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Lung cancer has very high morbidity and mortality worldwide, and the

prognosis is not optimistic. Previous treatments for non-small cell lung

cancer (NSCLC) have limited efficacy, and targeted drugs for some gene

mutations have been used in NSCLC with considerable efficacy. The RET

proto-oncogene is located on the long arm of chromosome 10 with a length

of 60,000 bp, and the expression of RET gene affects cell survival, proliferation,

growth and differentiation. This review will describe the basic characteristics

and common fusion methods of RET genes; analyze the advantages and

disadvantages of different RET fusion detection methods; summarize and

discuss the recent application of non-selective and selective RET fusion-

positive inhibitors, such as Vandetanib, Selpercatinib, Pralsetinib and

Alectinib; discuss the mechanism and coping strategies of resistance to RET

fusion-positive inhibitors.
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Introduction

Lung cancer has very high morbidity and mortality worldwide, and the prognosis is

not optimistic, and the prognosis is not optimistic. According to a study (1), lung cancer

accounted for 11.6% of cancer incidence and 18% of deaths, respectively, in 2020 and

likely resulted in over 1.8 million deaths. When lung cancer is contained at the initial site,
Abbreviations: NSCLC, non-small cell lung cancer; TKI, tyrosine kinase inhibitor; GDNF, glial cell line-

derived neurotrophic factor; GFL, GDNF family ligand; GFR a, GDNF family co-receptor; TM,

hydrophobic transmembrane domain; TK, tyrosine Kinase domain; KM, Kinesin motor; IHC,

immunohistochemistry; FISH, fuorescence insitu hybridization; RT-PCR, reverse transcription

polymerase chain reaction; NGS, next generation sequencing; MKI, multi-kinase inhibitor; ORR,

objective response rat; mPFS, median progression-free survival; mOS, median overall survival; TRAE,

treatment-related adverse event; mDOR, median duration of response; NR, not reached.
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the five-year survival rate is 56.3% and reaches 29.7% when

regional lymph node metastasis occurs, and less than 13% when

distant metastasis occurs (2, 3). This dismal prognosis suggests

that the efficacy of treatment for lung cancer remains uncertain.

Men are 1.89 times more likely than women to develop lung

cancer, and 85% of lung cancers are NSCLC (3). Early-stage

NSCLC is mainly treated with surgery and chemotherapy.

Chemotherapy drugs represented by carboplatin, cisplatin,

etoposide, irinotecan, Docetaxel and pemetrexed (4) have

limited efficacy, only about 20-30% (5) of NSCLC respond,

and most will eventually relapse. As a result, novel techniques

for improving patient outcomes are required. Identifying driver

genes in lung cancer patients can alter the therapy landscape for

lung cancer. Numerous molecular abnormalities have been

revealed in NSCLC, and several targeted therapies to treat

these abnormalities have also entered clinical trials. These

targeted medications appear to have greater efficacy and safety

when compared to chemotherapy (6–8), and these therapies are

critical for improving lung cancer outcomes, delaying the course

of lung cancer, and perhaps regulating disease progression. ALK,

ROS-1, NTRK, EGFR, KRAS, BRAF, and RET are the most

mutated genes currently being researched (9). Although the

incidence of RET gene rearrangement in non-small cell lung

cancer is 1% to 2% (10), it is still of great significance to study

RET fusion-positive NSCLC due to the high incidence of lung

cancer. Tyrosine kinase inhibitors (TKIs) that inhibit RET fusion

genes have made some breakthroughs in the past few years,

especially Selpercatinib and pralsetinib have been approved by

the FDA (11, 12). In this review, we will describe the basic

characteristics and common fusion methods of RET genes;

analyze the advantages and disadvantages of different RET

fusion detection methods; summarize and discuss the recent

application of non-selective and selective RET fusion-positive

inhibitors; discuss the mechanism and coping strategies of

resistance to RET fusion-positive inhibitors.
RET fusion and its detection

RET gene

The RET proto-oncogene is located on the long arm of

chromosome 10 with a length of 60,000 bp, with 21 exons (13).

In 1985, Takahashi et al. found a RET fusion gene activated by

DNA rearrangements during the transfection of NIH3T3 cells

using human T-cell lymphoma DNA (14, 15). RET proto-

oncogene located on Chr 10 long arm is a fusion gene that

encodes a tyrosine kinase receptor protein with 1076, 1106, or

1114 amino acids which are produced by alternative splicing in its

3 prime regions. RET protein has a tyrosine kinase intracellular

domain linked to an outer cysteine-rich extracellular domain and

four cadherin-like domains through transmembrane (16, 17). The

RET gene forms a ternary complex with Glial cell line-derived
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neurotrophic factor (GDNF) family ligands (GFLs) and GDNF

family co-receptors (GFRa1-4) leading to autophosphorylation of
RET-intracellular domain, which activates downstream signaling

pathways like PI3K/AKT, RAS/MAPK, JAK/STAT, and PKA/

PKC, whose activation or inhibition has an important impact in

cell survival, proliferation, migration, and differentiation (18, 19).

Figure 1 illustrates the constitutive patterns of the RET proteins.

RET gene promotes carcinogenesis primarily by gene fusion,

point mutation, and amplification, associated with numerous

cancers (19, 20). RET gene is involved in the development of

embryonic urogenital and neural tissues, involved in the stability

of brain tissue, hematopoietic tissue, and urogenital system (20).

Point mutations in RET gene have been identified in familial

medullary thyroid cancer, multiple endocrine neoplasia type 2

syndrome, pheochromocytoma, and chronic myeloid leukemia

(17, 21). Point mutations, RET fusions, and amplification of RET

gene are observed in various cancers. RET fusions which occur

due to chromosomal rearrangements resulting in RET protein’s

C-terminus splicing with the N-terminus of another protein and

are seen in papillary thyroid carcinomas, NSCLC in young never-

smokers, advanced disease, and poorly differentiated populations

(9, 22, 23). RET fusions occur in a variety of ways, the most

common being KIF5B-RET and CCDC6-5B. The data from 12

countries and 29 centres shows that KIF5B-RET (62.4%) and

CCDC6-5B (20.8%) were found in 173 lung cancer patients with a

positive RET fusion profile (24). And they found that stage IV

RET fusion-positive lung cancer seems to have a higher brain

metastasis rate of 25% (33/133). A study (25) from China used

DNA next generation sequencing (NGS) to profile RET fusions in

12,888 lung cancer patients. In this study, RET fusions occurred in

1.1% of cases, with KIF5B-RET (62%) and CCDC6-5B (21%)

being the twomost common fusions. They also found some fusion

modes that had not been found before, such as DNER, DPP6,

FGD5. Another study (26) included 9,471 patients with NSCLC,

and detected 167 (1.7%) patients with a RET fusion using DNA

NGS. The most common fusion partner was KIF5B (68.2%, 114/

167), followed by CCDC6 (16.8%, 28/167). Notably, they found

that while in EGFR/KRAS/BRAF/ALK-negative NSCLC patients,

the prevalence of RET rearrangement was 8.79% (29/330). This is

similar to some previous reports (10), indicating that RET and

other fusions are possibly exclusive. Table 1 lists the variation of

the RET genes as reported in the literature.

Researchers (27) discovered that RET-KIF5B fusion-positive was

primarily localized in exons 12 of RET protein and exons 15 of KIF5B

in 371NSCLC patients. CCDC6 dissociates at its amino acids 101, 150,

and 293, and then forms a fusion protein with the RET gene (28).

Figure 2 depicts typical rearrangement patterns of RET fusion proteins.
The detection of RET fusions

There are many detection technologies for RET fusion, and

each method has its advantages and disadvantages and usage
frontiersin.org
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scenarios. Test results are affected by factors such as the type and

quantity of genetic variants detected, specimen type, specimen

quantity and quality, and laboratory conditions. The most

commonly used methods for detecting RET fusions are

Immunohistochemistry (IHC), fluorescence in si tu

hybridization (FISH), next-generation sequencing (NGS),

reverse transcription-polymerase chain reaction (RT-PCR),

and PCR/Sanger. IHC detects protein, which can identify

known and unknown locations which are not only inexpensive

but quick as well. The IHC detection platform is highly

accessible, cheap and fast, but the availability of antibodies is

poor, and there are certain false negatives and false positives

(both up to 40%) (29). IHC mainly uses the principle of antigen-

antibody specific binding, and determines the antigen

(polypeptide and protein) in tissue cells by chemical reaction

to develop the color of the labeled antibody, and performs

localization, qualitative and relative quantitative detection
Frontiers in Oncology 03
technology. IHC has been widely used to detect fusion genes

such as ALK. However, when used to detect RET fusions, its

sensitivity and specificity are unreliable, with studies reporting

sensitivities of 50%-100% and specificities of 30%-90% (30, 31),

and thus may only be suitable for extensive primary screening

check, but not for a standalone test. In addition, IHC cannot

detect partner genes (22), so the widespread use of IHC in RET

detection is not recommended.

FISH works by labeling DNA or RNA probes with specific

nucleotide molecules that can find, qualitatively, and

quantitatively assess DNA or RNA sequence at the probe’s site

(22, 32). FISH has the highest sensitivity for the detection of

classical RET fusions (KIF5B-RET, CCDC6-RET) at 86%-91.7%

and 95%, respectively, while other non-classical fusions such as

NCOA4-RET have a sensitivity of only 66.7% (33, 34). The FISH

specificity has been reported to reach 50.6%-99% (33, 34). But

FISH is associated with demerits like high detection cost,
TABLE 1 Common RET gene fusion patterns.

KIF5B CCDC6 ERC1 ERCC6 NCOA4 TRIM33 EML4 FBXL7 GRIPAP1 KIF13A TIMM23B Others1 Total

Drilon
et al., 2018
(24),

108 36 3 2 4 2 2 2 2 12 173

Shi et al.,
2022 (25),

85 29 3 2 2 1 15 135

Feng et al.,
2022 (26),

114 28 2 23 167
frontier
1Some other fusion patterns where only 1 case was detected, such as DNER, DPP6, FGD5, GADL1, GLI3, GPRC6A, IL1RAPL2, KIAA1598, MALRD1, PRKAR1A, SPECC1, TLN1,
ZNF33B, TRIM24, EPHA5, MYO5C, EML4, RUFY3, KIAA1468.
FIGURE 1

TM, Hydrophobic Transmembrane domain; TK, Tyrosine Kinase domian; KM, Kinesin motor; aa, amino acid. The RET gene forms a ternary complex with
GFLs and GFR a1-4. RET fusion can form Ligan-Independent Homodimerzation and further activate or inhibit P13K/AKT, RAS/MAPK, JAK/STAT and PKA/
PKC. Activation or inhibition of these pathways is closely related to cell survival, proliferation, migration and differentiation.
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extended detection time, need for professional supervision, and

high subjectivity (35). FISH is the “gold standard” for detecting

gene translocations/fusions but has false negatives for rare

variants, and lacks cut-off values (36).

RT-PCR performed well in terms of specificity(77%-100%),

sensitivity(91.43%-99%) and automation (37–40). However,

sensitivity may be reduced when there are several fusion

partners, and RT-PCR can only detect known sites, not new or

unknown ones (10, 31). The detection material of RT-PCR is

known fusion mRNA, but cannot detect rare fusion partners not

covered by primers (41). Given the potential for false positives

with FISH, FISH is often used as primary screening in a broad

range of multikinase inhibitor (MKI) screening studies and in

phase II clinical trials, and further validated with RT-PCR or

RNA NGS (23, 42), especially in the face of For atypical FISH

results (such as single color, signal amplification, etc.).

NGS is a modernization of classic Sanger sequencing,

including DNA NGS and RNA NGS, with the benefits of high

throughput, ease of use, high accuracy, and large-scale gene

screening (31). Therefore, NGS not only saves specimens, but

also saves time waiting for test results. For targets with lower

mutation frequencies, the advantages of NGS are more obvious.

DNA NGS can be used to detect several mutations

simultaneously, the reported sensitivity ranges from 87.2% to

100%, and the specificity ranges from 98.1% to 100% (43–46).

However, its sensitivity is lower than that of RNA NGS due to its

limited coverage of intronic areas and is associated with the

problem of false positivity. Furthermore, the rearrangements

found by DNA NGS may not produce fusion. Unlike DNA NGS,

RNA NGS does not have the disadvantage of intron coverage
Frontiers in Oncology 04
and may obtain fusion partner information simultaneously,

allowing it to detect gene expression directly. However, RNA

NGS detection is generally limited to specific common fusion

types causing rare fusions to be missed, and the sensitivity of

RNA NGS is probably affected by the design of the detection

product (47). The sensitivity and specificity reported in the

literature can reach 88.46%-100% and 95.83%-100% (48, 49).

Other detection technologies such as NanoString technology/

PCR/Sanger sequencing have a high cost, unpopular detection

instruments, and time-consuming. Even with high sensitivity

and specificity, they are not suitable for routine clinical

applications (50, 51). For the detection of RET fusion-positive,

Yang et al. advocate a combination of screening and

confirmatory assays (33). They make the following

recommendations: DNA NGS is recommended as the primary

screening tool due to its broad sensitivity to all RET fusions;

atypical RET mutations with novel fusion partners, antisense

fusions, or intergenic regions should be sequenced by RNA NGS

for further evaluation; when DNA NGS is not available, use

FISH for screening, and use RNA NGS to confirm atypical

positive and borderline negative FISH results. Table 2 compares

several commonly used detection technologies.
The relationship between RET
fusions and NSCLC

The incidence of RET fusion-positive NSCLC is similar in men

and women. RET fusion-positive NSCLC has typical clinical
FIGURE 2

TM, Hydrophobic Transmembrane domain; TK, Tyrosine Kinase domian; KM, Kinesin motor; aa, amino acid. The figure shows the two most
common fusions, KIF5B-RET and CCDC6-RET.
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features, such as younger age at onset and a low smoking rate (more

than 60% of patients have never smoked) (52). Adenocarcinoma

occurs in 98% of RET fusion-positive NSCLC patients, and 70% of

RET fusion-positive NSCLC patients are in stage IV at diagnosis

(43, 52). This implies that NSCLC patients with RET gene

rearrangement have a poor prognosis and are more likely to

develop distant metastasis. However, it does not rule out the

possibility that non-metastatic patients are rarely screened.

RET gene positivity in non-small cell lung adenocarcinoma

is approximately 1% to 2%, RET fusion mutations and some

other genetic mutations (eg, EGFR receptor mutations, ALK

gene rearrangements) are mutually exclusive (42). The

frequency of RET rearrangements increases in the absence of

other oncogenic driver mutations, and the prevalence of RET

rearrangements at this time is estimated to be approximately 5%

(42). RET fusion-positive NSCLC patients show poorer tumor

cell differentiation, more signet ring cell subtypes, and smaller

primary lesions (<3 cm) when compared to ALK rearrangement,

EGFR receptor mutation, and ROS-1 fusion-positive patients

(22, 51, 53).

An in-frame fusion of the kinesin family 5B gene (KIF5B)

with the RET gene was the first RET fusion discovered in NSCLC

(54). The oncoprotein is induced by RET gene and its fusion

partner gene, which also causes the activation of associated

signaling pathways, which can make cells malignant and

progress toward lung cancer. The positive RET fusion gives

patients without harmful traditional targeted genes fresh hope,

and it may become a successful target for NSCLC patients’

targeted therapy in the future.
RET fusion-positive
NSCLC inhibitors

Researchers conducted multiple clinical trials of Vandetanib,

Cabozantinib, and Lenvatinib in RET fusion-positive thyroid

cancer. These drugs have even been approved to treat thyroid

cancer (15). Several multi-kinase inhibitors (MKIs) targeting

RET fusion-positive NSCLC have also been studied clinically or

pre-clinically.
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Numerous studies (55–57) have indicated that MKI might

induce more noticeable adverse effects such as nausea, diarrhea,

rash, and elevated blood pressure, leading to dose decrease or

drug discontinuation. Due to the low pharmacokinetics and

non-selectivity of MKI, its treatment of RET fusion-positive

NSCLC is limited, especially in terms of disease remission rate

and disease progression control. Some selective TKIs have

achieved breakthroughs in clinical trials in the past two years,

and some drugs have also been approved by the EMA or the

FDA. The representative drugs Pralsetinib and Selpercatinib

have shown good efficacy and safety. The FDA previously

granted selpercatinib (LOXO-292) accelerated approval in

2020 for RET fusion–positive metastatic NSCLC, excitingly,

Selpercatinib was authorized by the FDA as first-line regular

therapy for RET fusion-positive advanced or metastatic NSCLC

in Nov 2022 (11). The FDA also granted Pralsetinib (BLU-667)

accelerated approval in Sep 2020 (12). Selpercatinib was

approved as second-line therapy for RET fusion-positive

NSCLC by Swissmedic and the EMA in 2021 (58). We will

summarize the recent application of non-selective and selective

RET fusion-positive inhibitors, and discuss the mechanism and

coping strategies of resistance to RET fusion-positive inhibitors.
Non-selective RET fusion-positive
inhibitors

Vandetanib is an oral multi-target inhibitor with anti-

angiogenic and anti-RET properties that target RET, VEGFR,

and EGFR signaling pathways (59). FDA approved vandetanib,

which primarily inhibits the RET tyrosine kinase signaling

pathway, to treat advanced medullary thyroid carcinoma (60).

Growth of CCDC6-RET-positive LC-2 lung adenocarcinoma

cells can be inhibited by vandetinib in vitro (61). The

combination therapy of vandetanib and everolimus can modify

efflux mediated by P-gp/Abcb1- and Bcrp1/Abcg2, improve

blood-brain barrier penetration, and increase the survival time

of patients with brain metastases (62). It also can suppress the

transplantation of CCDC6-RET-positive lung adenocarcinoma

tumors into athymic mice and the carcinogenesis of KIF5B-RET

transgenic mice in vivo (63).
TABLE 2 Comparison of several detection technologies.

Technologies IHC FISH RT-PCR DNA NGS RNA NGS

specificity +++ ++++ +++++ +++++ +++++

sensitivity +++ ++++ +++++b +++++ +++++c

charge ++ +++++ +++ ++++ ++++

materials protein DNA/RNA RNA DNA RNA

detection of partner no no/yesa yes/nob yes/nob yes/nob

time consumption (d) 1~2 2~3 2~3 5~7 5~7
fr
IHC, immunohistochemistry; FISH, fluorescence in situ hybridization; RT-PCR, reverse transcription polymerase chain reaction; NGS, generation sequencing. a. When using probes with
specific fusion partners; b. Unable to detect rare fusion partners not covered by primers; c. Related to product design.
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Based on existing Phase I and Phase II trials, vandetanib was

well tolerated at a single daily dose of 300 mg. Lee et al. (64)

conducted a phase II clinical trial in which 18 patients with RET

fusion-positive metastatic or recurrent NSCLC who previously

received and responded to platinum-based doublet

chemotherapy were recruited between July 2013 and October

2015. These patients were given vandetanib 300 mg/day. They

had an objective response rate (ORR) of 18%, a median

progression-free survival (mPFS) of 4.5 months, and median

overall survival (mOS) of 11.6 months at the end of the trial. The

most common grade three or higher treatment-related adverse

events (TRAEs) were hypertension (89%), rash (72%), diarrhea

(44%), acne (28%), and asymptomatic QT prolongation (11%).

Yoh et al. (65) published the final follow-up data of Phase II

clinical trial they completed between April 2013 and May 2015

in 19 previously treated RET fusion-positive NSCLC patients in

May 2021. These patients had an ORR of 53% (95% CI: 31-74),

an mPFS of 6.5 months, and an mOS of 13.5 months.

Hypertension (84.2%), diarrhea (78.9%), acneiform rash

(63.2%), asymptomatic QT prolongation (47.4%), dry skin

(42.1%) were the most prevalent grade three or higher TRAEs.

It can be noted that vandetanib has a restricted objective

remission rate, no evident advantages in terms of efficacy, and

a significant prevalence of grade three or higher TRAEs, which is

a fundamental reason for limiting its clinical utilization.

Cabozantinib (XL184) is a multikinase inhibitor, which

inhibits RET, VEGFR-1/2/3, MET, ROS1, AXL, and other

kinases (66, 67). Cabozantinib has been approved in some

locations for RET fusion-positive NSCLC, medullary thyroid

cancer and Advanced Renal Cell Carcinoma (68). Nokihara et al.

completed a phase I research (69), in which 43 NSCLC patients

received cabozantinib 60 mg/day, eight patients achieved varied

degrees of remission, and 16 patients experienced stable illness.

Hypertension, proteinuria, and venous thrombosis were

commonly observed TRAEs.

In June 2013, cabozantinib was used in a phase II study (70)

involving three RET fusion-positive NSCLC patients. Two of

these patients showed marked partial responses (including one

with a TRIM33-RET fusion). Another patient with a KIF5B-RET

fusion had a roughly 8-month period of stable illness.

Hypertension, proteinuria, and tiredness were among the

grade three or higher TRAEs. In 2016, Drilon et al. (71)

reported their phase II clinical study involving 26 patients

with RET fusion-positive NSCLC, cabozantinib 60 mg/day,

and the follow-up results of the 25 patients were ORR: 28%,

mPFS: 5.5 months, and mOS: 9.9 months, and the primary grade

three or higher TRAEs was increased lipase (15%), increased

alanine aminotransferase (8%), decreased platelet count (8%),

and hypophosphatemia (8%). Cabozantinib has been indicated

to have a general efficacy in patients with RET-positive NSCLC.

Still, because its safety is tolerable, it can be utilized as a backup

alternative when no other targeted medications with superior

efficacy are available.
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Lenvatinib is a RET, KIT, FGFR1-4, PDGFRa, and VEGFR-

1/2/3 kinase inhibitor. It can be combined with everolimus to

treat advanced renal cell carcinoma, radioactive iodine-

refractory differentiated thyroid cancer, inoperable

hepatocellular carcinoma, and advanced endometrial cancer in

combination with pembrolizumab (72–75). Taylor et al. (76)

conducted a phase Ib/II trial with 21 NSCLC patients (lenvatinib

24 mg/day plus pembrolizumab). After 24 weeks, the 21 patients

had an ORR of 33%, a mPFS of 5.9 months, and a median

duration of response (mDOR) of 10.9 months. The most

common grade three or higher TRAEs were hypertension

(20%), tiredness (12%), diarrhea (9%), proteinuria (8%), and

elevated lipase (7%). In another phase II clinical research (77),

oral lenvatinib 24 mg/day was provided to 25 patients, 13 of

whom were KIF5B-RET and 12 of whom were CCDC6-RET. At

the end of follow-up, their overall ORR was 16% mPFS was 7.3

months, and mOS was not reached. Twenty-three (92%) patients

had TRAEs of grade three or above, and six (24%) patients had

to quit due to more extreme TRAEs. The most prevalent grade

three or higher TRAEs was hypertension (68%), and the others

are nausea (60%), decreased appetite (52%), diarrhea (52%), and

proteinuria (48%). These clinical trials revealed that lenvatinib is

ineffective, has a significant rate of TRAEs such as hypertension,

nausea, and diarrhea, and has evident limitations in clinical use,

rendering it inappropriate for widespread clinical use. Table 3

presents clinical trials of several non-selective inhibitors.
Selective RET fusion-positive inhibitors

Selpercatinib (LOXO-292) is a highly selective RET inhibitor

involved in ATP competition (58). It suppresses RET fusions

(for example, KIF5B-RET and CCDC6-RET) as well as

mutations (for example, V804L, V804M, and M918T) (78).

Based on Phase I/II Libretto-001 trial findings, selpercatinib

was granted regular approval from the FDA to treat adults with

locally advanced or metastatic RET fusion-positive NSCLC (11).

Aside from its significant inhibitory action on RET, the

medication has demonstrated reasonable target specificity,

tolerance, and intracranial effectiveness (79).

In Sep 2022, Drilon et al. (80) published the latest results of

their registrational LIBRETTO-001 phase I/II trial, a global

multicenter clinical trial. This trial included 247 patients with

advanced RET fusion-positive NSCLC who had previously used

platinum-based chemotherapy and 69 patients who had never

been treated. This time the number of patients was more than

double what they reported in 2020 (81), which makes their

reported drug effects more convincing. All patients were given

selpercatinib 160 mg twice daily. By data cut-off, ORR was found

to be 61% in 105 platinum-treated patients, with a mDOR of 28.6

months and an mPFS of 24.9 months. Similar observation results

were made in the LIBRETTO-001 clinical trials in Japan and

China. The study from China (82) included 26 patients with RET
frontiersin.org
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fusion-positive NSCLC, 18 of whom had previously received

chemotherapy or immunotherapy, and 8 who were treatment-

naïve. The ORR was 61.1% in previously treated patients and

87.5% in treatment-naïve patients, with mPFS and mOS not

reached at data cut-off. The ORR was 55.3% (95% CI, 38.3-71.4)

among 38 patients in the Japanese study (83) who had previously

received chemotherapy or immunotherapy. This means that

selpercatinib treatment of RET fusion-positive NSCLC may not

be significantly different between different populations.

Surprisingly, 106 patients with initial intracranial metastases

achieved an ORR of 85% (95% CI, 65-96). And achieved mPFS

(95% CI, 13.8-NR) of 19.4 months, which is very optimistic in the

survival status of stage IV lung cancer. In addition, In the 22

responders with measurable CNS metastases, the mDOR was 9.4

months (95% CI, 7.4-15.3). This indicates that selpercatinib has good

intracranial reactivity, which is beneficial for prolonging the survival

time of NSCLC patients with intracranial metastases is significant.

Similar intracranial hyperresponsiveness to selpercatinib was

also demonstrated in another study. Subbiah et al. (84) reported

the efficacy of selpercatinib 160 mg twice daily for one year in 80

patients with RET fusion-positive NSCLC with brain metastases.

Among 22 patients with evaluable intracranial lesions, intracranial

ORR at data cut-off was 82%, and 23% of patients achieved

complete remission. A total of 80 patients had an intracranial

mPFS of 13.7 months, and the mDOR was not reached at the data

cutoff. The good safety profile of selpercatinib was also reflected in

the trial by Drilon et al. (80). TRAEs occurred in 44% of patients,

the most prevalent grade three or higher TRAEs in these patients

after treatment were hypertension (19.7%), ALT increased

(11.4%), AST increased (8.8%), diarrhea (5.0%), and

electrocardiogram QT prolonged (4.8%). It is not difficult to see

from these studies that Selpercatinib has a high response rate,

good targeting, fewer side effects, and significant intracranial

efficacy. Selpercatinib will be a valuable treatment option for

these patients with RET fusion-positive NSCLC, especially those

with brain metastases. It will be expected that more clinical data

are available to verify its efficacy and safety.

Pralsetinib (BLU667) is another potent and selective RET

inhibitor with selective activity against gatekeeper mutations

(85), which has a central system proven efficacy in a mouse

model (8). ARROW (86) is a 13-country, multi-cohort, open-
Frontiers in Oncology 07
label phase I/II trial. On August 13, 2022, Griesinger et al.

updated their latest analysis (87). A total of 281 RET fusion-

positive NSCLC patients were involved between March 17, 2017,

and November 6, 2020. These patients received a phase II dose of

400 mg of Pralsetinib once daily, and the endpoints were ORR.

Pleasantly, they get good therapeutic results. They got an ORR of

72% in treatment-naïve patients and 59% in patients who had

previously received platinum-based chemotherapy. The mDOR

in chemotherapy patients was 22.3 months, while the mDOR in

treatment-naïve patients was not reached. All treatment-naïve

patients and 97% of platinum-based chemotherapy patients had

tumor volume reductions after treatment, and their respective

progression survival was 13.0 months and 16.0 months. In

addition, like Selpercatinib, Pralsetinib also has good

intracranial efficacy. The intracranial remission rate was 70%

(95% CI 35-93) in patients with intracranial metastases after

treatment. The mDOR was 10.5 months (95% CI 5.5-12.6

months). Of all 281 patients, 7% (20/281) discontinued due to

TRAEs. In 116 treatment-naïve patients, 08 (93%) patients

experienced a TRAE, the most common grade three or higher

TRAEs were neutropenia (18%), hypertension (10%), serum

creatine phosphokinase Elevated (9%) and lymphopenia (9%).

In the pre-treated population, the most common grade three or

higher TRAEs were neutropenia (22%), anaemia (18%), and

hypertension (13%).

According to the findings of these studies, pralsetinib is a

medication with good tolerability and safety, a decent ORR and

mPFS, and a low occurrence of side events such as neutropenia

and hypertension. However, the incidence of Pralsetinib TRAEs

was higher than that of Selpercatinib. In terms of rational use,

Pralsetinib remains a preferred option for patients with RET

fusion-positive NSCLC.

Alectinib is a second-generation highly selective anaplastic

lymphoma tyrosine kinase inhibitor with favourable central

nervous system activity (88). Having demonstrated great

activity in ALK fusion-positive (89), It has been approved as a

first-line treatment for metastatic ALK fusion-positive NSCLC

after crizotinib treatment (90). Previous studies have shown that

Alectinib strongly inhibits RET, FLT3, CHEK2, and LTK but not

VEGFR (91). Therefore, it may also be a potentially effective

treatment option for RET fusion-positive NSCLC. Takeuchi
TABLE 3 Non-selective inhibitors in RET+NSCLC patients.

References Medicine Phase Previous
treatment

Patients
(N)

ORR (%) mPFS (months) mOS (months)

Lee et al., 2017 (64), Vandetanib 300mg/day II pretreated 17 18 4.5 11.6

Yoh et al., 2021 (65), Vandetanib 300mg/day II pretreated 19 53 (95%CI, 31-74) 6.5 (95% CI, 3.9-9.3) 13.5 (95% CI, 9.8-
28.1)

Drilon et al., 2016
(66),

Cabozantinib 60mg/
day

II pretreated/
untreated

25 28 (95%CI, 12-49) 5.5 (95% CI, 3.8-8.4) 9.9 (95% CI, <8.1)

Hida et al., 2019 (77), Lenvatinib 24 mg/day II pretreated 25 16 (95%CI, 4.5-36.1) 7.3 (95% CI, 3.6-10.2) ——
ORR, objective response rate; mPFS, median progression-free survival; mOS, median overall survival.
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et al. (92) conducted I/II experiment in Japan. Between

September 28, 2016, and January 29, 2018, 25 patients received

450 mg of alectinib twice daily. The final ORR was 4%, mPFS

was 3.4%, and mOS was 19 months. An overall disease control

rate of 52% was obtained. Grade three or higher TRAEs included

diarrhea, pneumonia, elevated serum creatine phosphokinase

and bilirubin, hyponatremia, and neutropenia (all at 3.6%).

Ribeiro et al. (93) investigated the efficacy and tolerability of

alectinib in four patients with RET fusion-positive NSCLC who

received 600 mg twice daily. All patients had previous

chemotherapy and TKI therapy. Three cases contained one

KIF5B-RET fusion and one CCDC6-RET fusion. Two months

after starting medication, one patient’s condition progressed. Two

patients had a PFS of four to five months. No grade three or higher

TRAEs occurred in these four patients. Another clinical trial (94)

enrolled 14 patients with RET fusion-positive NSCLC and achieved

an mPFS of 3.7 months (95% CI, 1.8 - 7.3 months). Unfortunately,

the researchers stopped early due to the lack of positive efficacy

observed in other studies. Although past preclinical studies have

shown that alectinib has a significant inhibitory effect on RET

fusion genes (10, 95), but from the results of these clinical trials,

alectinib is difficult to offer considerable disease control results in

patients with advanced and chemotherapy-refractory RET fusion-

positive NSCLC. Nevertheless, it has the advantages of low toxicity

and side effects and great potential application value worthy of our

research. Considering the small number of patients involved in

previous clinical trials, maybe we need a larger clinical trial to verify

the efficacy and safety of alectinib. Table 4 presents clinical trials of

several selective inhibitors.
Problems and prospects of RET fusion-
positive inhibitors

RET fusion-positive inhibitors have brought new changes to

the treatment of NSCLC, bringing new hope to patients with
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advanced or metastatic NSCLC who cannot be operated on. But

they also have many problems, the main one is their TRAEs,

such as hypertension, rash, diarrhea, neutropenia, liver function

damage, etc. And Kalchiem-Dekel et al. found that Chylothorax

and Chylous Ascites may appear during treatment with selected

RET TKIs (96). Recognizing this side effect can help identify

whether a tumor is progressive. These TRAEs will greatly limit

the therapeutic dose of inhibitors, and some people even suffer

from severe TRAEs and discontinuation. The problem we need

to face is how to choose an appropriate drug and dosage

according to the patient’s condition, and balance the factors

such as treatment effect, TRAEs, and patient’s quality of life. If

the toxic and side effects are too strong and the patient cannot

get better disease control effects, we should choose other

conservative treatments, which will make the patient’s quality

of life better.

Another important aspect is the problem of resistance to

these drugs. The resistance mechanisms of RET inhibitors are

mainly composed of on-target mutation, off-target bypass

activation or some unknown resistance pathways (97, 98).

V804L/M residue gatekeeper mutation of secondary drug

resistance mutation is an on-target resistance mechanism

usually seen in MKI (97), a study (99) has shown that a novel

RET inhibitor, SYHA1815, can overcome this resistance, which

may be a new direction for drug development. Some other on-

target mechanisms, S904F, G810R/S/C/V residue solvent front

mutations, and I788N somatic mutation are also associated with

MKI or selective TKI resistance (98, 100–102). Off-target

resistance mainly includes KRAS/MET amplification, BRAF

(V600E)/NTRK3 mutation, EGFR activation, and MDM2

amplification (78, 103–105), these resistance mechanisms can

be seen in MKI or selective TKI. In particular, NTRK3 fusion has

achieved post-clinical validation as an acquired resistance

mechanism to selpercatinib in RET fusion-positive lung cancer

(105). Unlike MKI, selpercatinib and pralsetinib avoid the

interference of some gatekeeper mutations (106). However, it
TABLE 4 Selective inhibitors in RET+NSCLC patients.

References Medicine Phase Previous
treatment

Patients
(N)

ORR (%) mPFS (months) mDOR (months)

Drilon et al., 2022
(80),

Selpercatinib 160 mg
twice daily

I/II chemotherapy 247 61 (95% CI, 55-67) 24.9 (95% CI, 19.3-NR) 28.6 (95% CI, 20.4-NR)

II untreated 69 84 (95% CI, 73-92) 22.0 (95% CI, 13.8-NR) 20.2 (95% CI, 13.0-NR)

Lu et al., 2022 (82), Selpercatinib 160 mg
twice daily

II chemotherapy/
Immunotherapy

18 61.1 (95% CI, 35.7-82.7) NR NR

untreated 8 87.5 (95%CI, 47.3-99.7) NR NR

Subbiah et al., 2021
(84),

Selpercatinib 160 mg
twice daily

I/II brain metastases
(treated/
untreated)

80 82 (95% CI, 65-95) 13.7 (96% CI, 10.9-NR) NR (95% CI, 9.3-NR)

Griesinger et al.,
2022 (87),

Pralsetinib 400 mg/day I/II chemotherapy 136 59 (95% CI, 50-67) 16.5 (95% CI, 10.5-24.1) 22.3 (95% CI, 15.1-NR)

II untreated 75 72 (95% CI, 60-82) 13.0 (95% CI, 9.1-NR) NR (95% CI, 9.0-NR)

Takeuchi et al.,
2021 (92),

Alectinib 450 mg twice
daily

II untreated 25 4 (95% CI, 0.1-20.4) 3.4 (95% CI, 2.0-5.4) NR
ORR, objective response rate; mPFS, median progression-free survival; mDOR, median duration of response; NR, not reached.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1033484
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Shen et al. 10.3389/fonc.2022.1033484
is very susceptible to non-gatekeeper mutations (such as

RETG810C/S and RETY806C/N mutations). Solomon et al.

(100) found 5 resistant patients after using selpercatinib,

including RET carrier premutation (G810C/R/S/V) and olvent

front trans-gatekeeper mutation. The speed, scope and severity

of the mutations are staggering. Figure 3 shows several common

mechanisms by which MKI or selective TKI resistance.

There are some caveats when analyzing TKI resistance.

According to Xia, Lin, et al. (107, 108), analyzing tumor re-

biopsy acquired resistance pathways is critical for next-

generation RET TKIs, especially when there is an acquired

resistance mutation spectrum difference between selpercatinib

and pralsetinib. Next-generation TKI assays may require

discriminating between RET fusion-positive and RET-mutant

cancers, and differences in resistance between selpercatinib and

pralsetinib. Numerous studies have shown that the combination

of different RET fusion-positive inhibitors, or in combination

with other drugs, can improve efficacy or overcome some MKI/

TKI resistance. Rosen EY et al. (109) discovered that a

combination of selpercatinib and crizotinib can overcome

MET-dependent resistance in RET fusion-positive NSCLC.

Another study (110) also reported that the combination of

Pralsetinib and Sequential MET Inhibitors can overcome MET

amplification resistance. Cabozantinib combined with

everolimus improves the therapeutic effect of advanced renal

cell carcinoma (111, 112), which may be a revelation of

treatment for patients with RET fusion-positive NSCLC. An

important research (113) result in thyroid cancer, inhibition of

FGF receptor blocks adaptive resistance to RET inhibition in
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CCDC6-RET-rearranged thyroid cancer. This may also be

replicated in RET fusion-positive NSCLC.

Overall, among non-selective RET fusion-positive inhibitors.

Vandetinib and lenvatinib have very low efficacy and are

accompanied by relatively serious TRAEs, which do not have

much practical application value. Cabozantinib shows some

activity against RET fusion-positive, and its safety is tolerable,

so it can be used as a substitute or in combination with other

drugs when there is no other drug with excellent efficacy. In

contrast, selective fusion-positive inhibitors gave us more

confidence, especially their good performance in intracranial

efficacy. Selecting RET fusion-positive inhibitors not only has

good reactivity, but also has relatively milder drug side effects.

NCCN guidelines (114) also advocate selpercatinib and

pralsetinib as first-line therapies for patients with RET fusion-

positive advanced NSCLC. However, the NCCN also pointed out

that if RET fusion-positive NSCLC is found, treatment with PD-

1/PD-L1 inhibitors should be avoided.
Conclusions

In summary, we recommend that DNA NGS and RT-PCR

should be used as the primary tool for RET fusion detection, but

IHC or FISH can be chosen based on economics when screening

large samples. RNA NGS can be used to confirm atypical

positive and borderline negative FISH results. RNA NGS is the

first choice when screening for novel fusion partners, antisense

fusions, or intergenic regions is required. For RET fusion-
FIGURE 3

Mechanisms of MKI and TKI resistance in RET fusion-positive NSCLC.
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positive inhibitors, the authors emphasize that, based on existing

preclinical and clinical evidence, RET fusions have the strong

potential to be an important therapeutic target for NSCLC.

Selpercatinib and Pralsetinib are now the treatment of choice

for patients with RET fusion-positive treatment-naïve and

metastatic NSCLC, with cabozantinib available as an

alternative or in combination. Alectinib has the potential to

help treat RET fusion-positive NSCLC, however, more extensive

randomized clinical trials are needed to confirm its efficacy and

safety. Besides, it is necessary to further study the resistance

mechanism of RET inhibitors and develop a new generation of

anti-resistance inhibitors. Exploring the combination of RET

inhibitors with other therapies is also recommended for

improving overall efficacy and overcoming some resistance.
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