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ABSTRACT
In this paper, we provide a detailed review of two categories of the literature: the spontaneous protective behaviors of individuals
during  disease  spread  and  the  mandatory  measures  to  control  the  disease  spread.  In  the  literature,  the  models  of  individual
protective  behaviors  can  be  divided  into  two  parts:  the  environment-induced  protective  behaviors  and  the  information-induced
protective  behaviors.  And  the  mandatory  measures  of  disease  control  can  be  divided  into  two  parts:  the  macro-based  control
methods  and  the  micro-based  control  methods.  We  provide  a  detailed  review  to  the  various  categories  of  research.  Then  we
compare the effects of different control methods through simulation. Among the micro-based control methods, the method based
on  minimizing  the  largest  eigenvalue  has  the  best  effect.  This  review  is  of  crucial  importance  to  summarize  the  studies  of  the
spontaneous protective behaviors during disease spread and the mandatory measures to control the disease spread.
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T he  recent  outbreak  of  COVID-19  has  resulted  in  global-
scale  infections  and  huge  economic  losses.  As  of  January
2022,  300  million  people  have  been  infected  worldwide,

and 40 million people remain uncured. During this crisis, on one
hand, to suppress the spread of the disease and reduce the risk of
being  infected,  individuals  spontaneously  took  many  protective
measures,  such  as  wearing  masks,  disinfecting  surfaces,  and
observing home isolation; on the other hand, many governments
imposed  mandatory  measures  to  control  disease  spread,  such  as
lockdowns  and  travel  restrictions.  Therefore,  in  the  process  of
disease  spread,  the  methods  for  inhibiting  disease  transmission
can be mainly divided into two categories: individual spontaneous
protective behaviors and mandatory government control policies.
The modeling and control of infectious diseases have always been
important research problems. In this paper, we provide a detailed
review of two categories in the literature:
● Literature  that  models  the  spontaneous protective  behaviors

of  individuals  during disease  transmission and studies  how these
protective behaviors affect disease transmission.
● Literature  that  studies  how  policymakers  can  impose

mandatory measures to control the spread of disease.
The former and latter categories are for controlling the spread

of  disease  through  spontaneous  protective  behavior  and
mandatory measures, respectively. These two types of approaches
encompass  almost  every  way  of  suppressing  the  spread  of  the
disease during the COVID-19 crisis. For the former approach, the
literature mostly focuses on the modeling of individual protective
behavior  during  the  epidemic,  how  protective  behavior  affects
disease  transmission,  and  how  disease  transmission  affects
protective behavior.  For the latter  approach,  the literature can be
divided  into  two  categories:  macro-  and  micro-based  control
methods.  Macro-based  control  methods  mostly  study  regional
policies,  such as the isolation ratio of each region, the number of
people  allowed  to  move  between  regions,  and  whether  a  city

should be closed. Micro-based control methods are studied at the
network  level.  In  these  studies,  the  contact  relationships  of
individuals  are  modeled  as  networks,  where  nodes  represent
individuals and edges represent contact relationships. The disease
spreads  in  the  network.  These  works  study  how  to  control  the
spread  by  changing  the  network  structure,  such  as  which  nodes
should be removed and which edges should be disconnected.

The rest  of  the  paper  is  organized as  follows.  In  Section 1,  we
introduce  basic  information  on  the  disease  spread  model.  In
Section  2,  we  review  the  papers  on  the  spontaneous  protective
behavior in disease spread. In Section 3, the works of mandatory
measures  to  control  the  disease  spread  are  reviewed.  The
conclusion and discussion are summarized in Section 4. 

1    Preliminary

β

γ s(t) i(t)
t

In  this  section,  we  briefly  introduce  the  disease  spread  model,
which  is  the  basis  for  the  studies  on  protective  behavior  analysis
and  spread  control.  The  simplest  disease  spread  model  is  the
susceptible-infected-susceptible  (SIS)  model[1].  At  each  moment,
the  susceptible  individual  is  infected  with  probability  by  the
infected  individual,  and  the  infected  individual  recovers  with
probability . Let  and  represent the fraction of susceptible
agents and infected agents at time , respectively, then we have

ds
dt

= γi(t)− s(t)i(t)β,

di
dt

= s(t)i(t)β− γi(t)
(1)

β
γ
< 1 i= 1− γ

β
β
γ
⩾ 1 i= 0

Eventually the proportion of infected people will reach a steady-

state,  i.e.,  homeostasis.  If ,  then  when  it  is  stable,

and if ,  then  when it is stable. Thus 1 is the epidemic
threshold of the SIS model, when the basic reproduction number 
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is larger than the epidemic threshold, the disease would outbreak,
otherwise, it would die out. The basic SIS model does not consider
the  network  structure,  that  is,  does  not  consider  the  connection
relationship  between  individuals.  When considering  the  network
structure,  the  epidemic  thresholds  of  the  SIS  model  are  different
under different networks.  In a homogeneous or ER network,  the

epidemic threshold is ,  where  is  the average degree of  the
network[2].  And in the scale-free network,  the epidemic threshold

becomes ,  where  is  the  average  of  each
node[3].  By  analyzing the  steady-state  and epidemic  threshold,  we
can study the spread and control of disease in different situations.

r(t) t

The SIS model only considers the two states of susceptible and
infected.  However,  for  many  diseases,  the  individual  will  not  be
reinfected  after  recovery.  Compared  with  the  SIS  model,  the
susceptible-infected-recovery  (SIR)  model  adds  the  recovery
state[4]. Let  represent the fraction of recovery agents at , then
we have

ds
dt

=−s(t)i(t)β,

di
dt

= s(t)i(t)β− γi(t),

dr
dt

= γi(t)

(2)

The  SIR  model  does  not  end  up  in  homeostasis  like  the  SIS
model  because  of  the  recovery  state.  Eventually,  the  number  of
infected people will be zero.

In  addition,  the  susceptible-exposed-infected-recovery  (SEIR)
model adds the exposed state. Individuals in the exposed state do
not show symptoms of infection but can infect others. Moreover,
adding  different  states  results  in  many  other  variants  of  the
infectious  disease  model,  which  will  not  be  discussed  in  detail
here.

The  goal  of  disease  control  is  to  minimize  the  number  of
infected people. Therefore, based on the disease spread model, the
algorithm  for  disease  control  problems  aims  to  minimize  the
number  of  infections  in  the  disease  spread  model.  For  example,
for the SIS model,  the goal is  to reduce the number of infections
(be  in  state  I)  at  equilibrium.  For  the  SEIR model,  the  goal  is  to
minimize the number of people infected (be in the states E and I)
over all time periods. 

2    Spontaneous  Protective  Behavior  in  Disease
Spread
In  the  process  of  disease  spread,  the  spontaneous  protective
behavior  of  individuals  is  crucial  for  inhibiting  spread.  On  one
hand,  the  spread  of  disease  promotes  individual  protective
behavior;  on  the  other  hand,  individual  protective  behavior
inhibits  the  spread  of  disease.  In  this  section,  we  divide  these
studies  into  two  categories:  environment-induced  and
information  dissemination-induced  protective  behaviors.  The
former category models an individual’s behavior as being directly
affected  by  the  surrounding  environment;  the  latter  category
believes  that  individual  behavior  is  affected  by  the  dissemination
of information.

λ

β
γ
> λ

In  these  works,  the  authors  mainly  discussed  the  epidemic
threshold  under different  situations.  The epidemic threshold is
an important indicator for measuring whether a disease can break

out.  When ,  the  disease  would  spread  out;  otherwise,  it
would  die  out.  Through  disease  thresholds,  we  can  analyze  the

impact of different protective behaviors on disease spread. 

2.1    Environment-induced protective behavior
Individual  behavior  is  largely  influenced  by  the  severity  of  the
disease  spread.  Environment-induced  protective  behaviors  are
those in which individuals observe protective behaviors based on
the spread in the surrounding environment. Individuals are more
inclined  to  adopt  protective  behaviors  if  the  infection  rate  in  the
environment is high.

Protective  behavior  can  be  modeled  in  various  forms.  For
example, in Ref. [5], protective behaviors can change the infection
rate of individual, that is

βi = (1−α)siβ0 (3)

βi i β0

si i
α ∈ [0, 1]

where  is  the  actual  infection  rate  of  node ,  is  the  initial
infection  rate,  is  the  number  of  infected  neighbors  of  node ,
and  is  a  parameter  that  measures  the  strength  of  an
individual’s response.

α
α = 0

β0

α = 1
β0

The  higher  the  proportion  of  neighbors  who  are  infected,  the
stronger  the  individual’s  protective  behavior  and  the  lower  the
infection rate. Moreover, the larger the value of  is, the stronger
the  individual’s  response  to  the  environment.  If ,  then  the
infection  rate  would  always  be ,  which  means  that  no  matter
how  the  environment  changes,  the  individual  does  not  practice
protective  behavior;  if ,  then  if  and  only  if  there  is  no  one
around the individual infected, the infection rate is ,  otherwise,
the individual will take protective actions, and the infection rate is
0,  which  means  that  isolation  or  other  actions  are  taken  to
completely block the spread.

On  the  basis  of  this  assumption,  Zhang  et  al.[5] obtained  the
epidemic thresholds for the SIS and SIR models:

λSIS =
1

1−α
⟨k⟩
⟨k2⟩

=
1

1−α
λSIS
0 ,

λSIR =
1

1−α
⟨k⟩

⟨k2⟩−⟨k⟩
=

1
1−α

λSIR
0

(4)

λSIS
0 λSIR

0
β0

γ
> λSIS

0 λSIR
0

where  and  are the epidemic threshold for the classical SIS

and SIR models,  respectively.  When  or ,  the  disease
will spread out, otherwise it will die out.

1
1−α

After  considering  the  influence  of  the  environment  on  the
individual,  the  epidemic  threshold  has  become  of  the

original  value.  The  epidemic  threshold  is  only  related  to  the
strength of individual’s response to the environment.

Besides,  Wu  et  al.[6] considered  the  impact  of  individual
information,  local  information,  and  global  information  on
protective behavior. Then the infection rate is

βi = ψ(ki)
(
1−α2

si
ki

)
(1− ζp)β0 (5)

ki i ψ(ki)

ψ(ki)
α2

ζ

si i
1−α2

si
ki

where  is  the  degree  of  node  and  is  the  individual
awareness.  The  larger  the  node  degree  is,  the  more  people  the
individual contacts, and the smaller  is, that is, the individual
is more inclined to take protective behavior.  is the parameter of
local  awareness  intensity,  the  larger  the  parameter,  the  stronger
the  local  awareness.  is  the  parameter  of  global  awareness
intensity,  the  larger  the  parameter,  the  stronger  the  global
awareness.  is  the  number  of  infected  neighbors  of  node  and

 is  the  local  awareness.  The  higher  the  proportion  of

infection  is  around  the  individual,  the  stronger  the  protective
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p 1− ζpbehavior.  is the infection density of the entire society and 
is  the  global  awareness.  The  higher  the  infection  density  of  the
entire  society,  the  stronger  the  protective  behavior.  Then  the
epidemic threshold becomes

λc =
⟨k⟩

⟨k2ψ(k)⟩−α2⟨kψ(k)⟩
(6)

Therefore,  the  threshold  of  disease  spread  is  affected  by
individual  and local  information but  not  by  the  impact  of  global
information on protective behavior.

βi = e−(H+J( s
ki
)α3 )β0

βi = ψ(ki)
(
1−α4

(
si
ki

)a1)
(1− ζ2pa2)β0 α3

α4

ζ2

Similarly,  protective  behavior  can  be  described  in  other  ways.
For instance,  in Ref.  [7],  the infection rate was .
The work in Ref. [8] extended the model of Ref. [6], and modified

Eq.  (5)  as .  is  the

parameter  of  the  individual’s  response  strength.  is  the
parameter of local awareness intensity. And  is the parameter of
global awareness intensity. The results of these studies are similar
and will not be repeated here. 

2.2    Information dissemination-induced protective behavior
Individual  protective  behavior  is  affected  not  only  by  the
environment  but  also  by  the  dissemination  of  information.  As
shown by the COVID-19 crisis, publicity about the severity of the
disease largely affects the protective behavior of individuals, which
in  turn  affects  the  extent  of  the  disease  spread.  Therefore,  some
studies  modeled  information  dissemination  in  the  process  of
disease  spread  to  study  the  effect  of  protective  behavior  on  the
disease under information dissemination.

Funk  et  al.[9] modeled  the  spread  of  information  using  an
approach  similar  to  the  disease  spread  model.  In  their  paper,
information was  modeled in three  parts:  information generation,
information  transmission,  and  information  fading.  Infected
individuals  generate  information  and  spread  it  to  others.  Those
who receive the information will take protective measures. In the
process  of  dissemination,  information will  fade,  and the  stronger
the  information,  the  stronger  the  protective  behavior.  The
infection rate is

β = (1− ρi)β0 (7)

i i
i

ρ

where  represents  that  the  information  has  passed  through 
individuals  (awareness  at  level )  before  arriving  at  a  given
individual.  is  the decay constant,  which determines how much
the  tendency  to  take  the  protective  behavior  decreases  with
decreasing quality of information. Therefore, the fewer people the
information has passed through, the stronger the information and

protective behavior, and the lower the infection rate.
The  specifics  of  three  parts  of  information  modeling  are  as

follows:

ω
● Information  generation: For  the  infected  individual,  it

produces information with probability , for this information, the
awareness level is 0.

i
i+ 1 α

● Information  transmission: For  the  individual  with
information  of  level ,  it  can  spread  the  information  to  another
individual to level  with probability .

i i+ 1 λ
● Information fading: For the individual with information of

level , the information can decrease to level  with probability .
Ni iLet  denote the population at awareness level . Then we have

dNi

dt
=−α5

Ni

N

i−1

∑
0

Nj +α5
Ni−1

N

(
N−

i−1

∑
0

Nj

)
− μ2 (Ni −Ni−1)

(8)

α5 μ2

N
where  is the rate of information transmission,  is the rate of
information fading, and  is the total number of individuals.

R(α5,ω, ρ)
R

The  process  of  disease  spread  is  modeled  by  the  classical  SIR
model.  After  a  series  of  derivations,  the paper discusses the basic
propagation  number  of  this  model.  Since  the  full
expression of  is too complex to get a simple interpretation, they
obtain  its  upper  bounds.  If  the  basic  reproduction  number  is
greater than

lim
ω,α5→∞

R=
1

1− ρ(1−D−1
k )

(9)

the information spread cannot stop the disease from growing into
an  epidemic,  no  matter  how  fast  the  information  generates  and
spreads.

In  addition,  some  studies  divided  information  spread  and
disease  spread  into  two  networks,  establishing  a  dual  network
model[10−13].  The  basic  model  is  shown in Fig. 1a  (from Ref.  [10]).
The  lower  layer  is  a  physical  contact  network,  which  reflects  the
physical  contact  relationships  between individuals.  The  disease  is
spread  by  the  physical  contact  network.  The  upper  layer  is  a
virtual  network,  which  reflects  the  communicative  relationship
between individuals. The information about an epidemic is spread
by the virtual network.

γ

In  Ref.  [10],  the  disease  spread  process  is  modeled  by  the  SIS
model.  The  individual  can  be  in  the  state  of  susceptible  (S)  or
infected  (I)  state.  The  susceptible  individual  would  be  infected
with  a  certain  probability,  and  the  infected  individual  would  be
recovered with probability . And for the information spread, the
individual  can be in the state  of  unaware (U) or aware (A) state.
The  aware  individuals  will  take  the  protective  measure  and  the
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Fig. 1    (a) Two network model (from Ref. [10]). (b) Two network model with mass media (from Ref. [11]).
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β0

α6β0 α6

η
ε aij bij

unaware  individuals  will  not.  Then  the  infection  rate  is  for
unaware  individuals  and  for  aware  individuals,  where  is
the parameter of  the individual’s  awareness strength.  The spread
of  the  information  is  similar  to  that  of  the  SIS  model.  The
unaware individual would become aware by aware neighbor with
probability ,  and  the  aware  individual  would  become  unaware
with probability .  Let  and  denote  the adjacency matrix  of
virtual contact network and physical contact network, respectively.
Then the epidemic threshold is

λc =
β0

γ
=

1
Λmax(H)

(10)

Λmax(H) H
hji = (1− (1−α6)pA

i )bji η < ε
Λmax(A)

η > ε
Λmax(A)

ε
Λmax(A)

where  is  the  largest  eigenvalue  of  matrix ,  and

. If , then the disease spread is

independent of information spread. Additionally, if ,

then  the  disease  spread  depends  on  the  structure  of  the  virtual

network and the dynamic of information spread. We call 

the meta-critical  point.  Information dissemination has an impact
on  the  threshold  of  disease  transmission  only  if  the  intensity  of
information dissemination is higher than the meta-critical point.

m

In  addition,  some  studies  have  extended  this  model.  For
example,  the  model  only  considers  information  dissemination
between  individuals;  however,  a  user’s  consciousness  is  largely
influenced  by  institutions  and  individuals  (such  as  the
government  and  celebrities).  In  Ref.  [11],  a  node  called  mass
media can be added to the basic model. Every unaware individual
can become aware by the mass media with probability , which is
shown in Fig. 1b (from Ref. [11]). A series of derivations can show
that  the  influence  of  mass  media  will  greatly  affect  the  epidemic
threshold  and  make  the  meta-critical  point  vanish.  That  is,  the
influence of mass media can suppress the spread of the epidemic. 

3    Mandatory  Measures  to  Control  the  Disease
Spread
In  addition  to  spontaneous  protective  actions,  agencies  such  as
governments can take mandatory measures to control the spread
of a disease.  Many researchers studied how to control the spread
of  disease,  and  we  divide  these  studies  into  two  types:  macro-
based  and  micro-based  control  methods.  The  former  method
neglects the network structure but makes macro adjustments to all
individuals,  such as immunizing certain nodes in proportion; the
latter  method  is  based  on  the  network,  adjusting  at  the  micro-
level, such as specifying which nodes should be immunized. Micro-
based  control  methods  are  more  diverse  and  can  handle  more
complex problems. The method of removing nodes has a unified
problem form, so in this paper, we compare the effects of different
methods. 

3.1    Macro-based control methods
Macro-based  control  methods  neglect  the  specific  network
structure or consider the network structure, but the nodes on the
network  represent  groups  rather  than  individuals,  such  as
communities  and  cities.  Thus,  this  type  of  research  discusses
group-level decision-making.

Song  et  al.[14] studied  how  to  suppress  the  disease  spread  by
controlling the inter-regional mobility. The algorithm is called the
dual-objective  reinforcement-learning  epidemic  control  agent
(DURLECA),  which adopts  a  GNN to  capture  the  graph feature
and  uses  reinforcement  learning  to  decide  on  the  mobility
restriction  between  regions.  Because  restricting  population

movement  can  cause  economic  losses,  the  algorithm  hopes  to
curb  the  spread  of  disease  while  minimizing  economic  losses.
Then,  through  simulation,  the  authors  verified  that  DURLECA
has  a  better  control  effect  and  lower  economic  losses  compared
with  the  basic  methods,  such  as  lockdowns  and  restricting  flow
proportionally.

Wan et al.[15] proposed a multi-objective reinforcement learning
framework to suppress disease spread while minimizing the cost.
The  framework  uses  regions  as  decision-making  agents  and  the
number  of  people  in  S,  I,  and  R  as  states,  establishes  an
optimization  problem,  and  makes  decisions  by  reinforcement
learning.  The  authors  verified  the  effectiveness  of  the  algorithm
using the data of six China cities in 2020.

Hota et al.[16] proposed a closed-loop framework that combines
inferences  from  testing  data,  learning  the  parameters  of  the
dynamics  and  optimal  resource  allocation  for  controlling  the
spread  of  disease.  In  this  framework,  each  node  represents  a
region. In the experiment, the authors considered a network with
five  nodes,  where  each  node  represents  a  country.  Through
simulation  and  the  real  data  of  COVID-19,  the  authors  verified
the effectiveness of the algorithm and found that early testing was
crucial for disease control.

Birge  et  al.[17] studied  how  to  suppress  disease  spread  and
minimize  economic  losses  by  the  targeted  closure  of  a  city.  The
authors modeled disease control in each region as an optimization
problem that guarantees a progressive reduction in the proportion
of  disease  infections  while  minimizing  economic  losses.  The
optimization problem is

max
xi∈[0,1]

∑
i

cixi,

s.t. E′
i + Ic′i + Isc′i ⩽ 0

(11)

xi

i ci
E′

i + Ic′i + Isc′i ⩽ 0

where  is  the  level  of  permitted  economic  activity  in
neighborhood  and  is  a  fixed  location-specific  constant.

 means  the  number  of  infected  people  (E  and  I)
declines over time.

Birge et  al.[17] conducted a simulation experiment using mobile
data in New York City. According to the results of the experiment,
the  model  can  restore  23.1%−42.4%  of  the  baseline  employment
level on the basis of reducing infection.

Moreover,  Refs.  [18−20]  also  studied  macro-based  control
methods.  These  studies  simulated  disease  control  by  adjusting
parameters in the disease spread model and tried to find optimal
control strategies. 

3.2    Micro-based control methods
(1)  Preliminary: The  micro-based  control  method  is  used  for
control  at  the  network  level.  It  can  be  divided  into  three  tasks:
remove  nodes,  disconnect  edges,  and  change  disease-related
parameters.  Removing  a  node  means  cutting  off  all  connections
between  the  removed  node  and  other  nodes  so  that  it  cannot
spread  the  disease,  which  corresponds  to  isolation  or  immunity.
Cutting edges is cutting off the connection between certain nodes,
which  corresponds  to  restricting  travel.  Changing  disease-related
parameters  is  to  change  the  infection  rate  and  recovery  rate  of
certain  individuals,  which  corresponds  to  allocating  medical
resources to certain individuals, etc.

Before  introducing  these  three  kinds  of  control  methods  in
detail,  we  first  introduce  a  conclusion,  which  is  the  theoretical
basis  of  many  micro-based  control  methods.  In  Ref.  [21],  Wang
et al.  gave the epidemic thresholds of the general network, which
is shown in Theorem 1.

Theorem  1: When  a  disease  spread  in  a  network,  then  the

International Journal of Crowd Science

 

226 International Journal of Crowd Science | VOL. 6 NO.4 | 2022 | 223–229



epidemic threshold would be

λc =
1

Λmax(A)
(12)

A Λmax(A)
A

where  is  the  adjacency  matrix  of  the  network,  and  is
the largest eigenvalue of .

Then in Ref. [21], Wang et al. also showed how the probability
of infection would change over time, which is shown in Theorem 2.

β
γ(

1
Λmax(A)

)Theorem  2: When  is  lower  than  the  epidemic  threshold

,  the  probability  of  infection  would  exponentially

decrease over time.

A
1

Λmax(A)
β
γ

From Theorems 1 and 2,  for a given network ,  if  is

greater  than ,  the  disease  will  die  out  and  the  probability  of

infection  would  exponentially  decrease  over  time.  Then  for  the
method  of  removing  nodes  or  cutting  edges,  if  the  maximum
eigenvalue of the adjacency matrix is minimized, then the disease
spread can be controlled.

Next we introduce three kinds of micro-based control methods
in detail.

(2) Remove nodes: Given a network structure, if k nodes are to
be  removed,  this  type  of  research  attempts  to  answer  how  these
nodes  should  be  selected  to  control  the  spread  of  the  disease  as
much as possible.

The most  intuitive  idea is  to  sort  the  nodes  according to  their
importance  and remove the  more  important  nodes.  In  Ref.  [22],
the  authors  removed  nodes  based  on  the  degree.  Degree  is  the
most basic indicator to measure the connectivity of a node. In this
paper,  Piccini  et  al.[22] mainly  compared  the  effects  of  the  two
methods:  HighDegree and LowDegree.  HighDegree is  to remove
the  nodes  with  the  highest  degree,  and  LowDegree  is  to  remove
the  nodes  with  the  lowest  degree.  Piccini  et  al.[22] found  that,  in
some  cases,  removing  low-degree  nodes  counterintuitively  had  a
better effect on suppressing disease spread.

p N

k kP(k)
N⟨k⟩

Cohen et  al.[23] proposed  a  method for  removing  the  nodes  by
finding the acquaintances. In their approach, they chose a fraction

 of  nodes  and  found  a  random  acquaintance  of  theirs  (a
random  node  that  connects  to  the  chosen  nodes).  Then  the
acquaintance nodes are be removed. That means, for a node with

 contacts,  the  probability  it  is  selected  for  removal  is .

Finally,  the  authors  proved  the  effectiveness  of  the  method
through theory and experiment.

Nagaraja[24] proposed  a  method  for  suppressing  disease  spread
by  removing  superspreaders.  The  author  searched  for
superspreaders through random walks, and the results are similar
to removal based on node degree.

Moreover,  in  Refs.  [25, 26],  the  authors  found  the  important
nodes  using  the  community  structure  of  the  network.  When the
network  can  be  divided  into  modules,  the  importance  of  nodes
between  modules  may  be  higher,  and  how  to  measure  the
importance of nodes in a community-based network is crucial. In
Refs.  [25, 26],  the  authors  proposed  mod  centrality  and  comm
centrality to measure the importance of nodes and remove nodes
accordingly, respectively.

In  addition  to  the  method  for  removal  according  to  node
importance, from Theorem 1, we know that disease spread can be
suppressed by minimizing the largest eigenvalue of the adjacency
matrix. How is the change in the largest eigenvalue measured after
removing nodes?

Tong  et  al.[27] proposed  a  method  called  Netshield,  which
measures  the  change  in  the  maximum  eigenvalue  of  the  matrix
after removing the nodes using the shield value. The shield-value
of a network is defined as

Sv() = ∑
i∈

2λ2u(i)2 − ∑
i,j∈
A(i, j)u(i)u(j) (13)

 A λ2

u A
where  is the node set,  is the adjacency matrix,  is the largest
eigenvalue of A, and  is the largest eigenvector of .

λ()


In Ref. [28], the authors gave an approximate proof. Let  be

the  largest  eigenvalue  of  the  adjacency  matrix  after  removing 
from the original point set. Then,

λ2− λ() = Sv()+O

(
∑
j∈

∥A(:, j)∥2

)
(14)

That  is,  the  shield  value  approximates  the  largest  eigenvalue
change.  Then,  by  maximizing  the  shield  value,  we  can
approximately  minimize  the  largest  eigenvalue.  The  algorithm
would  find  a  near-optimal  set  of  points  to  reduce  the  largest
eigenvalue to control the disease spread.

Then  in  Ref.  [28],  the  authors  improved  the  Netshield
algorithm and proposed the Netshield+ algorithm, which reduces
the time complexity of the algorithm.

In  addition  to  Netshield,  Refs.  [29, 30]  also  adopted  a  similar
idea  to  suppress  disease  spread  by  minimizing  the  largest
eigenvalue.  In  Ref.  [29],  Ahmad  et  al.  proposed  a  method  called
GreedyDrop  that  minimizes  the  largest  eigenvalue  by  a  spectral
method. In Ref. [30], Saxena et al. used the method Shapley value
based  information  delimiters  (SVID)  based  on  the  group-based
game  theoretic  payoff  division  approach  to  minimize  the  largest
eigenvalue.

Considering  that  many  control  methods  are  available  for
removing  nodes,  and  they  deal  with  the  same  problems,  in  this
paper,  we  compare  the  effects  of  different  methods.  These
methods  are:  Netshield[27],  Netshield+[28],  Acquaintance[23],
GreedyDrop[29],  HighDegree[22],  LowDegree[22],  SuperSpreader[24],
SVID[30],  ModCentrality[25],  and  CommCentrality[26].  We  conduct
experiments  on  a  scale-free  network  of  1000  nodes,  and  the
average  degree  of  the  network  is  6,  each  experiment  is  repeated
100 times and averaged, the result is shown in Fig. 2.

λ λ = β
γ

λ

Figure 2a is the result with different  ( , and the number

of  removed  nodes  is  fixed  as  100).  The  infection  rate represents
the probability of infection when the disease is stable. Figure 2b is
the result  with different  number of  removed nodes (  is  fixed as
1).  Generally,  among  the  methods  based  on  minimizing  the
largest  eigenvalue,  GreedyDrop  has  the  best  effect,  followed  by
Netshield+.  However,  the  effect  of  these  methods  is  not  much
different from that of HighDegree, which directly removes nodes
according  to  the  degree,  and  that  of  SuperSpreader,  which
removes  nodes  according  to  the  importance  of  the  nodes.  In  all
cases,  the  effect  of  preferentially  removing  low-degree  nodes
(LowDegree) is the worst. Overall, these algorithms are sensitive to
the base reproduction number and the number of removed nodes.
When  the  base  reproduction  number  is  high,  or  the  number  of
removed  nodes  is  low,  the  effects  of  these  algorithms  are
significantly reduced.

(3) Cut off edges: In addition to removing nodes, cutting edges
is  also  an  important  means  of  inhibiting  the  spread  of  diseases.
Similar  to  removing  nodes,  minimizing  the  adjacency  matrix’s
largest  eigenvalue  by  cutting  edges  is  also  an  effective  way  to
suppress disease spread. In Ref.  [31],  Tong et al.  considered both
removing  edges  to  minimize  spread  and  adding  edges  to
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maximize spread.  Here,  we focus on the method to suppress  the
propagation.  Similar  to  Netshield,  the  authors  also  proposed  an
indicator to reflect the amount of change in the largest eigenvalue
after  removing  edges.  The  algorithm  is  called  K-
EDGEDELETION,  which  minimizes  the  largest  eigenvalue  by
removing edges to control disease spread.

In addition to K-EDGEDELETION, Refs.  [32, 33] also studied
how to suppress the spread by cutting off edges. The idea is still to
minimize  the  largest  eigenvalue  of  the  matrix,  we  will  not
introduce it in detail here.

(4)  Change  disease-related  parameters: In  the  epidemic
model,  many  parameters,  including  the  infection  rate  and  the
recovery rate, can be changed. By changing these parameters, the
spread can be controlled. However, changing the parameters has a
cost,  and  most  of  these  papers  studied  how  to  change  the
parameters under a limited budget to control the spread as much
as  possible.  Moreover,  the  infection  rate  and  recovery  rate  of
individuals  can  also  be  changed  by  allocating  medical  resources.
Therefore, this type of research explored how to allocate resources
to control the spread of a disease to the greatest extent.

Vinf = [v1,v2, . . . ,vN]T vi i

In Ref. [34], Gourdin et al. studied how to find the best curing
strategy  to  minimize  the  steady-state  infection  vector,

, where  denotes the probability that node 
is infected at steady-state. The problem is formulated as

min
Δ

f1(Δ) = ∑
i

vi(Δ),

s.t. ∑
i

δi = 2Lα7β,

0⩽ δi ⩽ δc

(15)

L β
α7 [0, 1]

where  is the number of edges in the network,  is the infection
rate, and  is a parameter in . That is, the sum of the recovery
rates  of  all  individuals  has  a  constraint,  which  is  related  to  the
number  of  network  connections  and  the  infection  rate,  and  the
recovery rate of each individual has an upper limit. On this basis,
Gourdin et al.[34] tried to minimize the overall infection probability
when it is stable. Afterward, the authors transformed the problem
into a convex optimization problem through optimization theory
and verify its effectiveness through simple experiments.

λ1(diag(βi)AG −diag(δi))

λ1

Preciado  et  al.[35] considered  the  allocation  of  multiple  types  of
conservation  resources:  preventive  resources  able  to  prevent  the
individual  from  being  infected  and  corrective  resources  able  to
promote individual recovery after infection. Similar to Theorem 2,
when  the  real  part  of  is  lower  than  a
certain  value,  where  is  the  largest  eigenvalue  of  the  adjacency
matrix,  the  probability  of  infection  would  exponentially  decline
over time. Therefore, the goal of the paper is to minimize the cost

on  the  basis  of  ensuring  that  the  largest  eigenvalue  is  below  a
certain value. So the optimization problem is

min
δi ,βi

∑
i

fi(δi)+ gi(βi),

s.t. [λ1(diag(βi)AG −diag(δi))]⩽−ε,
βi ⩽ βi ⩽ βi,

δi ⩽ δi ⩽ δi

(16)

[λ1(diag(βi)AG−diag(δi))]

λ1(diag(βi)AG −diag(δi)) βi δi βi

δi βi δi βi δi

where  is  the  real  part  of
.  and  are  the  lower  bounds  of 

and .  and  are the upper bounds of  and .
In  Ref.  [36, 37],  the  authors  studied  how  to  allocate  the

resources  for  a  competitive  epidemic.  In  a  competitive  epidemic,
an  individual  can  be  infected  by  two  diseases  but  not
simultaneously.  Similarly,  this  type  of  problem  can  also  be
modeled  as  an  optimization  problem,  which  will  not  be
introduced in detail here. 

4    Conclusion and Discussion
In this paper, we conduct a detailed review of two categories in the
literature.  For  the  literature  on  an  individual’s  spontaneous
protective  behaviors,  the  models  can  be  divided  into  two  types:
environment-induced and information-induced.  These two types
of  studies  model  from  different  perspectives  and  derive
conclusions  that  are  consistent  with  reality.  In  the  literature  on
mandatory  measures  for  disease  control,  the  measures  can  be
divided  into  two  types:  macro-based  and  micro-based  control
methods.  The  former  method  studies  the  area-based  control
method,  whereas  the  latter  method  considers  the  network
structure, and its control method is based on the individual. Micro-
based  control  methods  can  be  divided  into  three  categories:
removing  nodes,  cutting  edges,  and  changing  disease-related
parameters.  Among  the  node  removal  methods,  the  control
method  by  minimizing  the  largest  eigenvalue  of  the  adjacency
matrix  has  the  best  effect,  but  the  difference  with  the  most  basic
method of removing nodes according to the degree of the node is
not obvious. The deficiencies of the modeling in the literature are
as follows. For the literature on individual spontaneous protective
behaviors,  existing  methods  do  not  consider  some more  realistic
scenarios, such as the spread of false information and the effect of
individual  panic.  For  the  literature  on  mandatory  measures  of
disease  control,  existing  methods  still  need  to  be  improved  in
efficiency and effectiveness. Because disease transmission involves
large-scale  populations,  individual  behavior  modeling  and
transmission  control  in  disease  transmission  are  important
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