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Deep Convolutional Network Based Machine Intelligence Model for
Satellite Cloud Image Classification

Kalyan Kumar Jena, Sourav Kumar Bhoi, Soumya Ranjan Nayak*, Ranijit Panigrahi, and Akash Kumar Bhoi

Abstract: As a huge number of satellites revolve around the earth, a great probability exists to observe and
determine the change phenomena on the earth through the analysis of satellite images on a real-time basis.
Therefore, classifying satellite images plays strong assistance in remote sensing communities for predicting tropical
cyclones. In this article, a classification approach is proposed using Deep Convolutional Neural Network (DCNN),
comprising numerous layers, which extract the features through a downsampling process for classifying satellite
cloud images. DCNN is trained marvelously on cloud images with an impressive amount of prediction accuracy.
Delivery time decreases for testing images, whereas prediction accuracy increases using an appropriate deep
convolutional network with a huge number of training dataset instances. The satellite images are taken from the
Meteorological & Oceanographic Satellite Data Archival Centre, the organization is responsible for availing satellite
cloud images of India and its subcontinent. The proposed cloud image classification shows 94% prediction accuracy
with the DCNN framework.
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1 Introduction

Cyclones contain rain and hazardous winds, which can
cause much damage to nature, the environment, and
human life. The destruction includes floods, fires, water-
borne diseases, and communication system disruptions.
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Approximately 726 million people have been affected by
storms from 1998 to 2017""-2). A recent study reveals that
cyclone is the main cause for at least 10 000 casualties in
Odisha in the year 1999531, Thus, detecting cyclones will
help remote sensing establishments and provide ample
scope to plan and tackle such a perilous situation.
Weather forecasting, specifically cyclone detection,

[4-6]

often uses numerical threshold and statistical

791 as detection mechanisms.

techniques! Many
numerical models are often used for weather prediction;
one is Weather Research and Forecasting (WRF), that
predicts weather conditions on the basis of numerical
algorithms. In the data assimilation system, the model
covers a wide range of areas with a vast metrological
application, which conducts simulation on the basis
of the actual atmosphere for prediction. It offers
an operational forecasting computationally efficient
platform, because it uses parallel processing with
two high computing cores. However, the efficiency
decreases, as it is used in low-performance computing
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systems!'%l. Apart from WRF, Numerical Weather
Prediction (NWP) is a useful mathematical model
for land bodies and water bodies to predict weather
phenomena, which focus on current weather conditions.
It mainly pays attention to the current observation of
weather and predicts further atmospheric situations.
However, a problem arises while solving a bunch of
equations, which latterly increase time complexity at
the time of prediction!'!l. The Regional Atmospheric
Modeling System is a set of programs that are used
for climate research and weather forecast. It is based
on NWP, which uses a complex calculation of corner
description!!?!. This system fails to give precise accuracy

131 Conditional

due to the less number of vectors
Nonlinear Optimal Perturbation is a robust forecasting
process that provides a higher degree of accuracy,
but fails to classify more features in images!'*!. Most
numerical or threshold methods involve visible and
near-infrared bands to detect the presence of cyclones in
clouds. Threshold schemes are popular because of their
speed of calculation. However, acceptable accuracy is
needed, as these schemes also generate significant false
positives. Threshold methods are most appropriate for
satellite cloud image classification. Many supervised
and unsupervised techniques play crucial roles in cloud
image classification. Under statistical methods, modern
deep learning schemes are widely used to detect cyclone
activities, which generate high detection accuracy with
little time complexity while classifying satellite cloud
images!” 17171, Deep learning methods are proven to
be robust, as they provide the best results even with
unstructured data!'8!, Moreover, no ground knowledge
is required to develop state-of-the-art deep learning
models. Deep Convolutional Neural Network (DCNN)
is built out of a densely interconnected input, output,
and hidden layer!!".

Each layer belongs to convolutions which are
responsible for detecting image features. Each layer
of the detection features of an image is ascertained.
The fully connected dense layer finally combines each
layer’s output to predict each class value. In the case
of the satellite image process for cyclone detection,
the input of the deep convolutional network is the
high-resolution images of satellites, such as INSAT-3D
and KALPANARP®2!l The network output is either a
cyclonic image or a non-cyclonic image. CNN is trained
to observe the feature of the cyclone and the hidden
layer is responsible for showing the output. Each hidden
layer carries a single-valued output. These hidden layer

outputs are inputted into the next layer. The DCNN
planning is outlined for classifying images. Therefore,
the center of the model objectives is to build a model
that can classify cyclone occurrences efficiently. It uses
the deep convolutional approach, which has been trained
and validated. The model checks each test image with
high accuracy and less time complexity, or the testing is
conducted in a real-time scenario. A model that achieves
an accuracy of more than 90% can practically help the
remote sensing work, which can be used for further
evaluation or climate prediction.

This article discusses various related works for
climate/weather prediction in Section 2. The proposed
model is elaborately described in Section 3. The result
is analyzed in Section 4. The conclusion is presented in
Section 5.

2 Related Work

Deep learning plays a crucial role in weather forecasting,
especially in cyclone prediction. Many state-of-the-art
machine learning and deep learning based approaches
have been proposed for accurate estimations of the
presence of cyclones. Recently, a Dichotomous Logistic
Regression (DLR) based on a fuzzy hypergraph model
has been proposed using the deep convolutional
network for classifying cyclone images. The model
reveals an acceptable detection accuracy with less
time complexity!’!. Landsat 8 OLI Satellite Image
Classification'??! is another approach of CNN to identify
natural disasters. Meanwhile, Brovey Transformation
helps in fusing Red-Green-Blue (RGB) in panchromatic
band shaving spatial resolutions. The deep learning
approach for detecting tropical cyclones and their
precursors®! in a simulation, which employs a cloud
resolving global non-hydrostatic model, uses 50000
tropical cyclone images to train two deep convolutional
models for binary classification. The model shows
a 90% probability of prediction with 10%—-30% false
alarm. Another deep learning model DeepMicroNet!>*!
estimates tropical cyclone intensity by using a satellite
passive microwave image that involves 85 GHz-90 GHz
satellite images to provide a probable estimation of a
tropical cyclone. Rotation-blended CNN?*! has been
proposed using an open dataset for classifying tropical
cyclone intensity on a convolutional model. It provides
a scope for the model to detect cyclone intensity swiftly
with promising time complexity. A convolutional model
is also explored for classifying cyclone intensity, which
ultimately eradicates the complexity that arises during
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the feature extraction process, required for determining
the strength of the tropical cyclone!?!. In addition, a
series of Artificial Neural Network (ANN) layers!!”!
have been used to predict cyclone occurrences with 98%
detection accuracy by using NOAA-AVHRR satellite
images. Tropical cyclone intensity detection through
geometric features of cyclone images with the help of
multilayer perception is proven to be a great predictor
with 84% detection accuracy!?®!. ANN approach!?’! also
has a high potential for modeling rainfall due to typhoons
in Taiwan, China. The approach considerably helps in
controlling the flooding disaster significantly through
the prediction result. The model uses 27 years of data
to train the neural network, which yields an accuracy
of 96%. In a similar guideline, the occurrence of a
typhoon in Taiwan, China, has been proposed using
ANN with the help of six statistical measures!?!, namely,
mean absolute error, root mean square error, coefficient
of correlation, error of time to peak discharge, error
of peak discharge, and coefficient of efficiency. The
model contains the hydrologic modeling system with an
ANN to predict the presence of typhoons. Moreover, a
forecast model for runner storm surge on Tottori Coast,
Japan, using ANN has been proposed!?!. It is a real-time
forecasting model for surge predictions. The prediction
process involves finding an optimal dataset to train ANN
using meteorological and hydrodynamic parameters
from Tottori Coast, Japan. Similarly, BackPropagation
Neural Network (BPNN) for tropical cyclone track
forecasting, the classic backpropagation algorithm, helps
track and forecast cyclones with the help of the historical
data of tropical cyclones (longitude and latitude)?".
Due to the complicated nonlinear physical mechanism
of the problem, the backpropagation gives a degree of
ease for solving the problem. It checks the climatology
persistence of the past motion of a storm. A graph
convolutional network, a deep neural network known as
graph convolutional Long Short-Term Memory (LSTM)
Network that works on a picture taken by satellite
Himawari-8 between years 2010 and 20193, processes
irregularities in images where LSTM learns different
features from the images taken by the satellite over
a period. A Doppler Weather Radar (DWR) based
cyclone forecasting model shows new information on
cyclone origination!®”!, The work also describes the
application of many influenced algorithms in the Indian
radar data, which helps derive more information about
cyclone structure. Using a radar algorithm, DWR data
are implemented on next generation radar. The work
suggests improvement in the strategies for India’s
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data collection of cyclones. The detection of aerial
images for the classification of cyclone disasters with
Convolutional Neural Network (CNN) uses satellite and
aerial images of disasters (landslides and floods) to
train the network[®3/. The model mainly focuses on two
countries, namely Thailand and Japan. It uses 10000
images for the training dataset and classifies the disaster
region and disaster category that shows an accuracy in
the range of 80%—90%. Neural networks are trained with
rainfall and radiosonde data to predict the streamflow
and flash floods, where neural networks play a significant
role in flood prediction!®*.

Apart from deep learning, other machine learning
techniques are also dominant in the field of weather
forecasting to predict the presence of cyclones. In
Ref. [35], a machine learning approach for cyclone
prediction uses decision trees, random forests, and
support vector machines. The research is based on
a linear discriminant analysis for detecting tropical
cyclones, proving to be a great option for cyclone
prediction. This model shows an accuracy of 90%—-94%,
although it shows 20%-28% false alarm. In another
study, the intensity analysis of satellite cloud images of
tropical cyclones is performed to extract the features of
edges from cloud images on a day-by-day basis. It helps
identify the further intensity of tropical cyclones from
the ongoing datal®¢!.,

3 Proposed Model

Considering the original dataset containing satellite
images to be I, the number of images is N, and the
training images are I, I», ..., Iny. The processing of
image dataset / includes reading and loading of the
images from each directory, resizing them as per the
input requirement of the deep convolutional network (as
shown in Fig. 1) and labeling each instance of images,
whether the concerned image is a cyclone or not. The
training images 11, I», ..., Iy are in the form of RGB
(color image); thus, they are now represented by an
array where each index holds the intensity of an image
pixel. Three 2D arrays are defined (R-Red, B-Blue,
and G-Green) to be precise. The intensity value of the
respective color is stored in their corresponding indexes.
As the data are ready, they must pass through a deep
convolutional model to train the network, shown in
Fig. 2.

3.1 Dataset

The dataset considered here has 4947 training images,
out of which 2885 images belong to the “cyclone”



Kalyan Kumar Jena et al.: Deep Convolutional Network Based Machine Intelligence Model for Satellite Cloud . . . 35

-

Input image

r Feature maps _\

I

224 pixel

Labeling

Validation
images

Resize to
224 pixel *
224 pixel

Training
images

DCNN-based machine intelligence model

[ Convolution layer

@ Max-pooling layer

I Dropout layer

Output
Convolutions |
Dense layer
~ 7
Fig. 1 CNN model.
( Resize to h
23 224 pixel x .
28 224 pixel Testing
Qg ]
= .= ] c
.. 1 Deep convolution
Training & ! :
trained modul
Resize to Labeled data validation : e
224 pixel x H

Labeling_*y JRBT
[ |m]w]

bmccccee—-

———->

Deep convolution
training module

1
1 Yes
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category, whereas 2062 belong to the “non-cyclone”
category. The dataset also has 1008 testing images
(408 cyclone and 600 non-cyclone) and 2481 validation
images (1549 cyclone and 932 non-cyclone). All images
are retrieved from the Meteorological & Oceanographic
Satellite Data Archival Centre!?%-211,

3.2 Deep convolutional network

Solving the problem of image classification through
a CNN (ConvNet/CNN) gives high accuracy in the
prediction of images!37-38,

An accurate prediction of cyclones reduces the
chances of casualties of human lives. A CNN contains

many hidden layers. It is an algorithm, which takes
an image of a certain class as input and trains the
hyperparameters, or to be more precise, optimizes
the biases and weights of the respective nodes of the
network. This factor uniquely defines each aspect of the
image, such as features and curves. This process helps
differentiate an image from another. Therefore, CNN
is a collection of a convolutional layer, an activation
layer (which is followed by a convolutional layer), and
a max-pooling layer (which extracts the features). The
model uses seven convolutional layers broken into three
segments, each separated by a max-pooling layer, which
executes a down-sampling process. This process extracts
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the features and reduces the vectors of the neural network
it is dealing with. As described above, a convolutional
layer is followed by an activation layer, which performs
with a Rectified Linear Unit (ReLU) and SoftMax.
The transformation by ReLU is to convolve features,
implying the entwinement or binding up of the features.
It also provides nonlinearity to the model®%4%, Thus,
the ReLU function can be defined as follows:

F(t) = max(0,¢) (1)
Function F(¢) returns ¢ for all values where t > 0,
otherwise 0. The model converts the image into a down-
sampled feature matrix for the multi-perception level,
flattening the feature matrix in a vector where the
vector is fed to a feed-forward neural network. Last,
the perceptron classifies the testing image by using an

activation function called SoftMax,
Zj
fi2) = ,\f— )
2 k=1 0%

/i (z) is the output of SoftMax, z is the input vector, 67/
is the standard exponential function for input vectors, M
is the number of classes in the multi-class classification
scenario, and 6%k represents the standard exponential
function for the output vector.

When the values come from the network, they
pass through the SoftMax function or called the
generalization of a logistic function, which squashes
the input vector into a range of [0, 1]; thus, an image
is given a real-value probability of prediction%-*!,
The model states that taking inputs as training data
(which are previously classified) and assigning them
to a deep convolutional network signal the start of
learning the weights for the feature maps (map obtained
from each 2D convolutional network). Backpropagation
helps the network to learn all the feature maps or
hyperparameters, such as the number of nodes per layer
of the neural network!*?!. Considering the training model
into a function S(-) and inputting “Ts”, where s = |T'|
represents the total number of testing images, which
ultimately classify whether the concern instance has
sufficient probability of a cyclone or not. Algorithm 1
presents the algorithm for the model.

4 Experimental Evaluation

The deep convolutional network has been implemented
on Python with the help of keras API as the front end and
TensorFlow as the backend. The keras and TensorFlow
provide ease of implementing the deep convolutional
network, as it contains predefined layers, models, and
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Algorithm 1 Proposed classification algorithm for satellite
image classification
Input: [ =1y, 1>....,1,, set of training images
V =WV, Va,..., Vg4, setof validation images
T =T1,Ts,...,Ts, set of testing images
Output: Prediction labels, L (cyclone or not_cyclone)
Begin
Step 1: Resize training, testing, and validation images
for i = 0 //training images to r do
T; = Resize (224 x 224, T;)
for t = 0 //validation images to ¢ do
Vi = Resize(224 x 224, V;)
for t = 0 //testing images to s do
T; = Resize(224 x 224, T;)
end for
end for
end for
Step 2: Convert all resized images to feature matrix using ReLU
F(oy) = max(0, «);
F(ay) = max(0, o);
F(ar) = max(0, o)
Step 3: Train and validate the neural network model using F(c)
and F(a)y
Step 4: Save the model as S(-) for final testing
Step 5: Classify the testing instances
for i = 0 //testing images to s do
if S(7;) > 0.5 then
L = cyclone
else
L = not_cyclone
end if
end for
return L
End

VI, VV.YT

optimizers!!?!. The implementation platform is GPU

NVIDIA MX250, type GDDRS, and has 1518 MHz and
a RAM of 8 GB, which enhances the speed of training
the model on a 64-bit Windows platform. A sequential
model, which contains layers (Conv2D, Max-pooling,
Flattening, Dropout) with

the input of 224 pixelx 224 pixel image, is illustrated
in Fig. 3. All training and validation images after
processing (loading, resizing, and labeling) pass through
it. The models are trained and validated in every
epoch (once a total dataset passes through forward and
backward in the network or sequential model). Some
sample images for cyclone and non-cyclone are
displayed in Figs. 4 and 5, respectively. An image of
224 pixel x224 pixel is given as the input to the sequential
model where two convolutional 2D networks are applied,
taking 64 filters, defining the kernel of 3x3, and keeping
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Fig. 4 Bulbul cyclone images in the dataset (sample images)™%21],

the padding the “same”. Each convolutional feature As previously mentioned, convolution is applied to
extraction takes place in a feature matrix, and the matrix three segments, and the filters double in each segment.
is followed to the next layer for further processing. Therefore, feature detection gives high accuracy to
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(a) INSAT -3D 31-MAR-2020 2000

(d) INSAT -3D 31-MAR-2020 2130

Fig. 5 Normal images in the dataset (sample images

predict the testing images. Dropout is mainly introduced
for avoiding overfitting. The model performance is
evaluated using a confusion matrix!4344,

As mentioned above, the model starts with an input
image where the first convolutional layer extracts 64
feature matrices taking a kernel size of 3x3. The input
of the second convolutional layer is the output of the
first convolutional layer. Here the convolution again
extracts 64 features from the feature matrices of the
previous layer, taking a kernel of 3x3. Down-sampling
images is the main objective of the CNN model, and
therefore, a MaxPool2D, which is also called a max-
pooling layer, reduces images without reducing their
features. The max-pooling layer retrieves all the features
into a feature map/matrix. The pool size of 2x2 reduces
the feature matrices to half of the original size. The
output of the max-pooling layer is the input of the
third convolutional layer. In the second segment of the
model, which contains the third and fourth convolutional
layers, 128 feature matrices are extracted, followed
by a dropout of 0.5, which prevents the model from
overfitting. The second max-pooling layer again down-
samples the feature matrices into half of the previous
size by using a pool size of 2x2. The third segment of
the model, which contains three convolutional layers
with 256 feature matrices each and a kernel size of 3x3,
again extracts the appropriate features for classifying
the problem. The max-pooling layer again comes into
the role of down-sampling. The input feature matrices,
which are the outputs of the previous convolutional
layer, are finally reduced into many feature matrices. The
model at this phase deals with the matrices of size 28x28
and 256 feature matrices or filters. Thus, converting
these 2D arrays or matrices into a single vector is carried
by the flattening layer whose output is 28x28x256,
which is equal to 200704. The model now deals with
200 704 parameters, which are being distinguished by
a dense layer of two units, as the model is a binary
classifier. The SoftMax classifies the parameters into

(b) INSAT -3D 31-MAR-2020 2030

-#“

(e) INSAT -3D 31-MAR-2020 2200
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(c) INSAT -3D 31-MAR-2020 2100

LS il &

(f) INSAT -3D 31-MAR-2020 2230
)[20, 21]

a probability of a cyclone or not. The epochs “E,”
defined in this article are 10, and the batch size is 10.
The percentages of accuracy, loss, validation loss, and
validation accuracy are presented in Table 1.

We can also define model loss and accuracy with
reference to the image shown in Fig. 6. Here, accuracy
and loss are optimal with respect to per epoch. From
the first epoch, the training data show a condition
called underfitting. However, while the epoch increases,
the training data tend to fit the model. In Ep-1, the
accuracy is nearly 93%, and the loss is considered
nearly 8%. It suggests that during the first batch of
the dataset with 494 images, 93% are trained accurately;
meanwhile, 7% are not trained accurately. In Ep-2, the
accuracy is approximately 98%, and the loss percentage
is approximately 2.0. The model has significantly trained
many images accurately from the batch size. As soon as
the model is showing a good result at a point exactly at
Ep-8, the model starts to overfit and thus signifies that
the training accuracy is more, whereas the validation
accuracy is less. However, in Ep-9, the accuracy reduces
to 1%, and the model perfectly fits. In the last epoch, the
accuracy level of model training is nearly 98%, and the

Table 1 Epochs and corresponding results while training
and validating the proposed model.

(%)
Epochs E, Tr?ining Training Validation Validation
0ss  accuracy loss accuracy
Ep-1/10 86.64 93.72 11.72 99.15
Ep-2/10 3.86 98.80 10.64 98.95
Ep-3/10 3.13 99.19 4.15 99.84
Ep-4/10 247 99.39 4.81 99.96
Ep-5/10 2.58 99.43 12.56 98.43
Ep-6/10 1.66 99.51 2.37 100.00
Ep-7/10 0.35 99.90 1.93 100.00
Ep-8/10 0.00 100.00 1.55 100.00
Ep-9/10 0.01 100.00 1.09 100.00
Ep-10/10 13.68 98.74 7.07 99.80
Average 11.44 98.87 5.79 99.61
Standard deviation  26.72 1.86 4.43 0.56
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Fig. 6 Training and validation accuracy with respect to per epoch.

accuracy level of validation is 99%. With these results,
we can easily confirm that the model fits the data. The
underfit problem is also eradicated.

Figure 6 displays the graph between validation
accuracy and training accuracy. The deviation between
the two lines is evident at the beginning of epochs.
However, the deep neural network during the training
increases its accuracy, and the deviation between the two
lines decreases. The lines shown in Fig. 6 tend to merge
at the ninth epoch, justifying the fitting of the proposed
model to the training and validating datasets.

Now, the confusion matrix helps us determine the
accuracy of the total model. The formula of the confusion
matrix is determined in Eq. (3). It can be defined by the
ratio of the addition of true positive and false positive
with respect to the total number of instances. The total
number of testing images is 1008, out of which 408
are random cyclone images of AMPHAN and OCKHI.
These images are not considered before in the training
or validation dataset, and the model has predicted 352
images to be cyclones/?®2!. Thus, it has also predicted
587 images to be non-cyclones from 600 images. The
accuracy can be defined by the following formula:

o+ /3, : 3)
a+p+ao +B
where « is denoted as a predicted “cyclone” of a
cyclone class, o’ is denoted as predicted “not a cyclone”
but belongs to the cyclone class, § is denoted as
predicted “not a cyclone” of the no_cyclone class, 8’
is denoted as a predicted “cyclone” which belongs to
the no_cyclone class. Putting the values of o = 352,
B =597, « = 56, and B’ = 3, the model obtains an
accuracy of 94.14%, and an error rate of less than
6%. The confusion matrix of the proposed model is
illustrated in Fig. 7. The corresponding experimental
results are outlined in Table 2.
From the summarized results in Table 2, the proposed

Accuracy =

500

Cyclone

400

300

Actual label

[
f=3
(=]

(=3
(=}

No_cyclone

Cyclone
Predicted label

No_cyclone

Fig. 7 Confusion matrix of the proposed model.

Table 2 Testing results obtained through the proposed
model.

Result Value
Sensitivity 86.3%
Specificity 0.995
Precision 0.992

Negative predictive value 0.914
False positive rate 0.005

False discovery rate 0.009

False negative rate 0.137
Accuracy 94.2%

F1 score 0.923

Matthews correlation coefficient 0.881

model shows an appealing detection accuracy of 94.2%.
The model reveals not only detection accuracy but also
a sensitivity of 86.3%, which appears to be unique in the
field of cyclone detection. Another point of observation
is that the false positive rate is quite impressively low,
with only 0.005. It shows the real power of our proposed
system, as it seems to be stable in all the performance
measures.

In the final stage of analysis, we compare our proposed
cyclone detection model with other state-of-the-art
cyclone detection models. Given that our model is
based on a deep learning technique, we shortlist a
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few deep learning based models for comparison in
Table 3. In this regard, DLR-FH, Deep CNN, and DAV—
T cyclone detection models implemented by Rajesh et
al.l”l, Deep CNN (2D) model proposed by Matsuoka
et al.l®!, Multilayer CNN proposed by Kovordanyi and
Roy!!"l, and PCA-based CNN model proposed by Rai
et al.l*?! are considered. The proposed model exhibits at
par performance with other models in terms of detection
accuracy. The proposed multilayer CNN model shows
12.20% and 5.1% better detection accuracy than the deep
learning approach proposed by Matsuoka et al.!¥! and
the DAV-T approach implemented by Rajesh et al.l”!,
respectively. Our system also slightly lacks less than
DLR-FH, Multilayer CNN, and PCA-CNN approaches.

5 Conclusion

The classification of cloud images is important for
the prediction of the presence of cyclones. Satellite
cloud images are proven to be an ideal option for
analyzing irregular cyclone movements. These images
are used for training and testing sets of the deep
convolutional network. Satellite remote sensing can
be achieved easily by using the deep convolutional
network to provide complete observation and monitoring
of the global cyclone activity, which gives a real-time
measurement of the accuracy of cyclone conditions. A
deep convolutional network not only classifies satellite
cloud images but also predicts the presence of cyclones.
The confusion matrix with an accuracy of the prediction
model shows a detection accuracy of 94% and an error
of less than 6%. The degree to which accuracy improves
is determined by the machine and the model on which it
is used. Using a high-performance computing machine
results in a better image resolution, which may improve
accuracy even further. The enormous size of the training
images causes the training time to be delayed. To
improve the processing speed, CNN demands tiny

Table3 Comparison of the proposed model with other state-
of-the-art models.

Author Method Accuracy (%)
DLR-FH 96.00
Rajesh et al.[”) Deep CNN 90.00
DAV-T 82.00
Matsuoka et al.[®! Deep CNN (2D) 89.10
Kovordanyi and Roy!'”!  Multilayer CNN 98.70
Principal Component
Rai et al.[?! Analysis-CNN 94.50
(PCA-CNN)
Proposed model Multilayer CNN 94.20

Big Data Mining and Analytics, March 2023, 6(1): 32-43

image sizes. To cope with the CNN environment,
images of 997 pixel x 969 pixel size are reduced to
224 pixel x 224 pixel size as a common practice. It
works well in the case of ordinary photographs where
important image features remain preserved after size
reduction. However, the standard practice of reducing
images for CNN may not work well for satellite images
in predicting the presence of cyclones. The reason
is that the cyclone periphery is usually not limited
to few meters; instead, the periphery covers many
kilometers of geographical area. In such a case, reducing
the image size for CNN may destroy the tiny details
about a cyclone in the cloud. Hence, prediction about
the presence of cyclones may not always be attained
precisely, remaining as the limitation of this article.
Numerous current CNN-based techniques, which work
directly on satellite images without compromising image
attributes or processing speed, may be investigated in
the future.
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