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Introduction: Genomic selection (GS) is a potential breeding approach for

soybean improvement.

Methods: In this study, GS was performed on soybean protein and oil content

using the Ridge Regression Best Linear Unbiased Predictor (RR-BLUP) based on

1,007 soybean accessions. The SoySNP50K SNP dataset of the accessions was

obtained from the USDA-ARS, Beltsville, MD lab, and the protein and oil

content of the accessions were obtained from GRIN.

Results: Our results showed that the prediction accuracy of oil content was

higher than that of protein content. When the training population size was 100,

the prediction accuracies for protein content and oil content were 0.60 and

0.79, respectively. The prediction accuracy increased with the size of the

training population. Training populations with similar phenotype or with

close genetic relationships to the prediction population exhibited better

prediction accuracy. A greatest prediction accuracy for both protein and oil

content was observed when approximately 3,000 markers with -log10(P)

greater than 1 were included.

Discussion: This information will help improve GS efficiency and facilitate the

application of GS.
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Introduction

Soybean (Glycine max L.) is an important crop worldwide

(Babu et al., 2016). It accounts for approximately 68% of the

world’s protein and 27.7% of the vegetable oil used for human

consumption (https://downloads.usda.library.cornell.edu/usda-

esmis/files/tx31qh68h/2f75sh11z/7d27b176h/oilseeds). The

increase in soybean protein and oil content are important

goals for soybean breeding. It has been widely documented

that soybean seed composition is not only affected by abiotic

and biotic factors but also genetically controlled (Rodrigues

et al., 2014). The seed protein and oil content of the same

accessions varied in different years or in different environments

within the same year (Helms et al., 1990). Marker-assisted

selection (MAS) can improve the efficiency of breeding

selection and has been used for the selection of soybean salt

tolerance (Lee et al., 2004), insect resistance (Zhu et al., 2006)

and other agronomic traits (Zhang et al., 2015). However, MAS

relies on the degree of marker association with the quantitative

trait loci and the amount of genetic effect of the quantitative trait

locus (QTL) explained (Moreau et al., 2004). The trait-related

loci detected by QTL mapping and genome-wide association

studies (GWAS) may not be dominant across different

populations, which also reduces the efficiency of MAS (Beavis,

1998; Melchinger et al., 1998; Moreau et al., 1998). In addition,

QTL analyses may only capture a portion of the genetic variation

contributed to the targeted trait, while many loci with small

effects or susceptible to environmental influence go undetected

(Maher, 2008). Genomic selection (GS) was different from MAS

in that it used a large number of molecular markers to estimate

the breeding value or genetic value and predict the performance

of candidate individuals without identifying the marker−trait

association (Budhlakoti et al., 2022). It could overcome the

limitations of MAS in breeding and was an effective method

for selecting complex traits.

With the development of high-throughput genotyping

techniques and the continuous optimization of statistical

models, the application of GS to breeding has become

possible. GS was initially used in the breeding of livestock and

poultry, such as dairy cows (Pryce and Daetwyler, 2011), pigs

(Cleveland and Hickey, 2013), chickens (Calenge et al., 2011),

sheep (Duchemin et al., 2012) and other animals. At the

beginning of the 21st century, the GS was being explored in

many crops . Prediction accuracy is the parameter used to

measure the performance of GS (Jarquin et al., 2016; Zhang

et al., 2016; Duhnen et al., 2017). Spindel et al. (2015) performed

GS on a panel of 363 rice elite breeding lines and found that the

predictive abilities for grain yield, plant height and flowering

time were 0.31, 0.34, and 0.63, respectively. In maize, the

prediction accuracy for the representative subset selection

methods, i.e. maximization of connectedness and diversity

(MaxCD), partitioning around medoids (PAM) and fast and
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unique representative subset selection (FURS), was higher than

random sampling for flowering time, ear height, and grain yield

(Xu et al., 2021). When applying GS to crop breeding, several

genetic factors should be considered, including marker density,

sample size, the relationship between the training population

and test population, population structure, heritability and

genetic architecture of target traits, and linkage disequilibrium

(LD) between markers and QTLs (Xu et al., 2021). In soybean,

Xavier et al. (2016) explored the effect of training population size

on prediction accuracy for plant height, days to maturity,

number of reproductive nodes, pods per node, number of

pods, and grain yield and found that the subset size was an

important factor for the improvement of genome-wide

prediction. Duhnen et al. (2017) performed GS on soybean

yield and seed protein content and compared the genomic

prediction accuracy between intersubgroup and intrasubgroup

calibration models. The results showed that intra-subgroup

calibration was more effective. Ravelombola et al. (2021)

explored the effects of population structure on the prediction

accuracy of yield-related traits in soybean. The results showed

that the yield-related traits could be selected through GS. Qin

et al. (2019) conducted GWAS and GS for amino acid

concentrations in soybean seeds and showed that the selection

efficiency of amino acids based on the markers significantly

associated with all 15 amino acids was higher than that based on

random markers. There has been little exploration of the

predictive accuracy of genomic selection for soybean oil content.

This study aimed to evaluate a number of factors, including

the training population sizes, phenotypic and genotypic

similarities between training populations and prediction

populations and number of markers and marker−trait

association, on the accuracy of genome selection of protein

and oil content based on 1,007 soybean germplasms genotyped

with SoySNP50K BeadChip (Song et al., 2013).
Materials and methods

Plant materials and phenotyping

A cultivated soybean panel, Max_IL_0102, consisting of

1,007 soybean germplasms (Table S7), was used in this study.

The 1,007 soybean germplasms were from the USDA Soybean

Germplasm Collection. The entire collection consists of nearly

22,000 accessions, including modern and land race cultivars (G.

max) wild relatives of soybean (G. soja), and perennial Glycine

(www.soybase.org). The 1,007 germplasms were originally from

China, South Korea, Japan, North Korea, Vietnam, Ukraine,

Russia and the United States, and the accessions were maturity

groups 0, I, II, III, IV and V. The datasets containing the protein

and oil content of the germplasms were downloaded from the

GRIN (http://www.ars-grin.gov/npgs/searchgrin.html).
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According to the GRIN, the field trials of the panels were

conducted at Urbana, Illinois. The planting dates were May 4,

2001, and May 27, 2002. The plots were 4 m long with 4 rows 76

cm apart. They were trimmed to 2.4 m after maturity, and the

middle two rows were harvested. Protein and oil content in

yellow seed soybean accessions were evaluated using the near-

infrared reflectance method, and protein and oil content in

pigmented or mottled soybean accessions were quantified with

the Kjeldahl method and Butt extraction method, respectively.

SPSS 25.0 (Shen et al., 2020) was used to calculate descriptive

statistics of the phenotypic data, including minimum,

maximum, mean, standard deviation, variance, skewness,

kurtosis and coefficient of variation.
Genotyping

The SNP genotypes of 1,007 soybean germplasms were

determined using an Illumina Infinium SoySNP50K BeadChip

at USDA-ARS, Beltsville, MD, USA. The dataset was obtained

from the Soybean Genetics and Improvement Laboratory,

USDA-ARS, Beltsville, MD, USA. The chip contained 52,041

SNPs from the euchromatic and heterochromatic regions of the

soybean genome. Single nucleotide polymorphism genotyping

was conducted on the Illumina platform by following the

InfiniumH HD Assay Ultra Protocol (Illumina, Inc.). The

SNPs were scored using the GenomeStudio Genotyping

Module v1.8.4 (Illumina, Inc.). The SNP data is publicly

available at http://www.soybase.org/dlpages/index.php (Song

et al., 2015). After eliminating SNPs with a minor allele

frequency less than 5%, a total of 42,509 high-quality SNPs

were retained for further analysis.
Genomic selection

GS was conducted using a ridge regression best linear

unbiased predictor (RR-BLUP) model (Endelman, 2011) as in

the follows.

y = 1nm + Zu + ϵ

In this equation, y represents the n × 1 dimensional

observation vector; 1n denotes the n × 1 dimensional vector

with the value of each element 1; m is the fixed effect; Z represents

the n × m design matrix related to the random effect; u is the

random effect vector; and ϵ is the vector (n × 1) of independent

random residuals. The prediction accuracy was measured by the

correlation coefficient between the predicted value and the

observed value. The intragroup analysis was repeated 150

times in each case, and the average of the correlation

coefficients was used as a measure of the GS prediction accuracy.
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Training population selection

Nine training population sizes ranging from 100 to 900 with

an increment of 100 were chosen. In each GS analysis,

germplasms were randomly selected to be included in the

training population, and the remaining accessions were

included in the prediction population.

To evaluate the influence of the phenotypic similarity between

the training population and prediction population on prediction

accuracy, 1,007 soybean germplasms were sorted according to

their phenotypic value and divided into four subpopulations with

the same population size. Each subpopulation included

approximately 250 soybean germplasms. Genomic prediction

analyses between pairwise subpopulations were performed. A

fivefold cross-validation scheme was used to assess the

prediction accuracy within each subpopulation.

To study the effect of genetic similarity between the training

population and prediction population on the prediction

efficiency, population structure was determined using

STRUCTURE 2.3.4 (Pritchard et al., 2000). A total of 7,244

SNPs with linkage disequilibrium (LD) less than 0.50 to adjacent

loci were selected using the program PLINK (version 1.07)

(Purcell et al., 2007; Yan et al., 2019) and used to perform the

structure analysis. The number of subsets (k) ranged from 2 to 6,

while the burn-in time and iterations for each run were both set

to 100,000. Two runs were used for each k (Evanno et al., 2005).

Then, two subpopulations with the most germplasm were

selected for GS analysis, and each subpopulation was used as a

training population and a prediction population for mutual

prediction. At the same time, 80% of the germplasms in the

two subpopulations with the most germplasms were randomly

selected as the training population, and the remaining 20% of the

germplasm were predicted. The resulting prediction accuracies

were then presented in scatterplots. Principal component

analysis (PCA) was also used to ensure clear subpopulations.
Marker selection

To study the effect of marker and trait association on

prediction accuracy, the -log10(P) for each SNP was estimated

through GWAS. Genome-wide SNP marker and trait association

analyses were performed using a mixed linear model including

principal component analysis (PCA) and a kinship matrix (K) as

covariates in the analysis. The analysis was performed using the

standalone software TASSEL V5.2.9 (Bradbury et al., 2007). The

mixed linear model (MLM) considering both population

structure and kinship was employed for GWAS using TASSEL

software. The MLM was the following:

y = m + Xa  + Pb  + Zu + e
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where y is the vector of phenotypic observations; m is the overall

mean; a is the vector of SNP effects; X is the incidence matrix

relating the individuals to the fixed marker effects; a and b are

the vectors of population structure effects; P is the incidence

matrix relating the individuals to the fixed population structure

effects; u is the vector of kinship background effects; Z is the

incidence matrix relating the individuals to the random group

effects; and u and e are the vectors of residual effects (Yu

et al., 2006).

Based on the significance level of the association of SNPs

with each trait in the GWAS, the SNPs were divided into five

sets: set 1 included all the SNPs, and sets 2, 3, 4, and 5 included

the SNPs with -log10(P)>1, -log10(P)>2, -log10(P)>3 and -log10
(P)>4, respectively. The same number of markers in the five sets

were randomly selected for GS analysis. Fivefold cross-validation

was performed. In each cross-validation, 80% of the samples

were randomly selected as the training set, and the remaining

samples were selected as the validation set.
Results

Phenotyping

The protein content ranged from 345 mg/g to 529 mg/g with

an average of 434.2 mg/g, the skewness was 0.14, the kurtosis was

-0.21, and the coefficient of variation was 6.9%. The oil content

ranged from 82 mg/g to 240 mg/g with an average of 174.3 mg/g,

the skewness, the kurtosis, and the coefficient of variation was

0.15, -0.09 and 13.4%, respectively 1,007 (Table 1).
Effect of training population size on the
accuracy of GS

To understand the effect of training population size on the

prediction accuracy, nine training population sizes ranging from

100 to 900 were chosen. The prediction accuracy for protein and

oil content ranged from 0.6 to 0.85, and the prediction accuracy

was higher for oil content than protein content (Figure 1). The

prediction accuracy of protein content was the lowest (0.6) when

the training population size was 100, and the accuracy increased

with the training population size and reached its maximum

value when the training population size was 800. The prediction

accuracy for oil content increased from 0.79 to 0.85 when the
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training population size increased from 100 to 900. It reached a

maximum value when the training population size was 800.
Effect of phenotype similarity between
the training population and prediction
population on prediction accuracy

According to the protein content distribution, the 1,007

soybean germplasms were divided into 4 subpopulations, each

containing 250 accessions (Table S1, Figure 2A). The range of

the protein content (mg/g) for Ppop 1 (phenotypic

subpopulation 1), Ppop 2, Ppop 3 and Ppop 4 was 345 to 413,

414 to 432, 432 to 455 and 456 to 529, respectively. When Ppop 1

was used as the training population to predict the protein

content of Ppop 1, Ppop 2, Ppop 3, and Ppop 4, the prediction

accuracy was 0.33, 0.1, 0.19, and -0.1, respectively. When Ppop 2

was used as the training population to predict the protein

content of Ppop 1, Ppop 2, Ppop 3, and Ppop 4, the prediction

accuracy was 0.14, 0.18, 0.20, and -0.06, respectively. When

Ppop 3 was used as the training population to predict the protein

content of Ppop 1, Ppop 2, Ppop 3, and Ppop 4, the prediction

accuracy was 0.27, 0.15, 0.22, and -0.01, respectively. When

Ppop 4 was used as the training population to predict the protein

content of Ppop 1, Ppop 2, Ppop 3, and Ppop 4, the prediction

accuracy was -0.09, -0.08, -0.03, and 0.23, respectively

(Figures 2C–F). When three of the four phenotypic

subpopulations were used as the training group to predict the

protein content of the remaining subpopulation, the prediction

accuracy were 0.19, 0.22, 0.24 and 0.02, respectively (Table S2).

The 1,007 soybean germplasms were also divided into 4

subpopulations based on their oil content (Table S1,

Figure 2B). The range of the oil content (mg/g) in Ppop 1,

Ppop 2, Ppop 3 and Ppop 4 was 82 to 158, 158 to 172, 172 to 189

and 189 to 240, respectively. When Ppop 1 was used as the

training population to predict the oil content of Ppop 1, Ppop 2,

Ppop 3, and Ppop 4, the prediction accuracy was 0.53, 0.08,

-0.17, and -0.18, respectively. When Ppop 2 was used as the

training population to predict the oil content of Ppop 1, Ppop 2,

Ppop 3, and Ppop 4, the prediction accuracy was 0.07, 0.24,

-0.04, and 0.05, respectively. When Ppop 3 was used as the

training population to predict the oil content of Ppop 1, Ppop 2,

Ppop 3, and Ppop 4, the prediction accuracy was -0.16, 0.02,

0.34, and 0.22, respectively. When Ppop 4 was used as the

training population to predict the oil content of Ppop 1, Ppop
TABLE 1 Descriptive statistical analysis of the protein and oil content (mg/g) of 1,007 soybean germplasms grown at Urbana, IL, in 2001 and 2002.

Trait Min Max Average SD variance Skewness Kurtosis Coefficient of variation (%)

Protein 345 529 434.2 30.0 9.03 0.14 -0.21 6.9

Oil 82 240 174.3 23.4 5.43 0.15 -0.09 13.4
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2, Ppop 3, and Ppop 4, the prediction accuracy was -0.10, 0.06,

0.18, and 0.45, respectively (Figures 2C–F). When three of the

four phenotypic subpopulations were used as the training group

to predict the oil content of the remaining subpopulation, the

prediction accuracy were -0.13, 0.28, 0.37 and 0.18, respectively

(Table S2). To confirm the genetic relationship of each

subpopulation, PCA was conducted for each population using

genotypic data, germplasms in Ppop1 and Ppop2 as well as,

Ppop3 and Ppop4 tend to cluster together (Figures S1, S2). The

prediction accuracy within the subpopulations was higher than

that between the subpopulations, which means that the higher

the genetic similarity between the training population and the

prediction population, the higher the prediction accuracy.

Exceptions occur when using Ppop 2 as the training

population to predict the protein performance in Ppop 1,

Ppop 2, Ppop 3 and Ppop 4, the highest prediction accuracy

was not Ppop 2-Ppop 2. This situation also occurs when using

Ppop 3 as the training population to predict the protein

performance in Ppop 1, Ppop 2, Ppop 3 and Ppop 4.

(Figures 2D, E).
Effect of population structure on
prediction accuracy

The STRUCTURE analysis did not produce a clear “plateau”

as Ln P(D) increased gradually with the number of K from 2 to 6

for all the panels. The highest value of DK for the Max_IL_0102

panel was at K = 5 (Figure 3A). Hence, five subpopulations were

inferred (Table S2). The numbers of accessions in each
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subpopulation were 259, 174, 108, 86 and 79. Due to the

relatively large population size of subpopulations 1 and 2, they

were used for subsequent analyses. The subpopulation 1 and 2

was also verified in PCA (Figure S3). For protein content, the

prediction accuracy of samples in Gpop 1 as both training set

and test set (Gpop 1- Gpop 1) was 0.43; the prediction accuracies

of Gpop 2-Gpop 2, Gpop 1-Gpop 2 and Gpop 2-Gpop 1 were

0.49, 0.02 and -0.02, respectively. For oil content, the prediction

accuracies of Gpop 1-Gpop 1, Gpop 2-Gpop 2, Gpop 1-Gpop 2

and Gpop 2-Gpop 1 were 0.53, 0.48, 0.08 and -0.09, respectively.

When Gpop1,2,3,4,5 were combined as training population to

predict the performance of the remaining population, the

prediction accuracies for protein content were 0.13, 0.29, 0.18,

0.48, and 0.36, respectively, and for oil content, were 0.28, 0.41,

0.16, 0.39 and 0.43, respectively. The intragroup prediction

accuracies were higher than the intergroup prediction

accuracies (Figure 3B). When the prediction accuracy was

positive, the real breeding value was positively correlated with

the estimated breeding value. When the prediction accuracy was

negative, the real breeding value had no correlation with the

estimated breeding value (Figures 3C, D).
Effect of marker selection strategies on
prediction accuracy

For protein content, at the threshold of -log10(P)>0, 1, 2, 3

and 4, the number of SNPs related to protein content were

35,517, 3,572, 380, 48 and 10, respectively (Figures 4A, C), as

identified by the GWAS. When -log10(P)>0, 1, 2, 3 and 4, the
FIGURE 1

The influence of training population size on prediction accuracy. Cross-validated prediction accuracies of ridge regression best linear unbiased
prediction (RR-BLUP) for protein and oil content among 1,007 soybean germplasms grown at Urbana, IL in 2001 and 2002. "a–h" indicates the
difference between different columns. The difference between columns marked with different letters was significant (P<0.05), and there was no
significant difference between columns marked with the same letter.
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protein content prediction accuracy were 0.72, 0.91, 0.84, 0.59

and 0.38, respectively. When -log10(P)>1, the highest prediction

accuracy was obtained (Figure 4C). The prediction accuracy

decreased with fewer SNP markers (Figure 4C). For oil content,

when -log10(P)>0, 1, 2, 3 and 4, the number of SNPs associated

with oil content was 35,517, 3,515, 447, 72 and 10, respectively

(Figures 4B, D). When -log10(P)>0, 1, 2, 3 and 4, the oil content

prediction accuracy were 0.85, 0.95, 0.90, 0.78 and 0.36,

respectively, and the prediction accuracy was the highest when

-log10(P)>1. The prediction accuracy decreased with decreasing

SNP numbers (Figure 4D). The prediction accuracies based on

associated markers were generally higher than that based on

random markers (Figures 4C, D).
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Discussion

With the development of sequencing technology, the speed

of generating genotypic data has increased significantly. The

acquisition of a large number of genotypic data enables the

phenotypic data of the corresponding materials collected in

previous years to be used for genomic selection.

The size of the training population and the predicted

population affects prediction accuracy. Previous studies have

shown that the accuracy of prediction increases with population

size, when the population genetic diversity is high, a larger

proportion of the training population is required (Piepho, 2009;

Heffner et al., 2011). In this study, with the size increase in the
frontiersin.or
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FIGURE 2

The influence of the phenotypic similarity between the training population and prediction population on prediction accuracy. The prediction
accuracies of RR-BLUP for protein and oil content (C–F) among soybean germplasms grown at Urbana, IL in 2001 and 2002, when the training
population and prediction population were selected based on phenotype (A, B).
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training group, the prediction accuracy also slightly increased.

The transferability of the GS models across populations was

assessed by estimating the prediction accuracies between pairwise

populations when one population was used as a training set to

predict performance in other populations. Guo et al. (2020)

established training sets based on the phenotypic variation of the

target trait. Four scenarios were simulated and compared in each of

the four populations. The prediction accuracies were low across all

pairwise populations, but high when the prediction population and

training population were with similar phenotypic variation or the

range of phenotypic variation of accessions in the training

population covered the phenotypic value of accessions in the

prediction population. The results indicated that the phenotypic

similarity between training population and prediction population
Frontiers in Plant Science 07
had the greatest impact on the prediction accuracy (Table S1).

Developing a training set with broad phenotypic variation could

improve the prediction accuracy.

Phenotype was related to genotype, when selecting a training

population for GS, it was necessary to consider its genetic

relationship with the prediction population. Prediction accuracy

between populations with close genetic relationship was higher

than that of groups with distant relationship. In natural

populations, the population structure and genetic distance

between training and prediction populations can affect the

accuracy of marker effect estimation, which will affect the

prediction performance of GS (Duangjit et al., 2016;

Habyarimana, 2016). Esfandyari et al. (2015) reduced the

impact of population structure on prediction accuracy by
A

B

D

C

FIGURE 3

The effect of genetic similarity between the training population and prediction population. The prediction accuracies of RR-BLUP for protein
and oil content among soybean germplasms grown at Urbana, IL in 2001 and 2002 (B), when the training population and prediction population
were selected according to genetic structure (A). (C) Scatter plot of protein content, abscissa for breeding true value, ordinate for estimated
breeding value, the red line is the trend line. (D) Scatter plot of oil content.
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creating a training population with a close genetic relationship to

the breeding population and a breeding population with a close

genetic relationship to the training population. In this experiment,

the prediction accuracy was higher within groups than between

groups, confirming the influence of genetic relationships and

population structure on the prediction accuracy. The effect of

population structure on prediction accuracy is mainly due to the

large difference in allele frequency between different subgroups in

natural population, which affects the accuracy of marker effect

estimation, such differences are difficult to evaluate and capture by

statistical models (Liu et al., 2018; Rio et al., 2019). Considering

the influence of the genetic similarity between the prediction

population and the training population on the prediction

accuracy, to improve the prediction accuracy, materials with

genetic backgrounds similar to those of the prediction

population should be selected to form the training population.
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The number of markers is a key factor for the successful

integration of GS into plant breeding programs. A large number

of markers can capture most of the linkage information between

QTLs and SNPs (Meuwissen et al., 2001; Solberg et al., 2008). Ma

et al. (2016) discussed the relationship between prediction

accuracy and the number of markers. The results showed that

a decrease in marker density led to a slight decrease in prediction

accuracy. In this experiment, when -log10(P)>1, a total of 3572

markers associated with protein content and 3515 SNP markers

associated with oil content were identified, and using these

markers in the GS achieved similar effects as using all SNPs.

When SNPs of -log10(P)>2 for protein and -log10(P)>3 for oil

content were used in GS, high prediction accuracies were also

obtained for the traits. Although prediction accuracy increased

with SNP number, inclusion of markers associated with targeted

traits reduces costs while maintaining prediction accuracy.
A

B

DC

FIGURE 4

The effect of marker association with the trait on prediction accuracy. Manhattan plots for protein content (A) and oil content (B). Effects of
marker sampling strategies on cross-validated prediction accuracies of RRBLUP for protein content (C) and oil content (D) among 1,007
soybean germplasms grown at Urbana, IL in 2001 and 2002. Marker subsets were selected using random sampling (C, D) and an -log10(P) value-
based sampling strategy (A, B). The number of markers for random selection was the same as the number of markers selected based on the
-log10(P) value.
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Conclusion

A training population with an appropriate population size,

similar phenotypic value and close genetic relationship to the

prediction population and the inclusion of markers significantly

associated with the targeted traits increased prediction accuracy.

The research results showed that GS is a potential powerful

method for improving protein and oil content in soybean. The

information from this study will help to optimize methods of

applying GS to improve breeding efficiency.
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