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ABSTRACT
Building-level  load  forecasting  has  become  essential  with  the  support  of  fine-grained  data  collected  by  widely  deployed  smart
meters. It  acts as a basis for  arranging distributed energy resources,  implementing demand response,  etc.  Compared to aggre-
gated-level load, the electric load of an individual building is more stochastic and thus spawns many probabilistic forecasting meth-
ods.  Many  of  them resort  to  artificial  neural  networks  (ANN)  to  build  forecasting  models.  However,  a  well-designed  forecasting
model for one building may not be suitable for others, and manually designing and tuning optimal forecasting models for various
buildings are tedious and time-consuming. This paper proposes an adaptive probabilistic load forecasting model to automatically
generate high-performance NN structures for  different  buildings and produce quantile  forecasts for  future loads.  Specifically,  we
cascade the long short  term memory (LSTM) layer with the adjusted Differential  ArchiTecture Search (DARTS) cell  and use the
pinball loss function to guide the model during the improved model fitting process. A case study on an open dataset shows that our
proposed  model  has  superior  performance  and  adaptivity  over  the  state-of-the-art  static  neural  network  model.  Besides,  the
improved fitting process of DARTS is proved to be more time-efficient than the original one.
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E lectric  load  forecasting  is  of  great  importance  for  power
system  planning  and  operation.  Accurate  load  forecasts
support  system  operators  to  better  or  even  optimally

schedule  generators  to  supply  the  demand  and  thus  reduce  the
overall  operational  costs  of  the  systems[1].  In  recent  years,  the
widely deployed smart meters record fine-grained electricity con-
sumption data both temporally and spatially, which makes build-
ing-level  load forecasting possible.  Predicting loads for individual
buildings helps to track the dynamic change in demand and thus
acts  as  basis  for  arranging  distributed  energy  resources[2], imple-
menting  demand  response[3],  etc.  Therefore,  building-level  load
forecasting  is  as  crucial  for  flexibility  provision  and  renewable
energy accommodation.

However,  building-level  load  forecasting  is  faced  with  two
major  challenges:  (1)  Compared  with  aggregated-level  load,  the
electric  load  of  individual  buildings  tends  to  be  more  uncertain
and  fluctuating[4].  Traditional  point  forecasts  fail  to  demonstrate
such uncertainty. (2) Since buildings of different usage see distinct
electricity  consumption  patterns,  as  shown  in Figure  1,  a  well-
designed forecasting model for one building may be unsuitable for
others. In addition,  manually designing and tuning optimal fore-
casting models for various buildings can be tedious and time-con-
suming.

Therefore, we are motivated to develop an effective and efficient
method  to  cope  with  these  two  challenges.  To  handle  the  first
challenge,  we  generate  quantiles  of  future  loads  by  quantile
regression  to  give  information  about  uncertainty;  while  for  the
second  one,  we  utilize  the  state-of-the-art  Differentiable  neural
ARchiTecture  Search  (DARTS)[5] technique  to  adaptively  adjust
forecasting models for buildings of variety.

In the past decades, building-level load forecasting has received
much attention. Statistical and machine learning techniques, such

as  ARIMA[6],  support  vector  regression  (SVR)[3],  artificial  neural
networks  (ANN)[7,8], are  frequently  applied.  Among  these  tech-
niques,  ANN is  becoming more  and more  welcomed due  to  the
rising deep neural networks, which have more powerful non-linear
fitting capability and flexible network structures. ResNet, a model
of  convolutional  neural  networks  (CNN),  is  used  for  feature
fusion when generating load forecasts[9].  Besides,  recurrent neural
networks  (RNN)  model  is  applied  for  household  load
forecasting[10].  Through  the  test  on  household  data  from  Ireland,
RNN is proved to have superior performance to ARIMA and SVR.
Long  short-term  memory  (LSTM)-based  sequence  to  sequence
model is also used for learning the long and short-term patterns of
historical load data and generating a prediction of arbitrary steps[11].
Mogrifier  LSTM[12] is  applied  to  improve  the  performance  of
LSTM in load forecasting in refs. [13] and [14]. Combining CNN
and  LSTM,  a  hybrid  CNN−LSTM  model  in  ref.  [15]  performs
feature  extraction  through  CNN  and  then  carries  out  sequence
learning by LSTM, showing superiority over standalone LSTM.

In recent years,  the research focus has shifted from point  load
forecasting to  probabilistic  load  forecasting.  Conventional  deter-
ministic  load  forecasting  only  outputs  the  expected  value  of  the
loads  in  the  future,  while  probabilistic  load  forecasting  produces
intervals, quantiles, or density of the future loads to provide more
information about future uncertainties[16]. To generate probabilistic
forecasts, three major methods can be concluded[16], i.e., (1) gener-
ating  multiple  input  scenarios  by  simulation[17,18],  (2)  utilizing
probabilistic  mathematics  models  (such as  quantile  regression)[19],
and (3) advancing point forecasts into probabilistic ones via residual
simulation  or  forecast  combination[20].  In  the  context  of  building
load forecasting, the latter two approaches are predominantly used.
Modeled by the Gaussian process,  both deterministic and proba-
bilistic  forecasts  are  produced  for  residential  loads  in  ref.  [21]. 
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Combining with quantile  regression,  a  pinball-loss-guided LSTM
model  is  constructed  for  individual  load  forecasting[22].  Through
implementing  dropout  techniques  as  a  variational  Bayesian
approximation[23],  builds  Bayesian  RNN  to  forecast  loads  of  an
educational  building  in  Hong  Kong.  Consisting  of  probabilistic
normal load forecasting and the probabilistic  peak abnormal dif-
ferential  load  forecasting,  the  final  forecasts  are  presented  for
buildings in ref. [24].

Apparently, with the help of ANN, there is an increasing number
of studies  in  building-level  load  forecasting  either  in  the  deter-
ministic  or  probabilistic  forms.  These  existing  studies,  however,
mainly focus  on  designing  and tuning  their  models  for  one  par-
ticular  customer  or  class  of  customers,  which  may  lead  to  (1)
cumbersome  and  time-consuming  developing  process  for  a
machine  learning  model  and  (2)  a  forecasting  model  that  lacks
flexibility, robustness and adaptivity.

Thanks  to  the  emerging  neural  architecture  searching  (NAS)
techniques,  such problems can be alleviated.  NAS becomes a hot
topic in automated machine learning (AutoML). Since connections
and operations (e.g. activation function, convolution, etc.) signifi-
cantly affect the performance of a neural network, NAS focuses on
searching  them  for  neural  networks  in  the  given  search  space,
resulting in a robust and high-performance neural architecture[25].
There  are  three  popular  optimization methods used in NAS,  i.e.,
reinforcement learning[26,27], evolutionary algorithm[28], and gradient
descent[5,29]. The former two both sample the architecture in a dis-
crete  search  space  for  searching,  while  the  latter  one  directly
searches  in  a  continuous  and  differentiable  space,  significantly
reducing  the  search  time.  DARTS,  a  representative  method  of
gradient descent-based NAS, relaxes the discrete search space into
a  continuous  and  differentiable  one  through  the  softmax
function[5]. DARTS and subsequential algorithms have been widely
used for image classification and language processing. However, in
the  context  of  load  forecasting,  their  potential  has  not  yet  been
further  explored.  In  ref.  [30],  the  researchers  naively  generate
RNN cells through original DARTS, and merely obtains competi-
tive  results  with  the  RNN  family  in  the  task  of  short-term  load
forecasting. Therefore, we would like to further explore the prob-
abilistic  load  forecasting  for  individual  buildings  of  variety  with
the support of NAS techniques, to provide an effective and efficient
model with adaptivity and thus enrich literature offerings in both
energy and AI fields.

The main contributions of this paper are as follows:
●      Propose  a  novel  and  adaptive  probabilistic  load  forecasting

model  for  individual  buildings  by  cascading  a  classic  LSTM

layer and a DARTS module, which can automatically generate
high-performance  NN  structures  for  customers  with  diverse
consumption patterns.

●      Improve the original DARTS model by adjusting the training
process from the perspective of fine-tuning and including an
early-stopping mechanism in both the searching and training
processes,  which reduces  computation time significantly  and
enhances the practicality.

●      Conduct a comprehensive case study based on open datasets
including 15 buildings of 5 distinct usages, which verifies and
analyzes the superiority, adaptivity, and time efficiency of the
proposed  model  compared  to  state-of-the-art  pinball  loss
guided LSTM (QLSTM) and the original DARTS (ODARTS).

The  rest  of  the  paper  is  organized  as  follows.  The  proposed
adaptive probabilistic forecasting model is introduced in Section 1.
The benchmark and evaluation metrics  for  the  forecasts  are  pre-
sented in Section 2. Case studies and numerical analysis are shown
in Section 3. Finally, conclusions are drawn in Section 4.

1    Adaptive probabilistic load forecasting
The  proposed  model  for  adaptive  probabilistic  load  forecasting
will be introduced in this section. Overall model structure, detailed
model  components,  and  complete  model  fitting  process  will  be
included.

1.1    Model structure
To realize  the  goal  of  adaptive  probabilistic  load  forecasting,  our
proposed model consists of three core components, i.e., the LSTM
layer,  the  DARTS cell,  and  the  pinball  loss  function.  The  former
two support building the adaptive forecasting networks while the
last  one  helps  to  generate  the  probabilistic  forecasts.  The  overall
model  structure  is  demonstrated  in Figure  2,  and  the  details  of
each component will be discussed in the subsequent subsections.

The first  component is  the LSTM layer,  which is  a  prestigious
neural  network  for  handling  time-series  data.  An  LSTM  layer
consists of LSTM units that share the same determined structure
and are arranged in a sequence. Thus, the first component of our
model is a neural network layer with fixed and static architecture,
responsible for receiving the sequential data at different timestamps
as inputs, learning the pattern of inputs timestep by timestep, and
outputting the extracted features  in the last  time step for  the fol-
lowing module.

The  second  component  is  the  DARTS  cell.  Unlike  the  fixed
structure in the LSTM layer,  the DARTS cell  is  initially made up
of  neural  nodes  that  have  not  yet  decided  on  their  connections
and  operations  with  each  other,  as  the  dashed  line  shown  in
Figure  2. This  cell  will  search  in  the  designed  search  space  con-
taining the  alternative  operations.  Then,  it  will  select  the  optimal
ones  for  the  nodes  through  gradient  descent,  and  thus  form  the
most  suitable  neural  network  for  each  individual  building  as  the
red line, as shown in Figure 2. Consequently, this cell realizes the
adaptive learning for various buildings.

The  third  component  is  the  pinball  loss  function.  To  produce
probabilistic forecasts, we adopt the form of quantiles. The pinball
loss  function  will  guide  the  built  network  throughout  the  model
fitting  process  to  update  the  trainable  weights.  After  the  fitting
process,  the  final  model  will  be  able  to  generate  quantiles  of  the
future  loads  and  thus  form  the  final  probabilistic  forecasts  for
buildings.

With these components, our model is able to learn the temporal
dependency  of  loads  data,  generate  the  adaptive  NN  blocks  and
make quantile load forecasts for individual buildings.
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Fig. 1    Different electricity consumption patterns of different buildings. (up:
one education building, mid: one public building, down: one lodging build-
ing)
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1.2    LSTM
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h
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LSTM  is  a  classic  model  in  the  RNN  family,  with  the  ability  to
memory  both  short-term  and  long-term  information  from  time
series  data.  Vanilla  RNN uses  the  hidden states  to learn  infor-
mation from the time series. However, the hidden states are prone
to  the  latest  input,  leading  to  the  failure  to  remember  the  long-
term  information.  In  LSTM,  in  addition  to  the  hidden  states ,
there is  the cell  state  to help capture long-term temporal infor-
mation, as shown in Figure 3(a). Thus, LSTM is able to keep both
short-term and long-term information with the support of both 
and .

ft
ct

Looking  into  the  LSTM  unit  shown  in Figure  3(b),  there  are
three gates  to  control  the information flow,  i.e.  forget  gate,  input
gate, and output gate. realizing long short-term memory. The first
gate is the forget gate , controlling how much information will be
erased from the previous cell state . The forget gate is computed
as follows:

ft = σ((Xt,ht−1) ·Wf), (1)

σ Xt

ht−1 Wf

ft
t

where  denotes the sigmoid function;  is the input data at time
t, including historical load, air temperature, and calendar features;

 represents the previous hidden state;  stands for the weights
matrix in the forget gate to be trained. After calculation,  is result
vector for the forget gate at time .

ct ht−1

Xt

The  second  gate  is  the  input  gate,  which  controls  how  much
information will be added into the next cell state  from  and

. Similarly, through the sigmoid function, the input gate vector
can be computed as:

it = σ((Xt,ht−1) ·Wi). (2)

Constricted by these two gates, the cell state will be updated as
follows:

gt = tanh((Xt,ht−1) ·Wg), (3)

ct = it⊙ gt + ft ⊙ ct−1 (4)

tanh ⊙
gt

where  denotes  tanh  activation  function;  means the  ele-
ment-wise product;  is the calculation cache that is used for the
updates of the cell state.

t ht

ct t

The last  gate  is  the  output  gate,  controlling  how  much  infor-
mation will  be  presented as  final  outputs,  and the  final  output  is
the hidden state at time , , dependant on the updated cell state

. Thus, the final output of the LSTM unit at time  is formulated
as:

ot = σ((Xt,ht−1) ·Wo), (5)

ht = tanh(ot ⊙ ct). (6)

1.3    Adjusted DARTS

x(i)

o(i,j) i j
x(i) x(j)

The  DARTS  cell  is  used  to  automatically  generate  high-perfor-
mance  NN  structures  for  individual  buildings.  In  our  model,  it
takes the latest output of the LSTM layer as input and then outputs
the quantile forecasts finally. A DARTS cell is composed of nodes
and edges. Each node  represents the latent tensors, such as fea-
ture  maps  in  CNN,  while  each  edge  connects  node  and ,
representing the operation used to transform  to . Meanwhile,
for  each  node,  it  is  connected  with  all  the  previous  nodes  and
computed as:

x(j) = ∑
i<j

o(i,j)(x(i)). (7)

For the last node in the cell, it averages all the outputs of previous
nodes and then outputs:

x(n) =
1

n− 1

n−1

∑
i=1

x(i). (8)

Initially, the operations in the edges are unknown as illustrated
in Figure 4(a) and there are some alternatives to be selected, con-
structing  the  search  space.  In  our  work,  we  simplify  the  DARTS
cell for the conventional ANN so the search space is the activation
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functions. In addition, the none operation, i.e., two nodes are not
connected,  is  included  in  the  search  space  as  well.  Therefore,
deciding the operations on the edges also implies the connection
relationship  of  nodes.  Consequently,  the  goal  of  DARTS  is  to
decide which operation will be selected on each edge.

To fulfill this goal, DARTS relaxes its discrete search space to a
continuous  one  by  parameterizing  the  operations  and  applying
the  softmax  function  to  all  possible  operations  on  each  edge  (as
shown in Figure 4(b)). The specific method is shown below:

ō(i,j)(x) = ∑
o∈O

exp(α(i,j)
o )

∑
o′∈O

exp(α(i,j)
o′ )

o(x), (9)

ō(i,j)(x) O
α(i,j)

o

o ∈ O i
j

α

exp(α(i,j)
o )

∑o′∈O exp(α(i,j)
o′ )

where  is the mixed operation of all candidates;  is the set
of  all  possible  operations;  is  the  parameter  representing  the
importance  of  the  operation  on  the  edge  from  node  to
node .  In this  way,  the searching task is  reduced to learning the
set of continuous . After searching, the most likely operation will
be selected for  each edge,  and then the final  discrete  architecture
will be derived by retaining the strongest operation for each node,
as indicated in Figure 4(d). The strength of an operation is defined

as , i.e., the coefficient of each operation in Eq. (9).

α wTo jointly learn the architecture  and weights  of the model,
a bilevel optimization problem is proposed as follows in ref. [5]:

min
α

Lval(w∗(α), α)
s.t. w∗(α) = argminwLtrain(w,α)

(10)

α w
To  deal  with  such  optimization  problem,  Algorithm  1  is  also

designed in ref. [5] to alternating  and  updates on the validation
and test sets respectively.
 
 

Algorithm 1 DARTS
ηα ηw α w L
ξ

Require: learning rate  and  for  and , loss function , learning
rate for stepping ahead 
1: Initialize the DARTS cell.

2: while not converged do

α−= ηα∇αLval(w− ξ∇wLtrain(w,α),α) ξ = 03:        (  if using the first-
         order approximation)

w−= ηw∇wLtrain(w,α)4:      
5: end while

αEnsure: Discrete architecture based on 

In the original work of DARTS, the none operation is excluded
when  deriving  the  architecture,  for  (1)  fairly  comparing  their
DARTS  with  other  state-of-the-art  NAS  algorithms  and  (2)
avoiding  the  situation of  all  none  operations  when the  searching
process  finishes.  However,  excluding  the  none  operation  means
losing the connection relationship among the nodes. Thus, in our
work, we made two following adjustments:
(1)      We  include  the  none  operation  when  obtaining  our  NN

structures to retain all the possibility of architecture searching
since we  do  not  focus  on  the  comparison  of  NAS  algo-
rithms.

(2)      We assign the operation from the LSTM output to the first
node in the DARTS cell as the conventional sigmoid activa-
tion, ensuring basic fitting ability even if the searching results
are no operation.

In this way, our model not only guarantees a bottom line of fitting
capability  but  also  gives  full  flexibility  and  adaptability  through
DARTS.

1.4    Loss function
Since we aim to produce the quantiles of future loads, the pinball
loss function is used to guide the model fitting instead of the mean
squared error loss function. The pinball loss function is computed
as follows:

Lτ (ŷτt , yt) =
{

(1− τ)(ŷτt − yt) yt < ŷt
τ (yt − ŷτt ) yt ≥ ŷt (11)

τ ŷτt q
t yt t

where  denotes the target quantile;  denotes the predicted -th
quantile of the load at time ;  denotes the true load at time .

Obviously, the original pinball loss function is not differentiable
at the zero point and thus hinders us from using gradient descent
optimization methods. Thus, we apply Huber norm[31] to the pinball
loss  function  to  make  it  differentiable  everywhere.  The  Huber
norm can be calculated as follows:

h(ŷt, yt) =

 (ŷt − yt)
2

2ε
, 0≤ |ŷt − yt| ≤ ε

|ŷt − yt|− ε
2 , |ŷt − yt| > ε

(12)

ε εwhere  is  a  threshold.  When the  prediction  error  is  less  than ,
the Huber norm will be presented as the L2 norm, and vice versa,
it  will  be  the  L1  norm.  In  this  way,  the  approximate  pinball  loss
function is differentiable at the zero point, as shown below:

 

ht

1

2

3

4

Output

?

?

? ?

?

?

(a) Operations are unknown
initially

ht

1

2

3

4

Output

(b) Relax the search space through
mixing operations on each edge

ht

1

2

3

4

Output

(c) Jointly optimize the architecture
and weights in the network

ht

1

2

3

4

Output

(d) Derive the final architecture from 
the learned architecture parameters

Fig. 4    Overall DARTS.

ARTICLE Adaptive probabilistic load forecasting for individual buildings

 

344 iEnergy | VOL 1 | September 2022 | 341–350



L′

τ (ŷτt , yt) =
{

(1− τ)h(ŷτt , yt) yt < ŷt
τh(ŷτt , yt) yt ≥ ŷt (13)

τ = 0.1,0.2, · · · ,0.9

To  produce  relatively  complete  quantile  forecasts,  we  usually
need  to  provide  a  number  of  quantiles,  such  as  at

.  However,  fitting  the  model  for  each  quantile
adds  a  much  computational  burden.  Thus,  we  output  multiple
quantiles at the same time, calculate the average pinball loss of all
quantiles  and adjust  the loss  function to the following composite
form:

L(ŷt, yt) =
1
nτ

nτ

∑
τ=1

L′

τ (ŷτt , yt) (14)

nτ

1
nτ

In this way, our proposed model can be fitted only once to pro-
duce  multiple  quantiles.  Compared  with  fitting  times  for  an
individual quantile  model,  this  adjustment  reduces  the  computa-

tional time to  times of the original one.

1.5    Improved three-staged model fitting
The complete model fitting process in our model is  three-staged:
searching, selecting, and training. Before the model fitting process,
the test dataset will  be split and used only at the end of the third
stage to report the final performance of the model for the individual
building. The whole process is illustrated in Figure 5.

n

Mi

In the searching stage, we first initialize  models with different
random seeds. Then, the DARTS searching algorithm will be con-
ducted  for  each  model  to  search  its  architecture.  We  add  an
early stop mechanism to the searching stage, which monitors the
descent of validation loss and stops searching in advance when the
loss does not drop for a given threshold for the number of epochs.
Thus,  Algorithm  1  can  be  improved  as  Algorithm  2.  With  the
early stop mechanism, the searching process will avoid unnecessary
computation and alleviate the overfitting.
 
 

Algorithm 2 DARTS training with early stop
ηα ηw L

ξ N Np

Require: learning rate  and , loss function , learning rate for
stepping ahead , maximum searching epoch , patience epoch 

N1: while not reach  epoch do

α−= ηα∇αLval(w− ξ∇wLtrain(w,α),α) ξ = 02:        (  if using the first-
         order approximation)

w−= ηw∇wLtrain(w,α)3:      

Lval Np4:      if  dosen't decrease for  epoch then

5:          break

6:      end if

7: end while

αEnsure: Discrete architecture based on 

n

α w
w

M′

k

After searching, we obtain  discrete DARTS cells and respective
forecasting models. It has to be mentioned that since the DARTS
algorithm is designed to jointly optimize both the  and  in the
searching stage, randomly initializing the weights  after searching
is  unnecessary  in  ref.  [5].  Thus,  we  keep  the  learned  weights  in
these  models.  Then,  we  train  these  models  from  scratch  on  the
training  dataset  for  a  short  period  and  report  their  performance
on the validation dataset. Based on their performance, we pick the
best-searched model  for the final training. In this way, we can
avoid the initialize-sensitive optimization results of the architecture
searching and acquire a relatively robust model for training.

M′

k

M∗
k

The final stage is training the model. We also keep the learned
weights of the picked model in the second stage and continue to
train  this  model  in  the  perspective  of  fine-tuning.  Similar  to
the searching stage, we add an early stop mechanism in this stage
as well.  After  the training,  we obtain the completely  fitted model

 and report the model performance on the test dataset which is
not been used before at all.

2    Evaluation metrics and benchmarks
In this section, we introduce the metrics to evaluate the final per-
formance  of  the  probabilistic  forecasts  and  the  benchmarks  to
compare with our proposed model.

2.1    Evaluation metrics
To evaluate the probabilistic forecasts, two comprehensive metrics,
quantile score and Winkler score, are introduced.

The quantile  score  (QS),  is  defined as  the  mean of  the  pinball
loss across the whole predicted series. Thus, it can be calculated as

QS= 1
nτ ·T

T

∑
t=1

nτ

∑
τ=1

Lτ(ŷt, yt) (15)

A lower score indicates a better probabilistic forecast.

α
The Winkler score (WS) is a metric for assessing the prediction

intervals (PI). For a central (1- )% PI, it is defined as follows:

WSα,t =


δ, Lt ≤ yt ≤ Ut

δ+ 2(yt −Ut)

α
, yt > Ut

δ+ 2(Lt − yt)
α

, yt < Lt

(16)

Lt Ut

δ = Ut −Lt

where,  and  represent the lower and upper bound of the PI
respectively; .  The  WS  actually  penalizes  when  the  PI
doesn’t cover the observation value and rewards for the narrow PI.
Similarly, a lower WS means a better PI.

2.2    Benchmarks
In  this  paper,  we  compare  our  proposed  model  with  QLSTM,  a
powerful neural network used to forecast the quantiles of the target
variables. Compared with our model, there is no adaptive DARTS
cell for the outputs in QLSTM. If DARTS searching results in an
all-none cell, i.e. all nodes in the cell are suspended and the LSTM
output  directly  pass  through  the  DARTS  cell,  our  model  will
degrade to QLSTM as shown in Figure 6.

Besides, we also include the ODARTS, the original DARTS, as
one  of  the  benchmarks.  It  is  designed  to  have  the  same  setups
except for the fitting process. Compared with our proposed model,
ODARTS re-initializes the weights after the searching and selecting
stage and does not adopt the early stop mechanism in the whole
model fitting process.
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3    Case study
In the case study,  we focus on 24h-ahead probabilistic  load fore-
casting.  The  probabilistic  forecasts,  adaptive  model  architectures
and computation time comparison will be analyzed in the subsec-
tions.

3.1    Experimental setups
The  dataset  used  to  construct  our  case  study  is  BDG2  dataset[32],
including the energy data from 1636 buildings. The sampling fre-
quency  is  hourly  measurements  of  electricity.  The  time  range  of
the dataset is two complete years (2016 and 2017).

Among the 1636 buildings, we filter  the buildings  whose elec-
tricity  recordings are  not  complete.  Then,  we randomly select  15
buildings  of  5  different  usages  as  the  final  customers  in  the  case
study,  as  illustrated  in Table  1.  The  last  744  data  points  (the  last
month)  in  the  datasets  are  held  for  testing  the  models  while  the
first 16800 data points are used for model fitting.

We  implement  all  the  forecasting  models  and  benchmarks
through  Tensorflow.  To  achieve  parallel  computing  of  multiple
models, we apply Ray, a package of distributed computing, in the
model fitting stage of the proposed model. The parallel accelerating
happens in the model searching and selecting stage as demonstrated
in Improved three-staged model fitting in Section 1. All the experi-
ments  are  supported  by  one  Inter(R)  Xeon(R)  W-3335 CPU  @
3.40GHz.

n= 5

The  settings  of  our  proposed  model,  i.e.,  mixing  LSTM  with
DARTS (denoted as  MDARTS),  and the competing benchmarks
are  listed  in Table  2.  The  setups  of  MDARTS and ODARTS are
the  same  except  for  the  fitting  process  while  QLSTM  lacks  a
DARTS cell compared to MDARTS. For DARTS-related models,
we  initialize  models with  different  random  seeds  as  men-
tioned in Section 1.5.

All models undergo the same feature engineering with inputs of
historical  load,  temperature  and  calendar  variables  (month,  day,

nτ = 9
weekday,  hour)  for  the  last  7  days.  They  are  also  set  to  produce

 quantiles of future building loads, from 0.1 to 0.9, forming
the final probabilistic forecasts.

3.2    Probabilistic forecasts
Table 3 and Table 4 respectively, show the comparison on QS and
WS (for PI = 80%) of the proposed MDARTS and benchmarks on
the 15 datasets.  The best  performances on each dataset  are high-
lighted in bold and the average performances of each model on all
data sets are highlighted in italics.

y= x

Compared with QLSTM, MDARTS performs significantly better
regarding  QS  over  the  15  various  datasets  and  achieves  an
improvement of  6.33% on average.  Similarly,  on WS, despite  the
slight performance lag on Education usage datasets, MDARTS still
made a 5.51% improvement. Figure 7 presents a scatter plot of the
detailed  pinball  loss  on  all  quantiles  from  0.1  to  0.9  on  all  the
datasets between MDARTS and QLSTM. Apparently, most of the
points  lie  under  the  line,  which  indicates  that  MDARTS
outperforms the QLSTM on almost all quantiles. To demonstrate
the  actual  forecasting  results, Figure  8 presents  the  probabilistic
forecast  results  for one week (from December 11th to December
18th  in  2017)  on  dataset  Gerard.  The  black  dots  indicate  the
observed building loads, and the blue-filled areas imply the prob-
abilistic forecasts.  It  is  obvious  that  the  prediction  intervals  pro-
duced by MDARTS appear to be narrow and basically capture the
dynamic  changes  of  building  loads,  while  the  ones  generated  by
QLSTM  are  relatively  wide  and  loose  and  fail  to  track  the  load
trends on some data points.  Similar results  can also be found on
other  datasets.  Thus,  compared  with  QLSTM,  the  proposed
MDARTS shows its superiority in probabilistic performance.

Compared to ODARTS, MDARTS outperforms in the average
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Table 1    The selected datasets in the USA

Usage Dataset

Education

Rachael

Ricardo

Donnie

Industry

Jeremy

Mariah

Joanne

Lodging

Ora

Shanti

Hal

Office

Valda

Shawnna

Bill

Public

Crystal

Gerard

Kevin

 

Table 2    Important parameters

Model
Architecture parameters Fitting parameters

Search space DARTS nodes LSTM layer Hidden units Search epoch Small train epoch Final train epoch Optimizer Batchsize

QLSTM NA

1 16

NA

300 adam 32ODARTS {none, sigmoid, tanh,
relu, gelu, linear} 3

60 (reinitialize) 50 (reinitialize)

MDARTS 60 (early stop) 50 (early stop)
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forecasting performance,  despite  its  poor performance on several
datasets  in  terms  of  WS  and  fails  to  beat  ODARTS  on  Bill  and
Gerard  regarding  QS.  Over  the  15  datasets,  MDARTS  improves
by at least 5.71% in both QS and WS compared to ODARTS.

To further analyze the performance of our proposed MDARTS
for  each  building,  we  make  a  scatter  plot  as  shown  in Figure  9.
The usage of buildings is also colored distinctly for analysis. It can
be  seen  that  there  is  no  remarkable  relationship  in  either  the
quantile  score  and  the  usages  and  the  improvements  and  the
usages. QS varies from building to building because of the differ-
ences in their level of electricity consumption. Even buildings with

the same usage may have significant differences in electricity con-
sumption.  Similarly,  though  MDARTS  improves  the  forecasting
performance  of  the  test  buildings,  there  is  no  strong  correlation
between the improvements and the building usages. In some type
of buildings, both QS and improvements can be significantly var-
ing, such as Office buildings shown in Figure 9.

3.3    Adaptive model architectures
With the support of DARTS cells, our proposed MDARTS gener-
ates  different  high-performance  NN  structures  for  the  tested  15
datasets  and Figure  10 shows  all  the  structures  learned  by

 

Table 3    Quantile score comparison

Usage Dataset
Quantile score Improvement

MDARTS QLSTM ODARTS vs QLSTM vs ODARTS

Education

Rachael 2.061 2.124 2.136 3.06% 3.64%

Ricardo 5.370 5.487 5.394 2.18% 0.45%

Donnie 1.99 2.052 2.01 3.12% 1.01%

Industry

Jeremy 1.731 1.877 1.802 8.43% 4.10%

Mariah 0.297 0.318 0.298 7.07% 0.34%

Joanne 5.237 5.390 5.431 2.92% 3.70%

Lodging

Ora 4.350 4.642 4.540 6.71% 4.37%

Shanti 8.809 9.712 9.092 10.25% 3.21%

Hal 2.352 2.556 2.698 8.67% 14.71%

Office

Valda 1.027 1.09 1.052 6.13% 2.43%

Shawnna 12.644 12.927 13.885 2.24% 9.81%

Bill 5.632 6.206 5.212 10.19% −7.46%

Public

Crystal 5.021 5.472 5.574 8.98% 11.01%

Gerard 1.265 1.398 1.214 10.51% −4.03%

Kevin 11.698 12.625 13.119 7.92% 12.15%

AVG 4.632 4.925 4.897 6.33% 5.72%

 

Table 4    Winkler score comparison

Usage Dataset
Winkler score (PI = 80%) Improvement

MDARTS QLSTM ODARTS vs QLSTM vs ODARTS

Education

Rachael 26.641 26.427 26.439 −0.80% −0.76%

Ricardo 72.280 70.393 65.827 −2.61% −8.93%

Donnie 24.591 23.801 25.735 −3.21% 4.65%

Industry

Jeremy 20.784 23.467 22.033 12.91% 6.01%

Mariah 3.434 3.693 3.917 7.54% 14.07%

Joanne 64.143 72.558 75.507 13.12% 17.72%

Lodging

Ora 54.166 59.07 56.365 9.05% 4.06%

Shanti 116.665 126.329 113.997 8.28% −2.29%

Hal 29.339 31.835 34.680 8.51% 18.20%

Office

Valda 13.616 14.989 14.41 10.08% 5.83%

Shawnna 159.486 168.600 175.252 5.71% 9.89%

Bill 80.708 83.382 71.763 3.31% −11.08%

Public

Crystal 67.976 76.114 83.873 11.97% 23.39%

Gerard 16.009 19.075 14.615 19.15% −8.71%

Kevin 171.142 172.036 189.121 0.52% 10.51%

AVG 61.399 64.785 64.902 5.51% 5.71%
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MDARTS for each buildings. It has to be mentioned that since the
structure of the LSTM layer in front of the DARTS cells is unified
and stationary,  we draw only  the  DARTS cells  in Figure  10,  and
the inputs of the cells are the outputs of LSTM. Since the DARTS
nodes are set as 3 in Table 2, the structures in the Figure 10 has up
to three nodes.

It  can  be  seen  that  each  building  consumer  obtains  their  own
model  architecture  automatically  generated  by  MDARTS,  which
saves many manual designs. Theoretically, there are 15 structures
for  15 buildings but  several  customers  share the same structures,
such as Shawnna and Hal, Mariah and Ora. Thus, there are 9 dif-
ferent model structures in the end. It is also interesting that there
are  five  building  customers,  i.e.  Donnie,  Rachael,  Jeremy,  Valda,

and  Gerard,  obtaining  the  degraded  architecture,  which  is  the
most searched structure and the same as QLSTM. However, they
still  enjoy  significant  improvements  in  probabilistic  forecasting
compared to  using  QLSTM.  The  possible  reason  for  this  phe-
nomenon is that the joint optimization of the search phase provides
relatively  better  initial  weights  than  randomly  initialized  for  the
subsequent  training  of  the  discrete  model.  To  illustrate  this
thought, Figure 11 presents the loss curves of these five degraded
MDARTS  and  QLSTM,  where  the  blue  curve  represents
MDARTS,  and  the  orange  one  represents  QLSTM. Figure  11
shows that at the end of the search, there is a small abrupt change
in the loss curve of MDARTS, which is caused by the discretization
from the mixing structure. Then, compared to randomly initialized
QLSTM, MDARTS tends to start with a relatively lower loss start
point  and continue its  fitting process,  which is  owing to  keeping
the learned weights after the searching stage.

3.4    Computation time
Figure 12(a) shows the boxplot of three models over all datasets to
illustrate  the  computation  time  for  the  model  fitting  process.  All
the models are implemented on the same hardware and software.
It  can  be  seen  that  although  MDARTS  is  more  time-consuming
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than  QLSTM,  it  is  much  more  time-efficient  compared  to
ODARTS.  Besides,  MDARTS  has  a  wider  range  of  computation
time than ODARTS, which is due to the different stop epochs of
the early stop mechanism on different datasets.

To dig into the model fitting process, we compute the average
elapsed  time  of  each  stage  for  the  QLSTM,  MDARTS,  and
ODARTS on all data sets. The results are shown in Figure 12(b),
and  the  average  total  computation  time  is  also  annotated  in  the

figure. Without the searching and selecting process, QLSTM takes
410  s,  less  than  7  min,  to  finish  the  whole  fitting  process,  while
DARTS-related  models  take  at  least  three  times  more  time  to
complete  the  three-stage  fitting  task.  Compared  to  ODARTS,
although MDARTS did not save significant time in the search and
selection stage,  it  takes much less  time in the final  training stage.
Overall,  MDARTS  saves  46.4%  of  computation  time  over
ODARTS.

The whole-staged training loss curve is shown in Figure 13. In
ODARTS,  the  network  weights  are  reinitialized  at  the  beginning
of both the selecting and training stages. In contrast, the weights in
MDARTS  are  trained  throughout  the  model  fitting  process,  and
they are not  forgotten during the whole process,  thus shortening
the number of epochs required for the final training. In this way,
the long computation time problem of DARTS can be alleviated,
and the practicality of DARTS is thus enhanced.
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4    Conclusions and future works
In this paper, we proposed a novel adaptive probabilistic forecasting
model,  i.e.,  MDARTS,  for  individual  buildings  by  incorporating
the LSTM layer and DARTS cell. We also conduct a comprehensive
case  study based on an open dataset  and compare  our  proposed
model with the competing benchmarks (QLSTM and ODARTS)
on the metrics of quantile score and Winkler score. We can draw
a three-fold conclusion from the case study results:
(1)      In terms of probabilistic forecasting, MDARTS outperforms

both  QLSTM  and  ODARTS  on  an  average  of  15  building
datasets.  Regarding  the  two  metrics,  the  improvements  on
QLSTM  and  ODARTS  are  at  least  5.51%,  implying  the
superiority of MDARTS on probabilistic forecasting.

(2)      MDARTS automatically produces high-performance neural
network  structures  for  each  building.  While  some  of  the
MDARTS degrade to QLSTM, the consumers still enjoy the
forecasting  improvement  for  the  possible  reason  that  the
additional  model  searching  stage  gives  MDARTS  a  better
starting point for subsequent training.

(3)      By keeping the weights learned in the search and select stage
and  adding  the  early  stop  mechanism,  MDARTS  needs
fewer epochs than ODARTS during the model fitting process
and thus saves 46.4% computation time, which enhances its
practicality.

For future works, we will include two aspects: (1) increasing the
number of the building datasets and the type of building usages to
explore  the  relationship  between  the  model  structures  and  the
building  usages;  (2)  developing  the  study  of  scalability  to  further
handle  the  large  datasets  and  the  extensive  model  searching
spaces.
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