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Closed-Form Models of Accuracy Loss due to Subsampling in
SVD Collaborative Filtering

Samin Poudel* and Marwan Bikdash

Abstract: We postulate and analyze a nonlinear subsampling accuracy loss (SSAL) model based on the root mean
square error (RMSE) and two SSAL models based on the mean square error (MSE), suggested by extensive
preliminary simulations. The SSAL models predict accuracy loss in terms of subsampling parameters like the fraction
of users dropped (FUD) and the fraction of items dropped (FID). We seek to investigate whether the models depend
on the characteristics of the dataset in a constant way across datasets when using the SVD collaborative filtering
(CF) algorithm. The dataset characteristics considered include various densities of the rating matrix and the numbers
of users and items. Extensive simulations and rigorous regression analysis led to empirical symmetrical SSAL
models in terms of FID and FUD whose coefficients depend only on the data characteristics. The SSAL models
came out to be multi-linear in terms of odds ratios of dropping a user (or an item) vs. not dropping it. Moreover,
one MSE deterioration model turned out to be linear in the FID and FUD odds where their interaction term has a
zero coefficient. Most importantly, the models are constant in the sense that they are written in closed-form using
the considered data characteristics (densities and numbers of users and items). The models are validated through
extensive simulations based on 850 synthetically generated primary (pre-subsampling) matrices derived from the
25M MovielLens dataset. Nearly 460 000 subsampled rating matrices were then simulated and subjected to the
singular value decomposition (SVD) CF algorithm. Further validation was conducted using the 1M MovieLens and

the Yahoo! Music Rating datasets. The models were constant and significant across all 3 datasets.

Key words: collaborative filtering; subsampling; accuracy loss models; performance loss; recommendation system;

simulation; rating matrix; root mean square error

1 Introduction

Collaborative filtering (CF) algorithms are the most
widely used and successful recommender algorithms
applied to various domains!"?l. CF methods predict
whether a new user might like an item based on the
known preferences of a list of users towards a list of
items. The core idea behind the CF algorithms is that
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users who agreed in the past are expected to agree in the
future. CF algorithms are most popular because of their
ability to perform well with available user ratings only,
even in the absence of metadatal®!,

The recommendations obtained from CF algorithms
are based on available ratings of users toward different
items stored in a rating matrix!*!, The rating matrices are
usually highly sparse and skewed towards few items and
few users, which can adversely affect the performance
of CF methods>®!. Recent studies have focused on
proposing new CF approaches and on improving the
performance of existing CF approaches while predicting
missing ratings in incomplete high dimensional sparse
rating matrices!’ ', However, there are no studies
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proposing constant predictive models that predict the
performance of a CF method based on the dataset
properties only.

It is intuitive to expect that the performance of a
CF algorithm depends on the characteristics of a rating
matrix like the number of users, number of items, and
the density!'?!, and that the performance deterioration
due to subsampling of items and users depends on the
level of subsampling. In Ref. [13], a detailed analysis
of the effects of the rating matrix characteristics on
the performance of CF algorithms was presented. In
Ref. [14], the influence of similarity metrics on the
behavior of CF methods was studied, and similarity
metrics were shown to depend on the available number
of users and items in the rating matrix!'3. The study
in Ref. [16] showed that the performance of many CF
algorithms is directly related to the density of the rating
matrix. The authors in Ref. [17] showed that increasing
the density of information through advanced imputation
prior to applying singular value decomposition (SVD)
CF improves its performance.

The influence of rating data characteristics on the
performance of CF methods is mainly based on
explanatory analysis!'? %11 and qualitative models!"!.
The performance of a CF algorithm was shown in
Ref. [21] to degrade when decreasing the number
of ratings, and in Ref. [22] it was shown that the
performance improves with larger data sets. In Refs.
[13,20,23], the authors subsampled the rating data many
times, built linear regression models for the performance
of CF methods versus the rating data characteristics
and used the models for a qualitative explanatory
analysis>*23]. The analysis was qualitative in the sense
that the coefficients of the model were specific for every
case (combination of dataset, algorithm, and levels of
sampling), and hence no quantitative analysis can be
provided for an arbitrary case. Similar conclusions
were reached in Refs. [26, 27] which can predict the
performance of a CF method after subsampling based on
the rating matrix characteristics. One often develops a
linear regression model of the accuracy loss for a given
dataset and a given CF'?°!, but these models are assumed
to be unrelated to each other and to depend on the dataset
characteristics in an unknown way. In other words, there
is no established constant predictive model.

Our previous investigation!?®! showed that the
improvement in the training time due to subsampling
for a CF algorithm can be modeled using the same
linear regression model for a wide range of datasets,

algorithms, and levels of subsampling. In fact, the model
is exceedingly simple and general and expresses the
improvement as

T5)TP =1—p—v+ pv (1)
where T is the time to train a CF method using primary
rating matrix P, TS is the time to train a CF method
using a subsampled rating matrix S from P, p is the
fraction of users dropped (FUD) from P, and v is the
fraction of items dropped (FID) from P to get S, defined

as
number of users in P— number of users in S

number of users in P

2

number of items in P — number of items in S
y =

number of items in P
3)

For example, assume that the number of users in
P is 10000 and the desired number of users in S is
5000. Then the FUD can be computed using Eq. (2)
as u =(10000 — 5000)/10000 = 0.5. Similarly, if
the desired number of items in S is 5000, then the
FID can be computed using Eq. (3) as v =(10000 —
5000)/10000 = 0.5.

Since all the coefficients in Eq. (1) can be
approximated significantly by £1, the model can be
considered general, constant, and closed-form, thus
providing a quantitative analysis of the effect of
subsampling on the training time. For example, if half of
the items are dropped and half of the users are dropped,
then according to Eq. (1), TS/T? = 1/4, implying
that the training time has been reduced 4 times. If
90 percent of the items and users are dropped, then
TS/TP = 0.01 = 1/100, and the training time has
been reduced 100 times.

The attempt in Ref. [28] to find an equally simple
and general model for the deterioration in the root
mean square error (RMSE) due to subsampling was not
successful. The investigation revealed however that the
deterioration in RMSE due to subsampling is modeled
better using the FUD odds ratio u/(1 — u) and the FID
odds ratio v/(1 — v) and that the relationship appears
to be multi-linear in the odds. The coefficients however
presented no simple patterns in terms of the combination
of dataset and algorithm.

In this work, we seek to establish a general constant
closed-form model for the deterioration in accuracy due
to subsampling that is similar to Eq. (1), in the sense that
the models are constant across the datasets of different
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characteristics and its parameters are determined in
terms of the dataset characteristics. In addition to the
understanding and intuition that these constant models
provide, they also suggest that a theory of subsampling
effects is also feasible. Our approach is to construct a
constant subsampling accuracy loss (SSAL) model by
synthesizing 850 primary rating matrices from the 25M
MovieLens dataset!>®3%1, to subsample each of these
primary matrices many times, to recognize the patterns
in the subsample CF accuracy loss, and then to abstract
a general constant model whose coefficients have
simple closed-form expressions in terms of the dataset
characteristics. Finally, we will show that the general
constant model explains the majority of the variation
in the performance across datasets. We considered 3
expressions of accuracy loss, one in terms of the RMSE,
on which most of the exploration was performed, and 2
expressions based on the mean square error (MSE). One
of the MSE-based expression of accuracy loss was found
to be superior.

The primary contributions of this study are listed
below.

e This work pioneers the idea of developing constant
models of the accuracy of CF predictive algorithms that
depend only on the simple properties of the dataset,
namely, the dimensions and the densities of the dataset.

e In particular, we developed and validated
quantitative SSAL models for SVD CF method that are
constant across the datasets. For instance, if 80 percent
of the users and items are dropped from a dataset having
an average of 20 ratings per user and 20 ratings per item,
our best model expects that MSES / MSE? =7.7 for any
reasonable dataset. Alternatively, we say that the MSE
of the SVD CF is increased 7.7 times (see Section ?? for
detailed illustration).

e This work and the analysis in Ref. [28] together
suggest that constant models can also be achieved for
other CF methods as well. The feasibility of a theory of
subsampling effects on the performance of CF methods
is supported by this work.

2 Methodology

2.1 Notation and measures of accuracy loss

Let P denote the primary rating matrix (PRM) and S
denote the subsampled rating matrix (SRM) from P. Let
m represent the number of rows and hence the number
of users, and let n represent the number of columns, and
hence the number of items. Let u represent the FUD
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during subsampling, and v represent the FID during
subsampling of the PRM.

If one interprets p as the probability of dropping a
user, then one can define the odds ratio of dropping a

user (ORDU) as
7
Oy=—— 4
s 4)
Similarly, if one interprets v as the probability of

dropping an item, then one can define the odds ratio

of dropping an item (ORDI) as
v

0, = )
1—v
We note that our previous investigation has suggested
that the odds are more expressive of the RMSE
deterioration due to subsampling(?®.
Let § denote the density of the rating matrix, which is

the number of nonzero elements over the total number of

elements mn. If N, denotes the total number of ratings

or nonzero elements in a rating matrix. Then

5= ©)

mxn
and hence § can be thought of as a surface density.

The square root of § or §'/2 therefore represents a
matrix-level linear density. One can define alternative

“linear” densities as follows:

N, N,
Su=—=n8 and & =-—"=ms (1)

m n
The ratio of linear densities is equal to the ratio of

number of users to items or vice versa
z_n (8)
v n

Here, we interpret 8y as the average number of ratings
per user and d; as the average number of ratings per item.

A CF application process consists of dividing a rating
matrix R into training and test data, learning a model
from the training data and testing the performance of
the learned model using the test data. In this study,
we have used the SVD CFB!l algorithm because of
its predictive ability even with datasets having low
density and disproportionate numbers of users and items.
The SVD CF algorithm was implemented using the
SURPRISE python library?!,

The performance of CF methods can be evaluated using
a variety of predictive accuracy metrics, classification
accuracy metrics, ranking accuracy metrics, and
others>*3!. Various recommender systems perform
differently according to the evaluation metrics*®!. The
most popular and commonly used metrics for predictive
accuracy are the RMSE!N%37] and the mean absolute
error (MAE)3*381 Tn this work, we will use the RMSE,
or its square, the MSE if advantageous.
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The MSE is defined as the average squared error
between the observed and predicted values of a
variable®!. Let r be an observed rating in a rating
matrix R and 7 be the predicted rating using a CF model,
then MSE of the CF model based on |K| number of
predictions can be computed as

MSE 2% > k=)’ ©)
keK
and the RMSE is its square root.

Let RMSE? denote the RMSE achieved by applying a
CF technique to a PRM P, and RMSE?® denote the same
for a subsampled rating matrix S from P. Since the
subsampling is generally known to increase the RMSE
error, we can write

RMSE®

RMSE”
Our preliminary investigation/®®! has suggested an
SSAL model based on RMSE given by

0 %)
p=1410 (ﬁ) +m (—”) —120,0y (11)

p= = 1 + Accuracy Loss>1 (10)

1 —p
where the n’s are regression coefficients that are
determined for each primary rating matrix by
constructing many (say 550) subsampled rating matrices
and computing the RMSE for each subsampled rating
matrix.

The model in Eq. (11) is obviously dependent on the
primary matrix P, and P itself can be characterized by
its density §(P) and its dimensions (m(P) and n(P),
the numbers of rows and columns), and other primary
matrix characteristics (PMC). The objective of this paper
is to study the dependence of these models (and their
coefficients) on the PMCs. If the dependencies are
simple, then a general constant closed-form SSAL would
be derived.

2.2 Overview of the methodology

Here, we start with the 25M MovieLens dataset!??-3%
(M = 108, reflecting the approximate number of ratings
in each dataset) and synthesize about 850 distinct
Primary Rating Matrices from it using judgmental
sampling. Care is taken to generate primary matrices
with a wide and representative range of m, n, and
8, and perhaps other PMCs. For each PRM, nearly
550 subsampled rating matrices are synthesized using
density-constrained subsampling algorithm proposed in
Ref. [28]. Each SRM S has a unique combination of
fractions of users and items dropped, © and v. For each
SRM, the accuracy measure of the SVD CF model is
computed. For each PRM, linear regression is used to
compute the coefficients in the SSAL(RMSE) model in

Eq. (11).

Subsequently, we perform various visualization tests
in an attempt to ascertain whether the coefficients have
a simple dependency on the PMCs. This includes, for
instance, plotting a coefficient vs. a PMC or vs. another
coefficient. Then, one SSAL(RMSE) model that predicts
the accuracy loss for all considered primary matrices
was derived following the 3-step procedure explained
in Section 4.4. Similarly, we modeled SSAL based on
MSE and this lead to a more elegant SSAL model in
Eq. (29).

3 Generating the Primary Matrices

We will use the 1M MovieLens (1IM-ML) dataset!3%-401,
the 25M MovieLens (25M-ML) dataset?-3% and, the
Yahoo! Music (YM) dataset!*!! during this study. The
steps involved in extracting a PRM P having m users
and n items and a density § are as follows.

(1) Update the original rating dataset by dropping
rows or columns or both using judgmental sampling
until it has the density §. One can drop highly dense
rows/columns if § is less than the density of original
dataset. Similarly, less dense rows/columns can be
dropped if § is higher than the density of original dataset
from which PRM is being extracted. Care must be taken
that the number of users does not become less than m and
the number of items does not become less than » in the
updated original dataset, as sampling with replacement
has not been considered while extracting a PRM.

(2) Find the fraction of users that has to be dropped
from the updated original dataset in Step 1 so that it can
be updated to a rating matrix of m users. Also, compute
the fraction of items to be dropped from the updated
original data set that leads to a rating matrix with n
users.

(3) Apply the density-based random stratified
subsampling using clustering (DRSC) proposed in
Ref. [28] to the updated original dataset in Step 1 using
the values of FID and FUD from Step 2. The resulting
rating matrix is the PRM P with the desired number of
users m, number of items 7, and density §.

The primary rating matrices extracted from 1M
MovieLens dataset have rating data in discrete numerical
rating scale of 1 to 5. Primary rating matrices extracted
from 25M MovieLens dataset!?”! have rating data in
discrete numerical rating scale of 0.5 to 5 in steps of 0.5.
Primary rating matrices extracted from Yahoo! music
dataset!*!! have rating data in discrete numerical rating
scale of 1 to 100.

Primary rating matrices considered to postulate the



76

preliminary SSAL models are extracted from the 25M
MovieLens dataset!?®3% A representative number of
PRMs is shown in Table 1. For every size of synthesized
PRM, we have varied density as mentioned in Table 1.
Around 850 primary matrices differing in at least one
of the dataset characteristics were synthesized. From
each PRM, around 550 density constrained subsampled
rating matrices were obtained. Hence, our analysis of
results involves application of SVD CF to nearly 460 000
subsampled rating matrices.

4 Analysis of the Coefficients of
Subsampling Accuracy Loss Model
Based on RMSE

4.1 Variation of coefficients of SSAL model with
primary rating matrix characteristics

For each primary matrix P with parameters m(P),

Table 1 Details of synthesized primary rating matrices from
25M MovieLens dataset.

Number of Number of . Number of
. Density of .
users (m) items (71) P primary
in P in P matrices
0.06, 0.08, ...,
7000 5000 0.18 7
4200, 4500, ...,
8000 12000 0.06, 0.1 52
3000, 3300, ..., 0.06, 0.08, 0.09,
6000 9000 0.11,0.12,0.14 120
4200, 4500, ...,
12000 8000 0.06 26
3000, 3300, ..., 0.06, 0.08, 0.09,
9000 6000 0.11,0.12,0.14 120
3000, 4000, 3000, 4000, 0.05,0.06, ..., 180
5000 5000 0.2
3000, 3500, ...,
5000 10000 0.09, 0.1 28
6000, 7000, ..., 0.05,0.06, ...,
5000 10000 0.2 100
3000, 3500, ...,
10000 5000 0.09, 0.1 28
6000, 7000, ..., 0.05, 0.06, ...,
10000 5000 0.2 100
8000 12000 0.05,006,..., 20
0.2
9000, 12 000 3000 0.05, 836 40
10000 10000 0.05, 836 20
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n(P), and §(P), we have a regression model of the
SSAL(RMSE) with parameters no(P), n1(P), and
n2(P). In the following, we will drop the explicit
dependence on P and discuss the observed relationships
between the above 6 quantities that are function of P.

In the first (discovery) phase, we will try to discover
the likely relationships, by plotting the coefficients for
various special cases. Figure 1 suggests that for given
m = 4000 and n = 5000, the coefficients n; depend
weakly on the density of the primary matrix. Moreover,
n, appears to be the sum of ng and ;.

Qualitatively similar conclusions were reached by
considering other combinations of m and n. A case
which showed a slightly wilder variation is more
unbalanced with (m = 9000, n = 3000), and it is
shown in Fig. 2. But even so, the above relationships
seem to hold.

Based on the Figs. 1 and 2, we can state the following
conclusions.

(1) A change in the density of PRM does not affect
the values of 1's significantly at a constant size of the
users and items of PRM.

0.06
Number of users = 4000 = o
0.05 - Number of items = 5000 - m
® + N2
[
Q0
(3]
& 0.04r V. +
< L ., . +
o LB
5 0.03 1
[
1723
@ .
o> 0.02 1 . «
Q - * ¥ » . - - Fl -
o » k] b -
0.01

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
Denisty 6

Fig.1 Analysis of coefficients of SSAL model versus density
at constant number of users and items for P (4000, 5000).
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0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
Denisty 6

Fig. 2 Analysis of coefficients of SSAL model versus density
at constant number of users and items for P (9000, 3000).
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(2) The hypothesis 71 ~ ng + n; relating the
coefficients of SSAL model is reasonable and should
be tested.

Figure 3 depicts the changes in 1; with the number of
users m in P at constant density and number of items
n for n = 6000 and § = 0.06. Other combinations (not
shown) exhibited a qualitatively similar behavior which
can be summarized as follows.

(1) no decreases linearly with m, the number of users
in the PRM at constant density and number of items.

(2) 11 increases linearly with m at constant density
and number of items.

(3) n2 is nearly constant when changing the number
of users of PRM at the constant number of items and
density.

(4) The hypothesis 1, ~ no + 1, based on Figs. 1

and 2 and proposed above, seems to be supported by Fig.

3 as well.

Similarly, Fig. 4 shows the variation in 7; with the
number of items in the PRM at the constant number
of users (m = 6000) and constant density § = 0.14.
Other combinations were also tested and they showed a
qualitatively similar behavior.

0.050

Number of items = 6000 No
0.045 | Density (6) = 0.06 «m

+ n2

o
o)
IS
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°©
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W
vt

0.030 + L F ' .

Regression coefficients
o
o
N
(%]

0.020 1 " .- .

0.015 | . e e P

0.010

3000 4000 5000 6000 7000 8000 9000
Number of users in primary matrix m

Fig. 3 Analysis of coefficients of SSAL model versus
number of users at constant density of 0.06 and 6000 items.
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0.06 !
+ nz

2
§ 0.05¢
&(:;) +
5] + + + * + +
S o004l *+ " * s 2T
f =
i=3
2
o
o 0.03 +
(53
@

002 2% v aw et 0

. .
-
0.01

3000 4000 5000 6000 7000 8000 9000
Number of items in primary matrix n

Fig. 4 Analysis of coefficients of SSAL model versus
number of items at constant density of 0.14 and 6000 users.

From Fig. 4 the following conclusions are suggested.

(1) no ~ n; regardless of the number of items in
the PRM at a constant number of users and a constant
density.

2)no =6y form < knand ny = 6, form > «kn at
the constant number of users and constant density, where
0, and 6, are two values of 7o that must be computed
from the data. From our analysis, k &~ 1.35. In other
words, if the number of users is less than 1.35, the
number of items one model is needed, and if it is larger,
a slightly different model is needed. In the following
development, we ignore this fact, which we consider a
secondary effect, and seek a model that covers all cases
in Table 1.

(3) 12 is nearly constant with when changing the
number of items of PRM at the constant size of the
users and the constant density.

(4) The hypothesis 12 ~ 1o+ 11 supported by Figs. 1—-
3 is seem to be true in Fig. 4 as well.

Based on the plots of n’s versus the different PRM
characteristics, we are able to propose the hypothesis

N2~ nNo+m (12)

The plots seem to suggest that 1, is proportional to

no. We assume that the proportionality constant

o =11/ (13)
depends on the PRM characteristics. If this is true, then
using Formula (12) in Eq. (11) simplifies the RMSE
SSAL model to

p—1=n00, + 110, (14)
The notation n; = ano will lead to
p—1=1no (04 + «0,) (15)

The hypothesis proposed in Formula (12) is tested in
Section 4.2. The relationship of & = 17/no with the
number of the users and items of PRM is studied in the
Section 4.3.

4.2 Testing the hypothesis on the relationship
among coefficients of SSAL model

We plotted 1o + 11 versus 1, to test the hypothesis in
Formula (12), and the result is shown in Fig. 5. A linear
regression analysis is then performed for the foumula.
no + 11 = slope 1, + intercept (16)
The least-square linear regression yields a slope = 0.96
and the intercept = 0.0018, which supports the proposed
hypothesis of 19 + 71 = n2. The p-value is 0.00 for
the linear regression analysis. The mean absolute error
(MAE) during the linear regression analysis is 0.0005.
The relative error is therefore about 0.0005/0.05 = 1%
or about 0.0005/0.02 = 2.5% in the worst case.
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0.06 | --- : Linear fit R
0.05 M"f
P

0.04

0.03 |
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0.02 |

0.01

0.03 0.04 0.05 0.06
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Fig. 5 Analysis of coefficients of SSAL model.

4.3 Analysis of the ratio of coefficients of SSAL
model with PMCs

Figure 6 shows the variation of @« = 1;/n¢ with the
number of users at constant number of items n =
6000. The relationship appears to be linear. Other
combinations showed qualitatively the same patterns.
Figure 6 shows that « increases linearly with the

number of users of PRM at the constant number of items.

Also, Fig. 6 shows that o seems to be higher for higher
value of density for a constant size of the users and
items. Figure 7 shows the dependence of & = 11 /710 on
the the number of items of PRM for 6000 users. Other

Number of items = 6000 ---: Linear fit
1.4
+ + v -
1.2} + T
+ " i
,—."' % b
< 1.0 + - T
\i .+ £ . /_,,_—.”
= M ,—““— - -
0.8 .
0.6 » Density (6) = 0.06
! Density (6) = 0.08
+ Density (6) = 0.11
0.4

3000 4000 5000 6000 7000 8000 9000
Number of users in primary matrix m

Fig. 6 Analysis of @ = n1/ny versus number of users at
constant 6000 items.

1.6
Number of users = 6000 » Density (6) = 0.06
Density (6 ) = 0.08
1.4 + + Density (6) = 0.11
--- : Linear fit
1.2 + s
£ | e . e
S _ | T e e
< 1.0fF + . - P
+ r -
. + - - +
0.8 CTTTTTT . .
0.6

3000 4000 5000 6000 7000 8000 9000
Number of items in primary matrix n

Fig. 7 Analysis of ¢ = 11/n9 versus number of items at
constant 6000 users.
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simulations (not included in this paper) show the same
qualitative behavior.

Figure 7 depicts that o decreases linearly when
increasing the number of items of PRM at a constant
number of the users. Also, Fig. 7 shows that o seems
to be higher for higher value of density for a particular
number of users and items. Hence, the assumption that
o can be represented in terms of PRM characteristics is
validated.

In conclusion, o increases with the number of users
(at constant n and §), decreases with number of items
(at constant m and §), and increases with density (at
constant m and n). Ultimately this leads to the form in
Eq. 2D).

4.4 Coefficients in terms of linear densities

Model in Eq. (14) is linear in O, and O,. Now we
will check whether the addition of a cross term O,, O,
gives a better fit. Therefore, we postulate a model M1 to
estimate the ratio p as
p:¢0+¢10u+¢20v+¢30u0v (17

The extensive regression analysis for the model in
Eq. (17) suggested ¢9 &~ 1 and ¢p3 ~ 0. The results are
statistically significant because the regression analysis
based on the model in Eq. (17) yielded a high R? = 0.95
and low MAE = 0.009 in average for 850 primary rating
matrices considered in Table 1.

Next, we experimented with several multiple linear
regression parameters*?! of ¢, and ¢, in terms of
different combination of m, n, §. During the regression
analysis process, we explored that the variation in the
coefficients of SSAL models are significantly explained
by the linear densities §y7 and ;. Therefore, for the rest
of this paper, we propose and recommend the following
procedure.

Step 1. Expand the two coefficients (here ¢; and ¢,)
in a “parallel combination™ of the linear densities, in
other words, as a linear combination of the inverses of
the linear densities.

ap ar b 1 b2
o1 ~ag+ —+ — and ¢ ~ b+ — + — (18)
Su ~ dr Su  dr
where a and b are numerical constants. Moreover, ag
and by are the intercepts.

Step 2. Evaluate the goodness of fit for the proposed
regression models for the coefficients of SSAL models.

The regression models based on Eq. (18) are shown in
Table 2. The coefficient of determination R? illustrates
that about 80 percent of the variations in the coefficients
of SSAL(RMSE) model in Eq. (15) can be explained by
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Table 2 Regression coefficients based on regression analysis
of ¢, and ¢, versus the linear densities, §; and §; in Eq. (18).

Coefficient of Coefficient of

Regression of Intercept R

(1/8uv) (1/87)
b1 2.00” 438 0.0048 0.84
023 433 2.01” 0.0061 0.78

Note: The double primes ” in Table 2 represent a standard

deviation of 0 < 0.5 in coefficients (a and b) of Formula (18)
as obtained from the 50 fits. A single prime ' indicates
0.5 < 0 < 0.8. The standard deviations in the Intercept in Table
2 were less than 0.005 for all cases. All coefficients and intercept
in Table 2 had very small p-value p < 0.01. The R?*3 column
is used for evaluation of the regression fit.

the linear densities 8y and 6;.

Step 3. Find simple ratios of the coefficients of linear
densities.

From the Table 2 and considering the standard
deviation in a and b we can postulate that

ay & by, ap = by anda—2=[£%2 (19)
ai by

Equation (19) states that ¢y = ¢, when the linear
densities are equal.

Hence, using Eqs. (19) and (18) and Table 2, the

model M1 in Eq. (17) can be simplified to

81 + 28y 261 + v
=14+ ——0O —0, ) =
P " ( Susr " Susr "
2 2
_ m + nOM+ m—l—nov 20)
mné mné
where @ = a; = b,. The accuracy loss models in

Egs. (20) are symmetrical because exchanging the values
of (w, n) with (v, m) results in the same SSAL.

The models in Eq. (20) are constant over wide range
of PRM data characteristics including different densities,
covering the two cases m > n and m < n. For no items
dropped, or O, = 0, the models suggest that SSAL
is more inversely proportional to the average number
of ratings per item than average number of ratings per
user for a specified p. Similarly, for no users dropped,
or O, = 0, the second term in the models suggest
that SSAL is more inversely proportional to the average
number of ratings per user than the average number of
ratings per item for a specified v. Also, the SSAL is
more sensitive to FUD and FID compared to the PRM
characteristics.

Based on Table 2, @ ranges form 1.5 to 2.5. So, we
compared the actual ¢; and ¢, for the primary matrices
with ¢ and ¢, computed from using relation in Eq. (19)
for the possible range of @ = a; € [1.5,2.5]. Our
analysis yielded that @ ~ 2.3 has the best fits. We will

further explore the best value of @ for the final model
M1 in Eq. (20) for different cases in Section 6.
Also o = 11 /10 can be written as
a=n1—¢2 281 + du 2m +n

e _ = 21
o $1 Sty mtan D

5 Effect of Subsampling on the MSE

5.1 Model with a presumed cross term

If the FID and FUD are very small, perturbation theory
suggests that the SSAL model based on the MSE has
the same model as the SSAL based on RMSE with an
additional factor of 2 multiplying the coefficients ¢; and
¢». The question we attempt to answer now is whether
an equally simple multi-linear model of the deterioration
of the MSE leads to a better approximation over a
wider range of FID and FUD; for instance, at extreme
sampling levels characterized by very high subsampling
rates. Therefore we postulate the model M2 for the ratio
_ MSES
~ MSE’

P> =Yo+ Y10, + V20, + ¥30,0,  (22)

Preliminary regression fits suggested that {9 &~ 1 and

2

P as

Y3 & 0. The results are statistically significant because
the regression analysis based on the model in Eq. (22)
yielded high R? = 0.96 and low MAE = 0.014 on
average for 850 primary rating matrices considered in
Table 1.

The fact that ¥/3 &~ 0 and hence the MSE has no cross
terms involving O, O, over a wide range of PMC and
subsampling levels are very important. It shows that
the RMSE model introduces spurious behavior. This
is because squaring the RMSE model would lead to
a nontrivial cross term, which is contradicted by the
evidence.

We apply the 3-step procedure explained in Section
4.4 to the coefficients of the M1 model. In Step 1, we
express the coefficients as parallel combination of the
linear densities

C1 Co dl d2
~cg+ — + —, ~do+—+— (23
(4} CO+8U+81 () 0+8U+81 (23)
where co and dj are intercepts. Next, Steps 2 and 3 lead

to Table 3 which shows that

d
c1 &~ dy, cp =dy, and C—2=—1%2 (24)
C1 dz
thus leading to the model with the same pattern as before
or + 26 20r +§6
=14 I+ UOM 1+ UOV 25)
Sudr Sudr
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where ¥ = ¢; = d,. M2 is a symmetrical model like
Ml1.

The values of ¢ , d> and the relation ¢; ~ d, in
Table 3 suggest that c;, = ¥ belongs to the range [5.0,
7.0]. We found that ¥ = 5.6 yields the best fit for
models in Eq. (23).

Hence, the expressions for SSAL from MSE and
RMSE are qualitatively similar and are related to each

other with relation between @ and ¥'. Meaning,
-1 @
'02 1= — SSAL(RMSE)=tSSAL(MSE) (26)
p J—

5.2 Factored MSE model

Finally, we also considered a multi-linear model M3 of
the MSE deterioration that has an outer product form.
p? =1 +y10u) (1 +720) 27)
This model is multi-linear in the odds and, in principle,
agrees with the qualitative principles advocated earlier.
Note that this model must also be dropped because
the simulations indicate that {3 = 0 in model M2,
thus requiring y; and y, to be zero. Following the 3-
step procedure in Section 4.4, we postulate the parallel
combination

e e
Y1 :eo—l——l—l——zandy2=fo—l-—l-i—é (28)
Su &1 Su O
and a similar analysis leads to
P D 242 )
~ — + — an AN — 4+ —
Y1 5y 5 V2 5y 5

The results of the fit are shown in Table 4.
The R? in Table 2 is comparable to the R? in Table 4.
The final form of model M3 is

pzz(] + MOM) (] +
(30)

318y
For v = 0, the model in Eq. (30) depends on O,,, and
for u = 0, the model in Eq. (30) depends on O,,.

2(68; + dv) 0
816y Y

Table 3 Regression coefficients based on regression analysis
of Y1and V¥, versus the linear densities, §;; and §;.

Regression Coefficient of Coefficient of Intercept  R2

variable (1/8v) (1/8r)
Y1 6.04” 1172 —0.01 0.83
V2 1223 5.56” —0.007 0.81

Note: Double primes ” in coefficients in Table 3 indicate a

standard deviation o < 0.5 in the coefficients (¢ and d) of
Formula (23) as obtained from the 50 fits. A single prime ” indicates
that 0.5 < o < 0.8. The standard deviations in the Intercept in Table
3 were less than 0.005 for all cases. All coefficients and intercept
in Table 3 had very small p-value p < 0.01. The R%*3! column is
used for evaluation of the regression fit.
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Table 4 Regression coefficients based on regression analysis
of y, and y, versus the linear densities, §; and §;.

Regression Coefficient of Coefficient of Intercept  R2

variable (1/6v) (1/6r)
Y1 3.71” 10.45” 0.0061  0.85
V2 12.36/ 2.17 0.007  0.81

Note: Double primes ” in Table 4 represent a standard deviation
o < 0.4 in coefficients (e and f) of Eq. (28), as obtained from
the 50 fits. Single primes ’ indicate 0.4 < o < 0.6. The standard
deviation of the Intercept in Table 4 was less than 0.005 for all
cases. All coefficients and the intercept in Table 4 had very small
p-value p < 0.01. The R column is used for evaluation of
the regression fit.

6 Evaluation of the Final Models Across
Different Datasets

There are models which are somewhat equivalent for
very small FID and FUD, but they have different
performance for large FID and FUD. A symmetrical
model M1 is given by

8 + 28 281 +8
p=1+¢>(’+ Yo, + ’+U0V) 31)
Suds U1

with @ ~ 2.3. Next symmetrical model M2, which is
the best, is given by

87 + 26 26, + 6
Polqw(LE0U LG (3
Suds Suds

with ¥ =& 5.6. The non-symmetrical factored model M3

is given by
46 108
= (142200 V1 +
Sudr

To evaluate the 3 proposed models against the original
dataset, we conduct the following experiment.

(1) Construct 6 primary matrices as mentioned in
Table 5. Here, P; and P, are extracted from the 1M
MoviesLens dataset. P; and P4 are extracted from the
25M MoviesLens dataset. Ps and Pg are extracted from
the Yahoo! Music dataset.

1267 + 26y
=L =70,
Sudr )

Table 5 Details of the primary rating matrices extracted for
evaluating the performance of SSAL models across different
datasets.

Primary Number of Number of Density Rating scale

dataset  users m items n 8 of data Source
Py 6040 3706 0.045 1to5 IM-ML
P> 4607 2080 0.095 1to5 1M-ML
P3 8000 4004 0.101 0.5t05 25M-ML
Py 4009 8017 0.151 0.5to5 25M-ML
Ps 3500 6000 0.08 1 to 100 YM
Pg 5006 5011 0.12 1to 100 YM
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(2) Evaluate the models in Egs. (31)-(33) by
subsampling about 500 times from each primary matrix.

(3) Compute the MAE for either p or p?. The MAE
of an estimate ¢ is defined as

MAE (§) :ﬁ > lak — dl (34)
kekK

where ¢ is either p or p?, and |K]| is the number of
subsampled matrices derived from each primary matrix.
We report the evaluation results for the models in
Eq. (31)—(33) based on six different primary rating
matrices as shown in Table 6. Note that the FID and

the FUD were varied for a wide range from 0.1 to 0.9.
The order of performance of 3 models in Egs. (31)—
(33) to estimate SSAL is the same among the
different datasets. Therefore, each model has the same
performance order (Ps, P4, P>, Pg, Py, P5) for datasets
while estimating ratio p or p?. Also, the low MAE of
the AL indicator (particularly for M1 and M2) across all
six datasets indicates that the proposed SSAL models
are applicable to different datasets of different domains.

7 Validation of the Models for Different
Levels of Subsampling

In this section, we will validate the 3 models developed
at different levels of sub-sampling. The validations
are based on the subsampled matrices of the primary
matrices in Table 1. The three cases of sub-sampling
levels considered are

(1) Weak subsampling: 1 < 0.5,v < 0.5;

(2) Strong subsampling: « > 0.5,v > 0.5; and

(3) All subsampling: The samples above are
combined.

The validation results are summarized in Table 7. M1,
M2 and M3 perform similarly for weak sampling with
R? ~ 0.6 for all the models. A low R? is expected
for weak subsampling because there is less variation
in the SSAL for p,v < 0.5. Moreover, the statistical
significance of the three models is justified by the low
MAE(g) values of each model.

Table 7 also shows that the M2 model performed
better than the other two models for strong subsampling

Table 6 MAE in estimating the ratios for the 3 models.

SSAL
Model indicator (g)
p or p? PL P, Pz Py Ps Pg
Ml 0 0.051 0.042 0.015 0.024 0.067 0.043
M2 02 0.110 0.088 0.026 0.040 0.13 0.089
M3 0> 0.132 0.113 0.029 0.050 0.142 0.092

MAE of the SSAL indicator

Table 7 Evaluation of 3 models for 3 different subsampling
levels.

Case Model R? MAE (§)

Ml 0.55 0.018

Weak subsampling M2 0.61 0.036
M3 0.59 0.037

M1 0.69 0.061

Strong subsampling M2 0.75 0.13
M3 0.46 0.18

M1 0.71 0.042

All subsampling M2 0.79 0.097
M3 0.60 0.12

(0 > 0.5, v > 0.5) and for all subsampling. Therefore,
the model M2 in Eq. (31) with ¥ = 5.6 will be
considered superior in explaining the variations in SSAL
based on the rating data characteristics.

The validation so far is based on @ = 2.3 in M1 in
Eq. (31) and ¥ = 5.6 in M2 in Eq. (32). Now, we will
find the best value of @ and ¥ for the three different
cases of subsampling. The results shown in Table 8
indicate that the performances of the M1 and M2 are
similar to the analysis as in Table 7. Also, we can see
from Table 8 that ¥/® = 2 for weak FUD and FID, as
expected.

Next, we randomly consider 5000 combinations of
the five data characteristics (m, n, 8, i, v) and perform
the analysis based on model M2 in Eq. (32) with ¥ =
5.6. The process was repeated for 100 times and the
evaluation results of M2 is as shown in Figs. 8 and
9 which show the efficacy of model M2 to correctly
estimate the SSAL based on the subsampling levels and
primary matrix characteristics.

We present an example to compute p? = MSE® /
MSE? given [, v, and the linear densities of the primary
rating matrix. Let us assume that 80 percent of the users
and items are dropped from PRM P, and thus the FUD
# =0.8 and the FID v = 0.8. Then, O, and O, can be
computed as

Table 8 Relation of ¥ and @ for different sub-sampling
levels.

Case Model R? MAE Best fit v/
Weak Ml 0.55 0.018 @& =241 21
subsampling M2  0.61 0.036 ¥ =5.12 '
Strong. Ml 0.71 0.061 @& =2.02 299
subsampling M2  0.75 0.13 ¥ =6.04
All ’ M1 0.72 0.042 & =1.98 )88
subsampling M2  0.79 0.094 ¥ =572 '
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Also, we assume that, the average number of ratings
per user 6y is 20 and the average number of ratings per
item §; is 20 in the PRM P. Then p? =MSES/MSE?
can be estimated using M2 in Eq. (32) with ¥ = 5.6 as

p2:1+5.6(20+2X20 2O+2X20x4):7.72

20 x 20 20 x 20
which means that our best model predicts that MSE
of SVD CF increases by 7.7 times for any reasonable

dataset.

8 Conclusion and Future Work

In this work, we proposed predictive SSAL models
which estimate the loss in the performance of SVD CF
algorithm due to subsampling. The SSAL models are
constant across the datasets which suggest a theoretical
underpinning. Moreover, extensive experiment showed
that the SSAL models depend only on the odds ratio of
dropping a user O, odds ratio of dropping an item O,,
and linear densities 6y and ;.
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An SSAL model, M2 as in Eq. (32), based on MSE
performed best among the proposed models. M2 is
linear in O, and O, with no cross terms involved. The
coefficients of Oy, and O, in M2 are linear in §y and §;.

The SSAL models were evaluated with three well-
know public datasets: (1) 1M MovielLens dataset, (2)
25M MovieLens dataset, and (3) Yahoo! Music Rating
dataset. The results strongly suggest a theoretical
justification or prediction for the coefficients of the SSAL
model in terms of the linear densities §y and §; of
the rating data. A theoretical justification would imply
that the models developed here apply to other machine
learning problems beyond collaborative filtering.
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