
BIG DATA MINING AND ANALYTICS
ISSN 2096-0654 06/10 pp 55 – 71
Volume 6, Number 1, March 2023
DOI: 10.26599/BDMA.2022.9020018

C The author(s) 2023. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Intelligent Segment Routing: Toward Load Balancing
with Limited Control Overheads

Shu Yang, Ruiyu Chen, Laizhong Cui�, and Xiaolei Chang

Abstract: Segment routing has been a novel architecture for traffic engineering in recent years. However, segment

routing brings control overheads, i.e., additional packets headers should be inserted. The overheads can greatly

reduce the forwarding efficiency for a large network, when segment headers become too long. To achieve the

best of two targets, we propose the intelligent routing scheme for traffic engineering (IRTE), which can achieve

load balancing with limited control overheads. To achieve optimal performance, we first formulate the problem as a

mapping problem that maps different flows to key diversion points. Second, we prove the problem is nondeterministic

polynomial (NP)-hard by reducing it to a k -dense subgraph problem. To solve this problem, we develop an ant colony

optimization algorithm as improved ant colony optimization (IACO), which is widely used in network optimization

problems. We also design the load balancing algorithm with diversion routing (LBA-DR), and analyze its theoretical

performance. Finally, we evaluate the IRTE in different real-world topologies, and the results show that the IRTE

outperforms traditional algorithms, e.g., the maximum bandwidth is 24.6% lower than that of traditional algorithms

when evaluating on BellCanada topology.

Key words: traffic engineering; segment routing; bandwidth load balancing; ant colony optimization

1 Introduction

Traffic engineering (TE) has always attracted much
research attention. Traditional TE concentrated on IP
routing protocols[1], routing optimization problems[2],
overlaying in an IP network[3], etc. Most of these
studies were conducted in traditional IP networks.
With the advent of the software defined network
(SDN), researchers began to focus on TE issues in
the SDN, including traffic splitting and SDN protocol
design[4]. The SDN can help us achieve efficient network
management, which can solve massive TE issues that
� Shu Yang, Ruiyu Chen, and Laizhong Cui are with the

College of Computer Science and Software Engineering,
Shenzhen University, Shenzhen 518000, China. E-mail:
yang.shu@szu.edu.cn; 2070276056@email.szu.edu.cn; cuilz@
szu.edu.cn.
�Xiaolei Chang is with the Tsinghua Shenzhen International

Graduate School, Tsinghua University, Shenzhen 518071,
China. E-mail: changxl@mail.tsinghua.edu.cn.
�To whom correspondence should be addressed.

Manuscript received: 2021-12-18; revised: 2022-06-22;
accepted: 2022-06-24

are difficult to realize in traditional networks. However,
the SDN faces great challenges, e.g., scalability issues
that limit its application scope[5, 6]. In addition, segment
routing (SR) has advantages in network structure that can
help solve these problems in the SDN. Therefore, many
scholars began to explore the possibility of combining
the SDN with segment routing[7].

Segment routing is a novel network architecture that
has realized further control of SDN in recent years.
SR can achieve compatibility with the SDN, and it
has become an implementation solution to some TE
problems in the SDN[8]. SR can realize directional data
transmission from the source node to the destination
node[9]. However, the control overhead in SR is also
unlimited in many different scenarios, which will causes
inefficient data transmission[10]. Meanwhile, existing
solutions ignore the problem of an overlarge packet
header in SR[11]. Therefore, a routing scheme must
be explored to achieve load balancing and consider the
limited packet length in SR.

Control overhead has an important problem in

56 Big Data Mining and Analytics, March 2023, 6(1): 55–71

TE. Appropriate schemes for controlling overhead
can optimize network transmission performance. In
recent years, with the development of new network
paradigms, i.e., the SDN, SR, and blockchain,
control overhead optimization has been used in
different frameworks[12, 13]. However, control overhead
optimization is neglected in the SDN and SR. An
unlimited control overhead causes an overlarge SR
packet length, and decreases data transmission efficiency.
The length of an SR packet header increases as the
routing length grows, which deteriorates the control
overhead situation in SR. Researchers did not optimize
network performance from the aspect of limited control
overhead when solving the issue of bandwidth load
balancing in SR[14]. Therefore, the TE scheme in SR that
combines bandwidth load balancing and limited control
overhead merits deeper exploration.

In this paper, we propose an intelligent routing scheme
for TE (IRTE) in an SR environment. The IRTE not
only achieves bandwidth load balancing in an SR
environment, but also considers packets lengths for
limited control overhead. We propose the diversion
routing method to achieve our bandwidth load balancing
target. We design the IRTE architecture based on SR
controller and deploy diversion routing capable nodes.
The controller collects the network status and generates
the information matrix in each time interval. After
receiving the data transmission demand from source
hosts, the controller computes the diversion routing
paths for them according to load balancing algorithms
and the network situation. We design two novel load
balancing and overload optimization algorithms for
the IRTE, including the load balancing algorithm
with diversion routing (LBA-DR) and improved ant
colony optimization (IACO). The LBA-DR generates
the diversion routing path for each source node through
linear programming and the randomized rounding
method. IACO analyzes this matrix and provides a
diversion routing path, which is generally different from
the traditional shortest routing path. On the one hand,
this diversion routing path from these two algorithms
considers the bandwidth load balancing target, and
decreases the maximum bandwidth use in the network.
On the other hand, it controls the SR packet header
length, and avoids the forwarding overload situation.
Later, the source establishes data flow according to
this diversion routing path and transmits data to the
destination. Finally, the nodes on this routing report
the latest network status to the SR controller to update

the network information matrix.
We implement our IRTE architecture, and evaluate

it under real-world network topologies. We compare
the designed algorithms with traditional algorithms. We
compare their performances in six typical topologies
with different numbers of flows. We record the
control overhead of each algorithm and verify that our
simulation is a test-bed experiment. We analyze the
changing trend of these two algorithms and compare
their load balancing performances. We also explore
the relationship between algorithm performance and the
number of nodes, degrees, and parameters of IACO. The
experimental results show that in different topologies,
the IRTE realizes the bandwidth load balancing objective.
The maximum bandwidth use in most networks using
the LBA-DR or IACO is reduced by 2.45% to 24.6%
compared with previous algorithms. With increasing
flow numbers, IACO achieves a performance advantage
of 1.3% to 22.5%, while the LBA-DR reaches 2.1%
to 17%. Additionally, with a change in ˛ and ˇ in
IACO, the load balancing gap between IACO and a
traditional algorithm improves from 14.5% to 22.7%
and from 9.34% to 29.3%, respectively. Meanwhile, the
packet header length is a significant constraint in each
experiment.

The main contributions are as follows.
� We design the diversion routing architecture IRTE

in the SR environment for TE. We complete the function
and application of the SR controller and diversion
routing capable nodes in the network. The network status
is timely recorded in the controller at each time interval.
� We formulate the bandwidth load balancing

problem in the SR environment, and design the LBA-
DR algorithm and IACO algorithm to realize the load
balancing objective with the help of SR. We define the
forwarding overload situation in the SR environment,
and control the SR packet header length to avoid
forwarding overload.
� We implement and compare our IRTE architecture

in different topologies. The experimental results show
that the LBA-DR and IACO of the IRTE significantly
achieve bandwidth load balancing and avoid forwarding
overload in data transmission.

The remaining of paper is organized as follows.
Section 2 introduces the related work. Section 3 presents
the IRTE architecture and the functions and details of
each entity. Section 4 discusses our problem formulation,
and proves the time complexity of our problem. Section 5
introduces the two algorithms for improving control

Shu Yang et al.: Intelligent Segment Routing: Toward Load Balancing with Limited Control Overheads 57

overheads in the IRTE. The experimental results are
presented in Section 6. Finally, Section 7 gives the
conclusion.

2 Related Work

2.1 Traffic engineering

TE has been proposed for several decades. In Ref. [15],
the authors discussed TE with multi-protocol label
switching (MPLS). Fortz et al.[16] introduced traditional
TE protocols such as the open shortest path first (OSPF)
and system-intermediate system. In the meantime,
Elwalid et al.[17] introduced an adaptive algorithm named
MATE to optimize TE in an MPLS environment. The
authors of Ref. [18] introduced a flow controller to
configuration commands in an ISP network. Kandual
et al.[19] presented a novel protocol named TeXCP that
realized online TE and load balance.

With the development of the SDN, many researchers
concentrate on the TE of the SDN. In Ref. [20], the
authors showed that TE had methods for addressing
the problems in the integrated architecture of the SDN
and the exiting network. The authors of Ref. [21]
introduced the primary challenges of TE, including
protocols, traffic control, and management in the SDN.
In Ref. [22], the researchers improved the performance
of a flow classifier for heterogeneous traffic. In Ref. [4],
the authors summarized several contributions about
TE in the SDN, including SDN protocols for TE and
novel SDN architecture such as the path computation
element. In addition, Chiesa et al.[23] demonstrated the
shortcomings of equal-cost-multipath (ECMP) because
of the large flow and presented a novel algorithm
to improve the performance of ECMP. Meanwhile,
Bahnasse et al.[24] contributed to an SDN architecture
aiming at improving the quality of service and bandwidth
allocation for TE. The authors of Ref. [25] introduced a
novel traffic monitoring framework via spark streaming.
In Ref. [26], researchers presented several theories and
mathematical demonstrations about node-constrained
TE. Thus, we discover several possible improvement
issues of TE by optimizing bandwidth use.

2.2 Segment routing

SR is a recently proposed novel transmission network
architecture. The researchers of Refs. [27, 28] introduced
the concepts and construction of SR, and improved
the traffic matrix algorithm. Authors in Refs. [8, 9]
presented several surveys about SR architecture and
its details. In Ref. [29], the TE advantages of SR

are shown through reasonable deployments. Hereafter,
many studies of TE on SR have followed. For example,
the authors of Ref. [30] presented an optimized
routing algorithm for bandwidth balancing and SR
header control. The authors of Ref. [14] introduced
an incremental method for optimizing link utilization
for a shifty network environment. In Ref. [31] the
authors considered decision load balancing in IPv6
and proposed a novel framework for applications to
reduce network overhead. Additionally, the authors of
Ref. [32] obtained an optimization solution for topology
scalability through the column generation method and
uesd the SR adjacency segment adequately. Moreover,
the researchers of Ref. [33] presented an effective failure
resiliency framework and controlled the number of
tunnels for TE in SR. These articles reflect the potential
to improve network performance for TE in SR. Thus,
the issue of network resource scheduling motivates
us to design an effective solution for optimizing link
bandwidth use.

2.3 Control overhead optimization

How to realize overhead control optimization in data
transmission is a potential research area in TE. In
recent years, researchers have designed many methods
to achieve control overhead. The authors of Ref. [34]
proposed a data structure to control the synchronization
packet length. Wang et al.[35] introduced an analysis
scheme for balancing run-time overhead. Freschi and
Lattanzi[36] presented a novel architecture to explore the
mathematical relationship between packet length and
node reliability. Meanwhile, the authors of Ref. [37]
proposed a novel rebroadcast strategy to improve
the performance of routing overhead. In Ref. [38],
the authors designed a data aggregation algorithm to
improve the overhead situation by reducing the packet
loss rate and latency. Additionally, the authors of
Ref. [39] optimized the technique of hybrid automatic
repeat requests for packet control overhead. However,
these works ignore the possibility of controlling packet
header length for control overhead. Therefore, we must
consider the limited control overhead for bandwidth load
balancing in SR environment.

3 IRTE Design

In this section, we introduce our overall system design
and the details of our architecture. We first propose an
overview of our framework, and discuss instances in our
framework. Then we introduce the details of the entities

58 Big Data Mining and Analytics, March 2023, 6(1): 55–71

in our system.

3.1 Overall architecture

In this paper, we propose IRTE as an SR environment.
Figure 1 shows the total architecture of the IRTE. The

IRTE mainly comprises four components: routers, hosts,
links, and an SR controller. Generally, the source and
destination of each flow are hosts. Routers and links
form paths between hosts. There are two types of hosts,
deployed diversion capable hosts and traditional routing
hosts. Diversion capable hosts can select the diversion
routing path or the shortest path to transmit packets,
while traditional routing hosts can only use the latter
path. As the major module of the IRTE, the SR controller
collects the bandwidth status of each link and generates
and maintains a bandwidth utilization matrix.

SR controller

Stage 2: data

transmission

demand
Stage 3: diversion

routing path

feedback

Source

Overloaded link

Stage 1: collect

network situation

Stage 4: transmit

data through

diversion routing

path

Shortest path

Diversion routing path

Destination

Fig. 1 IRTE mechanism.

In Fig. 2, we use a case study to illustrate the data
transmission mechanism of diversion routing. Assume that
Host1 requires communication with Host5 to establish data
flow. We define the shortest routing path from Host1 to
Host5 as PsD fHost1, R1, R4, R7, R9, R11, Host5g.
Additionally, we provide two alternative routing paths
for this flow, including P1 D fHost1, R1, R3, R7, R9,
R11, Host5g and P2 D fHost1, R1, R2, R4, R7, R10,
R9, R11, Host5g. The routers represented in red in the
SR header are the active segments, and it will direct the
current router to transfer packets to the next segment
router. We use a diversion routing label to represent the
segment in the packet header for each path. We can see
that the number of diversion routing labels for P1 and P2
is 2 and 4, respectively. Therefore, different diversion
routing paths bring different numbers of diversion
routing labels. This effect will cause differences in
router forwarding load performance. Consequently, a
limitation of packet length must be designed to avoid
packet forwarding overload for our diversion routing
method.

In Fig. 1, the IRTE process can be described as
follows.

Stage 1. Initially, the SR controller collects the current
network situation such as the overloaded link and
congestion information. Via this information, the SR
controller generates the network status information of

Fig. 2 Case study.

Shu Yang et al.: Intelligent Segment Routing: Toward Load Balancing with Limited Control Overheads 59

each link in this network and saves it in memory space.
Stage 2. When one diversion capable source host

is prepared to transmit data to another host, it sends
a request to the SR controller to obtain the diversion
routing path of the transmission.

Stage 3. After receiving data transmission demand,
the controller analyzes and computes the diversion
routing path for source through network status
information and load balancing algorithms of the IRTE,
and delivers this path to source.

Stage 4. According to the diversion routing path from
the controller, the source host establishes data flow to the
destination host through this diversion routing path to
avoid transferring data on overloaded links and realizes
the load balancing objective.

In general, the advantages of the IRTE can be
described as follows.
� Timely updating of network status. In this

framework, the SR controller periodically collects
bandwidth use. Therefore, the controller records any
change in network status and timely updates the status
matrix. Exploring an optimal routing path benefits new
transmission requirements.
� Overall balancing bandwidth use. According to

the intelligence of the IRTE routing selection, the
controller can collect network information and transfer
it to required hosts. Hosts use the IRTE to explore the
diversion routing path and achieve the bandwidth load
balancing objective.
� Optimizing packet lengths. Except for reduced

maximum bandwidth use, we consider the adverse
influence of unlimited packet length due to increasing
diversion routing labels. Therefore, controller
determines the maximum number of diversion
routing labels as a significant threshold to optimize
packet lengths and reduce transmission overhead.

3.2 SR controller

The SR controller is the kernel of the IRTE in our
framework, and it belongs to the control plane of SR.
In this paper, the SR controller collects the network
status of links, timely updates the network information
and assists hosts in discovering the optimal routing path.
The major functions of the SR controller are as follows.
� Status collection. The controller periodically

collects some necessary network status, such as
bandwidth use of links, diversion routing labels, and
efficiency of data transmission. Meanwhile, it timely

updates status matrix of the network to satisfy the load
balancing objective at any time.
� Packet length control. The controller limits the

packet length to avoid the overload of data forwarding
while using the diversion routing path. It can change the
threshold of forwarding labels according to the network
status it collected previously.
� Strategy optimization. Except for controlling

labels, the controller can help hosts to determine and
optimize the diversion routing path to achieve the load
balancing objective. It improves the total performance
of the network.

According to these functions, the controller can
coordinate the bandwidth use of links and SR forwarding
labels of packets and optimize the total load balancing
situation of this network.

3.3 Hosts and routers

Hosts play the role of producing the data transmission
requirement in this network. First, each host and router
detects the network status of links connected to them,
and transfers this status to the SR controller. Then, if the
diversion capable hosts have the demand of constructing
data flow, this demand will require the controller to
generate a diversion routing path for the flow. When
receiving the path from the controller, the source
host establishes the flow according to this path. After
establishing the data flow, the hosts and routers of this
path will also transfer the latest network status to the SR
controller, to maintain the newest information matrix in
the network controller.

4 Problem Formulation

4.1 Problem description

We show the notation list in Table 1. Let G D .V;E/ be
a network, where V is the set of nodes and E is the set
of links. Assuming that n traffic flows in our network, let
F D ff1; f2; : : : ; fng denote the set of traffic flows, and
d.fi / denotes the traffic demand of fi . For each network
flow fi , s.fi / and d.fi / represent the source and
destination of traffic flow fi , respectively. For each fi ,
the source s.fi / will probably travel on the shortest path
according to the traditional routing operation, and we call
it Si . We use Si D fs.fi /; x1si ; x

2
si
; : : : ; xksi ; : : : ; d.fi /g

to denote the shortest path Si for fi . In addition, we use
Divi D fs.fi /; x

1
di
; x2
di
; : : : ; xk

di
; : : : ; d.fi /g to denote

the diversion routing path for flow fi . Let �i denote
the node number of Divi . Diversion routing path Divi

60 Big Data Mining and Analytics, March 2023, 6(1): 55–71

Table 1 Notation list.
Notation Meaning
G D .V;E/ Network topology graph

F Set of traffic flows
s.fj /; d.fj / Source and destination of flow fj

Sj Shortest path of flow fj

Ui Use of link ei
Ci Capacity of link ei
Bi Occupied bandwidth of link ei
Drni Number of DR labels of flow fi

Map Operation of flow fi

d.fi / Traffic demand of flow fi

zix Path selection parameter of fi
� Node number of Divi
� Comparable parameter
ı Constraint of Drn

is a pre-defined path for s.fi / and it normally differs
from the shortest path Si to achieve our load balancing
target. Because of the limitation of network bandwidth
and storage, let Ci denote the capacity of link ei , Ui
denote the link utilization of link ei , and Bi denote the
occupied bandwidth of ei . Obviously Bi 6 Ci . Thus,
we can calculate Ui as

Ui D
Bi

Ci
(1)

Two routing operations are possible for each flow
fi : ordinary routing operation Map1.fi / and diversion
routing operationMap2.fi /. Map1.fi / andMap2.fi /
denote that s.fi / selects the traditional shortest routing
path Si or diversion routing path Divi for fi . We
formulate these two operations as follows.

Map1.fi / D Si ;8fi 2 F (2)

Map2.fi / D Divi ;8fi 2 F (3)

If s.fi / is diversion routing capable, considering
the load balancing of the network, s.fi / can select
Map1.fi / or Map2.fi / to transmit flow fi . Otherwise,
if s.fi / is not diversion routing capable, s.fi / will only
perform Map1.fi / and select the traditional shortest
routing path. We use �i to denote the node number of
Divi .

Meanwhile, multiple feasible routing paths may
be possible for the diversion routing capable nodes.
In our network architecture, we assume that each
diversion routing capable node only chooses one
diversion routing path to establish a data connection.
Let P.fi / D fp1; p2; : : : ; pmg represent the feasible
diversion routing path set for flow fi . We use the
parameter zix to denote which diversion routing path
the source node selects. zix can be formulated as follows.

8fi 2 F; z
i
x D

(
1; if fi selects px 2 P.fi /

0; otherwise
(4)

Obviously, because only one routing path is chosen,
zix satisfies the following condition.

mX
xD1

zix D 1 (5)

As for deployed diversion routing capable node v,
to transmit flow fi through Divi , v will add diversion
routing labels in the SR header to direct packets of flow
fi to the given path Divi . We use Drni to denote
the number of diversion routing labels of each packet
from flow fi . To calculate Drni , let Snh.fi ; k/ and
Dnh.fi ; k/ represent the k-th hop of routing operation
Map1.fi / and Map2.fi /, so k > 1 and k 6 �i . We
denote �i as a comparable parameter of Snh.fi ; k/ and
Dnh.fi ; k/. Thus, Drni can be formulated as follows.

�j D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

1;
�
8Dnh.fi ; j / … Si

�
or�

9Dnh.fi ; j / D Snh.fi ; k/;

Dnh.fi ; j C 1/ ¤ Snh.fi ; k C 1/
�

0; otherwise

(6)

Drni D

�i�1X
jD2

�j (7)

Additionally, we use ı as the constraint of the
maximumDrn of the network. Thus, our load balancing
objective can be formulated as follows.

Objective 1. Given G D .V;E/ and !, find an
operation Map.fi / for 8fi 2 F ,

Min max U (8)

s:t:

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

Drni 6 ı;8fi 2 F
mP
xD1

zix D 1;8fi 2 FP
f 2F

P
p2P;e2E

zd.f / 6 UmaxCmax;8e2E

zix 2 f0; 1g;8fi 2 F

(9)

The first inequality denotes that the Drn of each
f cannot exceed a network parameter ı. The second
inequality denotes that each f only selects one routing
path for data transmission. The third inequality denotes
that each link load of e will not exceed the maximum
link load of the network.

4.2 Problem complexity

To solve our load balancing objective, we need to
determine the complexity of our problem. However, no

Shu Yang et al.: Intelligent Segment Routing: Toward Load Balancing with Limited Control Overheads 61

previous proof exists of the relative complexity based on
SR and diversion routing mechanism. Thus, next, we
will prove the complexity of this problem.

Theorem 1. The problem of optimal bandwidth
balancing is nondeterministic polynomial (NP)-hard.

Proof. OnceGD.V;E/, ! and operationMap.fi /
are given, our load balancing problem is easily verified
in polynomial time. Therefore, finding the decision of
Map.fi / is in the NP-class. We prove that our problem
is NP-hard by reducing from the k-dense subgraph
problem, which is proven to be NP-complete[40]. The
minimum point-to-point connection problem is that, for a
given graph G D .V;E/, positive integer k, and weight
wi of each ei 2 E, find induced subsets V 0; E 0 and
jV 0j D k, such that the total weight W D

P
ei2E

0

wi of

E 0 is minimized.
Suppose a graph G D .V;E/, where V D fa; b;

c; dg, E D f.a; c/; .a; d/; .b; c/; .b; d/; .c; d/g and
! D 3. Nodes a; b; and c of G0 are diversion routing
capable. The source and destination of flow f are
a and d , respectively. Diversion routing path Divf
is undetermined, and the shortest routing path is
Sf D .a; d/. Assume that the link utilization Uad of
link .a; d/ is the maximum U in graph G. Thus,
to achieve the load balancing target, the fewer the
packets transmitted through Sf , the more minimized
the maximum U of G is. Because nodes a; b; and c
connect to node d , if we find the diversion routing path
from source a to node b or c, the total diversion routing
path Divf of f is determined. Consequently, according
to k D ! D 3, we need to choose subsets V 0 � V and
E 0 � E, such that the total occupied bandwidth B DP
ei2E

0

Bi of E 0 is minimized. This choice also denotes

that the shortest routing path Sf D .a; d/ … E 0, because
Uad is the maximum U in G. Thus, the diversion
routing problem for load balancing is equivalent to the
minimum point-to-point connection problem. Obviously,
this problem is an NP-hard, and we cannot achieve the
optimal load balancing in polynomial time. �

5 Algorithm Design for Improving Control
Overheads

In this section, we introduce two novel algorithms for
improved control overheads. First, we introduce the idea
and analyze the theoretical performance of the LBA-DR.

Then, we describe our IACO to achieve our target of
bandwidth load balancing and overload control.

5.1 LBA-DR algorithm and analysis

Here, we introduce our algorithm LBA-DR (load
balancing algorithm with diversion routing), which is
a novel way to achieve the bandwidth load balancing
objective and limited control overhead in SR. To achieve
the load balancing and forwarding overload optimization
objective in Formula (8), we first describe the mechanism
and details of our LBA-DR, and then we analyze its
approximate performance and compute the approximate
ratio of the LBA-DR.

5.1.1 Algorithm description
To achieve the objective of Formula (8), we design the
LBA-DR for load balancing, and we show the LBA-DR
in Algorithm 1. The LBA-DR includes three steps to
achieve bandwidth load balancing and overhead control
optimization.
� Step 1. After receiving the data transmission

demand from source node s, the SR controller computes
a suitable routing path set P for s with the diversion
routing number constraint ı.
� Step 2. From our proof above, Formula (8) with

constraint in Formula (9) is NP-hard. To solve the
problem in polynomial time, we relax the constraint
of zix 2 f0; 1g as zix 2 Œ0; 1�. This means that flow
f can select more than one routing path to construct
data transmission. Thus, Formula (8) with constraint in
Formula (9) is transformed into a linear programming

Algorithm 1:� Load balancing algorithm with diversion
routing

1 begin
2 SR controller receives d.fi / from source node s.
3 Controller searches for a suitable path set

Pi D fp1; p2; : : : ; pmg from source to destination.
4 Establish the linear programming from the objective as a

relaxed scheme.
5 Obtain the optimal bandwidth allocation solution

Opt D f.p1; b1/; : : : ; .pm; bm/g.
6 for i D 1 to m do
7 Use P r.pi / D

bi
d.fi /

to compute the probability for
each pi .

8 Randomly select a path p according to the probability
distribution of P r.pi /.

9 SR controller generates p for f and transmits it to the
source node to construct data connection.

62 Big Data Mining and Analytics, March 2023, 6(1): 55–71

problem as follows.

Min U (10)

s:t:

8̂̂̂̂
<̂
ˆ̂̂:

mP
xD1

zix D 1;8fi 2 FP
f 2F

P
p2P;e2E

z � d.f / 6 U � C;8e 2 E

zix 2 Œ0; 1� ;8fi 2 F

(11)

Because the problem involves linear programming,
we can solve it in polynomial time and obtain
an optimal solution Opt D f.p1; b1/; : : : ; .pm; bm/g,
where .pi ; bi / denotes the bandwidth allocation bi on
feasible path pi 2 P from a linear programming solver.
� Step 3. After obtaining Opt from relaxed Formula

(10), we use randomized rouding method[41] to select
one path from Opt . We use Pr.pi / D

bi
d.fi /

to compute
each path probability from Opt . Then we randomly
choose one path according to the path probability
distribution. Then, the SR controller will transmit this
path for the source to construct data flow.

5.1.2 Approximate ratio analysis
After introducing the LBA-DR, we analyze the
approximate ratio of our algorithm. Let E represent
the mathematical expectation. First we introduce two
important lemmas.

Lemma 1. (Chernoff Bound). Given n independent
variables x1; x2; : : : ; xn, 8xi 2 Œ0; 1�. Let � D

E

�
nP
iD1

xi

�
. Then, Pr

�
nP
iD1

xi > .1C �/�

�
6 e

��2�
2C� ,

where � is an arbitrarily positive value.
Lemma 2. (Union Bound). Given a countable set of

n events A1; A2; : : : ; An, each event Ai happens with
probability Pr.Ai /. Then Pr.A1 [A2 [� � � [An/ 6
nP
iD1

Pr.Ai /.

According to our relaxed Formula (10), the linear
programming solver generates an optimal solution
and the algorithm selects one path popt from it
by randomized rounding. We use te

f
to denote the

occupied bandwidth from f on edge e. According
to the probability distribution of Pr.p/, the occupied
bandwidth expectation of edge e from f can be
formulated as follows.
8fi 2 F;8e 2 E;E.t

e
fi
/ D d.fi / � Pr.p/ (12)

Let Umax denote the maximum bandwidth use in the
network with the optimal solution. We assume that the
capacity of each edge is C . Because te

f 1
; te
f 2
; : : : ; te

f n
are

independent random variables, the occupied bandwidth

expectation of e can be computed as follows.

E
�X
f 2F

tef

�
D

X
f 2F

E.tef /DX
f 2F

X
e2p;p2P

d.f /Pr.p/6 UmaxC (13)

According to Formula (13), we obtain the inequality
group as follows.8̂̂̂<̂

ˆ̂:
te
f

UmaxC
2 Œ0; 1�

E

0@X
f 2F

te
f

UmaxC

1A 2 Œ0; 1� (14)

According to Lemma 1 and Formula (14), we have the
formula as follows.

Pr

24X
f 2F

te
f

UmaxC
> .1C �/�

35 6 e
��2�
2C� (15)

From Formula (14) we know that � D
P
f 2F

te
f

UmaxC
2

Œ0; 1�. We use nE to denote the total number of edges
in our network system. Thus the Formula (15) can be
transformed as follows.

Pr

24X
f 2F

te
f

UmaxC
> .1C �/

35 D
Pr

24X
f 2F

te
f

UmaxC
> .1C �/�

35 6 e
��2�
2C� (16)

From Lemma 2 we know that

Pr

24X
e2E

X
f 2F

te
f

UmaxC
> .1C �/

35 6
X
e2E

Pr

24X
f 2F

te
f

UmaxC
> .1C �/

35 (17)

Therefore

Pr

24X
e2E

X
f 2F

te
f

UmaxC
> .1C �/

35 6X
e2E

e
��2�
2C� D

nEe
��2�
2C� 6 nEe

��2

2C� (18)
Letting � D 2 lnnE C2, from inequality 18 we obtain

Pr

24X
e2E

X
f 2F

te
f

UmaxCmax
>.2 lnnEC3/

356nEe
��2

2C� D

1

nE
� e�

2
lnnEC1 6

1

nE
(19)

Thus, we obtain the approximate ratio of our LBA-
DR as .2 lnnE C 3/, which means that the maximum
bandwidth use of the LBA-DR approximates the optimal
solution of Formula (8) with .2 lnnE C 3/.

Shu Yang et al.: Intelligent Segment Routing: Toward Load Balancing with Limited Control Overheads 63

5.2 IACO algorithm for load balancing

Here we will present our bandwidth balancing and
forwarding overload optimization algorithm based on
IACO. First, we introduce the classical ant colony
algorithm, and then we discuss our novel optimization
strategy that balances bandwidth use and optimizing a
forward overload situation based on IACO.
5.2.1 Traditional ant colony algorithm
The traditional ant colony algorithm is a classical
heuristic method that is suitable for the traveling
salesman problem (TSP). This algorithm imitates the
working mechanism and physiological features of ant
colony for a local optimal solution in each iteration to
approximate a global optimal solution. Initially, the ant
colony dispatches a certain number of ants to explore
the possible routing paths between the source and
destination. In the process of searching paths to the
destination, the artificial ants generate a substance, called
pheromone, to guide other ants to the destination. The
higher the pheromone concentration is, the greater the
attraction to other ants. This degree of attraction can be
expressed as follows.

P kij .t/ D

8̂̂<̂
:̂

�˛
ij
.t/��

ˇ

ij
.t/X

s2L

�˛ij .t/ � �
ˇ
ij .t/

; j 2 Rk

0; otherwise

(20)

where P kij .t/ denotes the probability of ant k selecting
a path from node i to neighbor j at time t , Rk denotes
the residual node set for k to visit, �ij .t/ denotes the
pheromone concentration between i and j at time t ,
�ij .t/ denotes the heuristic function between i and j at
time t , and ˛ and ˇ denote the dependence degree of
the pheromone and the heuristic factor for a new path,
respectively. In the TSP, � can be formulated as

�ij .t/ D
1

dij
(21)

where di denotes the physical distance between i and j:
This equation reflects that the shorter the path between i
and j , the higher the attractiveness to the ants.

After discovering a certain path from source to
destination, the ants release pheromone on this
path. Similar to a natural environment, the artificial
pheromone evaporates with time to avoid trapping into
local optimization. The evaporation function can be
formulated as follows.

�ij .t C 1/ D .1 � �/�ij .t/C��ij .t/ (22)

where � is the pheromone evaporation factor and��ij .t/
denotes the total pheromone quantity between i and j at
time t . Obviously, ��ij .t/ can be computed as follows.

��ij .t/ D

nX
kD1

�kij .t/ (23)

where n denotes the total number of artificial ants.
There are several methods for computing �kij .t/. Here,

we introduce the classical ant-cycle model, which
updates the global pheromone after an iteration of all
ants. The computation method of �kij .t/ can be expressed
as follows.

�kij .t/ D
Q

Lk
(24)

whereQ > 0 denotes the pheromone increase factor and
Lk denotes the length of ant k’s path in this iteration.

Because of the attraction of ants to pheromone and
the evaporation of pheromone, the ants generate a local
optimization in each iteration. After a certain number
of iterations, the local optimization will gradually
approximates the global optimization.
5.2.2 IACO algorithm
The section above shows that the artificial ants are
driven through the objective of searching for the shortest
path from source to destination in the traditional ant
colony algorithm. Meanwhile, ants explore the optimal
path under no limitation, which probably results in
an overload of packet forwarding. Considering our
objective of balancing bandwidth use and limiting the
diversion routing number for each flow f , we propose
IACO which not only prompts ants to search for a path of
low bandwidth use, but also controls the forward labels
to avoid an overload of packet forwarding.
5.2.3 Optimizing packet forwarding
Before introducing our algorithm of bandwidth load
balancing, we first present our method for optimizing
the packet length.

Generally, the data flow f from source s to
destination d is transmitted through traditional routing
path Sf according to the Dijkstra algorithm. Assume
that Sf D fs; x1; x2; : : : ; xm; dg and Divf D fs; y1;
y2; : : : ; yn; dg, where x1; x2; : : : ; xm denotes the
intermediate nodes between s and d in Sf , and
y1; y2; : : : ; yn denotes the intermediate nodes in Divf .
From Eqs. (6) and (7), we know that while hosts transmit
data through Divf , the source node needs to append
diversion routing labels into the SR header to direct the

64 Big Data Mining and Analytics, March 2023, 6(1): 55–71

next hop of packets. We use Drnf to count the number
of diversion routing labels of flow f . Therefore, ifDrnf
of f is overlarge, it will decrease the forwarding rate
and cause an overload of packet forwarding during data
transmission.

To achieve the constraint of Drnf , first, we use ˛ to
limit the maximum Drnf in Eq. (9). Now we define
the situation of packet forwarding overload. Intuitively,
Drnf is considered overlarge when it exceeds the node
number of Sf too much or a certain percentage of the
total number of nodes in the network G D .V;E/.

Definition 1. If Drnf > � � n1 or Drnf > � � n2,
then Divf will cause an overload of packet forwarding,
where n1 denotes the number of total nodes in network
G D .V;E/, n2 denotes the number of Sf , � 2 .0; 1/,
and � > 1 is the parameter.

According to this definition, we design Algorithm 2
to avoid the overload of packet forwarding when
Algorithm 3 generates the current best path T .

In Algorithm 2, from lines 2 to 3, we first obtain the
trail T that is optimized through Algorithm 3 and Sf
from the SR controller. In line 4, we initialize Drn
and the counting label judge. From line 5 to 10, we
check each intermediate node from T and compute
Drn. In line 10, we judge the quality of T according to
Definition 1 above. Therefore, through Algorithm 2, we
achieve our constraint of the number of diversion routing
labels and avoid packet overload in data transmission.

5.2.4 Balanced bandwidth use
According to our target of balancing bandwidth use, we
aim to minimize the maximum bandwidth of the network
in Formula (8). To satisfy our load balancing demand,

Algorithm 2:�Optimizing packet forwarding

1 begin
2 Obtain a trail T ;
3 Obtain Sf from SR controller.
4 Initialize Drn D 0 and judge D false.
5 for i D 1 to T:size do
6 for j D 1 to Sf :size do
7 if T Œi � ¤ Sf Œj � or T Œi � D Sf Œj � but

T Œi C 1� ¤ Sf Œj C 1� then
8 judge D true.

9 if judge D true then
10 Drn D DrnC 1.

11 if Drn > � � n1 or Drn > � � n2 then
12 Confirm best path.

Algorithm 3:�Bandwidth load balancing

1 begin
2 SR controller collects bandwidth situation C and Ot and

generate U t D fu12.t/; : : : ; uij .t/; : : : ; un.n�1/.t/g.
3 Generate transmission requirement from source to

destination.
4 Initialize ants and pheromones.
5 For each ant
6 for k D 0 to n do
7 Compute Pxk�1xk .t/.
8 if 9Pxk�1xk .t/ > 0 then
9 Generate next node xk .

10 if xk D j then
11 Collect xk into queue Qk .
12 Break.

13 else
14 Select xk as the next node.
15 Collect xk into queue Qk .

16 else
17 Build trail fail.

18 Generate the current best trail T through Algorithm 2.
19 Update pheromones.

20 Generate path Div and save.
21 Node i transmits data to j through Div.

the SR controller will first collect the whole network
bandwidth condition, and generate two basic matrices,
as follow.
� Bandwidth capacity matrix C: The size of C is

N�N , whereN denotes the number of nodes in network
G D .V;E/. 8cij 2 C represents the bandwidth
capacity of node i to j . If i and j are disconnected,
we set cij D 0.
� Occupied bandwidth matrix O t: The size of O t

is also N � N , where N denotes the number of nodes
in this network at time t . 8oij .t/ 2 O t represents the
occupied bandwidth of node i to j . If i and j are
disconnected, we set oij .t/ D 0.

After receiving bandwidth conditions from each node,
the SR controller generates the third matrix U t through
C and O t . U t represents the bandwidth use matrix,
which isN�N andN is the number of nodes. 8uij .t/ 2
U t denotes the bandwidth use of node i to j . Apparently,
uij .t/ can be computed as follows:

uij .t/ D

(
oij .t/

cij
; cij ¤ 0

1; otherwise
(25)

Next, the SR controller transmits U t to each node
to replace the adjacent matrix of the traditional ant

Shu Yang et al.: Intelligent Segment Routing: Toward Load Balancing with Limited Control Overheads 65

colony algorithm. Therefore, we propose an improved
probability equation that actuates ants to explore the link
of lower bandwidth use as follow:

P kij .t/ D

8̂̂<̂
:̂

�˛
ij
.t/��

ˇ

ij
.t/X

s2L

�˛ij .t/ � �
ˇ
ij .t/

; j 2 Rk

0; otherwise

(26)

where � is expressed as follows:

�ij .t/ D
1

uij .t/
(27)

The guidance of � for ants to explore possible paths
actuates ants to be inclined to search the path of lower
bandwidth use. Therefore, the paths that ants explore
satisfy our objective of bandwidth load balancing.

Assume that one ant has generated a path p D

fx1; x2; : : : ; xng from source x1 to destination xn.
Different from the traditional algorithm that computes

the length p through p D
n�1P
kD1

dk , where dk denotes the

weight of the edge between xk and xkC1, we propose a
novel method for computing the path quality to satisfy
our objective of bandwidth load balancing. We use
uij .t/ to represent the edge weight between i and j .
Obviously, accumulating each u.t/ in p is unsuitable
for evaluating the quality of p. In our problem, the
quality of p is determined by upmax.t/, which represents
the maximum u.t/ 2 p. This is because upmax.t/ is
the benchmark in data flow transmission. The higher
upmax.t/ is, the lower the quality of p. Additionally, this
p is exactly what we need to avoid selecting according
to our target 8. Therefore, we formulate the quality of
path p as follows.

qp D maxfux1.t/; ux2.t/; : : : ; uxn.t/g (28)

In general, we design Algorithm 3 to achieve
bandwidth load balancing. Algorithm 3 is the main
process for ants to discover each possible path from
the source node to the destination node in this network.
First, the SR controller obtains network situation matrix
C and O t , and generates bandwidth utilization matrix
U t through Eq. (25). In line 3, node i as the source
generates the transmission requirement and selects j
that satisfies i ¤ j as the destination to discover
the diversion routing path Div. After determining
source i and destination j , in line 4, matrix ants and
pheromones are initialized. From lines 5 to 17, each
artificial ant explores the optimal path from i to j . In
line 7, ant computes the probability from the current

node xk�1 to other possible nodes xk . If the probability
Pxk�1xk .t/ is executable for the ant to select the next
node xk , in line 10 ant will recognize if xk is the
destination. If xk is the destination, this ant will finish
its mission and record the trail into queueQk . Otherwise,
from line 14 to line 15, the ant selects xk as the next
node and moves to xk , then xk is written into Qk . If
the probability Pxk�1xk .t/ is not executable, the mission
of this ant is judged as a failure, and the next iteration
of another ant begins in line 17. After finishing one
iteration of all ants and saving these paths intoQk , from
line 18 to line 19, Algorithm 3 computes the quality of
all paths according to Eq. (28), and generates the current
best trail T from Qk according to Algorithm 2, and
updates matrix pheromones through Eq. (22). Then
in line 20, Algorithm 3 will generate the optimal path
Div, namely the diversion routing path from source i to
j after finishing all iterations and saving it into the SR
controller. Consequently, in line 21, i transmit data to j
through Div to achieve our bandwidth load balancing
objective.

6 Performance Evaluation

6.1 Simulation setups

We evaluate the performance of our bandwidth load
balancing and packets length optimizing algorithm,
including the LBA-DR and IACO. We use the Internet
Topology Zoo to perform the simulation[42]. The
topologies we choose include Abilene, Abvt, Aconet,
Agis, Ai3, Airtel, BellCanada, BellSouth, Bics, and Ion.
We assume that all links are all undirected, and all nodes
are diversion routing capable in these topologies. The
details of each topology are shown in Table 2.

To assess the performance of load balancing with
limited control overhead, we select two algorithms for

Table 2 Network details list.
Topology Number of nodes Number of edges
Abilene 11 14

Abvt 23 31
Aconet 23 55
Agis 25 70
Ans 25 47
Ai3 25 75

Airtel 25 93
Bics 32 48

BellCanada 48 64
BellSouth 51 66

Ion 125 146

66 Big Data Mining and Analytics, March 2023, 6(1): 55–71

comparison with our IRTE algorithms as follows.
� Traditional algorithm. To achieve the objective

of load balancing, traditional algorithm such as OSPF
guides the data flow to transmit through the shortest path
by the Dijkstra algorithm.
� OFLoad[43]. This algorithm performs data transfer

by distinguishing small and large flows. The large flows
transmit data through the shortest path, while the small
flows transmit data through several permissible paths
through the weight of paths.
� D-LBAH[44]. The D-LBAH algorithm achieves

load balancing based on the SDN architecture. In
D-LBAH, the controller sets a threshold value and
computes a path set for each flow in a network. The
controller uses a threshold value to limit the number of
flows passing through each link. If the number of flows
traversed by one link does not exceed the threshold,
the controller directs the source node to transmit data
according to the default path. Otherwise, the controller
selects the idlest path from the path set for the source
node to transmit data.
� Optimal solution. We use the method for

traversing all traffic assignment paths to obtain the
optimal solution. Because of its computation and running
time, we only compare it with our algorithms regarding
CPU use to achieve the test-bed experiment.

For each topology, we first use the Dijkstra algorithm
to generate the shortest routing path from any source
nodes to any destination nodes for comparison. Then
we randomly generate the source node and destination
node of a flow, and establish a constant data transmission
through this flow. For simplicity, we assume that each
link capacity of the topologies is 100 MB, and the
bandwidth of each flow is randomly from 3 MB to 8
MB. For the OFLoad algorithm, we define flow of more
than 6 MB as a large flow, and the other as a small flow.
For the D-LBAH algorithm, we define the threshold
of each link as 0.35, which means that the number of
flows passing through each link does not exceed 35%
of the maximum number of flows in the network. Then
we operate our bandwidth load balancing algorithms
of the IRTE. Meanwhile, we consider the number of
diversion routing labels to each flow. In this experiment,
we assume � D 0:5 and � D 4 to control the packet
length in a reasonable area for IACO. When we generate
the diversion routing path of a flow, we transfer data on it

and the shortest routing path. After the data transmission
task finishes, we compare the performance of these five
algorithms.

We first exhibit the maximum bandwidth use of
these five algorithms in six topologies, and then we
compare the performance of load balancing through
these algorithms as the number of flow increases.
Meanwhile, we record the CPU use for the LBA-DR
and IACO to compare the control overhead of the
optimal solution. For IACO, we compare the change in
maximum bandwidth use in different algorithms. Then
we compare the maximum bandwidth use difference of
each topology. Meanwhile, we evaluate the maximum
bandwidth use situation with the changing number of
nodes and edges. Finally, we modify the parameters
for our bandwidth load balancing algorithm in each
topology, including ˛ and ˇ in Eq. (26).

6.2 Experiment results

6.2.1 Bandwidth use comparison
We select six topologies from the Internet Topology Zoo,
including Abvt, Aconet, Ans, BellCanada, BellSouth,
and Ion. The number of nodes of these six topologies
increases from 23 to 125 to test IRTE performance
from a small network to a large network. Figure 3
shows the load balancing performance of maximum
bandwidth use for five algorithms in these topologies.
We randomly generate 25 flows with a size of 3 MB
to 8 MB in these six network topologies. We record
the maximum bandwidth use of these networks after
all flows are assigned to the suitable routing paths.
We set ˛ D 3 and ˇ D 3 for IACO to compare its
performance in different topologies. Meanwhile, we
control Drn to 7 in each network. Figure 3 shows that
the maximum performance advantage of IACO reaches

Abvt Aconet Ans Bellcanada Bellsouth Ion

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
a
x
im

u
m

 b
an

dw
id

th
 u

ti
li
z
a
ti
o
n

IACO in IRTE

LBA-DR in IRTE

OFLoad

D-LBAH

Tradition algorithm

Fig. 3 Maximum bandwidth use in different topologies.

Shu Yang et al.: Intelligent Segment Routing: Toward Load Balancing with Limited Control Overheads 67

24.6% in BellCanada compared with the other three
algorithms. There are also 2.45% to 11.6% performance
gains in other topologies compared with the traditional
algorithm, OFLoad and D-LBAH. As for LBA-DR,
its performance is slightly inferior to IACO in some
topologies, but it leads OFLoad by 3.2% to 12%, D-
LBAH by 0 to 5.3%, and the traditional algorithm by
2.6% to 15.3%. However, in Ans, we can see that
the load balancing performance of LBA-DR, OFLoad,
and D-LBAH is close, and has an approximately 1%
performance advantage over IACO. This advantage
is due to the Drn not being the optimal value for
IACO convergence. Therefore, the result obtained by
IACO exceeds the value of Drn and the controller
automatically selects the shortest path, which leads to
slightly worse network load balancing.

6.2.2 CPU use for IACO and LBA-DR
To verify that our experiments meet the test-bed
standards, we record the CPU use per second while
running our algorithms. Our computer configuration
is an Intel Core i5-9750H with 16 GB RAM. We
compare our algorithms, including IACO and LBA-DR
with optimal solution on BellSouth, which represents
a medium-sized network. In Fig. 4, the change in
LBA-DR is relatively stable and fluctuates between
15.3% and 16.2%. The change in IACO is slightly larger
than LBA-DR, fluctuating between 14.5% and 16.8%.
Moreover, the maximum and minimum CPU use of
the optimal solution is 23.4% to 24.5%, respectively,
which exceeds IACO and LBA-DR by approximately
7%. This comparison means that our algorithms are
suitable for operating on the SR controller, and the
evaluation complies with the working standard of the
test-bed experiment.

10 20 30 40 50 60

Running time (s)
0

0.1

0.2

0.3

0.4

C
P

U
 u

ti
liz

a
ti
o

n

IACO in IRTE

LBA-DR in IRTE

Optimal solution

Fig. 4 CPU utilization in Bellsouth.

6.2.3 Bandwidth use with increasing flow number
To inspect the load balancing performance with
increasing flow numbers, we select three topologies,
Aconet, BellSouth, and Ion, which represent a small
network, medium network, and big network, respectively.
We control the value ofDrn to 6, 8, and 10, respectively,
to establish the load balancing performance in these
three scale networks. Figures 5–7 show the change
in the maximum bandwidth use for each algorithm in
Aconet, BellSouth, and Ion. We randomly increment the
number of flows from 10 to 30 in Aconet, Bellsouth, and
Ion. As we can see, with increasing flow number, the
link utilization growth of IACO and LBA-DR is flatter
than that of the traditional algorithm, OFLoad and D-
LBAH. This is because with increasing traffic demand,
which causes network congestion, IACO and LBA-DR
in the IRTE can help the hosts to transmit data more
effectively. The difference between these two algorithms
does not exceed 1.85% in Aconet and BellSouth. For

10 15 25 3020

Number of flows

0.1

0.2

0.3

M
a
x
im

u
m

 b
a
n
d
w

id
th

 u
ti
li
z
a
ti
o
n

IACO in IRTE

LBA-DR in IRTE

OFLoad

D-LBAH

Traditional algorithm

Fig. 5 Increasing flow number in Aconet.

10 15 25 3020

Number of flows

0.1

0.2

0.3

0.4

M
a
x
im

u
m

 b
a
n
d
w

id
th

 u
ti
li
z
a
ti
o
n

IACO in IRTE

LBA-DR in IRTE

OFLoad

D-LBAH

Traditional algorithm

Fig. 6 Increasing flow number in Bellsouth.

68 Big Data Mining and Analytics, March 2023, 6(1): 55–71

10 15 25 3020

Number of flows

0.1

0.2

0.3

0.4

0.5

0.6

M
a

x
im

u
m

 b
a

n
d

w
id

th
 u

ti
li
z
a

ti
o

n

IACO in IRTE

LBA-DR in IRTE

OFLoad

D-LBAH

Traditional algorithm

Fig. 7 Increasing flow number in Ion.

example, Fig. 7 shows that the total load balancing
situation of IACO is better than that of the LBA-DR.
Moreover, we can see that the performance gap between
the two algorithms of the IRTE, the traditional algorithm,
OFLoad and D-LBAH remains above 1.3% to 10.3%.
This result shows the load balancing advantages of IACO
and the LBA-DR in the situation of increasing flow
number.

6.2.4 Nodes and degrees for IACO
Figures 8 and 9 represent the maximum bandwidth use
differences between the traditional algorithm and our
bandwidth load balancing algorithm. In Figs. 8 and 9,
the number of nodes and degrees of these topologies on
the x-axis gradually increase. Figure 8 shows that with
increasing nodes, the bandwidth difference of these two
algorithms does not show strong regularity. However,
Fig. 9 shows that the load balancing performance

Abilene Abvt Aconet Agis Ai3 Airtel Bics Bellcanada Bellsouth
0

5

10

15

20

25

M
a
x
im

u
m

 b
a
n
d
w

id
th

 u
ti
liz

a
ti
o
n
 d

if
fe

re
n
c
e
 (%

)

Fig. 8 Bandwidth difference for changing nodes.

Abilene Abvt Bics Aconet Bellcanada Ai3 Airtel
0

5

10

15

20

M
a

x
im

u
m

 b
a

n
d

w
id

th
 u

ti
liz

a
ti
o

n
 d

if
fe

re
n

c
e

 (%
)

 AgisBellsouth

Fig. 9 Bandwidth difference for changing degrees.

generally improves as the degree increases. Combined
with the observation of Fig. 8, we see the better the
optimization effect of the topology graph with fewer
nodes and more degrees. For example, the number of
nodes is similar in Abvt, Aconet, Agis, Ai3, and Airtel.
However, the performance of load balancing is better
in Ai3 and Airtel than in other topologies. Meanwhile,
the degrees of Ai3 and Airtel exceed those of the other
three topologies. This is because if the number of nodes
in the topology is smaller, the degree is greater, so each
node has more edges connected. Therefore, the artificial
ants of IACO can explore more possible routing paths to
achieve the objective of bandwidth load balancing, and
it improves the performance of our algorithm.

6.2.5 Dependence degree of pheromones ˛̨̨
Figure 10 shows the changes in ˛ in our IACO

20 60 8040
Running time (s)

0

5

10

15

20

25

M
a

x
im

u
m

 b
a

n
d

w
id

th
 u

ti
liz

a
ti
o

n
 d

if
fe

re
n

c
e

 (%
)

α=1
α=3
α=5

Fig. 10 Bandwidth difference for changing ˛̨̨ .

Shu Yang et al.: Intelligent Segment Routing: Toward Load Balancing with Limited Control Overheads 69

algorithm. For simplicity, we select topology Ai3 to
achieve our experimental target. Additionally, we set
ˇ D 3, � D 0:2, andQ D 2:5 to test the performance of
our algorithm. Figure 10 shows that at the beginning
of establishing data communication, the maximum
bandwidth difference between these two algorithms is
small. For example, when the number of iterations
is smaller than 20, the difference between the two
algorithms is less than 20%. However, as the number
of iterations increases, the experiment with ˛ D 5

gradually showes performance advantages. Above
20 iterations, the bandwidth difference of ˛ D 5

approximately exceeds the value of ˛ D 1 and ˛ D 3.
This is because ˛ increases the possibility of ants
searching a path along the direction of high pheromone
concentration. At the initial stage of the iterations
the advantages of the high-pheromone path are not
sufficiently obvious because the overall bandwidth
use of the network is relatively low. After a certain
number of iterations, the overall bandwidth use of links
in the network increases. Therefore, high pheromone
concentrations with a low bandwidth use path reflects
the advantages of load balance performance. It will direct
the ants to the lower bandwidth use routing path, which
shows the advantage of ˛ D 5 compared with ˛ D 1

and ˛ D 3.

6.2.6 Heuristic factor ˇ̌̌
Figure 11 shows the changes in ˇ in our IACO algorithm.
To show the connection between ˛ and ˇ, we still select
topology Ai3 to finish our experiment. We set ˛ D
3, � D 0:2, and Q D 2:5 to test the performance of
our algorithm. Figure 11 shows that with an increasing

20 60 8040
Running time (s)

0

10

20

30

M
a

x
im

u
m

 b
a

n
d

w
id

th
 u

ti
liz

a
ti
o

n
 d

if
fe

re
n

c
e

 (%
)

β=1
β=3
β=5

Fig. 11 Bandwidth difference for changing ˇ̌̌ .

number of iterations, the polyline of ˇ D 3 shows the
performance advantage of bandwidth load balancing.
The performance gap between the other two polylines is
relatively close. After 40 iterations, the load balancing
optimization with ˇ D 3 is significantly better than the
case with ˇ D 1 or ˇ D 5. This result is obtained
because ˇ influences the probability of artificial ants
searching a new routing path, except for following the
path of high pheromone concentration. Therefore, the
polyline of ˇ D 3 will stimulate the possibility of ants
searching for new paths while retaining the possibility
of tracing a path with high pheromone concentrations.
As for ˇ D 1, an undersized ˇ will make ants cling to
paths with high pheromone concentration and reduce the
possibility of discovering paths with lower bandwidth
use. In contrast, an oversized ˇ, such as ˇ D 5, will over-
encourage ants to explore new paths, while ignoring the
importance of paths with high pheromone concentration
to a certain extent.

7 Conclusion

In this paper, we propose the IRTE to achieve load
balancing with limited control overheads in the SR
environment. We introduce the function of the SR
controller and hosts in our IRTE system design. We
propose the idea of diversion routing, and formulate
the mapping problem in data flow transmission. We
prove that the diversion routing problem is NP-hard.
Additionally, we design the LBA-DR and IACO
algorithms to realize the objective of bandwidth load
balancing and limited control overheads. We evaluate
the IRTE in different real-world topologies and compare
the difference in performance between the IRTE and the
traditional routing algorithm. The results show that the
load balancing performance of the IRTE is better than
that of the traditional algorithm and effectively achieves
limited control overheads in SR.

Acknowledgment

This work was supported in part by the National Natural
Science Foundation of China (Nos. 61772345 and
61902258), the Major Fundamental Research Project
in the Science and Technology Plan of Shenzhen (Nos.
JCYJ20190808142207420, GJHZ20190822095416463,
and RCYX20200714114645048), the Natural Science
Foundation of Guangdong Basic and Applied Basic
Research (No. 2021A1515011857), and the Pearl River
Young Scholars Funding of Shenzhen University.

70 Big Data Mining and Analytics, March 2023, 6(1): 55–71

References

[1] D. O. Awduche and B. Jabbari, Internet traffic engineering
using multi-protocol label switching (MPLS), Comput.
Netw., vol. 40, no. 1, pp. 111–129, 2002.

[2] N. Wang, K. H. Ho, G. Pavlou, and M. Howarth,
An overview of routing optimization for internet traffic
engineering, IEEE Commun. Surv. Tut., vol. 10, no. 1, pp.
36–56, 2008.

[3] Y. Wang, Z. Wang, and L. Zhang, Internet traffic
engineering without full mesh overlaying, in Proc. IEEE
INFOCOM 2001. Conf. Computer Communications.
Twentieth Annual Joint Conf. IEEE Computer and
Communications Society (Cat. No. 01CH37213),
Anchorage, AK, USA, 2001, pp. 565–571.

[4] A. Mendiola, J. Astorga, E. Jacob, and M. Higuero, A
survey on the contributions of software-defined networking
to traffic engineering, IEEE Commun. Surv. Tut., vol. 19,
no. 2, pp. 918–953, 2017.

[5] M. Karakus and A. Durresi, A survey: Control plane
scalability issues and approaches in software-defined
networking (SDN), Comput. Netw., vol. 112, pp. 279–293,
2017.

[6] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, On
scalability of software-defined networking, IEEE Commun.
Mag., vol. 51, no. 2, pp. 136–141, 2013.

[7] P. L. Ventre, M. M. Tajiki, S. Salsano, and C. Filsfils,
SDN architecture and southbound APIs for IPv6 segment
routing enabled wide area networks, IEEE Trans. Netw.
Serv. Manag., vol. 15, no. 4, pp. 1378–1392, 2018.

[8] Z. N. Abdullah, I. Ahmad, and I. Hussain, Segment routing
in software defined networks: A survey, IEEE Commun.
Surv. Tut., vol. 21, no. 1, pp. 464–486, 2019.

[9] P. L. Ventre, S. Salsano, M. Polverini, A. Cianfrani, A.
Abdelsalam, C. Filsfils, P. Camarillo, and F. Clad, Segment
routing: A comprehensive survey of research activities,
standardization efforts, and implementation results, IEEE
Commun. Surv. Tut., vol. 23, no. 1, pp. 182–221, 2021.

[10] J. Zhang and C. Zhao, Q-SR: An extensible optimization
framework for segment routing, Comput. Netw., vol. 200, p.
108517, 2021.

[11] X. Li and K. L. Yeung, Bandwidth-efficient network
monitoring algorithms based on segment routing, Comput.
Netw., vol. 147, pp. 236–245, 2018.

[12] X. Jia, Q. Li, Y. Jiang, Z. Guo, and J. Sun, A low overhead
flow-holding algorithm in software-defined networks,
Comput. Netw., vol. 124, pp. 170–180, 2017.

[13] R. Banerjee and S. Das Bit, Low-overhead video
compression combining partial discrete cosine transform
and compressed sensing in WMSNs, Wirel. Netw., vol. 25,
no. 8, pp. 5113–5135, 2019.

[14] A. Cianfrani, M. Listanti, and M. Polverini, Incremental
deployment of segment routing into an ISP network: A
traffic engineering perspective, IEEE/ACM Trans. Netw.,
vol. 25, no. 5, pp. 3146–3160, 2017.

[15] X. Xiao, A. Hannan, B. Bailey, and L. M. Ni, Traffic
engineering with MPLS in the internet, IEEE Netw., vol. 14,
no. 2, pp. 28–33, 2000.

[16] B. Fortz, J. Rexford, and M. Thorup, Traffic engineering
with traditional IP routing protocols, IEEE Commun. Mag.,

vol. 40, no. 10, pp. 118–124, 2002.
[17] A. Elwalid, C. Jin, S. Low, and I. Widjaja, Mate: MPLS

adaptive traffic engineering, in Proc. IEEE INFOCOM
2001, Conf. Computer Communications, Twentieth Annual
Joint Conf. IEEE Computer and Communications Societies,
Anchorage, AK, USA, 2001, pp. 1300–1309.

[18] A. Feldmann and J. Rexford, IP network configuration for
intradomain traffic engineering, IEEE Netw., vol. 15, no. 5,
pp. 46–57, 2001.

[19] S. Kandula, D. Katabi, B. Davie, and A. Charny, Walking
the tightrope: Responsive yet stable traffic engineering,
ACM SIGCOMM Comput. Commun. Rev., vol. 35, no. 4, pp.
253–264, 2005.

[20] S. Agarwal, M. Kodialam, and T. V. Lakshman, Traffic
engineering in software defined networks, in 2013 Proc.
IEEE INFOCOM, Turin, Italy, 2013, pp. 2211–2219.

[21] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou,
Research challenges for traffic engineering in software
defined networks, IEEE Netw., vol. 30, no. 3, pp. 52–58,
2016.

[22] A. Guezzaz, Y. Asimi, M. Azrour, and A. Asimi,
Mathematical validation of proposed machine learning
classifier for heterogeneous traffic and anomaly detection,
Big Data Mining and Analytics, vol. 4, no. 1, pp. 18–24,
2021.

[23] M. Chiesa, G. Kindler, and M. Schapira, Traffic engineering
with equal-cost-MultiPath: An algorithmic perspective,
IEEE/ACM Trans. Netw., vol. 25, no. 2, pp. 779–792, 2017.

[24] A. Bahnasse, F. E. Louhab, H. A. Oulahyane, M. Talea, and
A. Bakali, Novel SDN architecture for smart MPLS Traffic
engineering-DiffServ Aware management, Future Gener.
Comput. Syst., vol. 87, pp. 115–126, 2018.

[25] B. Zhou, J. Li, X. Wang, Y. Gu, L. Xu, Y. Hu, and L.
Zhu, Online internet traffic monitoring system using spark
streaming, Big Data Mining and Analytics, vol. 1, no. 1, pp.
47–56, 2018.

[26] G. Trimponias, Y. Xiao, X. Wu, H. Xu, and Y. Geng, Node-
constrained traffic engineering: Theory and applications,
IEEE/ACM Trans. Netw., vol. 27, no. 4, pp. 1344–1358,
2019.

[27] C. Filsfils, N. K. Nainar, C. Pignataro, J. C. Cardona, and P.
Francois, The segment routing architecture, presented at the
2015 IEEE Global Communications Conf. (GLOBECOM),
San Diego, CA, USA, 2015, pp. 1–6.

[28] R. Bhatia, F. Hao, M. Kodialam, and T. V. Lakshman,
Optimized network traffic engineering using segment
routing, presented at the 2015 IEEE Conf. Computer
Communications (INFOCOM), Hong Kong, China, 2015,
pp. 657–665.

[29] T. Schüller, N. Aschenbruck, M. Chimani, M. Horneffer,
and S. Schnitter, Traffic engineering using segment routing
and considering requirements of a carrier IP network,
IEEE/ACM Trans. Netw., vol. 26, no. 4, pp. 1851–1864,
2018.

[30] M. C. Lee and J. P. Sheu, An efficient routing algorithm
based on segment routing in software-defined networking,
Comput. Netw., vol. 103, pp. 44–55, 2016.

[31] Y. Desmouceaux, P. Pfister, J. Tollet, M. Townsley, and
T. Clausen, 6LB: Scalable and application-aware load
balancing with segment routing, IEEE/ACM Trans. Netw.,
vol. 26, no. 2, pp. 819–834, 2018.

Shu Yang et al.: Intelligent Segment Routing: Toward Load Balancing with Limited Control Overheads 71

[32] M. Jadin, F. Aubry, P. Schaus, and O. Bonaventure, CG4SR:
Near optimal traffic engineering for segment routing with
column generation, presented at the IEEE INFOCOM 2019
- IEEE Conf. Computer Communications, Paris, France,
2019, pp. 1333–1341.

[33] T. Schüller, N. Aschenbruck, M. Chimani, and
M. Horneffer, Failure resiliency with only a few
tunnels-enabling segment routing for traffic engineering,
IEEE/ACM Trans. Netw., vol. 29, no. 1, pp. 262–274, 2021.

[34] J. Haxhibeqiri, I. Moerman, and J. Hoebeke, Low overhead
scheduling of LoRa transmissions for improved scalability,
IEEE Internet of Things Journal, vol. 6, no. 2, pp. 3097–
3109, 2019.

[35] G. Wang, S. Chattopadhyay, I. Gotovchits, T. Mitra, and A.
Roychoudhury, oo7: Low-overhead defense against spectre
attacks via program analysis, IEEE Trans. Softw. Eng., vol.
47, no. 11, pp. 2504–2519, 2021.

[36] V. Freschi and E. Lattanzi, A study on the impact of
packet length on communication in low power wireless
sensor networks under interference, IEEE Internet of Things
Journal, vol. 6, no. 2, pp. 3820–3830, 2019.

[37] Y. H. Robinson, R. S. Krishnan, E. G. Julie, R. Kumar, L.
H. Son, and P. H. Thong, Neighbor knowledge-based
rebroadcast algorithm for minimizing the routing overhead
in mobile ad-hoc networks, Ad Hoc Netw., vol. 93, p.

101896, 2019.
[38] V. S. Devi, T. Ravi, and S. B. Priya, Cluster based data

aggregation scheme for latency and packet loss reduction
in WSN, Comput. Commun., vol. 149, pp. 36–43, 2020.

[39] H. Zhu, B. Smida, and D. J. Love, Optimization of two-
way network coded HARQ with overhead, IEEE Trans.
Commun., vol. 68, no. 6, pp. 3602–3613, 2020.

[40] U. Feige, D. Peleg, and G. Kortsarz, The dense k-subgraph
problem, Algorithmica, vol. 29, no. 3, pp. 410–421, 2001.

[41] P. Raghavan and C. D. Tompson, Randomized rounding:
A technique for provably good algorithms and algorithmic
proofs, Combinatorica, vol. 7, no. 4, pp. 365–374, 1987.

[42] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M.
Roughan, The internet topology zoo, IEEE J. Sel. Areas
Commun., vol. 29, no. 9, pp. 1765–1775, 2011.

[43] R. Trestian, K. Katrinis, and G. M. Muntean, OFLoad:
An OpenFlow-based dynamic load balancing strategy for
datacenter networks, IEEE Trans. Netw. Serv. Manag., vol.
14, no. 4, pp. 792–803, 2017.

[44] C. S. Mbacke Babou, D. Fall, S. Kashihara, Y. Taenaka,
M. H. Bhuyan, I. Niang, I. Diané, and Y. Kadobayashi, D-
LBAH: Dynamic load balancing algorithm for HEC-SDN
systems, presented at the 2021 8th Int. Conf. Future Internet
of Things and Cloud (FiCloud), Rome, Italy, 2021, pp. 304–
310.

Shu Yang received the BS degree from
the Beijing University of Posts and
Telecommunications, Beijing, China, in
2009, and the PhD degree from Tsinghua
University, Beijing, China, in 2014. He
is currently an associate researcher with
the College of Computer Science and
Software Engineering, Shenzhen University,

Shenzhen, China. His research interests include network
architecture, edge computing and high performance router
associations.

Ruiyu Chen received the BS degree
from South China Normal University,
Guangzhou, China, in 2019. He is pursuing
the MS degree at Shenzhen University.
His research interests include software-
defined network, segment routing, and
traffic engineering.

Xiaolei Chang received the BS and MS
degrees from Tsinghua University, Beijing,
China, in 1999 and 2002. He is pursuing
the PhD degree at Tsinghua University. His
research interests include edge computing,
cloud computing, and data center energy
efficiency.

Laizhong Cui is currently a professor
in the College of Computer Science
and Software Engineering at Shenzhen
University, China. He received the BS
degree from Jilin University, Changchun,
China, in 2007 and the PhD degree in
computer science and technology from
Tsinghua University, Beijing, China, in

2012. His research interests include future internet architecture
and protocols, edge computing, multimedia systems and
applications, blockchain, Internet of Things, cloud and big data
computing, computational intelligence and machine learning. He
led more than ten scientific research projects, including the
National Key Research and Development Plan of China, the
National Natural Science Foundation of China, the Guangdong
Natural Science Foundation of China, and the Shenzhen Basic
Research Plan. He has published more than 100 papers in journals
such as IEEE JSAC, IEEE TC, IEE TKDE, IEEE TMM, IEEE
IoT Journal, IEEE TII, IEEE TVT, IEEE TNSM, ACM TOIT,
IEEE TCBB, IEEE Network, IEEE INFOCOM, and ACM MM.
He serves as an associate editor or a member of editorial board
for several international journals, including IEEE IoT Journal,
IEEE Transactions on Network and Service Management, and
International Journal of Machine Learning and Cybernetics. He
is a senior member of the IEEE and the CCF.

