
Adaptive probabilistic load forecasting for individual buildings

Chenxi Wang1, Dalin Qin1, Qingsong Wen2, Tian Zhou3, Liang Sun2 and Yi Wang1 ✉

ABSTRACT
Building-level load forecasting has become essential with the support of fine-grained data collected by widely deployed smart
meters. It acts as a basis for arranging distributed energy resources, implementing demand response, etc. Compared to aggre-
gated-level load, the electric load of an individual building is more stochastic and thus spawns many probabilistic forecasting meth-
ods. Many of them resort to artificial neural networks (ANN) to build forecasting models. However, a well-designed forecasting
model for one building may not be suitable for others, and manually designing and tuning optimal forecasting models for various
buildings are tedious and time-consuming. This paper proposes an adaptive probabilistic load forecasting model to automatically
generate high-performance NN structures for different buildings and produce quantile forecasts for future loads. Specifically, we
cascade the long short term memory (LSTM) layer with the adjusted Differential ArchiTecture Search (DARTS) cell and use the
pinball loss function to guide the model during the improved model fitting process. A case study on an open dataset shows that our
proposed model has superior performance and adaptivity over the state-of-the-art static neural network model. Besides, the
improved fitting process of DARTS is proved to be more time-efficient than the original one.

KEYWORDS
Probabilistic load forecasting, long short-term memory (LSTM), Differentiable neural ARchiTecture Search (DARTS), building
load forecasting.

E lectric load forecasting is of great importance for power
system planning and operation. Accurate load forecasts
support system operators to better or even optimally

schedule generators to supply the demand and thus reduce the
overall operational costs of the systems[1]. In recent years, the
widely deployed smart meters record fine-grained electricity con-
sumption data both temporally and spatially, which makes build-
ing-level load forecasting possible. Predicting loads for individual
buildings helps to track the dynamic change in demand and thus
acts as basis for arranging distributed energy resources[2], imple-
menting demand response[3], etc. Therefore, building-level load
forecasting is as crucial for flexibility provision and renewable
energy accommodation.

However, building-level load forecasting is faced with two
major challenges: (1) Compared with aggregated-level load, the
electric load of individual buildings tends to be more uncertain
and fluctuating[4]. Traditional point forecasts fail to demonstrate
such uncertainty. (2) Since buildings of different usage see distinct
electricity consumption patterns, as shown in Figure 1, a well-
designed forecasting model for one building may be unsuitable for
others. In addition, manually designing and tuning optimal fore-
casting models for various buildings can be tedious and time-con-
suming.

Therefore, we are motivated to develop an effective and efficient
method to cope with these two challenges. To handle the first
challenge, we generate quantiles of future loads by quantile
regression to give information about uncertainty; while for the
second one, we utilize the state-of-the-art Differentiable neural
ARchiTecture Search (DARTS)[5] technique to adaptively adjust
forecasting models for buildings of variety.

In the past decades, building-level load forecasting has received
much attention. Statistical and machine learning techniques, such

as ARIMA[6], support vector regression (SVR)[3], artificial neural
networks (ANN)[7,8], are frequently applied. Among these tech-
niques, ANN is becoming more and more welcomed due to the
rising deep neural networks, which have more powerful non-linear
fitting capability and flexible network structures. ResNet, a model
of convolutional neural networks (CNN), is used for feature
fusion when generating load forecasts[9]. Besides, recurrent neural
networks (RNN) model is applied for household load
forecasting[10]. Through the test on household data from Ireland,
RNN is proved to have superior performance to ARIMA and SVR.
Long short-term memory (LSTM)-based sequence to sequence
model is also used for learning the long and short-term patterns of
historical load data and generating a prediction of arbitrary steps[11].
Mogrifier LSTM[12] is applied to improve the performance of
LSTM in load forecasting in refs. [13] and [14]. Combining CNN
and LSTM, a hybrid CNN−LSTM model in ref. [15] performs
feature extraction through CNN and then carries out sequence
learning by LSTM, showing superiority over standalone LSTM.

In recent years, the research focus has shifted from point load
forecasting to probabilistic load forecasting. Conventional deter-
ministic load forecasting only outputs the expected value of the
loads in the future, while probabilistic load forecasting produces
intervals, quantiles, or density of the future loads to provide more
information about future uncertainties[16]. To generate probabilistic
forecasts, three major methods can be concluded[16], i.e., (1) gener-
ating multiple input scenarios by simulation[17,18], (2) utilizing
probabilistic mathematics models (such as quantile regression)[19],
and (3) advancing point forecasts into probabilistic ones via residual
simulation or forecast combination[20]. In the context of building
load forecasting, the latter two approaches are predominantly used.
Modeled by the Gaussian process, both deterministic and proba-
bilistic forecasts are produced for residential loads in ref. [21].

1Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China; 2DAMO Academy, Alibaba
Group (U.S.) Inc., Bellevue, WA 98004, USA; 3DAMO Academy, Alibaba Group, Hangzhou 310023, China
Address correspondence to Yi Wang, yiwang@eee.hku.hk

ARTICLE
https://doi.org/10.23919/IEN.2022.0041

mailto:Yi Wang, yiwang@eee.hku.hk
https://doi.org/10.23919/IEN.2022.0041

Combining with quantile regression, a pinball-loss-guided LSTM
model is constructed for individual load forecasting[22]. Through
implementing dropout techniques as a variational Bayesian
approximation[23], builds Bayesian RNN to forecast loads of an
educational building in Hong Kong. Consisting of probabilistic
normal load forecasting and the probabilistic peak abnormal dif-
ferential load forecasting, the final forecasts are presented for
buildings in ref. [24].

Apparently, with the help of ANN, there is an increasing number
of studies in building-level load forecasting either in the deter-
ministic or probabilistic forms. These existing studies, however,
mainly focus on designing and tuning their models for one par-
ticular customer or class of customers, which may lead to (1)
cumbersome and time-consuming developing process for a
machine learning model and (2) a forecasting model that lacks
flexibility, robustness and adaptivity.

Thanks to the emerging neural architecture searching (NAS)
techniques, such problems can be alleviated. NAS becomes a hot
topic in automated machine learning (AutoML). Since connections
and operations (e.g. activation function, convolution, etc.) signifi-
cantly affect the performance of a neural network, NAS focuses on
searching them for neural networks in the given search space,
resulting in a robust and high-performance neural architecture[25].
There are three popular optimization methods used in NAS, i.e.,
reinforcement learning[26,27], evolutionary algorithm[28], and gradient
descent[5,29]. The former two both sample the architecture in a dis-
crete search space for searching, while the latter one directly
searches in a continuous and differentiable space, significantly
reducing the search time. DARTS, a representative method of
gradient descent-based NAS, relaxes the discrete search space into
a continuous and differentiable one through the softmax
function[5]. DARTS and subsequential algorithms have been widely
used for image classification and language processing. However, in
the context of load forecasting, their potential has not yet been
further explored. In ref. [30], the researchers naively generate
RNN cells through original DARTS, and merely obtains competi-
tive results with the RNN family in the task of short-term load
forecasting. Therefore, we would like to further explore the prob-
abilistic load forecasting for individual buildings of variety with
the support of NAS techniques, to provide an effective and efficient
model with adaptivity and thus enrich literature offerings in both
energy and AI fields.

The main contributions of this paper are as follows:
● Propose a novel and adaptive probabilistic load forecasting

model for individual buildings by cascading a classic LSTM

layer and a DARTS module, which can automatically generate
high-performance NN structures for customers with diverse
consumption patterns.

● Improve the original DARTS model by adjusting the training
process from the perspective of fine-tuning and including an
early-stopping mechanism in both the searching and training
processes, which reduces computation time significantly and
enhances the practicality.

● Conduct a comprehensive case study based on open datasets
including 15 buildings of 5 distinct usages, which verifies and
analyzes the superiority, adaptivity, and time efficiency of the
proposed model compared to state-of-the-art pinball loss
guided LSTM (QLSTM) and the original DARTS (ODARTS).

The rest of the paper is organized as follows. The proposed
adaptive probabilistic forecasting model is introduced in Section 1.
The benchmark and evaluation metrics for the forecasts are pre-
sented in Section 2. Case studies and numerical analysis are shown
in Section 3. Finally, conclusions are drawn in Section 4.

1 Adaptive probabilistic load forecasting
The proposed model for adaptive probabilistic load forecasting
will be introduced in this section. Overall model structure, detailed
model components, and complete model fitting process will be
included.

1.1 Model structure
To realize the goal of adaptive probabilistic load forecasting, our
proposed model consists of three core components, i.e., the LSTM
layer, the DARTS cell, and the pinball loss function. The former
two support building the adaptive forecasting networks while the
last one helps to generate the probabilistic forecasts. The overall
model structure is demonstrated in Figure 2, and the details of
each component will be discussed in the subsequent subsections.

The first component is the LSTM layer, which is a prestigious
neural network for handling time-series data. An LSTM layer
consists of LSTM units that share the same determined structure
and are arranged in a sequence. Thus, the first component of our
model is a neural network layer with fixed and static architecture,
responsible for receiving the sequential data at different timestamps
as inputs, learning the pattern of inputs timestep by timestep, and
outputting the extracted features in the last time step for the fol-
lowing module.

The second component is the DARTS cell. Unlike the fixed
structure in the LSTM layer, the DARTS cell is initially made up
of neural nodes that have not yet decided on their connections
and operations with each other, as the dashed line shown in
Figure 2. This cell will search in the designed search space con-
taining the alternative operations. Then, it will select the optimal
ones for the nodes through gradient descent, and thus form the
most suitable neural network for each individual building as the
red line, as shown in Figure 2. Consequently, this cell realizes the
adaptive learning for various buildings.

The third component is the pinball loss function. To produce
probabilistic forecasts, we adopt the form of quantiles. The pinball
loss function will guide the built network throughout the model
fitting process to update the trainable weights. After the fitting
process, the final model will be able to generate quantiles of the
future loads and thus form the final probabilistic forecasts for
buildings.

With these components, our model is able to learn the temporal
dependency of loads data, generate the adaptive NN blocks and
make quantile load forecasts for individual buildings.

450
425
400
375
350
325

500
450
400
350
300
250
200
150

320
300
280
260
240
220
200

250 50 75 100 125 150 175

L
o

ad
 (

k
W

h
)

L
o

ad
 (

k
W

h
)

L
o

ad
 (

k
W

h
)

Time (h)

Fig. 1 Different electricity consumption patterns of different buildings. (up:
one education building, mid: one public building, down: one lodging build-
ing)

ARTICLE Adaptive probabilistic load forecasting for individual buildings

342 iEnergy | VOL 1 | September 2022 | 341–350

1.2 LSTM

h

h
c

h
c

LSTM is a classic model in the RNN family, with the ability to
memory both short-term and long-term information from time
series data. Vanilla RNN uses the hidden states to learn infor-
mation from the time series. However, the hidden states are prone
to the latest input, leading to the failure to remember the long-
term information. In LSTM, in addition to the hidden states ,
there is the cell state to help capture long-term temporal infor-
mation, as shown in Figure 3(a). Thus, LSTM is able to keep both
short-term and long-term information with the support of both
and .

ft
ct

Looking into the LSTM unit shown in Figure 3(b), there are
three gates to control the information flow, i.e. forget gate, input
gate, and output gate. realizing long short-term memory. The first
gate is the forget gate , controlling how much information will be
erased from the previous cell state . The forget gate is computed
as follows:

ft = σ((Xt,ht−1) ·Wf), (1)

σ Xt

ht−1 Wf

ft
t

where denotes the sigmoid function; is the input data at time
t, including historical load, air temperature, and calendar features;

 represents the previous hidden state; stands for the weights
matrix in the forget gate to be trained. After calculation, is result
vector for the forget gate at time .

ct ht−1

Xt

The second gate is the input gate, which controls how much
information will be added into the next cell state from and

. Similarly, through the sigmoid function, the input gate vector
can be computed as:

it = σ((Xt,ht−1) ·Wi). (2)

Constricted by these two gates, the cell state will be updated as
follows:

gt = tanh((Xt,ht−1) ·Wg), (3)

ct = it⊙ gt + ft ⊙ ct−1 (4)

tanh ⊙
gt

where denotes tanh activation function; means the ele-
ment-wise product; is the calculation cache that is used for the
updates of the cell state.

t ht

ct t

The last gate is the output gate, controlling how much infor-
mation will be presented as final outputs, and the final output is
the hidden state at time , , dependant on the updated cell state

. Thus, the final output of the LSTM unit at time is formulated
as:

ot = σ((Xt,ht−1) ·Wo), (5)

ht = tanh(ot ⊙ ct). (6)

1.3 Adjusted DARTS

x(i)

o(i,j) i j
x(i) x(j)

The DARTS cell is used to automatically generate high-perfor-
mance NN structures for individual buildings. In our model, it
takes the latest output of the LSTM layer as input and then outputs
the quantile forecasts finally. A DARTS cell is composed of nodes
and edges. Each node represents the latent tensors, such as fea-
ture maps in CNN, while each edge connects node and ,
representing the operation used to transform to . Meanwhile,
for each node, it is connected with all the previous nodes and
computed as:

x(j) = ∑
i<j

o(i,j)(x(i)). (7)

For the last node in the cell, it averages all the outputs of previous
nodes and then outputs:

x(n) =
1

n− 1

n−1

∑
i=1

x(i). (8)

Initially, the operations in the edges are unknown as illustrated
in Figure 4(a) and there are some alternatives to be selected, con-
structing the search space. In our work, we simplify the DARTS
cell for the conventional ANN so the search space is the activation

X1

X2

X3

XT

......

LSTM
unit

LSTM
unit

LSTM
unit

LSTM
unit

......

1. LSTM layer

1

2

3

Output

?

?

?

2. DARTS cell

ŷ1
T+1

ŷ2
T+1

ŷ3
T+1

ŷnT+1

......

yT+1

Quantile forecasts

3. Pinball loss

Fig. 2 Overall model structure.

X1 X2 X3

h1

h0 h1

c0 c1 c2 c3

(a) Overall LSTM

σ σ tanh σ

× +

× ×

tanh

ct−1

ht−1

Xt

ct

ht

ft
it

gt

ot

(b) LSTM unit

h2

h2

h3

ht

h3

Fig. 3 LSTM structure.

Adaptive probabilistic load forecasting for individual buildings ARTICLE

iEnergy | VOL 1 | September 2022 | 341–350 343

functions. In addition, the none operation, i.e., two nodes are not
connected, is included in the search space as well. Therefore,
deciding the operations on the edges also implies the connection
relationship of nodes. Consequently, the goal of DARTS is to
decide which operation will be selected on each edge.

To fulfill this goal, DARTS relaxes its discrete search space to a
continuous one by parameterizing the operations and applying
the softmax function to all possible operations on each edge (as
shown in Figure 4(b)). The specific method is shown below:

ō(i,j)(x) = ∑
o∈O

exp(α(i,j)
o)

∑
o′∈O

exp(α(i,j)
o′)

o(x), (9)

ō(i,j)(x) O
α(i,j)

o

o ∈ O i
j

α

exp(α(i,j)
o)

∑o′∈O exp(α(i,j)
o′)

where is the mixed operation of all candidates; is the set
of all possible operations; is the parameter representing the
importance of the operation on the edge from node to
node . In this way, the searching task is reduced to learning the
set of continuous . After searching, the most likely operation will
be selected for each edge, and then the final discrete architecture
will be derived by retaining the strongest operation for each node,
as indicated in Figure 4(d). The strength of an operation is defined

as , i.e., the coefficient of each operation in Eq. (9).

α wTo jointly learn the architecture and weights of the model,
a bilevel optimization problem is proposed as follows in ref. [5]:

min
α

Lval(w∗(α), α)
s.t. w∗(α) = argminwLtrain(w,α)

(10)

α w
To deal with such optimization problem, Algorithm 1 is also

designed in ref. [5] to alternating and updates on the validation
and test sets respectively.

Algorithm 1 DARTS
ηα ηw α w L
ξ

Require: learning rate and for and , loss function , learning
rate for stepping ahead
1: Initialize the DARTS cell.

2: while not converged do

α−= ηα∇αLval(w− ξ∇wLtrain(w,α),α) ξ = 03: (if using the first-
 order approximation)

w−= ηw∇wLtrain(w,α)4:
5: end while

αEnsure: Discrete architecture based on

In the original work of DARTS, the none operation is excluded
when deriving the architecture, for (1) fairly comparing their
DARTS with other state-of-the-art NAS algorithms and (2)
avoiding the situation of all none operations when the searching
process finishes. However, excluding the none operation means
losing the connection relationship among the nodes. Thus, in our
work, we made two following adjustments:
(1) We include the none operation when obtaining our NN

structures to retain all the possibility of architecture searching
since we do not focus on the comparison of NAS algo-
rithms.

(2) We assign the operation from the LSTM output to the first
node in the DARTS cell as the conventional sigmoid activa-
tion, ensuring basic fitting ability even if the searching results
are no operation.

In this way, our model not only guarantees a bottom line of fitting
capability but also gives full flexibility and adaptability through
DARTS.

1.4 Loss function
Since we aim to produce the quantiles of future loads, the pinball
loss function is used to guide the model fitting instead of the mean
squared error loss function. The pinball loss function is computed
as follows:

Lτ (ŷτt , yt) =
{

(1− τ)(ŷτt − yt) yt < ŷt
τ (yt − ŷτt) yt ≥ ŷt (11)

τ ŷτt q
t yt t

where denotes the target quantile; denotes the predicted -th
quantile of the load at time ; denotes the true load at time .

Obviously, the original pinball loss function is not differentiable
at the zero point and thus hinders us from using gradient descent
optimization methods. Thus, we apply Huber norm[31] to the pinball
loss function to make it differentiable everywhere. The Huber
norm can be calculated as follows:

h(ŷt, yt) =

 (ŷt − yt)
2

2ε
, 0≤ |ŷt − yt| ≤ ε

|ŷt − yt|− ε
2 , |ŷt − yt| > ε

(12)

ε εwhere is a threshold. When the prediction error is less than ,
the Huber norm will be presented as the L2 norm, and vice versa,
it will be the L1 norm. In this way, the approximate pinball loss
function is differentiable at the zero point, as shown below:

ht

1

2

3

4

Output

?

?

? ?

?

?

(a) Operations are unknown
initially

ht

1

2

3

4

Output

(b) Relax the search space through
mixing operations on each edge

ht

1

2

3

4

Output

(c) Jointly optimize the architecture
and weights in the network

ht

1

2

3

4

Output

(d) Derive the final architecture from
the learned architecture parameters

Fig. 4 Overall DARTS.

ARTICLE Adaptive probabilistic load forecasting for individual buildings

344 iEnergy | VOL 1 | September 2022 | 341–350

L′

τ (ŷτt , yt) =
{

(1− τ)h(ŷτt , yt) yt < ŷt
τh(ŷτt , yt) yt ≥ ŷt (13)

τ = 0.1,0.2, · · · ,0.9

To produce relatively complete quantile forecasts, we usually
need to provide a number of quantiles, such as at

. However, fitting the model for each quantile
adds a much computational burden. Thus, we output multiple
quantiles at the same time, calculate the average pinball loss of all
quantiles and adjust the loss function to the following composite
form:

L(ŷt, yt) =
1
nτ

nτ

∑
τ=1

L′

τ (ŷτt , yt) (14)

nτ

1
nτ

In this way, our proposed model can be fitted only once to pro-
duce multiple quantiles. Compared with fitting times for an
individual quantile model, this adjustment reduces the computa-

tional time to times of the original one.

1.5 Improved three-staged model fitting
The complete model fitting process in our model is three-staged:
searching, selecting, and training. Before the model fitting process,
the test dataset will be split and used only at the end of the third
stage to report the final performance of the model for the individual
building. The whole process is illustrated in Figure 5.

n

Mi

In the searching stage, we first initialize models with different
random seeds. Then, the DARTS searching algorithm will be con-
ducted for each model to search its architecture. We add an
early stop mechanism to the searching stage, which monitors the
descent of validation loss and stops searching in advance when the
loss does not drop for a given threshold for the number of epochs.
Thus, Algorithm 1 can be improved as Algorithm 2. With the
early stop mechanism, the searching process will avoid unnecessary
computation and alleviate the overfitting.

Algorithm 2 DARTS training with early stop
ηα ηw L

ξ N Np

Require: learning rate and , loss function , learning rate for
stepping ahead , maximum searching epoch , patience epoch

N1: while not reach epoch do

α−= ηα∇αLval(w− ξ∇wLtrain(w,α),α) ξ = 02: (if using the first-
 order approximation)

w−= ηw∇wLtrain(w,α)3:

Lval Np4: if dosen't decrease for epoch then

5: break

6: end if

7: end while

αEnsure: Discrete architecture based on

n

α w
w

M′

k

After searching, we obtain discrete DARTS cells and respective
forecasting models. It has to be mentioned that since the DARTS
algorithm is designed to jointly optimize both the and in the
searching stage, randomly initializing the weights after searching
is unnecessary in ref. [5]. Thus, we keep the learned weights in
these models. Then, we train these models from scratch on the
training dataset for a short period and report their performance
on the validation dataset. Based on their performance, we pick the
best-searched model for the final training. In this way, we can
avoid the initialize-sensitive optimization results of the architecture
searching and acquire a relatively robust model for training.

M′

k

M∗
k

The final stage is training the model. We also keep the learned
weights of the picked model in the second stage and continue to
train this model in the perspective of fine-tuning. Similar to
the searching stage, we add an early stop mechanism in this stage
as well. After the training, we obtain the completely fitted model

 and report the model performance on the test dataset which is
not been used before at all.

2 Evaluation metrics and benchmarks
In this section, we introduce the metrics to evaluate the final per-
formance of the probabilistic forecasts and the benchmarks to
compare with our proposed model.

2.1 Evaluation metrics
To evaluate the probabilistic forecasts, two comprehensive metrics,
quantile score and Winkler score, are introduced.

The quantile score (QS), is defined as the mean of the pinball
loss across the whole predicted series. Thus, it can be calculated as

QS= 1
nτ ·T

T

∑
t=1

nτ

∑
τ=1

Lτ(ŷt, yt) (15)

A lower score indicates a better probabilistic forecast.

α
The Winkler score (WS) is a metric for assessing the prediction

intervals (PI). For a central (1-)% PI, it is defined as follows:

WSα,t =

δ, Lt ≤ yt ≤ Ut

δ+ 2(yt −Ut)

α
, yt > Ut

δ+ 2(Lt − yt)
α

, yt < Lt

(16)

Lt Ut

δ = Ut −Lt

where, and represent the lower and upper bound of the PI
respectively; . The WS actually penalizes when the PI
doesn’t cover the observation value and rewards for the narrow PI.
Similarly, a lower WS means a better PI.

2.2 Benchmarks
In this paper, we compare our proposed model with QLSTM, a
powerful neural network used to forecast the quantiles of the target
variables. Compared with our model, there is no adaptive DARTS
cell for the outputs in QLSTM. If DARTS searching results in an
all-none cell, i.e. all nodes in the cell are suspended and the LSTM
output directly pass through the DARTS cell, our model will
degrade to QLSTM as shown in Figure 6.

Besides, we also include the ODARTS, the original DARTS, as
one of the benchmarks. It is designed to have the same setups
except for the fitting process. Compared with our proposed model,
ODARTS re-initializes the weights after the searching and selecting
stage and does not adopt the early stop mechanism in the whole
model fitting process.

M1

M2

M3

Mn

M′1

M′2

M′3
M′k M*

k

M′n

......

Initialize

Search

Select Train
Load

dataset

Fig. 5 Overall fitting process.

Adaptive probabilistic load forecasting for individual buildings ARTICLE

iEnergy | VOL 1 | September 2022 | 341–350 345

3 Case study
In the case study, we focus on 24h-ahead probabilistic load fore-
casting. The probabilistic forecasts, adaptive model architectures
and computation time comparison will be analyzed in the subsec-
tions.

3.1 Experimental setups
The dataset used to construct our case study is BDG2 dataset[32],
including the energy data from 1636 buildings. The sampling fre-
quency is hourly measurements of electricity. The time range of
the dataset is two complete years (2016 and 2017).

Among the 1636 buildings, we filter the buildings whose elec-
tricity recordings are not complete. Then, we randomly select 15
buildings of 5 different usages as the final customers in the case
study, as illustrated in Table 1. The last 744 data points (the last
month) in the datasets are held for testing the models while the
first 16800 data points are used for model fitting.

We implement all the forecasting models and benchmarks
through Tensorflow. To achieve parallel computing of multiple
models, we apply Ray, a package of distributed computing, in the
model fitting stage of the proposed model. The parallel accelerating
happens in the model searching and selecting stage as demonstrated
in Improved three-staged model fitting in Section 1. All the experi-
ments are supported by one Inter(R) Xeon(R) W-3335 CPU @
3.40GHz.

n= 5

The settings of our proposed model, i.e., mixing LSTM with
DARTS (denoted as MDARTS), and the competing benchmarks
are listed in Table 2. The setups of MDARTS and ODARTS are
the same except for the fitting process while QLSTM lacks a
DARTS cell compared to MDARTS. For DARTS-related models,
we initialize models with different random seeds as men-
tioned in Section 1.5.

All models undergo the same feature engineering with inputs of
historical load, temperature and calendar variables (month, day,

nτ = 9
weekday, hour) for the last 7 days. They are also set to produce

 quantiles of future building loads, from 0.1 to 0.9, forming
the final probabilistic forecasts.

3.2 Probabilistic forecasts
Table 3 and Table 4 respectively, show the comparison on QS and
WS (for PI = 80%) of the proposed MDARTS and benchmarks on
the 15 datasets. The best performances on each dataset are high-
lighted in bold and the average performances of each model on all
data sets are highlighted in italics.

y= x

Compared with QLSTM, MDARTS performs significantly better
regarding QS over the 15 various datasets and achieves an
improvement of 6.33% on average. Similarly, on WS, despite the
slight performance lag on Education usage datasets, MDARTS still
made a 5.51% improvement. Figure 7 presents a scatter plot of the
detailed pinball loss on all quantiles from 0.1 to 0.9 on all the
datasets between MDARTS and QLSTM. Apparently, most of the
points lie under the line, which indicates that MDARTS
outperforms the QLSTM on almost all quantiles. To demonstrate
the actual forecasting results, Figure 8 presents the probabilistic
forecast results for one week (from December 11th to December
18th in 2017) on dataset Gerard. The black dots indicate the
observed building loads, and the blue-filled areas imply the prob-
abilistic forecasts. It is obvious that the prediction intervals pro-
duced by MDARTS appear to be narrow and basically capture the
dynamic changes of building loads, while the ones generated by
QLSTM are relatively wide and loose and fail to track the load
trends on some data points. Similar results can also be found on
other datasets. Thus, compared with QLSTM, the proposed
MDARTS shows its superiority in probabilistic performance.

Compared to ODARTS, MDARTS outperforms in the average

Input

LSTM
layer

1

2

3

4

Output

Sigmoid

None

None

None

Input

LSTM
layer

Output

Sigmoid

Degrade

Fig. 6 Degradation of DARTS.

Table 1 The selected datasets in the USA

Usage Dataset

Education

Rachael

Ricardo

Donnie

Industry

Jeremy

Mariah

Joanne

Lodging

Ora

Shanti

Hal

Office

Valda

Shawnna

Bill

Public

Crystal

Gerard

Kevin

Table 2 Important parameters

Model
Architecture parameters Fitting parameters

Search space DARTS nodes LSTM layer Hidden units Search epoch Small train epoch Final train epoch Optimizer Batchsize

QLSTM NA

1 16

NA

300 adam 32ODARTS {none, sigmoid, tanh,
relu, gelu, linear} 3

60 (reinitialize) 50 (reinitialize)

MDARTS 60 (early stop) 50 (early stop)

ARTICLE Adaptive probabilistic load forecasting for individual buildings

346 iEnergy | VOL 1 | September 2022 | 341–350

forecasting performance, despite its poor performance on several
datasets in terms of WS and fails to beat ODARTS on Bill and
Gerard regarding QS. Over the 15 datasets, MDARTS improves
by at least 5.71% in both QS and WS compared to ODARTS.

To further analyze the performance of our proposed MDARTS
for each building, we make a scatter plot as shown in Figure 9.
The usage of buildings is also colored distinctly for analysis. It can
be seen that there is no remarkable relationship in either the
quantile score and the usages and the improvements and the
usages. QS varies from building to building because of the differ-
ences in their level of electricity consumption. Even buildings with

the same usage may have significant differences in electricity con-
sumption. Similarly, though MDARTS improves the forecasting
performance of the test buildings, there is no strong correlation
between the improvements and the building usages. In some type
of buildings, both QS and improvements can be significantly var-
ing, such as Office buildings shown in Figure 9.

3.3 Adaptive model architectures
With the support of DARTS cells, our proposed MDARTS gener-
ates different high-performance NN structures for the tested 15
datasets and Figure 10 shows all the structures learned by

Table 3 Quantile score comparison

Usage Dataset
Quantile score Improvement

MDARTS QLSTM ODARTS vs QLSTM vs ODARTS

Education

Rachael 2.061 2.124 2.136 3.06% 3.64%

Ricardo 5.370 5.487 5.394 2.18% 0.45%

Donnie 1.99 2.052 2.01 3.12% 1.01%

Industry

Jeremy 1.731 1.877 1.802 8.43% 4.10%

Mariah 0.297 0.318 0.298 7.07% 0.34%

Joanne 5.237 5.390 5.431 2.92% 3.70%

Lodging

Ora 4.350 4.642 4.540 6.71% 4.37%

Shanti 8.809 9.712 9.092 10.25% 3.21%

Hal 2.352 2.556 2.698 8.67% 14.71%

Office

Valda 1.027 1.09 1.052 6.13% 2.43%

Shawnna 12.644 12.927 13.885 2.24% 9.81%

Bill 5.632 6.206 5.212 10.19% −7.46%

Public

Crystal 5.021 5.472 5.574 8.98% 11.01%

Gerard 1.265 1.398 1.214 10.51% −4.03%

Kevin 11.698 12.625 13.119 7.92% 12.15%

AVG 4.632 4.925 4.897 6.33% 5.72%

Table 4 Winkler score comparison

Usage Dataset
Winkler score (PI = 80%) Improvement

MDARTS QLSTM ODARTS vs QLSTM vs ODARTS

Education

Rachael 26.641 26.427 26.439 −0.80% −0.76%

Ricardo 72.280 70.393 65.827 −2.61% −8.93%

Donnie 24.591 23.801 25.735 −3.21% 4.65%

Industry

Jeremy 20.784 23.467 22.033 12.91% 6.01%

Mariah 3.434 3.693 3.917 7.54% 14.07%

Joanne 64.143 72.558 75.507 13.12% 17.72%

Lodging

Ora 54.166 59.07 56.365 9.05% 4.06%

Shanti 116.665 126.329 113.997 8.28% −2.29%

Hal 29.339 31.835 34.680 8.51% 18.20%

Office

Valda 13.616 14.989 14.41 10.08% 5.83%

Shawnna 159.486 168.600 175.252 5.71% 9.89%

Bill 80.708 83.382 71.763 3.31% −11.08%

Public

Crystal 67.976 76.114 83.873 11.97% 23.39%

Gerard 16.009 19.075 14.615 19.15% −8.71%

Kevin 171.142 172.036 189.121 0.52% 10.51%

AVG 61.399 64.785 64.902 5.51% 5.71%

Adaptive probabilistic load forecasting for individual buildings ARTICLE

iEnergy | VOL 1 | September 2022 | 341–350 347

MDARTS for each buildings. It has to be mentioned that since the
structure of the LSTM layer in front of the DARTS cells is unified
and stationary, we draw only the DARTS cells in Figure 10, and
the inputs of the cells are the outputs of LSTM. Since the DARTS
nodes are set as 3 in Table 2, the structures in the Figure 10 has up
to three nodes.

It can be seen that each building consumer obtains their own
model architecture automatically generated by MDARTS, which
saves many manual designs. Theoretically, there are 15 structures
for 15 buildings but several customers share the same structures,
such as Shawnna and Hal, Mariah and Ora. Thus, there are 9 dif-
ferent model structures in the end. It is also interesting that there
are five building customers, i.e. Donnie, Rachael, Jeremy, Valda,

and Gerard, obtaining the degraded architecture, which is the
most searched structure and the same as QLSTM. However, they
still enjoy significant improvements in probabilistic forecasting
compared to using QLSTM. The possible reason for this phe-
nomenon is that the joint optimization of the search phase provides
relatively better initial weights than randomly initialized for the
subsequent training of the discrete model. To illustrate this
thought, Figure 11 presents the loss curves of these five degraded
MDARTS and QLSTM, where the blue curve represents
MDARTS, and the orange one represents QLSTM. Figure 11
shows that at the end of the search, there is a small abrupt change
in the loss curve of MDARTS, which is caused by the discretization
from the mixing structure. Then, compared to randomly initialized
QLSTM, MDARTS tends to start with a relatively lower loss start
point and continue its fitting process, which is owing to keeping
the learned weights after the searching stage.

3.4 Computation time
Figure 12(a) shows the boxplot of three models over all datasets to
illustrate the computation time for the model fitting process. All
the models are implemented on the same hardware and software.
It can be seen that although MDARTS is more time-consuming

16

14

12

10

8

6

4

2

0

0 2 4 6 8 10 12 14 16

QLSTM

M
D
A
R
T
S

Rachael

Ricardo

KevinDonnie

Jeremy

Mariah

Joanne

Ora

Shanti

Hal

Valda

Shawnna

Bill

Crystal

Gerard

Fig. 7 Pinball loss comparison between MDARTS and QLSTM.

80
70
60
50
40
30
20

80
70
60
50
40
30
20

0 25 50 75 100 125 150 175

Median 80%PI 60%PI 40%PI 20%PI

L
o

ad
 (

k
W

h
)

L
o

ad
 (

k
W

h
)

Time (h)

Fig. 8 Forecasts on Gerard. (up: MDARTS, down: QLSTM)

0.10

0.08

0.06

0.04

0.02

0 2 4 6 8 10 12

Im
p

ro
ve

m
en

t
vs

 Q
L

ST
M

QS of MDARTS

Education Industry Lodging O ce Public

Fig. 9 Forecasting performance of our proposed MDARTS for each build-
ing.

(a) Donnie, Rachael,
Jeremy, Valda, Gerard

(b) Shawnna, Hal (c) Mariah, Ora

(d) Joanne (e) Kevin (f) Shanti

(g) Bill (h) Ricardo (i) Crystal

LSTM

LSTM

LSTM

LSTMLSTMLSTM

LSTM LSTM LSTM

Sigmoid

Sigmoid

Sigmoid

Sigmoid

Sigmoid

Sigmoid

SigmoidSigmoid Linear

Linear LinearLinear

Linear

LinearRelu

ReluTanh Relu

Sigmoid

Sigmoid

Sigmoid Sigmoid Sigmoid

0

0

0 0 0

0 0

0

0

1

2

2

2 2 2

2

1

1

1 1 1

1 1

Output

Output

Output Output Output

Output Output

OutputOutput

Fig. 10 DARTS cells generated for different buildings.

ARTICLE Adaptive probabilistic load forecasting for individual buildings

348 iEnergy | VOL 1 | September 2022 | 341–350

than QLSTM, it is much more time-efficient compared to
ODARTS. Besides, MDARTS has a wider range of computation
time than ODARTS, which is due to the different stop epochs of
the early stop mechanism on different datasets.

To dig into the model fitting process, we compute the average
elapsed time of each stage for the QLSTM, MDARTS, and
ODARTS on all data sets. The results are shown in Figure 12(b),
and the average total computation time is also annotated in the

figure. Without the searching and selecting process, QLSTM takes
410 s, less than 7 min, to finish the whole fitting process, while
DARTS-related models take at least three times more time to
complete the three-stage fitting task. Compared to ODARTS,
although MDARTS did not save significant time in the search and
selection stage, it takes much less time in the final training stage.
Overall, MDARTS saves 46.4% of computation time over
ODARTS.

The whole-staged training loss curve is shown in Figure 13. In
ODARTS, the network weights are reinitialized at the beginning
of both the selecting and training stages. In contrast, the weights in
MDARTS are trained throughout the model fitting process, and
they are not forgotten during the whole process, thus shortening
the number of epochs required for the final training. In this way,
the long computation time problem of DARTS can be alleviated,
and the practicality of DARTS is thus enhanced.

Search

L
o
ss

L
o
ss

Epoch

Select Train
0.15

0.10

0.05

0

0.15

0.10

0.05

0
0 50 100 150 200 250 300 350 400

Fig. 13 Three-staged fitting process over all datasets. (up: MDARTS, down:
ODARTS)

4 Conclusions and future works
In this paper, we proposed a novel adaptive probabilistic forecasting
model, i.e., MDARTS, for individual buildings by incorporating
the LSTM layer and DARTS cell. We also conduct a comprehensive
case study based on an open dataset and compare our proposed
model with the competing benchmarks (QLSTM and ODARTS)
on the metrics of quantile score and Winkler score. We can draw
a three-fold conclusion from the case study results:
(1) In terms of probabilistic forecasting, MDARTS outperforms

both QLSTM and ODARTS on an average of 15 building
datasets. Regarding the two metrics, the improvements on
QLSTM and ODARTS are at least 5.51%, implying the
superiority of MDARTS on probabilistic forecasting.

(2) MDARTS automatically produces high-performance neural
network structures for each building. While some of the
MDARTS degrade to QLSTM, the consumers still enjoy the
forecasting improvement for the possible reason that the
additional model searching stage gives MDARTS a better
starting point for subsequent training.

(3) By keeping the weights learned in the search and select stage
and adding the early stop mechanism, MDARTS needs
fewer epochs than ODARTS during the model fitting process
and thus saves 46.4% computation time, which enhances its
practicality.

For future works, we will include two aspects: (1) increasing the
number of the building datasets and the type of building usages to
explore the relationship between the model structures and the
building usages; (2) developing the study of scalability to further
handle the large datasets and the extensive model searching
spaces.

Rachael Donnie

MDARTS

QLSTM

Jeremy Valda

Gerard

Epoch Epoch

EpochEpoch

Epoch

0.08

0.06

0.04

0.02

0.08

0.06

0.04

0.02

0.08

0.06

0.04

0.02

0.12
0.10
0.08
0.06
0.04
0.02

0.12
0.10
0.08
0.06
0.04
0.02

0 20 40 60 80 100 120 0 20 40 60 80 100120140160

0 50 100 150 200 0 25 50 75 100 125 150 175

0 20 40 60 80 100 120 140 160

Fig. 11 Loss curves on degraded MDARTS and QLSTM.

3000

2500

2000

1500

1000

500

QLSTM MDARTS ODARTS

T
im

e
(s

)
T

im
e

(s
)

QLSTM MDARTS ODARTS

Search Select Train

410

1492

27893000

2500

2000

1500

1000

500

0

(a) Time consumption over all datasets

(b) Average time consumption of each model
fitting stage over all datasets

Fig. 12 Computation time comparison.

Adaptive probabilistic load forecasting for individual buildings ARTICLE

iEnergy | VOL 1 | September 2022 | 341–350 349

Acknowledgement
The work was supported in part by the Seed Fund for Basic
Research for New Staff of The University of Hong Kong
(202107185032) and in part by the Alibaba Innovative Research
programme.

Article history
Received: 17 August 2022; Revised: 2 October 2022; Accepted: 8
October 2022

Additional information

© 2022 The Author(s). This is an open access article under the CC
BY license (http://creativecommons.org/licenses/by/4.0/).

Declaration of competing interest
The authors have no competing interests to declare that are relevant
to the content of this article.

References
 Hong, T. (2014). Energy forecasting: Past, present, and future. Fore-
sight: The International Journal of Applied Forecasting, 32: 43–48.

[1]

 Mocanu, E., Nguyen, P. H., Gibescu, M., Kling, W. L. (2016). Deep
learning for estimating building energy consumption. Sustainable
Energy, Grids and Networks, 6: 91–99.

[2]

 Chen, Y. B., Xu, P., Chu, Y. Y., Li, W. L., Wu, Y. T., Ni, L. Z., Bao,
Y., Wang, K. (2017). Short-term electrical load forecasting using the
support vector regression (SVR) model to calculate the demand
response baseline for office buildings. Applied Energy, 195:
659–670.

[3]

 Yu, C. N., Mirowski, P., Ho, T. K. (2017). A sparse coding approach
to household electricity demand forecasting in smart grids. IEEE
Transactions on Smart Grid, 8: 738–748.

[4]

 Liu, H., Simonyan, K., Yang, Y. (2018). Darts: Differentiable archi-
tecturesearch. arXiv preprint, 1806.09055.

[5]

 Nepal, B., Yamaha, M., Yokoe, A., Yamaji, T. (2020). Electricity
load forecasting using clustering and ARIMA model for energy
management in buildings. Japan Architectural Review, 3: 62–76.

[6]

 Dagdougui, H., Bagheri, F., Le, H., Dessaint, L. (2019). Neural net-
work model for short-term and very-short-term load forecasting in
district buildings. Energy and Buildings, 203: 109408.

[7]

 Kim, Y., Son, H. G., Kim, S. (2019). Short term electricity load fore-
casting for institutional buildings. Energy Reports, 5: 1270–1280.

[8]

 Wang, J. S., Chen, X. H., Zhang, F., Chen, F. X., Xin, Y. (2021).
Building load forecasting using deep neural network with efficient
feature fusion. Journal of Modern Power Systems and Clean Energy,
9: 160–169.

[9]

 Shi, H., Xu, M. H., Li, R. (2018). Deep learning for household load
forecasting —A novel pooling deep RNN. IEEE Transactions on
Smart Grid, 9: 5271–5280.

[10]

 Marino, D. L., Amarasinghe, K., Manic, M. (2016). Building energy
load forecasting using deep neural networks. In: Proceedings of the
IECON 2016 —42nd Annual Conference of the IEEE Industrial
Electronics Society, Florence, Italy.

[11]

 Melis, G., Kočiskỳ, T., Blunsom, P. (2019). Mogrifier LSTM. arXiv
preprint, 1909.01792.

[12]

 Shen, X. D., Zhao, H. X., Xiang, Y., Lan, P., Liu, J. Y. (2022). Short-[13]

term electric vehicles charging load forecasting based on deep learning
in low-quality data environments. Electric Power Systems Research,
212: 108247.
 Tan, B., Ma, X., Shi, Q. H., Guo, M., Zhao, H. X., Shen, X. D.
(2021). Ultra-short-term wind power forecasting based on improved
LSTM. In: Proceedings of the 2021 6th International Conference on
Power and Renewable Energy (ICPRE), Shanghai, China.

[14]

 Alhussein, M., Aurangzeb, K., Haider, S. I. (2020). Hybrid
CNN–LSTM model for short-term individual household load fore-
casting. IEEE Access, 8: 180544–180557.

[15]

 Hong, T., Fan, S. (2016). Probabilistic electric load forecasting: A
tutorial review. International Journal of Forecasting, 32: 914–938.

[16]

 Hong, T., Wilson, J., Xie, J. R. (2014). Long term probabilistic load
forecasting and normalization with hourly information. IEEE Trans-
actions on Smart Grid, 5: 456–462.

[17]

 Taylor, J. W., Buizza, R. (2002). Neural network load forecasting
with weather ensemble predictions. IEEE Transactions on Power
Systems, 17: 626–632.

[18]

 Zhang, W. J., Quan, H., Srinivasan, D. (2019). An improved quantile
regression neural network for probabilistic load forecasting. IEEE
Transactions on Smart Grid, 10: 4425–4434.

[19]

 Liu, B. D., Nowotarski, J., Hong, T., Weron, R. (2017). Probabilistic
load forecasting via quantile regression averaging on sister forecasts.
IEEE Transactions on Smart Grid, 8: 730–737.

[20]

 Shepero, M., van der Meer, D., Munkhammar, J., Widén, J. (2018).
Residential probabilistic load forecasting: A method using Gaussian
process designed for electric load data. Applied Energy, 218:
159–172.

[21]

 Wang, Y., Gan, D. H., Sun, M. Y., Zhang, N., Lu, Z. X., Kang, C. Q.
(2019). Probabilistic individual load forecasting using pinball loss
guided LSTM. Applied Energy, 235: 10–20.

[22]

 Xu, L., Hu, M. M., Fan, C. (2022). Probabilistic electrical load fore-
casting for buildings using Bayesian deep neural networks. Journal
of Building Engineering, 46: 103853.

[23]

 Xu, L., Wang, S. W., Tang, R. (2019). Probabilistic load forecasting
for buildings considering weather forecasting uncertainty and uncer-
tain peak load. Applied Energy, 237: 180–195.

[24]

 He, X., Zhao, K. Y., Chu, X. W. (2021). AutoML: A survey of the
state-of-the-art. Knowledge-Based Systems, 212: 106622.

[25]

 Zoph, B., Le, Q. V. (2016). Neural architecture search with rein-
forcementlearning. arXiv preprint, 1611.01578.

[26]

 Pham, H., Guan, M., Zoph, B., Le, Q., Dean, J. (2018). Efficient
neural architecture search via parameters sharing. In: Proceedings of
the 35th International Conference on Machine Learning.

[27]

 Real, E., Aggarwal, A., Huang, Y. P., Le, Q. V. (2019). Regularized
evolution for image classifier architecture search. Proceedings of the
AAAI Conference on Artificial Intelligence, 33: 4780–4789.

[28]

 Shin, R., Packer, C., Song, D. X. (2018). DARTS: Differentiable
neural network architecture search. Available at https://openreview.
net/forum?id=S1eYHoC5FX.

[29]

 Biju, G. M., Pillai, G. N., Seshadrinath, J. (2019). Electric load
demand forecasting with RNN cell generated by DARTS. In: Pro-
ceedings of the TENCON 2019—2019 IEEE Region 10 Conference,
Kochi, India.

[30]

 Huber, P. J. (2009). Robust Statistics. Hoboken, NJ, USA: John
Wiley & Sons.

[31]

 Miller, C., Kathirgamanathan, A., Picchetti, B., Arjunan, P., Park, J.
Y., Nagy, Z., Raftery, P., Hobson, B. W., Shi, Z. X., Meggers, F.
(2020). The Building Data Genome Project 2, energy meter data
from the ASHRAE Great Energy Predictor III competition. Scientific
Data, 7: 368.

[32]

ARTICLE Adaptive probabilistic load forecasting for individual buildings

350 iEnergy | VOL 1 | September 2022 | 341–350

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.segan.2016.02.005
https://doi.org/10.1016/j.segan.2016.02.005
https://doi.org/10.1016/j.apenergy.2017.03.034
https://doi.org/10.1002/2475-8876.12135
https://doi.org/10.1016/j.enbuild.2019.109408
https://doi.org/10.1016/j.egyr.2019.08.086
https://doi.org/10.35833/MPCE.2020.000321
https://doi.org/10.1109/TSG.2017.2686012
https://doi.org/10.1109/TSG.2017.2686012
https://doi.org/10.1016/j.epsr.2022.108247
https://doi.org/10.1109/ACCESS.2020.3028281
https://doi.org/10.1016/j.ijforecast.2015.11.011
https://doi.org/10.1109/TSG.2013.2274373
https://doi.org/10.1109/TSG.2013.2274373
https://doi.org/10.1109/TSG.2013.2274373
https://doi.org/10.1109/TPWRS.2002.800906
https://doi.org/10.1109/TPWRS.2002.800906
https://doi.org/10.1109/TSG.2018.2859749
https://doi.org/10.1109/TSG.2018.2859749
https://doi.org/10.1016/j.apenergy.2018.02.165
https://doi.org/10.1016/j.apenergy.2018.10.078
https://doi.org/10.1016/j.jobe.2021.103853
https://doi.org/10.1016/j.jobe.2021.103853
https://doi.org/10.1016/j.apenergy.2019.01.022
https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.1038/s41597-020-00712-x
https://doi.org/10.1038/s41597-020-00712-x
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.segan.2016.02.005
https://doi.org/10.1016/j.segan.2016.02.005
https://doi.org/10.1016/j.apenergy.2017.03.034
https://doi.org/10.1002/2475-8876.12135
https://doi.org/10.1016/j.enbuild.2019.109408
https://doi.org/10.1016/j.egyr.2019.08.086
https://doi.org/10.35833/MPCE.2020.000321
https://doi.org/10.1109/TSG.2017.2686012
https://doi.org/10.1109/TSG.2017.2686012
https://doi.org/10.1016/j.epsr.2022.108247
https://doi.org/10.1109/ACCESS.2020.3028281
https://doi.org/10.1016/j.ijforecast.2015.11.011
https://doi.org/10.1109/TSG.2013.2274373
https://doi.org/10.1109/TSG.2013.2274373
https://doi.org/10.1109/TSG.2013.2274373
https://doi.org/10.1109/TPWRS.2002.800906
https://doi.org/10.1109/TPWRS.2002.800906
https://doi.org/10.1109/TSG.2018.2859749
https://doi.org/10.1109/TSG.2018.2859749
https://doi.org/10.1016/j.apenergy.2018.02.165
https://doi.org/10.1016/j.apenergy.2018.10.078
https://doi.org/10.1016/j.jobe.2021.103853
https://doi.org/10.1016/j.jobe.2021.103853
https://doi.org/10.1016/j.apenergy.2019.01.022
https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.1038/s41597-020-00712-x
https://doi.org/10.1038/s41597-020-00712-x
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.segan.2016.02.005
https://doi.org/10.1016/j.segan.2016.02.005
https://doi.org/10.1016/j.apenergy.2017.03.034
https://doi.org/10.1002/2475-8876.12135
https://doi.org/10.1016/j.enbuild.2019.109408
https://doi.org/10.1016/j.egyr.2019.08.086
https://doi.org/10.35833/MPCE.2020.000321
https://doi.org/10.1109/TSG.2017.2686012
https://doi.org/10.1109/TSG.2017.2686012
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.segan.2016.02.005
https://doi.org/10.1016/j.segan.2016.02.005
https://doi.org/10.1016/j.apenergy.2017.03.034
https://doi.org/10.1002/2475-8876.12135
https://doi.org/10.1016/j.enbuild.2019.109408
https://doi.org/10.1016/j.egyr.2019.08.086
https://doi.org/10.35833/MPCE.2020.000321
https://doi.org/10.1109/TSG.2017.2686012
https://doi.org/10.1109/TSG.2017.2686012
https://doi.org/10.1016/j.epsr.2022.108247
https://doi.org/10.1109/ACCESS.2020.3028281
https://doi.org/10.1016/j.ijforecast.2015.11.011
https://doi.org/10.1109/TSG.2013.2274373
https://doi.org/10.1109/TSG.2013.2274373
https://doi.org/10.1109/TSG.2013.2274373
https://doi.org/10.1109/TPWRS.2002.800906
https://doi.org/10.1109/TPWRS.2002.800906
https://doi.org/10.1109/TSG.2018.2859749
https://doi.org/10.1109/TSG.2018.2859749
https://doi.org/10.1016/j.apenergy.2018.02.165
https://doi.org/10.1016/j.apenergy.2018.10.078
https://doi.org/10.1016/j.jobe.2021.103853
https://doi.org/10.1016/j.jobe.2021.103853
https://doi.org/10.1016/j.apenergy.2019.01.022
https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.1038/s41597-020-00712-x
https://doi.org/10.1038/s41597-020-00712-x
https://doi.org/10.1016/j.epsr.2022.108247
https://doi.org/10.1109/ACCESS.2020.3028281
https://doi.org/10.1016/j.ijforecast.2015.11.011
https://doi.org/10.1109/TSG.2013.2274373
https://doi.org/10.1109/TSG.2013.2274373
https://doi.org/10.1109/TSG.2013.2274373
https://doi.org/10.1109/TPWRS.2002.800906
https://doi.org/10.1109/TPWRS.2002.800906
https://doi.org/10.1109/TSG.2018.2859749
https://doi.org/10.1109/TSG.2018.2859749
https://doi.org/10.1016/j.apenergy.2018.02.165
https://doi.org/10.1016/j.apenergy.2018.10.078
https://doi.org/10.1016/j.jobe.2021.103853
https://doi.org/10.1016/j.jobe.2021.103853
https://doi.org/10.1016/j.apenergy.2019.01.022
https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.1038/s41597-020-00712-x
https://doi.org/10.1038/s41597-020-00712-x

