
BIG DATA MINING AND ANALYTICS
ISSN 2096-0654 02/10 pp 11 – 20
Volume 6, Number 1, March 2023
DOI: 10.26599/BDMA.2022.9020030

C The author(s) 2023. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

A Method for Bio-Sequence Analysis Algorithm Development
Based on the PAR Platform

Haipeng Shi, Huan Chen, Qinghong Yang, Jun Wang, and Haihe Shi�

Abstract: The problems of biological sequence analysis have great theoretical and practical value in modern

bioinformatics. Numerous solving algorithms are used for these problems, and complex similarities and differences

exist among these algorithms for the same problem, causing difficulty for researchers to select the appropriate one.

To address this situation, combined with the formal partition-and-recur method, component technology, domain

engineering, and generic programming, the paper presents a method for the development of a family of biological

sequence analysis algorithms. It designs highly trustworthy reusable domain algorithm components and further

assembles them to generate specifific biological sequence analysis algorithms. The experiment of the development

of a dynamic programming based LCS algorithm family shows the proposed method enables the improvement of the

reliability, understandability, and development efficiency of particular algorithms.

Key words: partition-and-recur (PAR); domain engineering; biological sequences; feature model; component

assembly

1 Introduction

With the advent of the post-genomic era, bioinformatics
has entered a golden period of development and has
become one of the most studied areas in the 21st
century. Bioinformatics aims to reveal the complexity of
genome information structure and the fundamental law
of genetic language. This field is an organic combination
of the three major scientific issues, namely, genome,
information structure, and complexity in science and
technology in the 21st century[1].

The field of biological sequence analysis is
accompanied by many popular problems, such as
the longest common subsequence (LCS)[2], sequence

�Haipeng Shi is with the School of Software, Jiangxi Normal
University, Nanchang 330022, China. E-mail: option2001@
jxnu.edu.cn.
�Huan Chen, Qinghong Yang, Jun Wang, and Haihe Shi are

with the School of Computer and Information Engineering,
Jiangxi Normal University, Nanchang 330022, China. E-
mail: 202041600064@jxnu.edu.cn; yangqh120@163.com;
wangjun2018@jxnu.edu.cn; haiheshi@jxnu.edu.cn.

* To whom correspondence should be addressed.
Manuscript received: 2022-06-28; revised: 2022-08-12;
accepted: 2022-08-17

alignment[3], genome rearrangement[4], and sequence
assembly[5]. During decades of research, scientists have
proposed many algorithms to solve these problems. For
example, in the LCS problem, dozens of algorithms
such as Wagner-Fischer[6], Hischberg[7], TOP MLCS[8],
Fast LCS[9], Level DAG[10], etc., can be used. Problem-
solving processes may be very similar, but certain
differences still exist among these algorithms, resulting
in variations in their application scenarios, algorithm
efficiency, and accuracy.

The LCS problem includes two sequences. It has been
an important topic, and the dynamic programming based
LCS algorithm is the most widely used. In the 1970s,
Wagner and Fischer[6] proposed the earliest dynamic
programming solving algorithm. This algorithm needs to
construct a matrix of (m + 1) � (n + 1) as the computing
space, where m and n are the numbers of characters of
the given sequences. The algorithm applies the standard
dynamic programming strategy, and its time complexity
and space complexity are both O (m � n/.

Given the high cost of time and space, using the
basic dynamic programming based LCS algorithm to
solve problems involving long sequences is difficult.
Thus, researchers have conducted follow-up studies. In

12 Big Data Mining and Analytics, March 2023, 6(1): 11–20

1977, Hirschberg[7] designed Hirschberg’s algorithm,
which has a linear space complexity. In 1982, Nakatsu
et al.[11] improved the basic dynamic programming
LCS algorithm by calculating the matrix in line or
diagonal order[11]. In 1988, Myers and Miller[12] used
the divide-and-conquer method to optimize the basic
dynamic programming algorithm, and reduced the space
complexity to O (mC n/.

Many variants of the LCS problem have emerged in
recent years; these variants include the constrained LCS
(CLCS) problem, merged LCS problem, and repetition-
free LCS problem. In 2003, Tsai[13] first proposed the
CLCS problem and its solution algorithm. Based on
the LCS problem, the CLCS problem also involves
a constraint substring, which is a sequence fragment
containing some important features or information and
may be omitted in the calculation of LCS; all the
LCSs must contain the constraint substring. In the
solution, algorithm breakpoints are introduced, and the
CLCS is solved based on the breakpoints generated by
each character of the constraint substring in the input
sequence. Peng[14] introduced the penalty factor to
solve the CLCS problem based on the LCS dynamic
programming algorithm, that is, adding the penalty factor
to the entry corresponding to each path in the score
matrix and finally selecting the path with the highest
score and containing the constraint sequence as the
computing result. In 2005, Arslan and Eǧecioǧlu[15]

presented an algorithm based on Tsai’s algorithm. This
algorithm calculates the prefix sequence of optional
CLCS in the score matrix of two target sequences and
deletes most intermediate calculation results that are
unnecessary for result calculation, therefore reducing
the complexity of Tsai’s algorithm. In 2011, Chen and
Chao[16] improved Arslan and Eǧecioǧlu’s algorithm on
top of the optimal sub-structure theory.

The solving algorithms for the same problem are
complex, their application scenarios are different,
and the algorithm development cycle is long. In
addition, users experience difficulty in distinguishing
and selecting a solution from the algorithm family.
To address these issues, this paper combines the
ideas of the formal partition-and-recur (PAR) method,
component technology, generic programming, and
domain engineering, and presents a new method
for the development of an algorithm family, i.e.,
biological sequence analysis algorithm development.
The method generates specific domain algorithms
through the design of highly trustworthy reusable

algorithm components, thus enabling the optimization
of the algorithm development process through the reuse-
based design. Moreover, an example of the use of this
method for the development of a dynamic programming
based LCS algorithm family is illustrated.

2 Preliminary

The following subsections briefly introduce the PAR
method, domain engineering, and dynamic programming
based LCS algorithms used in this study.

2.1 PAR method

The PAR method is a unified software development
method[17, 18]. It is mainly based on the PAR theory, and
it covers the brute-force method, divide-and-conquer,
greedy method, and other typical algorithm design
methods. The PAR method consists of recurrence-
based algorithm design language (Radl), abstract
programming language (Apla), unified-algorithm design-
and-proof method, and its supporting platform, including
Apla!C++/C#/Java program generation systems. PAR
supports the formal design process from Radl
specifications to Radl algorithms and the automatic
generation of Apla programs from Radl algorithms as
well as advanced programming language programs from
Apla programs.

Radl language is an algorithm design language in the
PAR method. Its key idea is to develop algorithms based
on recursive relations. It can also be used to describe
the formal problem specification and specification
transformation rules. With mathematical referential
transparency, Radl can be easily used for the formal
derivation of an algorithm. It is mainly user-oriented as
the front end of the Apla.

Apla is an intermediate conversion language in
the PAR platform. The Radl ! Apla program
generator considers it as the target language, and
Apla!C++/C#/Java program generators deem it as
the source language. Apla fully embodies popular
programming ideas, such as functional and data
abstractions, and it can be easily used for program
development. Moreover, the Apla program has high
readability, understandability, and verifiability and is
easy to convert into various executable programs. Apla
supports generic programming mechanisms, such as type
parameterization, subroutine parameterization, and user-
defined generic abstract data types (ADTs).

The formal algorithm development theory based
on the PAR method and platform can obtain highly

Haipeng Shi et al.: A Method for Bio-Sequence Analysis Algorithm Development Based on the PAR Platform 13

reliable algorithmic programs. The development flow
of algorithmic programs using the PAR method is as
follows.

Step 1: Obtain the natural language requirements of
the problem to be solved, and then use the Radl language
to describe the problem and construct its formal function
specification.

Step 2: In accordance with the established formal
functional specification, the problem is divided into
several independent sub-problems, and all of them
can continually be decomposed until the obtained
subproblems can be directly solved.

Step 3: Construct the problem-solving recursive
relationship, and combine it with the initialization
conditions of functions and variables to obtain the Radl
algorithm.

Step 4: Based on the recursive relationship, determine
all the variables needed in the program and describe
the variation rules and functions of each variable, and
furthermore develop the program loop invariant based
on the new loop invariant development strategy in PAR.

Step 5: Based on the Radl algorithm and the obtained
loop invariant, the Apla program for solving the problem
is obtained using the Radl!Apla program generation
system.

Step 6: Supported by PAR platform, the Apla
program is transformed into an equivalent advanced
programming language program.

2.2 Domain engineering

In the 1960s, the idea of software reuse was proposed
to deal with the software crisis. It is an effective way
to carry out the industrial production mode of the
software industry[19]. Software reuse can be divided
into the production stage of reusable software assets
and the development stage of application systems based
on reusable software assets[20]. Domain engineering is
located in the production stage of reusable software
assets, and is the main means for the production of
reusable software assets. It mainly aims to identify
software systems and develop and organize domain
reusable software assets. These reusable software assets
are an indispensable base for the subsequent software
development.

Domain engineering can be divided into domain
analysis, design, and implementation based on the
development process.

Domain analysis is the foundation of domain
engineering and includes three aspects as follows. First,
the requirements of some typical systems in the domain

are analyzed considering the expected demand change,
technology development, and objective constraints.
Second, the boundary range of the domain is determined,
and the common features and variable features of the
domain are identified. Third, the functional requirements
that are worthy of reuse in the domain are obtained and
abstracted to construct the domain model.

The domain design identifies and organizes reusable
assets such as architecture and components, in the
domain based on the domain model. Based on the
first two stages, domain implementation is applied to
develop new software systems using domain reusable
assets. Domain engineering can also be used for the
development of new algorithms in the same field as
follows. First, the domain model is established based
on existing typical algorithms of the domain, and the
specification of a new algorithm is described based
on the model and a problem requirement. Second,
in accordance with specifications, the appropriate
functional components are selected from the domain
to assemble a new algorithm. Through the application
of the idea of domain engineering to algorithm
development, algorithm development can reuse a large
number of reusable component assets of this algorithm
domain. It does not need to start from scratch, and only
needs to implement the unique functional components
of the new algorithm and select appropriate reusable
components to assemble the required new algorithm.

In the 1990s, feature-oriented domain analysis
(FODA)[21] was introduced into domain engineering by
the Institute of Software Engineering of Carnegie Mellon
University. The main idea of FODA is the extraction
of necessary functional features from the domain and
the use of their interaction among them to construct
the domain feature model as an important part of the
domain model. The features in domain engineering
can be divided into two categories: common features
and differences. The former exist in all components
of the domain and show commonness; the latter only
exist in some domain components and exhibit variability.
Compared with commonness, variability is more worthy
of study. Variable features can be divided into the
following types.

(1) Optional features. They play an extra optimization
role in the domain and exist in some algorithms;

(2) Mutual exclusion feature (XOR). When the
same function in the domain has a variety of
implementations, these implementations cannot coexist
with each other, that is, mutually exclusive features;

(3) Multiple features (OR). The given function

14 Big Data Mining and Analytics, March 2023, 6(1): 11–20

should include at least one or more features of the feature
set, namely, multiple features.

Figure 1 shows the representation of mandatory
features and three variable features in the domain model.

2.3 Dynamic programming based LCS algorithms

The LCS and CLCS algorithms are based on dynamic
programming, and their problem-solving ideas are
similar. The former’s score matrix is two-dimensional,
and that of the latter, whose scoring template is different
from that of the former, is three-dimensional. Given the
space limitation, only the basic dynamic programming
solution of the LCS algorithm is introduced here.

First, the following definitions are given:
Definition 1 (Sequence). A string consists of

elements in a finite set of characters ˙ D .�1; �2; : : : ;

�m/ arranged in a certain order.
Definition 2 (Subsequence). For a given sequence

a, its subsequence can be obtained by deleting zero or
more characters from a. For example, given a sequence
fA, G, T , T , Gg, fG, T , Gg and fA, T , T , Gg are its
subsequences.

Definition 3 (Common subsequence). Given a
sequence set S D fa1; a2; : : : ; ang, if sequence b is
the subsequence of all sequences in S , b is called the
common subsequence of a1; a2; : : : ; an.

Definition 4 (LCS). If b is the common subsequence
of a1; a2; : : : ; an, and its length is greater than other
common subsequences of a1; a2; : : : ; an, then b is the
LCS of a1; a2; : : : ; an. Evidently, the LCS is not unique.

The dynamic programming based LCS algorithm
was first proposed in 1977. It mainly adopts dynamic
programming to construct a matrix (score matrix) to
store the calculation results between input sequences.
Finally the LCS is obtained by backtracking the recorded
results. The values in the matrix are calculated by the
following recursive equation:

L Œi; j � D8̂<̂
:
0; iD0 or j D0I
L Œi � 1; j � 1�C 1; A Œi � D B Œj � I

max.L Œi�1; j � ; LŒi; j�1�/; A Œi � ¤ B Œj �
(1)

f

f1

f f

f
n

f

f
n f1 f1 f1

(a) Mandatory (b) Optional (c) XOR (d) OR

Fig. 1 Feature relationship diagram.

where LŒi; j � denotes the value in the matrix, A and B
are the input sequences, and i; j are the index of the
characters in A or B , respectively.

For example, given two sequences fB , D, C , A, B ,
Ag and fA, B , C , B ,D, A, Bg, Fig. 2 shows the solving
score matrix and the backtracking path.

The value of each Œi; j � is shown in Fig. 2, and the
arrow denotes the backtracking direction. The gray and
blue paths are backtracking paths from the highest score
to the initial point, i.e., the path of the LCS. From the
backtracking path in Fig. 2, we can obtain the LCSs of
the input sequence, which are fB , C , B , Ag and fB , D,
A, Bg, respectively.

3 Method for Biological Sequence Analysis
Algorithm Development

In biological sequence analysis, various algorithms are
used to solve the same problem. Complex similarities
and differences exist among these algorithms, which
lead to differences existing in their application scenarios,
solving efficiency, or accuracy. In the paper, we present
a method of biological sequence analysis algorithm
development by combining the ideas of the PAR
method, component technology, generic programming,
and domain engineering. It can be applied to the rapid
development of algorithms for solving a class of similar
problems. The process is as follows:

(1) To analyze the solving algorithm family for
a biological sequence analysis problem and abstract

Fig. 2 Score matrix of dynamic programming.

Haipeng Shi et al.: A Method for Bio-Sequence Analysis Algorithm Development Based on the PAR Platform 15

similarities and differences from them, this study further
establishes the feature model of the algorithm domain
from three aspects, namely, service (S), function (F), and
behavior (B), by means of the FODA method.

(2) Based on domain feature model, the main
function is designed as the algorithm component,
and the dependencies between the components can
be determined based on the interaction between the
algorithm components.

(3) According to the PAR method, for the precise
description of the formal specification of each algorithm
component by Radl language and definition of ADTs
based on the data dependency relationship between them,
all ADTs must be further implemented by the Apla
language and the domain algorithm component library
be obtained.

(4) In accordance with the algorithm functional
specification, compatible algorithm components from
the component library are selected to assemble the
required Apla program, and an executable high-level
programming language program is generated by means
of the PAR platform.

The required algorithm program can be assembled on
top of the reusable components. Through this manner,
the algorithm development efficiency can be improved.
In addition, the verifiability of the Apla language and the
program generation systems of PAR platform enables
the improvement of the accuracy and reliability of the
algorithm.

4 Implementation of Dynamic
Programming Based LCS Algorithm
Family

Here, we design and implement the dynamic
programming based LCS algorithm family to
demonstrate the proposed method.

4.1 Domain analysis

The solution method of the LCS problem has a
strong commonality with that of the CLCS problem
in the variant problem. We take the LCS and CLCS
solution algorithms based on dynamic programming as
a unified research field and apply the implementation
method of the LCS algorithm family based on the
PAR platform proposed in this paper to study it. First,
the domain feature modeling method, that is, FODA,
is used to analyze the S, F, and B of the DP-MLCS
algorithm domain. Then, based on the established
domain feature model, the LCS domain algorithm

component library based on dynamic programming is
designed and implemented.

In Section 2.3, the original LCS algorithm based
on dynamic programming is introduced. Based on the
idea of dynamic programming, a two-dimensional score
matrix is established, and Eq. (1) is used as a scoring
template to recursively solve the value of the score
matrix. Finally, the LCS of the target sequence is
obtained by backtracking from the position of the highest
score. Afterward, the research in this aspect has achieved
many improvements based on the original dynamic
programming LCS algorithm and proposed many new
solving algorithms, which mainly focus on the following
two aspects: (1) Use the divide-and-conquer method to
split the two target sequences to reduce the scale of the
problem to solve the problem more quickly; (2) Optimize
the score matrix solution formula (which we call the
scoring template here) and delete the corresponding
values of positions that do not need to be used in the
LCS solution process to improve the computational time
and space efficiency. The solution and improvement
methods of the CLCS algorithm are the same as those
of LCS, and the main difference is that the score matrix
and template established by the CLCS algorithm are
relatively complex.

The dynamic programming based LCS and CLCS
algorithms are extremely similar, and the main difference
is that the CLCS algorithm needs to establish a three-
dimensional score matrix. Figure 3 shows the operation
flow of the LCS and CLCS algorithms.

As this paper considers biological sequences as the
experimental object, the LCS search algorithm first
needs to check whether the input sequence has a
biological significance (for example, DNA sequences
contain only A, C , G, and T characters). Then, based

Fig. 3 Flow chart of LCS algorithm.

16 Big Data Mining and Analytics, March 2023, 6(1): 11–20

on the needs of the algorithm to establish the score
matrix, the scoring template is selected depending on the
demand and used to calculate the score of each position
in the score matrix. Finally, all positions with the highest
score in the score matrix are traced back to output all the
LCSs that meet the requirements.

Based on the accurate analysis of the LCS and
CLCS algorithm domains, we become familiar with the
operation process of the algorithm in this field, the main
functions of each process, and the differences between
the algorithms in this field. The FODA modeling method
can be used to extract the common and difference
features to construct the LCS domain feature model.

(1) Sequence legitimacy check (seq check) is a
preprocessing operation that must be performed before
each algorithm runs as a common function.

(2) Parts of the algorithms in this field use the
idea of the divide-and-conquer method to split the
input sequence. Thus, the search problem of LCS is
decomposed into a search problem of LCS with two short
sequences, and the split operation (split) is considered
an optional function.

(3) All algorithms in this field need to establish a
score matrix to store the score. The LCS algorithm
establishes a two-dimensional score matrix, and the
CLCS algorithm needs to establish a three-dimensional
score matrix. The construction operation of the score
matrix (dp matrix), as a common function, contains
two mutually exclusive subfeatures: two dimen and
three dimen.

(4) The LCS algorithm can search for all the LCSs
or determine the length of the LCS. For the former, the
score source operation (rmb source) needs to make
a record of the source of values at each position in the
score matrix for backtracking.

(5) The algorithm in the domain calculates the value in
the score matrix in accordance with the scoring template
and sets the scoring template (scoring temp)
operation as a common function, which contains two
subfeatures, i.e., the LCS and CLCS scoring templates.

(6) The result output function (result op), as a
common function in the field, contains a subfeature
output mode. The output model has two subfeature
output sequence results (seq op) and output score
results (score op), where the sequence output needs
to be backtracked.

Taking the LCS search service as the main service in
this field, the LCS domain feature model is established
in accordance with the above analysis (Fig. 4).

s

s s

B

s

r r

om

d

t t

s s

Fig. 4 LCS domain feature model.

4.2 Domain design and implementation

Here, the domain design and implementation are carried
out based on the aforementioned LCS domain feature
model.

4.2.1 Component design
The functions and features in the LCS domain
feature model are abstracted as components, and the
dependency graph between components is established
based on the running process of the algorithm and
the data dependence between features. Here the
six main algorithm functions in the LCS domain
feature model are considered as the main components:
sequence legitimacy check component (seq check
component), dynamic programming matrix pattern
component (dp matrix mode component),
split component (split component), scoring
template pattern component (scoring temp mode
component), remembering the score source component
(rmb source component), and result output
component (result op component). The dynamic
programming matrix pattern component contains
two sub-functional components: two-dimensional
(two dimen component) and three-dimensional
matrix components (three dimen component). The
result output component includes two sub-functional
components: the sequence result output component
(seq op component) and the score result output
component (score op component). The backtrack
component is used as the auxiliary component of the
seq op component. The seq check components and
split component function before other components run
and are not expressed in dependency diagrams. The
connection with arrows represents the dependence of
one component on another, and the dependence between
components is shown in Fig. 5.

Haipeng Shi et al.: A Method for Bio-Sequence Analysis Algorithm Development Based on the PAR Platform 17

Fig. 5 LCS component dependency diagram.

4.2.2 Component implementation
After determining the dependencies between
components using the LCS domain feature model, this
paper applies the PAR method to formally implement
the LCS algorithm component library. First, Radl is
used to accurately describe the functional specification
of algorithm components. Then, based on the data
dependence between components, the components that
depend on the same data source are integrated into an
ADT. Finally, all ADTs are abstracted and realized using
the Apla language. Here, the functional specification of
the seq check component is given as an example.
j[in seqs [m] [n]: alray of sequence;

a[s]: array of character; m, n, s:

integer; out flag: boolean]j

AQ: m> 20, n> 20, s > 0

AR: flag=(8i,j:06S6i6m, 06j6n:(9k:06
k6s:seqs[i][i]=a[k]))

In the formal specification above, in and out are
keywords defined in the PAR platform, representing
input and output identifiers, respectively. Array, boolean,
and integer types are predefined in the PAR platform.
Here, AQ represents the pre-condition required by the
component, and AR denotes the post-condition of the
component. The seq check component judges the
legitimacy of the sequence by comparing the character
types owned by the input sequence and the type of
biological sequence. The seqs refers to the storage
array of the input sequence, a stands for the legitimate
character array owned by the biological sequence (such
as DNA is A;C;G; T /, and the output flag is a boolean
value (if true, it represents the sequence legitimate;
otherwise, it is an illegal sequence).

The Apla language supports directly using ADTs
and abstract processes to write algorithm programs,
which can describe algorithm problems clearly and
intuitively, and ensures program reliability by verifying
program correctness. As the input language of the PAR
platform program generation system, the Apla program
can be easily converted to C++, Java, Python, and other

programs. According to the LCS domain feature model
and considering the dependencies between components
and the relationship between the data types and functions
involved in the field, the Apla language is used to define
and implement LCS domain components, thus forming
a highly abstract LCS algorithm component library.
The ADT designed based on the data dependencies
between the components are listed below, and the
detailed implementation codes are omitted for the sake
of space.

(1) sequence abstract data type: Seqs
define ADT Seqs (sometype elem)

type Seqs = private;
var
seqs:Array [String];
constraint_seqs:Array [];
DNA:Array [];
Protein:Array [];
procedure read seqs();

function seq check(seqs; type:
integer): boolean;
function split (seqs);

enddef
Considering that the seq check component and split

components are operated on the input sequence, ADT
Seqs is used to encapsulate these components and their
required data and auxiliary components. Four variables
are defined: seqs for storage of input sequences,
constraint seqs for storage of constraint
sequences, DNA and Protein for storage of legitimate
characters of DNA and protein, respectively. The
procedure read seqs is used to read the input
sequence. The seq check function and the split
function implement the seq check component and
split component, respectively.

(2) dynamic programming based matrix ADT:
dp matrix

define ADT dp matrix
type dp matrix = private;
procedure apply memory(length s:
integer; length t: integer; length p:
integer; proc init score ());
procedure memory score (proc scoring
(template num));

function max score: integer;
function get score (i: integer; j:
integer; k: integer): integer;

procedure result op(func
finally score():integer; proc
backtrack(score source))
enddef

18 Big Data Mining and Analytics, March 2023, 6(1): 11–20

As the backtracking function of the dynamic
programming LCS algorithm is carried out on the
score matrix constructed by the input sequence, the
ADT dp matrix encapsulates the components related
to the score matrix operation and the result output
operation. The apply memory creates a storage space
for the score matrix based on the lengths of the input
and constraint sequences. The default length of the
constraint sequence p is 0, and it contains a subroutine
init score to initialize the score matrix. The
memory score program stores the scores. It contains
a subprogram scoring that selects different scoring
templates based on the label of the scoring template.
Function max score and get score return the
highest and corresponding position scores, respectively.
The result op program realizes the function of
the result op component and its subcomponents.
Function finally score is the final result of the
LCS algorithm for solving the LCS length in linear time;
the subroutine backtrack outputs all LCS backtracking,
which requires the support of ADT Score source.

(3) source of score ADT: Score source
define ADT Score source
type Score source = private;
procedure apply memory(length s:

integer; length t: integer; length p:
integer);
function get source(i: integer; j:

integer): integer;
procedure set_source(i: integer; j:

integer);
enddef

The ADT Score source remembers the score
source of the value of each position in the score matrix,
the apply memory program dynamically creates
storage space using the length of the input sequence, and
set source and get source implement the access
operation of the score source.

For example, the parallelization of cutoff pair
interactions is mature in CPUs and typically employs a
voxel-based method.

4.3 Algorithm assembly and experiment

4.3.1 Algorithm assembly
We use the established LCS component library
to assemble the dynamic programming based LCS
algorithm. The instantiation is shown below. The
following Apla program can be converted to an
executable C++ program through the Apla!C++
program generation system of the PAR platform.

Program LCS:
const path infile: string; /* file

path of input sequence*/
const path outfile: string ; /* file

path of output LCS*/
var
seqs: Array [string]; /*save the

input sequence*/
constraint seqs: Array []; /*save

the constraint sequence */
type: integer; /*The type of input

sequence*/
template num:string; /*The type of

scoring template */
/*instantiation of functional

components used by LCS*/
1: ADT lcs Seqs: new Seqs ();
2: ADT lcs matrix: new dp matrix(seqs;
constraint seqs);
3: ADT score source: new
score source(seqs; constraint seqs);
/*LCS Searching manipulate procedure*/
4: procedure LCS search mani (lcs Seqs;
lcs matrix; score source)
5: var
length s, length t, length p: integer;
6: begin
7: lcs.Seqs.read seqs (path infile);
8: lcs.Seqs.seq check (seqs;type);
9: lcs matrix.apply memory(length s;
length t; length p);
10: lcs matrix.memory score(template num);
11: lcs matrix. result op.finally score;
12: lcs matrix. result op.backtrack;
13: end

4.3.2 Experiment
GenBank is a well-known nucleic acid database
established and maintained by the National Center for
Biotechnology, and it has a large number of biological
gene sequences. We download the DNA sequence
fragments of rice from the GenBank database as the
experimental data, use the LCS algorithm based on
dynamic programming generated by the above assembly
to calculate the LCS of the two sequences, and carry
out experiments on the DNA sequence fragments with
lengths of 50, 100, 150, 200, 250, and 300. The
experimental results are shown in Table 1. The LCS
algorithm based on the dynamic programming generated
by component library assembly is used to solve quickly
and accurately the LCS subsequence of two input
sequences with different lengths. Figure 6 shows the
results of solving the LCS of two DNA sequences with

Haipeng Shi et al.: A Method for Bio-Sequence Analysis Algorithm Development Based on the PAR Platform 19

Table 1 LCS experimental results of input sequences with
different lengths.

Sequence length Number of LCSs LCS length
50 1 28
100 15 61
150 510 91
200 384 121
250 46 048 150
300 39 552 187

Fig. 6 Experimental result of LCS assembly algorithm.

sequence numbers 30 229 045 and 30 229 047. The
length of LCS shown in Fig. 6 is 66, and the number of
LCS is 864.

Under the support of the PAR platform program
generation system, we manually assemble components
to obtain the LCS algorithmic program in Apla
language and then convert it into the corresponding C++
program in a semi-automatic manner. By assembling
the component library of the LCS domain to generate
the LCS algorithm, it not only eases the writing of the
algorithm, reduces the redundancy of the code, improves
the reliability, reusability, and maintainability of the
assembly algorithmic program, but also assembles and
generates different types of LCS algorithms supported
by the component library of the LCS domain based on
different data requirements of users, thereby improving
the universality of LCS algorithm components.

5 Conclusion

Based on the PAR platform, combined with domain
engineering, formal method, generic programming,
and other technologies, the paper presented a new
development method for biological sequence analysis
algorithms. The method attempted to design domain-
oriented and highly reliable reusable algorithm
components and mechanically generate specific
algorithms by assembling such components. An
example of the implementation dynamic programming
based LCS algorithm family is given. The following

points are worthy of mentioning.
(1) Based on previous studies and deep analysis of

software automation, domain engineering, the PAR
method, and the LCS problem, the paper provides a new
development method for biological sequence analysis
algorithms based on the PAR platform.

(2) For the correlation between LCS and CLCS
problems and the similarity of their problem-solving
ideas, this paper views them as a problem domain. Using
the proposed method, the algorithm function features are
extracted to generate the LCS domain feature model,
and the dependency relationship among features is
constructed. Then, with the support of the PAR method,
the domain functional components are designed and
implemented in accordance with the LCS domain feature
model and feature dependency relationship. Further,
the LCS domain component library is built. Finally,
the particular LCS algorithm can be generated by
assembling components from the component library.

The proposed method enables the improvement of the
reliability, understandability, and development efficiency
of particular algorithms. It is suitable for the rapid
development of different algorithms for the same kind of
problem. It is not only applicable to the problem of LCS,
but also can be used to solve other problems. In our
previous studies, we successfully applied the proposed
method to the domain of multiple sequence alignment
and pairwise sequence alignment problems.

Next, we will focus on the further application of the
method in other bioinformatics research areas, such as
gene discovery and recognition, to develop a systematic
method and continue improving the component library of
the biological sequence analysis algorithm. Future work
also includes the development of publicly accessible web
services for our method.

Acknowledgment

This work was supported by the National Natural Science
Foundation of China (No. 62062039) and Natural Science
Foundation of Jiangxi Province (Nos. 20202BAB202024
and 20212BAB202017).

References

[1] Y. Zhao, R. Gu, and S. Du, Current status and development
trend of bioinformatics research, Journal of Medical
Informatics, vol. 33, no. 5, pp. 2–6, 2012.

[2] S. Liu, Y. P. Wang, W. N. Tong, and S. W. Wei, A fast and
memory efficient MLCS algorithm by character merging
for DNA sequences alignment, Bioinformatics, vol. 36, no.
4, pp. 1066–1073, 2020.

[3] H. Shi and X. Zhang, Component-based design and

20 Big Data Mining and Analytics, March 2023, 6(1): 11–20

assembly of heuristic multiple sequence alignment
algorithms, Front. Genet, vol. 11, p. 105, 2020.

[4] S. Liu, Design and implementation of first descending
squad based flipping sorting algorithm, Master dissertation,
School of Computer Science and Technology, Shandong
University, Jinan, China, 2006.

[5] M. D. Cao, S. H. Nguyen, D. Ganesamoorthy, A. G. Elliott,
M. Cooper, and L. J. M. Coin, Scaffolding and completing
genome assemblies in real-time with nanopore sequencing,
Nature Communications, vol. 8, p. 14515, 2017.

[6] R. A. Wagner and M. J. Fischer, The string-to-string
correction problem, Journal of ACM, vol. 21, no. 1, pp.
168–173, 1974.

[7] D. S. Hirschberg, Algorithms for the longest common
subsequence problem, Journal of the ACM, vol. 24, no.
4, pp. 664–675, 1977.

[8] Y. Li, Y. Wang, Z. Zhang, Y. Wang, D. Ma, and J. Huang, A
novel fast and memory efficient parallel MLCS algorithm
for long and large-scale sequences alignments, in Proc. 2016
IEEE 32nd International Conference on Data Engineering,
Helsinki, Finland, 2016, pp. 1170–1181.

[9] Y. Chen, A. Wan, and W. Liu, A fast parallel algorithm
for finding the longest common sequence of multiple
biosequences, BMC Bioinformatics, vol. 7, no. 4, p. S4,
2006.

[10] Z. Peng and Y. Wang, A novel efficient graph model for the
multiple longest common subsequences (MLCS) problem,
Frontiers in Genetics, vol. 8, p. 104, 2017.

[11] N. Nakatsu, Y. Kambayashi, and S. Yajima, A longest
common subsequence algorithm suitable for similar text
strings, Acta Informatica, vol. 18, no. 2, pp. 171–179, 1982.

[12] E. W. Myers and W. Miller, Optimal alignments in linear

space, Computer Applications in the Biosciences: CABIOS,
vol. 4, no. 1, pp. 11–17, 1988.

[13] Y. -T. Tsai, The constrained longest common subsequence
problem, Information Processing Letters, vol. 88, pp. 173–
176, 2003.

[14] C. L. Peng, An approach for solving the constrained
longestcommon subsequence problem, http://etd.lib.nsysu.
edu.tw/ETD-db/ETD-search/search, 2003.

[15] A. N. Arslan and Ö. Eǧecioǧlu, Algorithms for the
constrained longest common subsequence problems,
International Journal of Foundations of Computer Science,
vol. 16, no. 6, pp. 1099–1109, 2005.

[16] Y. C. Chen and K. M. Chao, On the generalized constrained
longest common subsequence problems, Journal of
Combinatorial Optimization, vol. 21, no. 3, pp. 383–392,
2011.

[17] J. Xue, PAR method and its supporting platform, in Proc.
1st Asian Working Conference on Verified Software (AWCVS
2006), Macao, China, 2006, pp. 29–31.

[18] J. Xue, Y. Zheng, Q. Hu, Z. You, W. Xie, and Z. Cheng,
PAR: A practicable formal method and its supporting
platform, in Proc. 20th International Conference on Formal
Engineering Methods (ICFEM), Gold Coast, Australia,
2018, pp. 70–86.

[19] H. Mili, F. Mili, and A. Mili, Reusing software: Issues and
research directions, IEEE Trans. on Software Engineering,
vol. 21, no. 6, pp. 528–562, 1995.

[20] E. A. Karlsson, Software Reuse: A Holistic Approach. New
York, NY, USA: John Wiley and Sons Ltd, 1995.

[21] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and
A. S. Peterson, Feature-oriented domain analysis (FODA)
feasibility study, Tech. Rep. CMU/SEI-90-TR-21, Carnegie
Mellon University, Pittsburgh, PA, USA, 1990.

Haipeng Shi received the PhD degree
from Jiangxi University of Finance and
Economics, Nanchang, China in 2022.
She is currently an associate professor
at the School of Software, Jiangxi
Normal University. She has published about
10 papers in international journals and
conferences. Her research interests include

algorithm design and software engineering.

Huan Chen received the BEng degree
from Jiangxi Normal University in 2020.
He is currently pursuing the master
degree at Jiangxi Normal University. His
research interests are software engineering,
bioinformatics, and deep learning.

Jun Wang received the BEng degree
from Hunan Institute of Technology in
2017 and the MEng degree from Jiangxi
Normal University in 2021. His research
interests include bioinformatics algorithms
and formal methods.

Qinghong Yang received the MEng degree
from Jiangxi Normal University in 2003.
She is currently a professor at the
School of Computer and Information
Engineering, Jiangxi Normal University and
a professional member of China Computer
Federation. She has published over 30
research papers in international journals and

conferences. Her research interests include software formal
methods and intelligent recommendation systems.

Haihe Shi received the PhD degree from
Institute of Software, Chinese Academy
of Sciences, China in 2012. She is
currently a professor at the School of
Computer and Information Engineering,
Jiangxi Normal University, an expert in
China Academic Degrees and Graduate
Education Development Center, and a

professional member of China Computer Federation. She has
published three monographs and more than 40 research papers
in international journals and conferences. Her research interests
include bioinformatics, big data analysis, software formal method,
and generative programming.

