Receptor Coactivators (SRCs) are essential regulators of transcription

with a wide range of impact on human physiology and pathology. In

immunology, SRCs play multiple roles; they are involved in the regulation of

nuclear factor-kB (NF-kB), macrophage (MF) activity, lymphoid cells

proliferation, development and function, to name just a few. The three SRC

family members, SRC-1, SRC-2 and SRC-3, can exert their immunological

function either in an independent manner or act in synergy with each other. In

certain biological contexts, one SRC family member can compensate for lack

of activity of another member, while in other cases one SRC can exert a

biological function that competes against the function of another family

counterpart. In this review we illustrate the diverse biological functionality of

the SRCs with regard to their role in immunity. In the light of recent

development of SRC small molecule inhibitors and stimulators, we discuss

their potential relevance as modulators of the immunological activity of the

SRCs for therapeutic purposes.
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Introduction

Transcription is an essential biological process that lies at the intersection between

the environment and the genome. Nuclear receptors (NRs) comprise a large family of

transcription factors (TFs), which are prominent regulatory components of transcription

(1–3). NRs bind directly to hormone-response elements on the DNA to mediate gene

activation or repression. Recruitment of NRs to the DNA is a necessary, but not a

sufficient step for transcription to commence. The most critical step in this process is the

subsequent recruitment of another class of proteins to the DNA-bound NRs, called

nuclear coactivators (NCoAs). The binding of NCoAs to a NR promotes the assembly of

the transcriptional machinery and it is therefore a key step required for all transcription

to ensue (4, 5). NCoAs are key regulators of transcription that are capable of interacting

with a wide variety of NRs and other TFs, possessing pleiotropic effects that underlie their

activity on human physiology and pathology. Steroid Receptor Coactivators (SRCs) are a
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family of three homologous NCoAs that are involved in the

transcriptional activity of a majority of NRs. Since the discovery

of the first SRC, SRC-1 (6), the ubiquitous expression of the

SRCs and their critical impact on major physiological processes

through their genome-wide activity has been revealed, with

special attention paid to their roles in genetics, development,

reproduction, metabolism and cancer biology, with an emphasis

on hormone-related diseases (7, 8).

Despite the recognition that the SRCs play an important role

in human immunology, mainly through fate-determination of

immune cells and regulation of inflammatory processes, there is

a paucity of reviews that summarize this aspect of their biology.

Here we review the literature that establishes the SRCs as

important regulators of immunity through their interactions

with a major regulator of inflammation – nuclear factor-kB (NF-

kB) as well as their emerging importance to the development

and functionality of various immune cell types. On the basis of

the current knowledge, we outline the potential of targeting the

SRCs in immune cells as an approach to achieve improved

clinical outcomes in cancer and autoimmune diseases.
Nuclear receptors and
SRCs – background

In physiology

NRs are a large family of TFs that is comprised of 48

members in humans. NRs are defined by their ability to bind

directly to cis regulatory elements on DNA to regulate gene

expression (1–3). The biological activity of the majority of

human NRs is ligand-dependent, while a dozen of them are

considered “orphan” receptors, since they either have no cognate

ligand or their ligands have not yet been identified (9). All NRs

are unable by themselves to drive transcription, relying on

another family of gene-regulator proteins, NCoAs (7, 8).

NCoAs are critically important to major physiological

processes including development, metabolism, homeostasis

and immunity (10). NCoAs do not bind to DNA directly, but

instead elicit their transcription regulatory roles by binding to

NRs. Once bound to a NR NCoAs promote chromatin

accessibility, inter alia due to their ability for covalent

modification of histones (1), allowing for the subsequent

recruitment of requisite components of the transcriptional

machinery (5, 11, 12).

SRCs are a family of NCoAs comprised of three homologous

p160 proteins; SRC-1 (NCoA1), SRC-2 (NCoA2/TIF2/GRIP1)

and SRC-3 (NCoA3/AIB1/ACTR/TRAM1/RAC3), which are

involved in the transcriptional activity of a majority of NRs

and other TFs. SRCs are the most studied family of NCoAs, they

are ubiquitously expressed and have a broad impact on essential

physiological and pathological processes such as reproduction,
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metabolism, growth and development, genetic diseases,

carcinogenesis and immunity (7, 8). All three members of the

SRC family have a molecular weight of approximately 160 kDa,

share a high degree of sequence similarity and all contain three

main functional domains; a basic helix-loop-helix/Per/ARNT/

Sim (bHLH-PAS) domain, a nuclear receptor interaction

domain (RID) with two LXXLL motifs (X, any amino acid),

and two C-terminal activation domains - AD1 and AD2 (7, 13).

Since the discovery and identification of SRC-1 as the first NCoA

in 1995 (6), and the subsequent discovery of the other two SRC

family members, SRC-2 (14) and SRC-3 (15–19), more than

300 transcriptional coactivators have been reported in the

literature (12). The biological importance of the SRCs

encompasses a wide variety of essential physiological functions

as evident from numerous research papers and review articles.

Proper functioning of each one of the SRCs is critical for

physiological homeostasis at both cellular and whole-organism

levels. SRCs do not just activate genes randomly, but

coordinately activate large numbers of genes for physiologic

goals. For example, SRC-1 regulation of the estrogen receptor-a
(ER) and progesterone receptor (PR) is critical for normal

uterine development and function, and loss of SRC-1 results in

partial resistance to hormone stimulation and impaired

estrogen-induced uterine growth (20). SRC-1 is also important

for the full transcriptional activity of peroxisome proliferator-

activated receptor gamma (PPARg) (21), a critical NR for

adipose tissue development (22). Cooperative activity of SRC-1

and SRC-3 is required for the expression of genes that are

essential for brown adipose tissue development and it was

demonstrated that double SRC-1/SRC-3 knockout (KO) results

in incapability of lipid storage and brings about defective

thermogenesis (23). SRC-2 plays an essential role in the

fertility of both male and female mice; SRC-2 gene deletion in

male mice impairs spermatogenesis and brings about age-

dependent testicular degeneration, while hypofertility in female

SRC-2 null mice causes placental hypoplasia (24). Loss of SRC-2

in mice causes growth retardation and reduced adiposity (24),

linking SRC-2 activity to two additional major physiological

processes – development and metabolism. Further explorations

revealed the central role that SRC-2 plays in metabolism,

establishing it as a ‘master regulator’ of lipid metabolism (25–

28). SCR-3 is a strong NCoA of ER and PR transcriptional

activity (17, 29) and therefore is critical for normal mammary

gland growth and development (30, 31). Recent cryo-electron

microscopy (Cryo-EM) based studies have demonstrated that

SRC-3 is recruited by its primary NR – ERa (32) as well as by AR

(33), shedding light on the architecture of biologically active

SRC-3 complexes and substantiating its regulatory role in

transcription. Like the other two SRC family members, lack of

SRC-3 also results in major, whole-body level physiological

abnormalities; KO of SRC-3 in mice results in reproductive

malfunction, dwarfism and delayed pubertal development (30).
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In cancer

All three SRCs are strongly associated with tumorigenic

processes including metastasis, especially in hormone-related

cancers (34). In breast cancer (BC) SRC-1 is an oncogene with

specific roles in cell migration and metastasis (35, 36). The

importance of SRC-1 to metastasis formation was demonstrated

by a study that looked at inactivation of SRC-1 in a polyomamiddle

T (PyMT) BC mouse model; KO of SRC-1 did not affect tumor

initiation, however it significantly reduced lung metastases (37).

SRC-1 has an increased expression in HER-2 positive BC and is

positively correlated with poor prognosis, resistance to endocrine

therapy and recurrence (38, 39). SRC-1 was also linked to

tumorigenesis in prostate, thyroid and endometrial cancers, which

positions it as an important oncogene in hormone-related

malignancies (40). SRC-2 is a NCoA of the androgen receptor

(AR) and is highly associated with poor survival in prostate cancer

(41, 42). Overexpression and amplification of SRC-2 were positively

correlated with high tumor grade and poor survival (41, 43, 44).

Moreover, it was shown that the importance of SRC-2 to the

regulation of energy homeostasis and metabolism (27, 45–47) plays

a primary role in prostate cancer cell survival and metastasis (26).

The association of SRC-3 with tumorigenesis in various cancers has

been demonstrated bymultiple studies (17, 48–54), establishing it as

pan-cancer oncogene. However, as is implied by its alias, amplified

in breast cancer 1 (AIB1), SRC-3 is a driving force for tumorigenesis

in ER positive BCs (17, 55, 56). Overexpression and amplification of

SRC-3 in ER positive BCs is associated with the aggressiveness of

the disease (55) and positively correlates with poor prognosis (57,

58). In two genetically engineered mouse models - Mouse

Mammary Tumor Virus (MMTV)-v-ras and MMTV-Erbb2 -

tumorigenesis and development of breast cancer were

significantly reduced by inactivation of SRC-3 (59, 60). Mutations

in the ligand binding domain of the ESR1 gene lead to ligand-

independent activation of mutant ER proteins, which also makes

them resistant to anti-estrogen therapy. Unlike wild type (WT) ER,

whose interaction with the SRCs is normally estrogen-dependent,

mutant versions can interact with SRC-3 in an absence of a ligand

(61, 62). Ligand-unregulated interaction of SRC-3 with mutant ER

leads to constitutive oncogenic transcriptional activity, which

exemplifies the unique and critical role of SRC-3 as an

oncoprotein in ER positive BCs.
Coactivators and the
immune system

Interaction with NF-kB

Nuclear factor-kB (NF-kB) is a family of five DNA-binding

nuclear factors that form a variety of homo- and hetero-dimers

(63). NF-kB dimers exist in the cytoplasm in a form of an inactive
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complex with one of the three inhibitor of NF-kB (IkB) proteins.
NF-kB activation takes place when stimulatory signals bring about

phosphorylation of IkB by the IkB kinase (IKK) complex and the

consequent ubiquitination and proteasomal degradation of IkB.
Release from the complex with IkB allows the translocation of NF-

kB into the nucleus and initiation of its transcriptional activity

(64). Although NF-kB is important for many physiological

processes (65), it is predominantly associated with inflammation

and regulation of innate host defense (64). Consistent with the

centrality of SRCs to various fundamental physiological processes,

their involvement in both immune-related and general NF-kB
transcriptional activities has been well established; SRC-1 was the

first SRC family member whose selective interaction with the NF-

kB subunit p50 was demonstrated by yeast two-hybrid and

Glutathione S-transferase (GST) pull down assays (66). The

authors of this study also showed that SRC-1 can mediate NF-

kB transcriptional activity either independently or in cooperation

with CBP or p300 to achieve a synergized coactivation of NF-kB
(Figure 1A). Synergistic coactivation of NF-kB by CBP was also

observed with overexpression of SRC-3, as indicated by Rel-A-Luc

reporter assay in HeLa cells (67), reflecting a functional overlap

that is not uncommon between the SRC family members (8).

Overexpression of either SRC-2 or SRC-3 was positively

correlated with p65-associated IkB-luc reporter activity in a

dose-dependent manner. This observation was consistent with a

decrease of IkBa protein levels following SRC-2 or SRC-3 knock

down (KD), suggesting a functional overlap in the regulation of

NF-kB also between SRC-2 and SRC-3 (68). Intra-nuclei

microinjection of specific anti-CBP/SRC-1/pCAF blocking

antibodies in Rat-1 cells demonstrated that all three SRCs are

indispensable for p65-dependent gene expression (69).

Implementing a CBP mutant that is lacking the SRC-1

interacting domain, the authors of this study also showed that

p65-mediated gene expression is dependent upon SRC-1-CBP

interaction. Consistent with that, mutation in LXD4, the LXXLL

CBP-recognition domain of SRC-1 (70) resulted in failure to

rescue NF-kB-dependent gene expression under conditions of

SRC-1 blockade. Interaction of SRC-1 with p50/p65 drives the

expression of Vascular Endothelial Growth Factor C (VEGFC) in

a thyroid carcinoma cell line TPC-1, while KD of SRC-1 results in

a decrease of VEGFC transcription and expression. SRC-1 KD-

associated decrease of VEGFC levels correlated with reduced

lymphangiogenesis in vivo, which represents physiological

implications of SRC-1-mediated coactivation of NF-kB (71).

Evidences of physical interactions between NF-kB family

members and all three SRCs as well as participation of the SRC

family members in transcriptional complexes with other

coactivators to drive NF-kB activity, establish the SRCs as

important transcriptional partners of NF-kB and implies their

direct involvement in the regulation of immunity.

Indeed, in a study that have tested four different coactivators

(CBP, p300, P/CAF and SRC-1), SRC-1 most effectively cooperated

with p65 to induce transcriptional activation of the promoter of a
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FIGURE 1

SRCs interactions with NF-kb. (A) SRCs are NF-kB coactivators. SRC-1 can coactivate NF-kB transcriptional activity in an independent manner
(top). SRC-1 and SRC-3 cooperate with other coactivators (CBP and p300) for synergistic coactivation of NF-kB (bottom). (B) SRCs drive
transcriptional activity of NF-kB under inflammatory-like conditions. SRC-1 interacts with p65 to induce IL-6 transcription under basal and
angiotensin II (Ang II)-induced conditions (top). Under TNFa activation, each member of the SRC family (SRC-1, SRC-2 and SRC-3) can drive
NF-kB transcriptional activity (bottom).
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proinflammatory gene IL-6 under basal and angiotensin II (Ang II)-

induced conditions in CHO-AT1a cells (72). Using rat vascular

smooth muscle cells (rVSMC) as an experimental model, the

authors demonstrated that Ang II-induced activation of the IL-6

promoter is regulated by ERK-mediated phosphorylation of SRC-1

(Figure 1B), shedding light on the molecular mechanism of this

process. In agreement with the observation that overexpression of

either SRC-1 or SRC-2 increases p65-dependent transcription (69),

it was demonstrated that under inflammatory-like conditions,

mimicked by Tumor necrosis factor alpha (TNFa) activation,

both NCoAs can drive NF-kB transcriptional activity. Moreover,

SRC-1 substituted SRC-2 in the IkBa promoter of HEK293 cells to

allow robust NF-kB-mediated transcription (68). TNFa-induced
NF-kB activity was enhanced by the third p160 family member –

SRC-3 - as well in a dose dependent manner as was demonstrated

using HeLa cells (Figure 1B) (67). This observation was further

supported by the evidence of physical interaction between SRC-3

and p65 (Rel-A) provided by co-immunoprecipitation experiments.

Furthermore, an increase in the NF-kB transcriptional activity

under TNFa stimulation was positively correlated with SRC-3

phosphorylation, possibly by IKK, and its accumulation in the

nucleus (73), which provides an insight into the molecular

mechanism of SRC-3-mediated regulation of NF-kB.
Interestingly, SRC-3 deficiency results in an IKK-dependent

increase in lymphocytes numbers that is specific to lymphoid

organs. This observation correlates with a selective increase of

phosphorylated IkB as well as nuclear translocation and

transcriptional activity of NF-kB in the thymus, bone marrow

(BM) and spleen (74). Collectively these data suggest that through

physical interaction with IKK, in a context dependent manner,

SRC-3 can either act as a driving force of NF-kB-mediated

transcription or, by limiting the ability of IKK to phosphorylate

IkB, exert an inhibitory function on it. The capability of the SRCs to
mediate both transcriptional activation and repression, as a variable

of a specific biological context and post-translational modification

events, is evident from additional studies (13). This reflects the wide

scope of the biological functionality of the SRC family members and

specifically underscores the importance of SRC-3 to immunity as a

bi-directional regulator (activator or repressor) of NF-kB. Overall,
the solid connection between the SRCs and NF-kB mediated

transcriptional activity that reflects, especially but not exclusively,

in the expression of a prominent inflammatory gene - IL-6 – under

either basal or inflammatory-like conditions, suggests a primary

role of the SRCs in key immunological processes. However, more

direct studies are yet required for corroborating a direct connection

between the parts in the ‘SRC-NF-kB-immunity’ axis.
SRC-2 and SRC-3 in macrophages

Macrophages (MFs) have a ubiquitous presence in all parts of
the body and they represent a key component in diverse

physiological processes such as development, tissue remodeling
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and metabolism, to name just a few (75, 76). However, the most

important activities of MFs are related to host defense and

orchestration of inflammatory processes (77, 78). SRC-regulated

transcriptional activity has a crucial impact on the functioning of

MFs, which particularly, but not exclusively reflects, in MFs’
immunomodulatory activity: Glucocorticoid (GC) receptor (GR)

is an important restrainer of inflammation (79). GC-mediated

repression of pro-inflammatory cytokine genes such as IL1a,
IL1b, TNFa, and CCL4 in BMMFs following lipopolysaccharide
(LPS) stimulation, positively correlates with co-recruitment of GR

and SRC-2 to NF-kB-binding sites occupied by p65 (80)

(Figure 2A). Induction of these canonical pro-inflammatory

genes by either LPS, a Toll like receptor (TLR) 4 ligand, or

other TLR ligands, such as Pam3Cys or CL264 (TLR2 and

TLR7 ligands), was reduced by stimulation of GR activity with

dexamethasone (Dex) in SRC-2 KO but not WTMFs. Moreover,

transcriptome analysis revealed that SRC-2 has a much broader

impact on GR-mediated repression of inflammatory genes

showing that over 60 out of 152 LPS induced Dex-repressed

genes were derepressed in SRC-2 KD but not WT BMMFs.
Consistent with these in vitro observations, the authors also

showed that SRC-2 KO in MFs increased mice susceptibility to

LPS-induced endotoxin shock in vivo, demonstrating the

physiological significance of SRC-2-related regulation of MF
function. Further support to the above observations was

provided using MF-like RAW264.7 cells where GR activation-

dependent downregulation of IRF3 pro-inflammatory target genes

expression was substantiated by overexpression of SRC-2 (81).

Consistent with the anti-inflammatory role of SRC-2, as a NCoA

of GR-mediated repression of pro-inflammatory cytokines in

BMMFs, under a prolonged high fat diet (HFD) regime and

subsequent recruitment of monocytes into fat pads, SRC-2

deficiency predisposes mice to adipose tissue inflammation,

which is accompanied by increased transcript levels of pro-

inflammatory genes (82). Though the function of SRC-2 and its

physiological importance as a GR corepressor in pro-

inflammatory MFs is evident from these observations, further

research is needed to shed more light on the molecular

mechanism of this SRC-2-mediated GR activity. Another

important function of SRC-2 in MFs is associated with its

capability to coactivate an essential regulator of MF
polarization, KLF4 (83); SRC-2 is recruited along with KLF4 to

KLF4 target genes in white adipose tissue (WAT) MFs to

promote the induction of an anti-inflammatory commitment of

these cells (Figure 2A). Furthermore, SRC-2 KO that results in an

attenuated KLF4 expression and activity, drives the shift of WAT-

resident MFs into an inflammatory-like phenotype. Intriguingly,

in a different experimental system it has been shown that SRC-3

interacts with c-Fos to promote KLF4 expression in colon

adenocarcinoma cells and that the loss of SRC-3 is associated

with colon inflammation in vivo (84) (Figure 2B). In agreement

with this observation, stimulation of SRC-3 with a small molecule

stimulator MCB-613 (85) brings about enrichment of anti-
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FIGURE 2

SRCs role in MFs. (A) Anti-inflammatory and pro-inflammatory roles of SRC-2 in MFs. SRC-2 participates in GC-mediated repression of pro-
inflammatory cytokine genes: GR-mediated repression of IL1a, IL1b, TNFa, and CCL4 in BMMFs, following LPS stimulation, positively correlates with co-
recruitment of GR and SRC-2 to NF-kB-binding sites occupied by p65 (top). SRC-2 is recruited along with KLF4 to KLF4 target genes in WAT MFs to
promote the induction of anti-inflammatory commitment of these cells (middle left). SRC-2 KO results in attenuated KLF4 expression and activity and
drives the shift of WAT-resident MFs into an inflammatory-like phenotype (middle right). In MG SRC-2 drives neuroinflammation through activation of a
proinflammatory program which reflects in a homeostatic signature of MG cells and reduced EAE severity in mice with conditional SRC-2 KO in
myeloid cells (bottom). (B) SRC-3 has an anti-inflammatory role in MFs. SRC-3 stimulation brings about enrichment of anti-inflammatory MFs: Anti-
inflammatory MFs are enriched by stimulation of SRC-3 with a small molecule stimulator MCB-613 to promote the establishment and maintenance of
a pro-reparative environment post MI (top). In colon adenocarcinoma cells SRC-3 interacts with c-Fos to promote KLF4-related gene expression to
regulate inflammation (middle). SRC-3 downregulates proinflammatory cytokines: following LPS-stimulation SRC-3 downregulates protein levels, but
not mRNA amounts, of proinflammatory cytokines such as TNFa and IL-1b in MFs, which indicates translational derepression rather than GR-related
transcriptional suppression (bottom).
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inflammatory MFs to promote the establishment and

maintenance of a pro-reparative environment post myocardial

infarction (MI) (86) (Figure 2B). Surprisingly, as opposed to its

anti-inflammatory role in peripheral MFs, SRC-2 drives

neuroinflammation through activation of a proinflammatory

program in microglia (MG) (87); conditional KO (cKO) of

SRC-2 in myeloid cells significantly reduces experimental

autoimmune encephalomyelitis (EAE) severity, which in part is

associated with persistence of a homeostatic MG signature, rather

than a pro-inflammatory profile and activity that are associated

with SRC-2 deficiency in BM and WAT-resident MFs

(Figure 2A). This unexpected role of SRC-2 as a driving force of

neuroinflammation indicates the functional versatility associated

with this NCoA in different MF subtypes which is dependent on

the environmental conditions and biological context. Collectively,

these studies demonstrate that SRC-2 plays an important, multi-

functional role in activation and function of different types of

MFs. Interestingly, like SRC-2, SRC-3 is also capable of

downregulating the proinflammatory cytokines TNFa and IL-

1b in MFs in cell culture, however through derepression of

translation rather than through GR-related transcriptional

suppression (88); following LPS-stimulation, elevated protein

levels of TNFa, IL-6, and IL-1b were detected in SRC-3 KO

MFs as compared to WT controls. However, mRNA amounts of

the relevant genes remained unchanged between SRC-3 KO and

control MFs, which infers that SRC-3-mediated repression of

pro-inflammatory cytokines occurs on a translational, rather than

transcriptional level and is not associated with GR activity. It has

been shown that SRC-3 promotes the binding of translational

repressors such as TIA1 and TIAR/TIAL1 to adenylate and

uridylate (AU)-rich elements (AREs) in the 3’-untranslated

region (UTR) of the mRNA transcript of the TNF gene, which

sheds light on the molecular mechanism that underlies the

indicated translational repression (Figure 2B). Indeed, SRC-3

KO MFs produce enhanced levels of TNFa protein in response

to LPS stimulation, but without affecting the mRNA levels of the

TNFa gene or genes of other related pro-inflammatory cytokines

such as IL-6, and IL-1b. Consistent with these observations, the

protein levels of TNFa, IL-6, and IL-1bwere elevated as a result of
E. coli-induced peritonitis in SRC-3 KO mice (89).

Counterintuitively, despite the elevation of pro-inflammatory

cytokines, these mice failed in bacterial clearance. Apparently,

loss of SRC-3 in MFs results in incapacity to produce catalase, a

key antioxidant enzyme that reduces reactive oxygen species

(ROS), which consequently sensitizes MFs to apoptosis.

Additionally, SRC-3 deficiency decreases expression of SR-A

protein, which is an important component for Fc-independent

phagocytosis function of MFs. Altogether these observations

highlight the importance of SRC-3 in regulation of MF-

mediated inflammation as well as their proper phagocytic

activity and viability in-vivo. In summary, both SRC-2 and

SRC-3 have a broad impact on MF function that is highly

dependent on the biological context and MF type and
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exemplifies the functional plasticity of the SRCs. Data from

mouse models indicate that SRC-2 and SRC-3 are both

important for restraining cytokine storms and severe immuno-

toxic effects, which underscores their physiological significance.
SRC-1 and SRC-3 in Th17 cell
development and function

T helper 17 (Th17) cells are a subtype of CD4 cells, whose

primary physiological function is related to clearance of

extracellular pathogens such as bacteria and fungi (90).

However, Th17 cells are best known as pathogenic drivers of

multiple autoimmune-related diseases, including psoriasis,

rheumatoid arthritis (RA), inflammatory bowel disease (IBD),

Crohn’s disease and multiple sclerosis (MS). IL17A is the

hallmark cytokine of Th17 cells and the primary cytokine that

is associated with Th17 cell-mediated autoimmunity (91).

Regulatory T cells (Tregs) are characterized by the expression

of the TF forkhead box protein P3 (FOXP3), which determines

their genetic and epigenetic signatures and lineage commitment

(92). The canonical biological function of Tregs is anti-

inflammatory in its nature and it is shaped to restrain an

excessive activity of effector T cells, e.g. Th17 cells, and by that

means to ensure immune homeostasis and prevent autoimmune

disorders (93, 94). Intriguingly, the anti-inflammatory Tregs and

pro-inflammatory Th17 cells that usually antagonize each

other’s function, equally require Transforming growth factor

beta (TGFb) signaling at their early development for the

establishment of transcription factor networks that shape their

lineage commitment (95, 96). Treg vs Th17 fate decision in the

presence of TGFb is governed by the cytokine milieu that tips

the balance of the competitive antagonism between FOXP3 and

ROR- family members TFs in the developing CD4 cell.

Moreover, under certain conditions, Tregs can be re-

differentiated into effector Th17-like cells with downregulated

expression of FOXP3 and ability to produce IL17A (95, 96). In

the context of the demonstrated plasticity of the Treg-Th17

lineage barrier and the central but opposing roles of both these

CD4 subsets in immunity, we mention in the following section

the participation of SRC-1 in the regulation of the intimate

interplay between the Treg and Th17 cell programs as it reflects

by a SRC-related transcriptional regulation of RORgt: While

both retinoic acid-related orphan receptors (RORs) RORgt and
RORa are required for optimal Th17 cells development and

function, RORgt is considered the master regulator of Th17 cell

differentiation and IL17A production (97). Following

phosphorylation by protein Kinase C q (PKCq), SRC-1

replaces FOXP3 in its complex with RORgt in CD4+ cells,

which subjects the released FOXP3 to proteasomal

degradation. At the same time, the resulting SRC-1-RORgt
complex stimulates RORgt transcriptional activity, leading to

phenotypic dominance of the Th17- over Treg-cell lineage (98)
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(Figure 3A). Mediation of PKCq-dependent regulation of Th17,

suggests that SRC-1 integrates TCR-signaling to induce a RORgt
transcriptional program and Th17 differentiation. Alternately, it

was shown that SRC-3 regulates pathogenic inflammation via

coactivation of RORgt-associated expression of Th17 genes

through an IL-1-ILR1 mediated signaling axis (99)

(Figure 3B). Importantly, in an EAE mice model, whole body

KO of SRC-1 (98) or cKO of SRC-3 in CD4 cells (99) resulted in

resistance to autoimmune pathogenesis. These observations

underscore the physiological importance of the orchestrated

transcriptional regulation mediated by SRC-1 and SRC-3,
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which eventually dictates the fate and functionality of Th17

cells. Another study demonstrated that a K313R mutation of

RORgt, which specifically disrupts the ability of RORgt to

interact with SRC-3 but not SRC-1, selectively impairs healthy

differentiation of Th17 without impairing thymocytes

development, exemplifying the essentiality of RORgt-SRC-3
interaction for healthy Th17 development (100) (Figure 3B).

Interestingly, it has been shown that RORgt relies on its AF2

domain to recruit SRC-1 and SRC-2 through interaction with

the NCoAs’ LXXLLmotifs (101). Recruitment of SRCs by RORgt
enhances its transcriptional activity and is required for
A B

FIGURE 3

SRCs in Th17 cell development and function. (A) SRC-1-RORgt complex stimulates phenotypic dominance of the Th17 cell lineage over the Treg
cell lineage. Following phosphorylation by protein Kinase C q (PKCq), SRC-1 replaces FOXP3 in its complex with RORgt in CD4+ cells, subjecting
FOXP3 to proteasomal degradation and stimulating Th17 cell lineage phenotypic dominance. (B) SRC-3 is an essential regulator of Th17 cell
genes. SRC-3 regulates pathogenic inflammation via coactivation of RORgt-associated expression of Th17 cell genes through an IL-1-ILR1
mediated signaling axis (top). Interaction of RORgt with SRC-3 is important for healthy Th17 cell lineage development: a K313R mutation of
RORgt specifically disrupts the ability of RORgt to interact with SRC-3 but not SRC-1 and impairs healthy differentiation and development of
Th17 cells (bottom).
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thymocytes survival, possibly through RORgt-related indirect

regulation of the anti-apoptotic Bcl-xl expression (101).

Collectively these studies demonstrate the importance of all

three SRC family coactivators to both the development and

functional control of Th17 cells.
SRC-3 role in lymphocyte proliferation,
B-cell transcriptional regulation and NK
cells effector function

SCR-3 has an established regulatory role in lympho

proliferation: Contrary to its proliferative role in cancer, SRC-3

selectively inhibits the proliferation of lymphoid cells, allegedly

through its physical interaction with IKK, which prevents the

phosphorylation of IkB that then inhibits NF-kB-mediated

proliferative and anti–apoptotic genes (74). T and B cells isolated

from SRC-3 KO mice showed an increased ex vivo proliferation

compared to their WT counterparts, indicating a cell autonomous

effect of SRC-3 on lymphocyte proliferation (74) (Figure 4A).

Consistent with a key role of the SRCs in regulation of

metabolism (27), in murine hematopoietic stem cells (HSCs)

SRC-3 is highly expressed and its deficiency brings about

upregulation of target genes of the master regulator of

mitochondrial biogenesis and metabolism - Peroxisome

proliferator-activated receptor-gamma coactivator (PGC-1a)
(102). Upregulation of the PGC-1a transcriptional profile results

in increased activity of oxidative phosphorylation in the

mitochondria of HSCs and consequent disruption of normal

HSC function and healthy hematopoiesis (103). Furthermore,

regulation of mitochondrial metabolism in HSCs by SRC-3 is

required for maintaining the quiescent state of these cells and

lack of SRC-3 results in their increased proliferation (Figure 4A).

This observation underscores the unexpected but critical role of

SRC-3 as anti-proliferative factor in early developing immune cells.

In agreement with the observation that SRC-3 is highly expressed in

HSCs (103), it has been shown that SCR-3 levels in the thymus,

which mainly contains pre-mature T cells, are elevated when

compared with secondary lymph nodes (104). In murine B cell

lymphocytes, SRC-3 (pCIP) was upregulated via IL-4-STAT6 axis

(105). In a following publication the authors have suggested that an

upregulation of SRC-3 by STAT6 is one part in a positive feedback

loop of STAT6-mediated transcription (106). Given the centrality of

STAT-6 in the B cell fate, activation, and function (106), these

studies are extending and solidifying the overall importance of SRC-

3 in transcriptional regulation and fate determination

of lymphocytes.

In natural killer (NK) cells SRC-3 deficiency results in a

decreased expression of key T-bet target genes such as Zeb2,

Prdm1, and S1pr5, leading to compromised cell maturation,

anti-tumor activity and signature phenotype (107). For example,
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key cytotoxic molecules, granzyme B and perforin as well as

Interferon gamma (IFNg) production were reduced in SRC-3–

deficient NK cells and in-vivo tumor surveillance of these cells

was impaired as demonstrated using B16F10 mice melanoma

model. Mechanistically, by a chromatin immunoprecipitation

(ChIP)-sequencing experiment the authors have showed that

SRC-3 is recruited to the promoter regions of prominent T-bet

binding sites in WT but not SRC-3 KO NK cells (Figure 4B) only

when T-bet is present, which suggests that SRC-3 acts as a

coactivator of T-bet - a master TF in NK cells - and hence

regulates their maturation, phenotype and activity.”
SRCs role in Treg cell biology

Interrogation of publicly available databases and direct cell-

based assays have shown that like in HSCs, SRC-3 is enriched

and critically important to the biological function of Tregs. Ex

vivo experiments with human T cells have demonstrated that

loss of SRC-3 function, achieved by RNA perturbation, and even

more so by pharmacological inhibition, leads to a decrease in

transcript levels of FOXP3 and IL2RA - known Treg signature

genes The loss of Treg signature genes brought about loss of the

hallmark Treg phenotype - the ability to suppress proliferation

of conventional T cells. Moreover, when subjected to

pharmacological inhibition of SCR-3, resting CD4+CD30- T

cells failed to acquire a Treg-like phenotype and function by

exposure to Treg-inducing conditions in vitro (104) (Figure 5).

Intriguingly, in contrast to the phenotypic dominance of Th17

cells over Tregs that is conferred by SRC-1 (98), in a recently

published study it has been shown that SRC-2 stimulates Treg

differentiation from naïve CD4+ T cells in vitro and in vivo by

coactivatingNFAT1 to drive the expression of the FOXP3 regulator

Nr4a2 (108). Using an EAE animal model, the authors of this study

have demonstrated that SRC-2 KO mice are predisposed to severe

autoimmune disorders compared to their counterparts with intact

expression of SRC-2, exemplifying the essentiality of SRC-2 for

maintaining immune-tolerance. Collectively, the studies

mentioned above reflect a broad spectrum of biological functions

that the SRCs play in Tregs, with SRC- 1 that is responsible for

shifting the dominance from Tregs to Th17 cells within the CD4+

cells population (Figure 3A), while SRC-2 and SRC-3 play a Treg-

phenotype supportive role (Figure 5).
Conclusions and furtherer
perspectives

SRCs are important regulators of gene expression with a

broad impact on human physiology and pathology. Since the

discovery of SRC-1 and the subsequent characterization of SRC-
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2 and SRC-3, almost three decades ago, SRC biology was a focus

of intense scientific research. Involvement of the SRCs in the

regulation of various aspects of immunity is well established in

the literature. In this review we summarized the different roles of

the SRCs as regulators of immunity through a description of

their interaction with the major regulator of inflammation –NF-

kB and their role in the development and function of different

sub-sets of immune cells. All three SRCs can physically interact

with and drive the transcriptional activity of NF-kB family
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members. Furthermore, several studies have shown a direct

impact of SRC-3-driven NF-kB activity on the expression of a

canonical pro-inflammatory gene IL-6 (68, 109). Overall, the

involvement of the SRCs in the regulation of NF-kB establishes

them as important players in inflammatory processes. However,

most of the observations that support SRC-mediated NF-kB

activity are based on reporter assays. Hence, there is a need in

additional studies to shed more light on the importance of SRC-

regulated pro-inflammatory activity of NF-kB in the
A

B

FIGURE 4

SRC-3 role in lymphocyte development. (A) SRC-3 plays an anti-proliferative role in early developing immune cells. SRC-3 selectively inhibits
the proliferation of lymphoid cells in a cell autonomous manner: T and B cells isolated from SRC-3 KO mice showed an increased ex vivo
proliferation compared to their WT counterparts (left). SRC-3 is required for maintaining the quiescent state of HSCs: lack of SRC-3 results in
increased proliferation of HSCs. SRC-3 deficiency in murine HSCs results in an upregulated activity of PGC-1a (the master regulator of
mitochondrial biogenesis and metabolism) an consequent disruption of normal HSC function and healthy hematopoiesis (right). (B) SRC-3 is
important for healthy development of HSCs, NK and Treg cells. SRC-3 is a critical factor in lineage development and effector function of NK
cells: SRC-3 is recruited to the promoter regions of prominent T-bet binding sites in WT but not SRC-3 KO NK cells.
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physiological context. Moreover, a very well-known phenomena

of overlapping biological functions between the SRCs (27) also

applies to their role in regulation of NF-kB. Therefore, more

detailed understanding of the unique role of each SRC in the

regulation of NF-kB activity in a given biological context is

valuable from a fundamental scientific perspective and

significant for translational purposes.

In different types of immune cells the SRCs are involved in

essential processes that include fate-determination, development

and function. In MFs SRC-2 plays a multi-functional role and is

capable to participate in two different mechanisms to exert an

anti-inflammatory function; in a ligand-dependent manner

SRC-2 is recruited by GR to facilitate GR-mediated repression

of immediate-early (IE) proinflammatory genes in BMMFs. In

tissue resident MFs SRC-2 operates in a GR-independent

manner, as a coactivator of KLF4, to enforce homeostatic

transcription program. As opposed to its anti-inflammatory

functions in monocyte derived MFs (e.g. BMMFs and tissue

resident MFs), SRC-2 promotes neuroinflammation through

activation of a proinflammatory program in MG (87). This
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surprising pro-inflammatory role of SRC-2 indicates its broad

functional capacity in MFs, which strongly depends on the type

of the MFs and their biological context. SRC-3 also plays an

anti-inflammatory role in MFs through downregulation of

proinflammatory cytokines. However, a SRC-3-mediated anti-

inflammatory program in MFs relies on translational

derepression rather than transcriptional suppression (88).

Despite the disparity in the molecular mechanisms by which

SRC-2 and SRC-3 mediate their anti-inflammatory program in

MFs, this represents another example of a functional overlap

between p160 members. In addition to its anti-inflammatory

role in MFs, SRC-3-mediated regulation of reactive oxygen

species (ROS) levels and production of SR-A protein are

essential for MF phagocytic activity and viability. Overall

these data represent high degree of functional diversity of

SRC-2 and SRC-3 in MF biology.

In CD4+ Th17 cells, SRC-1 and SRC-3 can both interact

with the major Th17 TF RORgt to shape the direction of Th17

cell-mediated inflammation and the phenotype of these cells

(98–100). The physiological importance of SRC-1 and SRC-3 to
FIGURE 5

SRC-3 role in Treg cell biology function. Each one of the three SRCs has a distinct role in Treg cell biology and function. SRC-1 replaces FOXP3
in its interaction with RORgt to shift phenotypic dominance of CD4 cells from Treg cell to Th17 cells; SRC-2 stimulates Treg cell differentiation
from naïve CD4+ T cells by coactivating NFAT1 to force the expression of a FOXP3 regulator Nr4a2; SRC-3 is enriched and critically important
to the biological function of Tregs: inhibition of SRC-3 results in a decrease of transcript levels of the signature Treg cells genes - FOXP3 and
IL2RA and consequent incapability of these Tregs to suppress proliferation of conventional T cells.
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Th17 cell-associated activity has been demonstrated by

resistance to autoimmune pathogenesis in SRC-1 KO (98) or

SRC-3 cKO (in CD4 cells) (99) EAE mice.

SCR-3 is the most dominant p160 family member in terms

of the regulation of lymphoproliferation. As opposed to its

proliferative role in various cancers, SRC-3 restrains the

proliferation of lymphoid cells and HCSs (74, 103). SRC-3 is

highly expressed in immature hematopoietic cells and is critical

for their healthy development and function (103, 104). In mature

lymphocytes, SRC-3 also is important for their proper

functionality, as has been demonstrated by NK anti-tumor

activity (107) and the suppressive capability of Tregs (104).

SRC-1 and SRC-2 have opposing roles in determining the fate of

CD4+ T cells with regard to the differentiation of these cells into

Tregs: SRC-1 shifts the phenotype of naïve CD4+ T from an

immunoregulatory to an inflammatory state, by promoting their

differentiation into Th17 cells, rather than Tregs. SRC-2, on the

other hand, stimulates naïve CD4+ T cells to differentiate

into Tregs.

In summary, the SRC family members have a broad range of

interactions with different components of the immune system.

They can directly interact with factors that have primary role in

the regulation of systemic immunity, such as NF-KB, and can

also participate in fate determination of specific sub-sets of

immune cells. The biological impact of the SRCs in immunity

is highly diversified and context-dependent, hence it can be pro-

or anti-inflammatory and take place under basal or stimulating

conditions. The well-established and diverse functionality of the

SRCs in immunity highlights their attractiveness as potential

targets in autoimmune disorders and cancer.

Due to lack of a high-affinity ligand binding pocket and the

fact that protein–protein interactions largely define their

biological activity (7, 12, 110), the SRCs have been considered

‘undruggable’ targets (12, 111). Recently the challenge of

identification of naturally occurring (112–114) and

development of synthetic small molecule modulators

(inhibitors and stimulators) (85, 86, 115–118) for the SRCs

has been met, which opened an opportunity for new drug-

treatment strategies in cancer, especially in therapy-resistant

diseases (119). Considering the significant accumulation of data

that establish the SRCs as important regulators of immunity and

recent advances in the ability to target these proteins with small-

molecules, present an opportunity for exploring new strategies

in drug treatment in cancer and immune disorders. For example,

two recent studies have shown that a small molecule stimulator

and Small molecule inhibitor (SMI) of SRC-3 both can be used

to modulate the immune environment for an achievement of

better therapeutic results in two different pre-clinical mice

models representing two different diseases: The use of a SRC-3

stimulator MCB-613 promoted the establishment of an anti-

inflammatory environment that supported tissue repair post-MI,

suggestively by suppressing MF–mediated inflammation signals
Frontiers in Immunology
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and shifting the balance of MF population at the wound site

from pro- to anti-inflammatory (86, 120). The diversity of the

regulatory roles of SRC-2 and SRC-3 in MFs offers an

opportunity to further explore them as targets for therapeutic

intervention on a context-dependent basis. Another study has

demonstrated, using an immune-intact syngeneic mice model,

that inhibition of SRC-3 by SMI SI-2 reshapes the cytokine

milieu in the tumor site which drives the infiltration of cytotoxic

immune cells, such as CD8 + and CD56 + (NK cells), into the

tumor microenvironment (TME) and limits the number of

immune suppressive FOXP3+ cells there, leading to enhanced

anti-tumor immunity and suppression of tumor progression

(118). The observation that SRC-3 inhibition controls the

trafficking of Treg cells into the TME together with evidences

that suggest the regulation of Treg biology by SRC-2 and SRC-3

(104, 108) creates an impetus for the targeting of the SRCs in

Treg related pathologies that span from autoimmunity to cancer.

In cancer, Tregs are central contributors to the immune -evasion

ability of tumors, and their increased tumor infiltration is

inversely correlated with clinical outcomes (121). Checkpoint

immunotherapy that disrupts the immunosuppressive

interactions between Tregs and effector cells and between

Tregs and antigen presenting cells (APCs), achieved significant

advancement in cancer treatment (122–124). Yet, immune

checkpoint therapy has had limited success and is effective for

only a few subtypes of cancer (125). In this regard, small

molecule inhibitors that have been developed to suppress the

oncogenic activity of the SRCs, can potentially fulfill a double-

purposed therapeutic effect by targeting both cancer cells and

Tregs at the same time to pursue an improvement in clinical

outcomes of existing onco-immunotherapeutic methods.

The role of Th17 cells in autoimmune disorders is well

established. Considering an unambiguous impact of SRC-1 and

SRC-3 on the phenotype and function of Th17 cell and its

pathophysiological consequences, provides a rationale for

targeting these coactivators as a potential therapeutic approach

for autoimmune disorders.
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