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ABSTRACT
With  the  global  trend of  pursuing clean energy  and decarbonization,  power  systems have been evolving  in  a  fast  pace that  we
have never seen in the history of electrification. This evolution makes the power system more dynamic and more distributed, with
higher uncertainty. These new power system behaviors bring significant challenges in power system modeling and simulation as
more data need to be analyzed for larger systems and more complex models to be solved in a shorter time period. The conventional
computing  approaches  will  not  be  sufficient  for  future  power  systems.  This  paper  provides  a  historical  review  of  computing  for
power system operation and planning, discusses technology advancements in high performance computing (HPC), and describes
the drivers for employing HPC techniques. Some high performance computing application examples with different HPC techniques,
including the latest quantum computing, are also presented to show how HPC techniques can help us be well prepared to meet the
requirements of power system computing in a clean energy future.

KEYWORDS
Power  system  computing,  high  performance  computing,  quantum  computing,  contingency  analysis,  state  estimation,
dynamic simulation, machine learning, optimization, exascale computing.

 

P ower systems have been relying on modeling and simulation
for  operation  and  planning  since  their  inception  over  a
century ago.  Computing hardware and software technolo-

gies are the foundation for such modeling and simulation. Power
systems  used  to  be  at  the  forefront  of  computing  applications
among engineering  domains  until  the  modern  multi-core  com-
puting era. Given the increasing complexity and more demanding
computing needs, it is time to review and recast how power system
applications  can  and  should  benefit  from  the  latest  computing
advancements including classical and quantum computing.

Clean energy and decarbonization has become a global target
as countries across the world are committed to battling climate
change. For example, in the United States, the power generated
by renewable energy sources accounted for about 20% in 2021.
This  share  is  expected  to  increase  significantly  in  order  to
achieve its clean energy goal—net-zero greenhouse gas emis-
sions no later than 2050. Similar trends can be found in Euro-
pean  countries  which  set  emission  targets  to  substantially
reduce  greenhouse  gas  emissions.  In  China,  the  installed
renewable energy capacity reached 1063 GW in 2021, accounting
for 44.8% of China’s total power generation capacity.

With more and more renewable energy resources deployed in
the power system at such a fast pace, power system computing is
also evolving at an unprecedent rate. First of all, the size of power
systems  to  be  modeled  is  increasing,  to  account  for  the  growing
load demand,  increasing  renewable  penetration  and  smart  tech-
nology deployment, and higher reliability and better asset utiliza-
tion.  Secondly,  the  complexity  of  power  system  modeling  and
simulation  is  increasing.  In  addition  to  the  size  of  models,  the
model  complexity  is  also  increased,  especially  when  dynamic
models for inverter-based resources (IBRs), electric vehicles, stor-

age, wind/solar generators are considered. These new power system
elements make  the  power  system  more  dynamic  and  more  dis-
tributed.  Thirdly,  the  uncertainty  brought  by  renewable  energies
and other active devices makes the power system more challenging
to analyze:  the  power  system is  transferring from a  deterministic
way to a probabilistic one,  significantly increasing the number of
scenarios to be studied, the complexity of algorithms, and the dif-
ficulty  to  interpret  simulation  results  to  power  system operators/
planners who are used to the deterministic environment. Last, but
not  least,  co-simulation  and  co-optimization  are  needed  for
energy ecosystem analysis.

All  the  above  challenges  will  generate  more  complicated  data
characteristics:  larger  volume,  higher  speed,  faster  dynamics,  and
deeper  heterogeneity  from  multiple  domains.  These  challenges
pose  new requirements  for  faster  computing  techniques  that  can
help  get  power  application  solutions  much  more  quickly,  for
larger,  more  complicated,  more  dynamic  problems  (requiring
faster  responses)  with  higher  uncertainty,  in  order  to  provide
faster and better decision support for better power system reliability
and resiliency. High performance computing (HPC) is one of the
fundamental  technologies  in  meeting  these  computational
requirements. HPC involves  advanced mathematical  theory,  par-
allel  programming,  and  computational  hardware  to  drastically
improve the capability of data analytics, modeling, and computa-
tional complexity.

This paper  provides  a  historical  review of  power  system com-
puting,  discusses  HPC  technology  advancements,  and  describes
the drivers for HPC applications. Some HPC application examples
with  different  HPC  techniques,  including  the  latest  quantum
computing, are also presented to show how HPC techniques can 
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help us be well prepared to meet the requirements of power system
computing in a clean energy future.

1    Historical review of power system computing
The power system since its inception over a century ago has been
relying on computing for its design, planning, and operation, and
more so as the power systems across the world are evolving to be
larger and  more  complex  in  transitioning  to  clean  energy  sup-
porting a decarbonized economy. The power system is considered
the largest  machine  that  human  beings  have  ever  made.  Experi-
ments  on  such  a  huge  machine  are  extremely  limited.  Modeling
and  simulation  powered  by  computing  have  been  critical  in
understanding power systems. In the meantime, computing used
by power systems has also evolved significantly over the past cen-
tury. We divided them into five generations, enabling higher per-
formance power system applications every 30−40 years, as shown
in Figure 1.

The first generation of computing in power systems was manual
calculation using sliding rules in the 1890’s, when the power system
was just  invented and deployed in London,  UK,  New York,  NY,
and other parts of Europe and America.  Sliding rules seem to be
rudimentary  compared  with  today’s  computing  technologies,
but  they  were  important  for  power  flow  and  short  circuit
studies —the  computing  tasks  commensurate  with  the  needs
in power system design and deployment at the time.

The second generation of power system computing was analog
computers in the 1930’s, which were needed to study power system
stability issues in a much larger power system, in addition to larger
power flow and short circuit studies. Those analog computers are
essentially  miniature  power  systems  by  scaling  down  the  voltage
and current levels in an affordable lab setting with reconfigurability
for studying a wide range of systems and scenarios.

In  the  1970’s,  the  arrival  of  digital  computing  significantly
drove up the scale and complexity of power system computing. It
was in this era of the third generation of power system computing
when  several  major  digital  simulation  tools  for  power  systems
were  developed  and  still  widely  used  today  together  with  new
tools  for  extensive  power  system  simulation  capabilities.  Power
system applications were expanded to include complex optimiza-
tion  and  real-time  capabilities  for  power  systems  and  market
operation. In the following 30 years or so, power system computing

applications  had  taken  the  advantage  of  rapid  advancements  in
the computing industry following Moore’s  law.  For example,  the
clock speed of computer processor hardware was improved more
than  12  times  over  a  decade  time  (1997–2007)  from  about  300
MHz  to  almost  4  GHz.  The  computational  speed  of  the  same
software  codes  and  tools  for  power  system  applications  was
increasing  automatically  by  simply  upgrading  the  computers.
Power  system  software  developers  were  able  to  focus  on  power
system functionality without much attention to how the computing
was done in the computing hardware and the operating systems.

This free ride continued to the early 2000’s, when the computing
industry was undergoing an unprecedented transition from single-
core processors to multi-core processors,  as Moore’s law reached
its ceiling. This was the beginning of the fourth generation of high-
performance  power  system  computing[1].  Computer  processor
trending over half a century is shown in Figure 2[2]. These modern
high-performance  computers  continue  to  provide  increasing
computational  performance  by  using  multi-core  processors.
However, the conventionally designed software codes and tools in
a  sequential  computing  mode  including  those  for  power  system
applications would still  run on a single core and could no longer
automatically take  the  advantage  of  such  performance  improve-
ment. Power  system software  developers  need  to  consider  paral-
lelizing  the  codes  and  managing  data  movement  when  writing
codes to fully utilize multi-core computers. New software packages
such  as  GridPACKTM (https://www.gridpack.org/)  emerged  to
relieve  the  burden  on  power  system  engineers  by  encapsulating
low-level parallelism and hiding the details, to enable power system
engineers  to  continue  focusing  on  power  system  functionality
instead  of  being  overwhelmed  by  computing  details.  GridPACK
has  extensive  modules  to  support  many  applications  including
power flow calculation, state estimation, contingency analysis, and
transient  stability  simulation.  It  provides  fine-grained  parallelism
for  multi-core  computers  and  also  offers  a  computational  task
manager  for  coarse-grained  parallelism  for  distributed  memory
computers  such  as  high-performance  computer  clusters.  Today,
many  power  system  simulation  tools  offer  parallel  computing
capabilities  in  various  degrees.  It  should  be  noted  that  modern
power systems need computing power from modern high-perfor-
mance computers  and  thus  the  transition  from  sequential  com-
puting  to  parallel  computing  is  imperative  for  power  system
applications.  Narrower  operating  margins,  growing  system  sizes,
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Fig. 1    Power system applications evolving with computing advancements, addressing the increasing complexity in power system planning and operation.

REVIEW Computing for power system operation and planning: Then, now, and the future

 

316 iEnergy | VOL 1 | September 2022 | 315–324

https://www.gridpack.org/
https://www.gridpack.org/


resilience  against  extreme  events,  new  dynamics,  and  larger
uncertainties in renewable energy and smart grids all require better
and  faster  computation.  Plus,  power  systems  have  increasing
interdependency  with  other  systems  including  communications
systems, gas-pipeline systems, transportation systems, and building
systems further  require  HPC to enable  multi-scale,  multi-fidelity,
and multi-physics analytics.

Looking forward and beyond today’s modern high-performance
computers,  quantum  computing  is  emerging  with  promises  to
revolutionize  computing  and  thus  important  for  a  potential  fifth
generation  of  power  system  computing.  Though  the  physical
principles of quantum computing have been discovered since the
invention of Schrodinger equations, its implementation has taken
decades of  dedicated efforts  from physicists  and computer  scien-
tists.  Quantum  computing  is  still  in  its  early  stage,  but  several
usable  noisy  quantum  computers  such  as  those  offered  by  IBM
(https://www.ibm.com/quantum) are  available  for  domain  appli-
cation  developers.  Early  trailblazers  in  power  systems  already
attempted to use quantum computing to solve challenging power
system optimization problems at small scales. Given the projected
larger  scale  development  of  quantum  computers,  it  holds  a
promise  for  a  possible  future  of  fully  optimized  and  automated
power  systems  in  a  decade  or  two if  the  historical  power  system
computing cycle of 30–40 years would repeat.

In the remainder of this paper, we will further discuss computing
advancements and power system computing needs and examples.
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Fig. 2    Computer  processor  trending  over  half  a  century.  Reprinted  with
permission from ref. [2] © Karl Rupp 2020.
 

2    Technology  advancements  in  high-perfor-
mance computing
High performance computing (HPC) can utilize parallel processing
techniques  and  large  computing  resources  to  perform  multiple
tasks  simultaneously  and/or  complete  time-consuming  tasks
quickly.  Through  years  of  development,  HPC  technology  has
made significant advancements, from shared-memory computers,
cluster computers,  to  cloud  computing.  And  the  quantum  com-
puting technique is expected to play an important role in the near
future.

2.1    Shared memory computers
Shared memory computing leverages shared memory architectures
to  execute  instructions  in  parallel  on  multi-core  CPUs  or  many-
core GPUs. A multiprocessor shared memory computer is a com-
puter  system that  has  more  than one  processing  unit  (PU),  each

sharing  a  global  memory  address  space  with  global  accessibility
and visibility as shown in Figure 3.

One  advantage  of  shared  memory  computing  is  the  fast  and
uniform data sharing and its resultant user-friendly programming
perspective to memory. The primary disadvantage lies in the lack
of scalability  between  memory  and  processing  units.  Data  syn-
chronization between each processing units also must be explicitly
managed  to  ensure  data  integrity  during  concurrent  accesses.
Common Application Programming Interfaces (APIs) that support
multi-threaded  programming  for  shared  memory  computing
include  OpenMP,  Pthreads,  CUDA,  OpenACC  in  Fortran,  C,
C++,  Java,  Python,  etc.,  with  different  levels  of  abstraction  and
ease of programming[3].
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Fig. 3    Shared memory architecture.
 

The  authors  have  developed  a  parallel  power  system  dynamic
simulation application in ref. [4] using OpenMP on shared-mem-
ory Superdome machine to enable look-ahead dynamic simulation
to study pending stability problems in the power system, a novel
multi-threaded  application  on  Cray  XMT  system  in  ref.  [5]  to
compute parallel  betweenness centrality for critical  power system
contingency selections, and a thread group multithreading mech-
anism using Pthreads  in  ref.  [6]  to  accelerate  the  computation
of  an  agent-based  power  distribution  system  modeling  and
simulation tool—GridLAB-D (https://www.gridlabd.org/).

2.2    Distributed and cluster computing
Distributed and cluster computing overcomes the scalability limi-
tation  of  shared  memory  computing  by  leveraging  aggregated
computing power with dedicated memory space together.  A dis-
tributed memory computer  and at  its  larger  scale,  a  high-perfor-
mance cluster, is a group of computing nodes that are connected
through  a  high-speed  low-latency  communication  network.  All
nodes have their own memory address space and cannot directly
see  another’s.  Explicit  inter-processor  communication  must  be
defined to enable data exchange and information sharing through
the communication network as shown in Figure 4.
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Fig. 4    Distributed memory architecture.
 

The significant advantages of distributed and cluster computing
are scalable  memory  and  cost  effectiveness.  The  primary  disad-
vantages  are  the  non-uniform  memory  access  times  and  data
communication overhead. MPICH (https://www.mpich.org/) and
OpenMPI (https://www.open-mpi.org/) are the two most popular
implementations of the message passing interface (MPI)[7] standard
to  enable  multiprocessing  for  distributed  and  cluster  computing.
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OpenSHMEM  (https://www.openshmem.org/)  even  built  a
shared  memory  abstraction  on  top  on  a  distributed  memory
architecture.

The authors  have  developed  counter-based  dynamic  load  bal-
ancing  schemes  using  MPI  in  ref.  [8]  or  massive  power  system
contingency  analysis  on  over  10,000  cores,  a  system  architecture
prototype in ref. [9] using low-level transmission control protocol
(TCP) sockets to realize distributed power system state estimation
on HPC clusters,  an  MPI-based real-time path  rating  calculation
tool in ref. [10] for congestion management with high penetration
of renewable energy, and performed a study in ref.  [11] on com-
parative implementation of HPC for power system dynamic sim-
ulations on  shared-memory  vs.  distributed-memory  environ-
ments.

2.3    Hybrid distributed and shared memory computing
Hybrid parallelism blends distributed and shared memory parallel
programming  within  one  single  context.  It  offers  performance
advantages  common  to  both  distributed  and  shared  memory
computing by conducting message passing between interconnected
nodes  and shared memory programming inside a  single  node as
shown in Figure 5.
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Fig. 5    Hybrid memory architecture.
 

Various  combinations  of  distributed  and  parallel  computing
APIs  exist  (e.g.,  MPI+OpenMP,  MPI+CUDA,  OpenMP+Ope-
nACC,  etc.)  as  hybrid  parallelism  continues  to  prevail  in  HPC-
based  scientific  and  engineering  application  development.  The
authors have implemented an OpenMP+OpenACC based hybrid
parallel  power  system  dynamic  simulation  application  on  multi-
core CPU and many-core GPU architecture and observed signifi-
cant floating-point acceleration through CPU–GPU interoperation
in ref. [12].

2.4    Cloud computing
Cloud computing is to have the on-demand availability of computer
power  and data  center  on the  internet  to  allow users  to  perform
work “remotely”,  rather  than  on  a  local  computer/server.  The
computing machine can be a shared-memory computer, a cluster
or  a  hybrid  one.  Users  can  use  the  same  configuration  (files,
applications,  machines)  from  any  device  at  any  location.  It
becomes more and more popular  in  the  power industry  recently
mainly due to its relatively easy management and maintenance, as
well as  configurable  computing  resources,  which  could  be  geo-
graphically distributed, for different types of applications with very
reasonable cost. For example, the features and benefits of a cloud-
hosted event-driven serverless architecture requiring low cost and
maintenance effort are discussed through a use case of power grid
emergency generation dispatch at  ISO-New England (https://doi.
org/10.1016/j.ijepes.2020.106366).

A recent IEEE Power & Energy Society task force report (https:/
/arxiv.org/abs/2108.00303) provides a good summary of the busi-
ness  drivers,  challenges,  guidance,  and  best  practices  for  cloud
adoption  in  power  systems,  discusses  the  challenges  and  risks  of
utilizing  cloud  computing  for  power  systems’ dairy  needs,  and

provides  some  real-world  use  cases  of  cloud  technology  in  the
power industry.

In  fact,  a  complex  workflow  that  consists  of  cluster  machines
and  cloud  computing,  and  other  advanced  techniques,  such  as
edge computing,  can be a  new solution to  meet  the  requirement
for  more  complicated  applications.  For  instance,  local  cluster
machines  can  be  used  to  execute  applications  that  need  to  be
completed very fast while their outputs can be sent to cloud com-
puting for further processing, leveraging the on-demand capability
provided by cloud.

2.5    Quantum computing
Quantum  computing  is  a  developing  computation  technique
based  on  quantum  theory  to  utilize  the  various  quantum  states
(superposition,  interference,  and entanglement)  for  computation.
With these quantum states, a quantum bit (qubit), the basic infor-
mation  unit  of  quantum  computing,  can  encode  much  more
information than a classical two-state bit. This leads to the biggest
advantage  of  quantum  computing:  exponential  speedup  over  all
classical computers and significant enhancement to artificial intel-
ligence and machine learning (AI/ML) technologies.

Classical  computers  perform  computation  through  the  use  of
logic bits, where a bit is either 1 or 0. Quantum computers, how-
ever, leverage  certain  quantum mechanical  phenomena for  com-
putation where a qubit can represent a mixture of 1 and 0 at the
same  time.  By  allowing  particular  linear-algebra  operations  over
these mixed  states,  quantum  computers  can  demonstrate  expo-
nentially  increased  parallelism  when  increasing  the  number  of
qubits. Despite being promising, quantum computing has its limi-
tations and is believed to be only suitable for certain algorithms.

The past five years see the realm of quantum computing swiftly
approaching  solving  practical  problems.  As  a  landmark,  Google
has demonstrated  quantum  supremacy  on  a  72-qubit  supercon-
ducting  Bristlecone  testbed.  IBM  released  its  128-qubit  machine
this year and announced the ambitious roadmap on building 1000-
qubit hardware by 2023. Platforms based on alternative quantum
technology,  such as  traped-ion and photonics,  are  also  accessible
through cloud service. The hardware advancements are accompa-
nied  with  the  rapid  development  of  software  stack  (e.g.,  Qiskit
(https://qiskit.org/), QDK (https://docs.microsoft.com/en-us/azure
/quantum/overview-what-is-qsharp-and-qdk),  and  Cirq  (https://
quantumai.google/cirq)), services, and the ecosystem. These suggest
the  feasibility  and  probably  urgency  of  examining  and  exploring
quantum computing for power systems at this time frame.

There are several aspects quantum computing can contribute to
in  building  the  next-generation  resilient,  reliable,  and  secure
power  system.  This  includes  (i)  effectively  solving  optimization
problems,  which are  ubiquitous  in  power  system scheduling and
planning,  with  polynomial  or  even  exponential  speedups;  (ii)
rapidly  training  and  tuning  large-scale  machine  learning  models
for  power  system  prediction,  as  many  of  such  tasks  are  already
reliant  to  data-driven  approaches;  (iii)  substantially  enhancing
power  system  cybersecurity  through  more  secure  and  reliable
quantum cryptography and communication.

Existing research regarding quantum computing for the power
system is still in the very early stage and mostly focuses on how to
adapt  existing  quantum  algorithms  for  power  system  purposes.
Given  the  limitations  on  qubit  volume  and  fidelity  of  present
noisy intermediate-scale quantum (NISQ) devices, quantum-clas-
sical hybrid algorithms emerge as the most promising applications
for the first-generation quantum computers, this includes quantum
approximated optimization algorithm (QAOA) for discrete com-
binatorial  optimizations[13,14],  the  Harrow–Hassidim–Lloyd (HHL)
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algorithm for  solving high-order  sparse  linear  equations[15], quan-
tum  annealing  for  mixed-integer  programming[16],  variational
quantum algorithms for quantum machine learning[17,18], etc.

Power systems would be a good domain to identify applications
that  can  show  the  advantage  of  quantum  computing,  such  as
optimization, cascading failure analysis, uncertainty quantification,
and AI/ML applications.

3    Drivers for high performance computing app-
lications in power systems
With  the  increasing  complexity  of  power  system  modeling  and
simulations,  the  main  drivers  for  high  performance  computing
techniques  become  clear:  the  increasing  spatial  scale,  increasing
temporal  scales  in  power  system  computing,  and  increasing
uncertainties in power systems.

3.1    Increasing spatial scales of power system computing
Power system management has progressed to the point where the
boundary lines between transmission and distribution, operations
and planning  are  becoming  blurred.  The  widely  deployed  dis-
tributed  energy  resources  (DERs),  (networked)  microgrids,  and
other devices are not only making impact on distribution systems,
but  also  impact  transmission  in  an  aggregated  way.  To  manage
the whole power system efficiently, they would need to be consid-
ered  organically,  especially  when  there  are  disturbances.  The
dynamic behavior of  inverter-based resources brings pressures of
incorporating the predictive capability  from planning to enhance
operations  as  well.  These  needs  are  requiring  a  better  integrated
interplay  between  transmission  and  distribution,  planning  and
operations[19,20].

Besides  the  interaction  within  power  systems,  the  interactions
between the power system and other systems cannot be ignored in
the energy ecosystems. For example, extreme event analysis needs
help  from  climate/weather,  electric  vehicle  needs  transportation
analysis,  and  natural  gas  is  tightly  coupled  with  power  system
generations and load consumption, not to mention the importance
of communication system in the power system, see Figure 6.
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3.2    Increasing temporal scales of power system computing
The temporal scales of power system computing are also increas-
ing. With  inverter-dominated  dynamics  becoming  more  signifi-
cant,  the  electromagnetic  transient  (EMT)  study  is  in  the  time
scale of microsecond, the traditional power system dynamic sim-

ulation  (electromechanics)  is  in  the  time  scale  of  millisecond,
steady-state power flow type of applications is in the time scale of
seconds/minutes,  while  the  time  scale  for  market  application
ranges from minutes to days. To study long-term analysis of climate
change impact, the time scale will be years and decades.

The increasing temporal scales require faster computing speeds
in  order  to  help  users  quickly  capture  system  behavior,  analyze
data, and make quick response to high dynamic grids, in addition
to the computational need for fast co-simulations between different
applications at different time scales.

3.3    Increasing uncertainties in power systems
With the increasing penetration of renewable energy resources, in
addition  to  widely  spread  dynamic  loads,  the  high  uncertainties
are aggregated from renewable,  load, and even contingency. This
change  may  make  the  solution  that  comes  from  deterministic
approaches  non-optimal,  incomplete,  and  even  worse,  wrong.
Therefore, advanced  (collective)  uncertainty  quantification  algo-
rithms are required for quantitative characterization and assessment
of  uncertainties  to  help  perform  power  system  studies  with
renewable integration  for  applications  such  as  reliability,  opti-
mization, and planning study.

In  additional  to  the  complexity  brought  by  the  uncertainty
quantification algorithm, typically a much larger size of represen-
tative scenarios is required to study, in order to get better proba-
bilistic  based  results.  This  also  requires  the  power  of  HPC  to
accelerate the simulation process.

4    Examples of high performance computing app-
lications in power systems
There are many researchers working on the area of HPC applica-
tions  in  power  systems.  For  example,  a  computational  platform
for dynamic security assessment (DSA) of large electricity grids is
presented  in  ref.  [21]  with  a  case  study  of  the  French  grid  with
over 8000 scenarios and 1980 contingencies.  A GPU-based mas-
sive-thread electromagnetic transient simulation was presented in
ref.  [22],  while  a  cloud-based  EMT  simulator  with  an  automatic
code generator is presented in ref. [23]. A review paper of ref. [24]
presents more HPC applications and trends for the smart grid that
further  shows  the  need  of  HPC technology  for  the  future  power
system. This paper will focus on the applications that the authors
have  been  working  on  as  examples  to  show  the  power  and  the
need of HPC techniques.

4.1    State estimation
Power state estimation (SE) is used to estimate system states (bus
voltage  and  phase  angle)  based  on  supervisory  control  and  data
acquisition (SCADA) measurements. It is based on the assumption
of quasi steady-state. The outputs of SE are used for many subse-
quent analyses, such as contingency analysis, optimal power flow,
and dynamic security estimation. For power system operators, the
faster awareness of  the power system’s real-time status,  the more
time  for  them  to  take  actions  to  maintain  system  reliability  for
various conditions,  especially  when  there  are  significant  distur-
bances in the system.

A parallel state estimation (PSE) algorithm, based on a parallel
linear  solver  and  portioning  techniques,  has  been  developed  by
the authors which enables sub-second SE solution time using the
real  western  U.S.  power  system  model  and  measurements.  This
provides a better possibility to minimize the impact of contingen-
cies.  For  example, Figure  7 shows  the  event  intervals  during  the

Computing for power system operation and planning: Then, now, and the future REVIEW

 

iEnergy | VOL 1 | September 2022 | 315–324 319



September  8th,  2011  pacific  southwest  blackout.  When  the  event
interval  is  less  than  the  ability  to  respond,  there  is  a  cascading
effect,  expanding  the  impact  of  disturbances.  Traditionally,  a  SE
runs every 20–30 seconds, which is not sufficient for grasping real-
time condition, especially when there is a significant change. The
sub-second  PSE  performance  equips  operators  with  the  latest
power  system  status,  more  opportunities  to  stop  the  cascading
failure earlier [25,26].

4.2    Dynamic state estimation
Power  system  dynamic  state  estimation  is  to  estimate  the
generator’s  dynamic  states,  such  as  rotor  angle/rotor  speed,  to
capture  the  synchronized wide area  dynamic behaviors,  i.e.,  state
variables change with time. The application relies on phasor mea-
surement  units  (PMUs)  and  the  corresponding  communication
infrastructure.  Considering the penetration of  renewable energies
and  DERs,  dynamic  state  estimation  becomes  critical  for  system
transient stability and frequency stability. It is foundational for real-
time stability assessment of complex power systems, as shown in
Figure 8.

Various  Kalman  filter  techniques  including  ensemble  Kalman
filter  (EnKF) have  been used by the  authors  to  develop dynamic
state estimation  algorithms  and  implemented  in  an  HPC  envi-
ronment[27,28].

4.3    Contingency analysis
Contingency analysis is used to assess the vulnerability of a power
system. It is a what-if study: what the new system status is if  one
or  more  system  elements  fail.  It  is  required  by  NERC  operation
standard. The parallelization of contingency analysis simulation is
equivalent to solving multiple power flow problems with very little
communication between each contingency. It is a task-level paral-
lelization  because  each  power  flow  is  a  sequential  run  due  to  its
fast computational speed. Therefore, the challenge is the design of
load balancing scheme, i.e. to achieve optimal computational time
balance among all cores. A massive contingency analysis function
with  a  dynamic  load  balancing  scheme  based  on  an  automatic
fetch counter  has  been developed.  A near  linear  speedup perfor-
mance on 10,240 cores has been reported in ref. [8].

Dynamic contingency analysis is to perform dynamic simulation
for  a  set  of  contingencies.  Unlike  running  a  power  flow,  the
dynamic simulation itself is a time-consuming process. Each indi-
vidual dynamic  simulation  needs  to  be  parallelized  for  fast  com-
putational speed. Thus, a two-level task manager, i.e.,  in addition
to  task-level  parallelization  (for  contingencies),  a  group  of  cores
can be assigned to each individual dynamic simulation for optimal
speedup,  shown  in Figure  9.  An  example  of  dynamic  security
assessment using a two-level task manager is shown below. More
detailed information can be found in ref. [29].

4.4    Transient simulation
Transient  simulation  (or  dynamic  simulation)  is  to  study  the
power  system’s  dynamic  behavior  and  response  in  case  of  large
system disturbances, e.g., a sudden change in generator or load, or
a  network  short  circuit  followed  by  protective  branch  switching
operations.  Modeling  the  system  dynamics  (e.g.,  generator  rotor
angles and speeds) and network (e.g., bus voltage magnitudes and
phase angles) relies heavily on the computationally intensive time-
domain solution of numerous deferential and algebraic equations
(DAEs).  Speeding  up  dynamic  simulation  toward  fast  or  faster-
than-real-time  simulation,  through  parallel  and  scalable  solution
of the DAEs, is not only to transient stability assessment itself, but
also  a  series  of  subsequent  applications  that  stem  from  it,  e.g.,
dynamic  contingency  analysis,  real-time  path  rating,  and  online
security assessment, etc.

The  DAEs  can  be  solved  alternatively  or  simultaneously  with
explicit  or  implicit  integration.  An  alternating  method  with  an
explicit  integration  approach  (alternating-explicit)  has  been
implemented by the authors in ref. [30] where the first-order dif-
ferential  equations  are  discretized,  allocated  to,  and  updated  in
parallel  on  different  computing  processes  through  a  customized
2nd modified-Euler  (ME)  integration,  and  the  algebraic  equations
involving  significant  sparse  matrix  operations  and  linear  system
solutions are also accelerated through parallel implementations.

A simultaneous method with an implicit  integration approach
(simultaneous-implicit)  has  also  been  developed  by  the  team  in
refs.  [31]  and [32]  where  the  differential  equations  are  converted
to algebraic equations, lumped together with the original algebraic
equations to form a single larger algebraic equation set, and solved
simultaneously through  implicit  numerical  integration  and  non-
linear equation solvers using Newton’s method. Parallel computing
and numerical  tuning  techniques,  e.g.,  automatic  network  parti-
tioning,  variable  time-stepping,  accurate  discontinuity  handlings,
etc.,  have  been  applied  to  achieve  computational  efficiency  and
maintain numerical robustness.

The  alternating-explicit  ME  integration  scheme  is  a  popular
choice in industry-grade software due to its simplicity and legacy
implementations, but it requires a fixed small time-step to ensure
numerical  stability  for  accurate  system  dynamics,  thus  a  highly
efficient  linear  system  solver  such  as  the  usage  of  a  direct  linear
solver with fast lower and upper triangular decomposition as pre-
sented in our work[30] is critical to the performance improvement.
The  simultaneous-implicit  Newton  integration  scheme,  on  the
other hand, has better numerical stability and can use larger variable
time-step with  iterative  solution,  but  it  requires  higher  computa-
tional  bandwidth  due  to  the  increased  complexity  of  combined
DAE model. Furthermore, convergence cannot always be guaran-
teed for large-scale system simulation when the initial guess is not
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close  enough to  represent  extreme cases.  Hence,  implementing a
robust  scalable  nonlinear  equations  solver  using  PETSc’s  Time-
Stepping  Solvers  with  customized  feature  to  enable  analytical
Jacobi matrix formulation and variable time-stepping is the focus
of our work[31,32].

The computational performance and scalability of a 20-second
dynamic  simulation  using  these  two  DAE  solution  schemes  are
illustrated  respectively  in Table  1.  In  either  case,  faster-than-real-
time  dynamic  simulation  is  achieved  when  running  in  parallel
with  a  certain  number  of  processes,  whereas  the  simultaneous-
implicit  scheme  is  about  30%  faster  than  the  alternating-explicit
one due to the dramatic reduction in time steps.
 
 

Table 1    Comparison of  execution  time (seconds)  on  a  20-second dynamic
simulation in GridPACK[32].

# of processes Alternating-explicit Simultaneous-implicit

1 72.32 47.63

2 32.1 32.51

4 25.8 18.73

8 18.1 14.59

16 18.1 12.91

32 21.5 15.21
 

4.5    Optimal power flow
Optimization  is  a  type  of  applications  that  requires  significant
support from  HPC  due  to  its  extensive  computational  require-
ment. It  is  widely used in optimal  power flow and market  appli-
cations. Two examples are given below: high-performance power
grid optimization (HIPPO)[33] and ExaGO/ExaSGD[34].

HIPPO  is  used  to  help  power  system  planning  for  generating
future electricity  more efficiently.  Today,  next-day operations are
determined  by  day-ahead  unit  commitment  solutions  based  on
available  generation  resources  with  the  lowest  possible  cost  and
some  reliability  constraints.  With  the  integration  of  renewable

energy, this computation becomes more complicated with uncer-
tainties. HIPPO solves the security constrained unit commitment
(SCUC) problem faster and more accurately by leveraging knowl-
edge of power system properties, operation requirements, and past
solutions.  The HIPPO will  provide improved resource schedules,
leading  to  more  flexible  and  reliable  operation  in  a  stochastic
environment. The tool was benchmarked with a MISO system[35].

For  ExaSGD,  security  constrained  AC  optimal  power  flow
analysis  for  the  2000-bus  Texas  grid  model  with 1000 credible
contingencies was completed under 10 different weather scenarios.
The entire analysis  ran within 15 minutes on the Summit super-
computer using 1920 GPU devices. The whole computation used
13 PFLOPS of computing resources with estimated peak hardware
utilization  of  ~9  PFLOPS  (1  PFLOPS  =  1,000,000,000,000,000
floating-point operations per second).  The computation was per-
formed using  a  software  stack  consisting  of  Magma linear  solver
and  ExaGO  modeling  framework.  This  capability,  when  mature,
will  enable  power  system  planners  and  operators  to  respond
promptly to large scale events, such as hurricanes, providing opti-
mal  power  dispatch  under  extreme  conditions  and  significantly
reducing blackout incidence.

4.6    Machine learning based remedial action scheme (RAS)
The  orchestration  between  HPC  and  machine  learning  is  a  new
research  direction  in  power  systems.  This  is  natural  because  the
large size of data generated by HPC tools could be very useful for
AI/ML training.  For  example,  the  recent  research  work  of  trans-
formative remedial action scheme tool (TRAST) has been applied
and demonstrated in real-world use case analysis. In today’s prac-
tice, the RAS parameters are configured through offline studies in
a conservative way. The TRAST tool, whose data-driven analytical
functionality can be seen in Figure 10, combines advanced statistical
data  analysis  tools  and  machine  learning  algorithms  to  analyze,
validate, and help create RAS plans. HPC cluster computing plat-
form  and  the  Microsoft  cloud  environment  are  used  for  steady
state  and  dynamic  simulations  under  massive  contingencies  and
operating  conditions.  It  will  enhance  the  existing  practice  to
determine the arming levels of RAS and finally develop use cases
to demonstrate  the  benefits  of  adaptive  RAS/SPS  parameter  set-
tings,  which  can  then  be  used  to  enable  and  validate  preventive
emergency controls[36].

4.7    Quantum computing based contingency analysis
As  a  preliminary  activity,  based  on  our  previous  research  about
quantum  machine  learning[37,38],  simulation[17,39],  and  distributive
quantum  computing[38],  we  investigated  the  ability  of  quantum
neural  networks  (QNNs),  or  parameterized  quantum  circuits  in
predicting the violation of contingency for an IEEE 30-bus system.
Power demand, power generation,  reactive demand, and reactive
generation are used as the input and the probability of violation as
the  output.  Trained by  a  small  dataset  with  20  cases,  it  is  shown
that QNN can improve the prediction accuracy for the testing set
from  ~49.8%  (random  guessing  for  binary  classification)  to  ~
72.2%,  using  only  5  qubits.  Comparatively,  a  classical  multilayer
perceptron  (MLP)  deep-neural-networks  with  4  layers  and  256
neurons  per  layer  show  similar  test  accuracy  (~72.4%)  after  120
epochs. This is aligned with our previous observation that QNNs
can achieve similar learning performance as compared to traditional
DNNs but using 97% fewer parameters. This is achieved through
encoding the classical information into (entangled) qubit states[37,40].
Nevertheless, practical power-grid problems are far more compli-
cated,  while  near-term noisy  intermediate-scale  quantum devices
are  limited  by  the  number  of  qubits,  coherence  time,  and  noise.
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Despite  promising,  really  harvesting  quantum  computing  for
electrical grid problems still have a long way to go.

5    Conclusions and future work
This paper describes the evolution of power system modeling and
simulation with the growth of power systems and the advancements
of  computing  techniques.  With  the  increasing  complexity  in
power system planning and operation, driven by the goal of clean
energy and decarbonization,  most  of  today’s power system com-
puting  tools  will  not  be  sufficient  to  effectively  manage  future
power  systems.  Therefore,  power  system  computing  needs  to  be
advanced by leveraging the power of HPC techniques. Five gener-
ations  of  power  system  computing  are  defined  along  with  the
advancements  of  computing  technologies.  Several  power  system
applications using various HPC techniques have been presented to
show  the  power  of  advanced  computing,  including  quantum
computing.

Future  work  will  involve  (1)  cross-platform  HPC  workflow
management to orchestra and streamline HPC applications across
different  computing  platforms  at  distributed  locations,  including
edge  computing,  CPU,  GPU,  cloud  computing,  supercomputers,
quantum computing, etc. (2) effective interaction between big data,
artificial  intelligence, machine learning, and HPC; and (3) re-for-
mulation  of  power  system  applications  to  fit  the  state-of-the-art
HPC  techniques,  advanced  mathematical  theories  and/or
advanced solvers, for complicated large-scale problems.
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