
Dynamics of laser-bumped
electron–hole semiconductor
plasma

Amany Z. Elgarawany1, Yosr E. E.-D. Gamal2, Samy A. El-Hafeez3

and Waleed M. Moslem4,5,6*
1Basic Sciences Department, Modern Academy For Computer Sciences, Cairo, Egypt, 2National
Institute of Laser Enhanced Sciences, Cairo University, El Giza, Egypt, 3Mathematics Department,
Faculty of Science, Port Said University, Port Said, Egypt, 4Department of Physics, Faculty of Science,
Port Said University, Port Said, Egypt, 5Centre for Theoretical Physics, The British University in Egypt
(BUE), El-Shorouk City, Egypt, 6Institut für Theoretische Physik IV, Ruhr-Universität Bochum, Bochum,
Germany

Electron–hole pairs in semiconductors can be stimulated by a laser beam with

energy larger than the energy gap of the semiconductor. The interaction

between an electron–hole plasma with a laser beam can be a source of

instability. The dependence of the instability on the electron and hole

temperatures and the unperturbed potential of the incident laser are

examined. Using Maxwell’s equations along with electron–hole fluid

equations, an evolution equation describing the system is obtained. The

latter is reduced to an energy equation that characterizes localized pulse

propagation.
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1 Introduction

Laser pulses are a powerful tool to produce modifications in different materials [1, 2].

Laser pulses can be used to locally modify inside the material’s bulk, the chemical

structure, the index of refraction, the density of color centers, and surface nanostructures.

Under a laser-induced strong field, bound electrons transit from the valence band to the

conduction band, leaving a hole in the valence band. Pairs of the electron–hole plasma are

accelerated in the laser field, which results in the multiplication of the free carrier density

via impact ionization and potentially in the creation of a dense electron–hole plasma.

Plasma provides a promising medium because it is capable of tolerating very high powers

and shows strong non-linear effects. On the other hand, electrons and their corresponding

holes exist as free carriers that are created as pairs in inter-band transitions [3]. Particles of

the electron–hole plasma are accelerated in the laser field, which results in the

multiplication of the free carrier density via impact ionization and potentially in the

creation of a dense electron–hole plasma. Finally, at timescales much larger than several

picoseconds, thermal and structural events take place inside the material [1].

Semiconductors provide a compact and less expensive medium to model non-linear
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phenomena encountered in laser-produced plasmas. When a

laser beam propagates through plasmas, the shape of the pulse

changes in the form of a steeped front and broad tail due to

plasma-based non-linearities [4, 5]. The produced non-linear

waves can experience amplitude modulation because of the

coupling between the propagating laser and non-linear plasma

environment.

Various studies of the laser–plasma interaction were

carried out theoretically and experimentally, such as Kruer

[6] introduced a theoretical study with evidence that the

experiment on laser light could heat an electron plasma

wave. Later, Manes et al. [7] introduced an experimental

work on how the electron plasma absorbs energy from a

high laser intensity that led to plasma heating. Ripin et al.

[8] carried out an experiment to illustrate that the long and

low-irradiance laser pulses are very efficient in the absorption

process with non-thermal electron heating. They studied the

mechanisms of the absorption process, plasma formation,

plasma heating, and plasma expansion by experimental

treatment. Shukla et al. [9] theoretically investigated the

wave equation for the laser beam propagating in ion

plasma. They derived an effective potential energy and

non-linear frequency shift, taking into account the linear

and non-linear motions of plasma under the effect of

ponderomotive electromagnetic force. Kruer [10]

introduced the main ideas about the laser–plasma

interaction, such as describing the linear and non-linear

interactions and the plasma instabilities. The effects of the

laser interaction and semiconductor materials appear on

many mechanisms such as the recombination process,

increased current flow, decreased energy gap, load

diffusion, decreased carrier mobility, increased collision

rate, increased conductivity, and decreased conductivity.

Yeom et al. [11] conducted a theoretical study about the

interaction of laser beams and electrons in a semiconductor

material (silicon) by using the Monte Carlo method, which led

to the electron motion of oscillation and the creation of

electron–hole pairs. Shukla et al. [12] investigated

electron–positron pairs by introducing an analytical

solution of the wave equation that describes the interaction

between the laser beam and pair plasma. Rubano et al. [13]

introduced an experimental excitation with the non-radiative

recombination process by intense laser pulses. Dyukin et al.

[14] studied the interaction of femtosecond laser pulses with

solids. They found that the kinetic energy of electrons

increased by pulse absorption, and energy distribution

became non-equilibrium. The interaction of intensive laser

fields and relativistic electron–positron–ion plasma was

investigated by [15]. Bogachev et al. [16] generated an

electron–hole pair by the laser beam acting on the material

surfaces, which could be used as a dipole antenna. Tsatrafyllis

et al. [17] conducted an experiment about the interaction of a

strong laser pulse with the semiconductor. They could

measure the absorption coefficient in the presence of strong

laser fields. Shcherbakov et al. [18] studied the interaction of

the semiconductor with a short laser pulse. They introduced

experimental and theoretical development and studied the

non-linear effects of semiconductors with the laser. Gupta and

Suk [19] considered the beating of two co-propagating laser

beams that can resonantly excite a large amplitude plasma

wave in a narrow-gap semiconductor. The higher

ponderomotive force on the electrons due to the plasma

beat wave makes the medium highly non-linear. As a result,

the incident laser beams become self-focused due to the non-

linearity by the ponderomotive force. They showed the self-

focusing and spot size evolution of the laser beams in

semiconductor plasmas. From the last, plasma provides a

promising medium since it is eligible for tolerating very high

powers and shows strong non-linear effects. The motivation of

the present work is to examine the interaction between the laser

pulse and semiconductor (such as GaAs and GaSb). This

interaction gives rise to the generation of non-linear localized

structures. We used Maxwell’s equation along with electron and

hole relativistic momentum equations. These equations are

reduced to one evolution equation called the modified non-

linear Schrödinger (mNLS) equation. Furthermore, the

instability regions are examined. The mNLS equation is

reduced to an energy equation, which characterizes the

propagating localized pulses.

2 Formulation of the problem

The dynamics of the electromagnetic wave (EMW) in e–h

pair semiconductor plasma is introduced by Maxwell’s Ref. [20]

∇ × ∇ × A( ) + 1
c2

z2A
zt2

� 4πJ
c
, (1)

where A is the vector potential of the laser, c is the light speed,

and J is the current between the carriers, and it is given by

J � enhvh − eneve, (2)

where e is the magnitude of the electron charge, ne(nh) is the

electron (hole) number density, and ve(vh) is the electron (hole)

velocity in the electromagnetic field.

According to the Coulomb gauge, (the vector potential has

no divergence), ∇ ·A = 0, then Eq. 1 can be written as

∇2A − 1
c2

z2A
zt2

� 4πe
c

nhvh − neve( ). (3)

Poisson’s equation presents the electric potential ϕ, which is

given by

∇2ϕ � −4πe ne − nh( ), (4)
where ϕ is the ambipolar potential associated with the plasma

slow motion.
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The electron and hole momentum conservation equation

gives the relativistic electron and hole velocities as

ve � eA
m0cγe

, vh � −eA
mhcγh

, (5)

wherem0(mh) is the mass of electron (hole), and γ �
���������
(1 + e2 |A|2

m2
0c

4 )
√

is the relativistic factor.

Given a large amount of activity in this field, we only

highlighted the applications, focusing on intensities greater

than 1018 W/cm2, where relativistic effects dominate

phenomena (see [21, 22]) that cover applications in the

intensity range 1014–1018 W/cm2. At intensities greater than

1018 W/cm2, the field of the laser is much larger than the

Coulomb field binding the ground state electron in the

hydrogen atom, Eat = 5 × 109 V/cm. At 1019 W/cm2, the

laser electric field is close to 1011 V/cm, 20 times Eat. At

these intensities, the electrons have a relativistic

characteristic. They acquire cycle-average oscillatory energy

(quiver energy) Eosc = moc
2(l + 2Up/moc

2 − 1) greater than the

electron rest energy, where mo is the electron rest mass. For

example, at 1019 W/cm2, for λ = 1 μm, this quiver energy is on

the order of 1 MeV or twice the electron rest energy moc
2 =

0.5 MeV. The relativistic nature of the electron motion

requires the use of the full Lorentz force, F = q(E + v/cB),

where q is the charge of the electron; E and B are the vector

electric and magnetic fields of the laser, respectively; v is the

quiver velocity; and c is the speed of light. It should be noted

that in linear and non-linear optics (of the bound electron),

the force due to the magnetic field is always neglected because

the quiver velocity of the electron is small compared to c.

Above 1018 W/cm2, the magnetic and electric forces applied to

the electron become equal and responsible for extremely large

light pressure, P = I/c. At 1019 W/cm2, the light pressure

reaches the respectable value of 0.3 Gbar. It has a profound

implicate.

Now, we define the expressions of the densities of the

electrons and holes ne,h in terms of potentials. The

momentum equation in the presence of the relativistic effect

[23] is given as

zmjvj
zt

+ vj.∇( )mjvj � qj E + vj × B

c
( ) − 1

nj
∇Pj, (6)

where j = e, h and the pressure Pj takes the form

Pj � njTj,

where Tj is the electron and hole thermal temperature in

electron volt.

The interaction of electromagnetic waves with charged

particles is of practical interest in the study of the laboratory

and astrophysical plasma. Linear theory shows that

electromagnetic waves with frequencies less than the

electron plasma frequency cannot propagate in

unmagnetized plasma. In addition to the electron mass

variation non-linearity, the self-interaction of large

amplitude waves also leads to a time-averaged low-

frequency non-linear force, namely, the ponderomotive

force. Because of the large mass of the ions, acting mainly

on the electrons, expelling them from regions of high field

intensity, the ambipolar field thus created pulls away the ions.

The local plasma density is, therefore, reduced by the

ponderomotive force. The combined effect of the

ponderomotive force and the relativistic electron mass

variation on the modulational instability, soliton formation,

self-focusing, and profile modification has been investigated.

The low-frequency electrostatic potential is balanced by the

relativistic ponderomotive potential that relativistic effects

can modify the plasma flow speed in the outer and inner

density shelves quantitatively [23].

Substituting the relativistic velocity vj from Eq. 5 and the

expressions E � (−1
c
zA
zt − ∇ϕ) and B = ∇ ×A, into Eq. 6, the

obtained electron and hole densities take the form

ne � ne0exp
m0c2

Te
1 − γe( ) − eϕ

Te
[ ] � ne0Ne, (7)

nh � nh0 exp
mhc2

Th
1 − γh( ) + eϕ

Th
[ ] � nh0Nh, (8)

where ne0(nh0) is the unperturbed electron (hole) number

density. Here, we assume that the number density is

homogeneous for high frequency near the absorption peak.

The homogeneity increases with increasing temperature as in

the case at hand [24].

Non-linear interactions between intense electromagnetic

waves and the plasma slow motion produce a slowly varying

envelope of circularly polarized electromagnetic waves. The

interaction of the intense electromagnetic waves and the slow

plasma motion is expressed as a vector potential, which takes the

form [15]

A � 1
2

a + ib( )Θ r, t( )exp ik.r − iωt[ ], (9)

where a and b are constants, k is the wave vector, r is the radial

space coordinate, ω is the frequency of the electromagnetic field,

and t is the time of the interaction. Applying Eq. 9 into Eq. 3, we

have

i
zΘ
zt

+ c2

2ω
∇2Θ + i

kc2

ω
∇Θ

+ 1
2ω

ω2 − c2k2 − 4πe2ne
meγe

− 4πe2nh
mhγh

( )Θ � 0. (10)

Applying the following scaling t � τ(ω/ω2
p), r = c(ξ − ugτ)/ωp,

ug = (ωvg/cωp), ϕ = (m0c
2/e)Φ, and Θ = (m0c

2/e)a into Eq. 10,

we get

i
za

zτ
+ 1
2
∇2a + 1

2ω2
p

ω2 − c2k2 − 4πe2ne
meγe

− 4πe2nh
mhγh

( )a � 0. (11)
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The dispersion relation of our plasma model between the

field and the particles takes the form [23, 25]

ω2 � k2c2 + ω2
pe 1 − v2eo

2c2
3
4
− k2c2

4ω2 − ω2
pe

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦
+ ω2

ph 1 − v2ho
2c2

3
4
− k2c2

4ω2 − ω2
pe

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦. (12)

For veo
c ≪ 1 and vho

c ≪ 1, the dispersion relation takes the form

ω2 � k2c2 + ω2
pe + ω2

ph, (13)

where ω2
pe � (4πe2neo/me) and ω2

ph � (4πe2nho/mh).
Substituting the dispersion relation (Eq. 13) into Eq. 11, we

have

i
za

zτ
+ 1
2
∇2a + 1

2
1 − Ne

γe
+M 1 − Nh

γh
[ ]( )a � 0, (14)

whereM = me/mh is the mass ratio of the electron to hole. Eq. 14

is a final evolution equation in the form of the modified non-

linear Schrödinger (mNLS) equation.

It is important to find a relation between the densities Ne,h

and the potential a. From Eqs. 7, 8, we have

ne � neoexp βe 1 −
������
1 + |a|2

√
−Φ( )[ ] � neoNe (15)

and

nh � nhoexp βh 1 −
������
1 + |a|2

√
+MΦ( )[ ] � nhoNh, (16)

where βe = m0c
2/Te, βh = mhc

2/Th, γe �
������
1 + |a|2

√
, and

γh �
���������
1 +M2|a|2

√
.

To get a relation between the potentialΦ and vector potential

a, we compare Eqs. 7, 15 to have

Ne � exp βe 1 −
������
1 + |a|2

√
− Φ( )[ ]. (17)

Furthermore, from Eqs 8, 16, we get

Nh � exp βh 1 −
������
1 + |a|2

√
+MΦ( )[ ]. (18)

In the quasi-neutral limit of the plasmaNe =Nh, from Eqs 17,

18, we obtain

Φ � E 1 −
������
1 + |a|2

√( ) −H 1 −
���������
1 +M2|a|2

√( ), (19)

where E = βe/(βe + Mβh) and H = βh/(βe + Mβh).

We expand Ne and Nh using Taylor’s expansion and

substitute into Eq. 14 to obtain the NLS equation as

i
za

zτ
+ 1
2
∇2a + λ|a|2a � 0, (20)

for λ, given in Appendix A.

To obtain the dispersion relation for the instability, we

assume that the vector potential takes the expression [25]

a � a0 + a1( )exp iδτ( ), a0 ≫ |a1|, (21)
where a0 is an unperturbed potential, a1 is a perturbed potential,

and δ is the non-linear frequency shift. Substituting Eq. 21 into

Eq. 14, we obtain the non-linear frequency shift as

δ � 1
2

1 − Ne a0( )�������
1 + |a0|2

√ +M 1 − Nh a0( )����������
1 +M2|a0|2

√[ ]( ). (22)

To discuss the non-linear dispersion relation for our

purposes, we linearize Eq. 14 with respect to a1 as

a1 � a + ib( )exp ik.ξ − iΩτ( ), (23)
whereΩ(k) is the frequency (wave number) of the low-frequency

modulation.

Substituting the expression of a1, its conjugate, and the

expansions for the last term in Eq. 14, then the linear

differential equation in terms a1 takes the form

i
za1
zτ

+ 1
2
∇2a1 − 1

2
a0 β +Mβ*( ) a1 + a1*( ) � 0, (24)

where β and β* are given in Appendix A. The non-linear

dispersion relation of our model reads

Ω2 � −k
2

2
−k2
2

− a0 β +Mβ*( ){ }, (25)

which gives the modulational instability growth rate Γ = −iΩ [26,

27], and

Γ � k�
2

√ −k
2

2
− a0 β +Mβ*( ){ }1/2

. (26)

We have studied the non-linear propagation of arbitrary

large-amplitude light pulses in an electron–hole plasma, taking

into account the relativistic electron and hole mass increase in the

electromagnetic fields, as well as the plasma density profile

modification by the relativistic ponderomotive force of light.

The combined action and non-linear coupling between these two

non-linear effects produce a modulational instability of an

intense light pulse, leading to light localization and

intensification.

Now, we discuss the localized non-linear solution of Eq. 14

using the separation of the variables, we assume that a is given by

the relation

a � w z( )exp −iΩτ[ ]. (27)

Substituting Eq. 27 into Eq. 14, we get the energy equation

1
2

dw

dz
( )2

+ Ψ w( ) � 0, (28)

where Ψ takes the form of the Sagdeev-like potential as

Ψ w( ) � Ωw2 + Aw4 + Bw6 + Cw8 + O w10( ), (29)

where A, B, and C are given in Appendix A.
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3 Numerical analysis and discussion

There are many types of semiconductor plasmas that can

interact with the laser, such as gallium antimonide (GaSb) and

gallium arsenide (GaAs). We apply our mathematical model of

the laser–plasma interaction using the physical properties of

GaAs and GaSb [28, 29]. It is well known that GaAs and

GaSb are two examples of extrinsic semiconductors since they

include some impurities, so they are not chemically pure, such as

those termed intrinsic semiconductors. In extrinsic

semiconductors, the number of holes and electrons is not

similar; therefore, it is determined by the properties of the

impurities. Even then, in the present study to simplify the

analysis, we assumed a homogeneous distribution for a quasi-

neutral concept. The interaction between the laser and plasma

wave follow the Raman interaction, which demands the

unperturbed potential of the incident laser a0, which must

satisfy the condition 0 ≤ a0 ≤ 1 [30]. The plasma parameters

for GaSb are me* � 0.047m0,mh* � 0.4m0, 0.73 eV band gap, and

charge carrier density 1.5 × 1012cm−3, and for GaAs

me* � 0.067m0, mh* � 0.5m0, 1.42 eV band gap, and charge

carrier density 2.1 × 106 cm−3. Also, pulse laser physical

parameters are as follows: the wavelength is λ = 0.8 μm, pulse

duration is τ = 50 fs, intensity (non-relativistic) is I = 8.6 ×

1020 W/m2, intensity (mildly-relativistic) is I = 8.6 × 1022 W/m2,

glass laser wavelength is λ = 1 μm, and power I = 1018 W/

cm2 [31].

The NLS Eq. 20 has two solutions called bright and dark

solutions. Each solution depends on the sign of the product of the

coefficients of non-linear and dispersion terms. The coefficient of

the dispersion term is always positive, but the coefficient of the

non-linear term λ should be examined as depicted in Figure 1.

We have used the data from both types of semiconductors,

namely, GaSb and GaAs. It is seen that the coefficient of the

non-linear term λ is always negative. Therefore, a dark or stable

wave packet exists, and a bright or unstable pulse cannot

propagate [32, 33].

The existence of finite amplitude solitons of circularly

polarized electromagnetic waves has been considered by

several authors in recent years. Using the quasi-neutrality

assumption for the low-frequency response of the plasma, the

researchers showed the existence of rarefaction and

compressional electromagnetic solitons. On the other

hand, they have given a numerical treatment of the

problem including departures from the quasi-neutrality

condition. Their results indicate that in addition to the

symmetric solutions for the high-frequency field

amplitude, there also exist antisymmetric electromagnetic

solitons. A general analytical treatment of the problem is

given, accounting simultaneously for the non-linearities due

to the relativistic ponderomotive force and the electron mass

variation including full ion dynamics together with the

Poisson equation. It has obtained analytically the

symmetric compression and rarefaction solitons that are

found in the quasi-neutral case, and also, the

antisymmetric solution was numerically obtained in the

non-neutral limit. Parameter space analysis of symmetric

and antisymmetric solutions has been considered. On the

other hand, for quasi-stationary density modulations, only

symmetric solitons have been obtained. Modulational

instability and soliton formation are possible if the non-

linear frequency shift is the frequency of the

electromagnetic field [20]

The growth rate represented by Eq. 26 is depicted against

the wave number k for different electron and hole thermal

temperatures for GaSb and GaAs semiconductors. From

Figure 2, it is seen that the growth rate increases up to a

threshold wave number k ≡ kc; then, it decreases until it

vanishes for both kinds of semiconductors. The critical

wave number kc can be determined as follows. At kc, the

slope of the curve in the γ − k plan vanishes. Thus, we calculate

dΓ/dk, solve it for dΓ/dk = 0, and then we obtain a threshold

value of kc, at which the system tends to have less instability.

From the calculations, we found that the value of kc for the

GaSb semiconductor is kc = 9.91, 8.58, 7.68 for the black, red,

and blue curves, respectively. However, the value of kc for the

GaAs semiconductor is kc = 12, 10.39, 9.29 for the black, red,

and blue curves, respectively. Indeed, increasing the

electron–hole temperature at a constant value of the

unperturbed potential of the incident laser a0 would lead to

reduce the instability to lower k. This is attributed to the

constant a0, and the plasma does not gain energy from outside

the system (i.e., from the laser source). Thus, increasing the

particle temperature will be consumed from the moving wave,

and hence, the wave suffers from deprivation from a source of

energy that tends to have less instability.

FIGURE 1
Coefficient of the non-linear term vs. electron–hole
temperature for GaSb and GaAs semiconductors. The black curve
stands for GaSb, where me* � 0.047m0 and mh* � 0.4m0, and the
red-dashed curve stands for GaAs, where me* � 0.067m0

and mh* � 0.5m0.
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The growth rate is plotted against the wave number k for

different values of the unperturbed potential of the incident laser

a0 for GaSb and GaAs semiconductors. The plasma instability

increases with the wave number and achieves the maximum, and

thereafter, it falls rapidly. It is observed that for a powerful

unperturbed potential of the incident laser (i.e., higher values

of a0), the growth rate increases and the system tends to have

more instability. This is speculated to that increasing the

FIGURE 2
Growth rate vs. the wave number k for GaSb (upper panel) and GaAs (lower panel) semiconductors. (A) and (C) for T = 300 K (solid black curve),
T = 400 K (dashed red curve), and T = 500 K (dotted blue curve); (B) and (D) for a0 = 0.01 K (solid black curve), a0 = 0.011 K (dashed red curve), and
a0 = 0.012 K (dotted blue curve).

FIGURE 3
Sagdeev pseudo-potential (Ψ(w)) vs. the potentialw for the GaSb semiconductor. (A) for T= 300 K (solid black curve), and T= 350 K (dashed red
curve). (B) for Ω = −1010 (black solid curve) and Ω = −3 × 1010 (red-dashed curve).
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unperturbed potential of the incident laser pump additional

energy in the e–h semiconductor, which produces instability

in the system.

The dependence of Sagdeev pseudo-potential (Ψ(w))
represented by Eq. 29 with the potential w is depicted in

Figure 3. Physically, the potential Ψ(w) is interpreted by a

quasi-particle oscillating periodically back and forth between

two real zeros. On the other hand, the quasi-particle oscillates

in the potential well Ψ(w), which is corresponding to the

solitary wave or localized structure. It is important to

mention that the potential profile contains essential

information about the solitary structure such as the width

of the potential well refers to the amplitude of the solitary

wave and the depth of the potential measures the steepness of

the solitary pulse.

To determine the stability or the properties of the instability

associated with a given plasma equilibrium, we use a method

based on energy considerations [34]. According to this method, it

is necessary to calculate the change in the potential energy of the

plasma as a result of a given perturbation. Thus, we use Sagdeev

potential in Eq. 29. A necessary condition for the existence of the

localized (solitary) wave is

V″ w( )< 0, forw � 0. (30)

From Eqs. 29, 30, we have

V″ w( ) � Ω. (31)

Equation 31 shows that stable localized pulses exist whenΩ <
0; otherwise, stable pulses cannot exist in the plasma. Typical

values of the electron plasma period are of the order of a

picosecond. The corresponding frequency of localized pulses is

chosen for excitation of 100 THz. Now, we examine the behavior

of localized pulses with the corresponding frequency Ω. It is seen
that both positive (compressive) and negative (rarefactive)

solitary waves can exist simultaneously. This may be

attributed to that both electrons and holes have different

masses. For the electron–positron plasma system (with equal

masses), we get only a positive (compressive) solitary wave such

as in [12]. Also, increasing Ω enhances the pulse amplitude and

decreases the pulse width, i.e., the depth of the Sagdeev potential

is inversely proportional with the pulse width. On the other hand,

for higher Ω, the solitary pulse becomes taller and narrower.

From the terminology of solitary waves, taller and narrower

pulses are faster. In Figure 3B, the solid curve for Te = Th = T =

300 K, while the dashed curve for Te = Th = T = 350 K for the

GaSb semiconductor. For higher temperature, the solitary pulses

become towering, thinning, and then speeder.

4 Conclusion

The interaction between an electron–hole semiconductor

plasma with a laser beam is a source of instability. Using

Maxwell’s equations along with electron–hole fluid equations,

the interaction between the laser beam and non-linear density

perturbations of the electrons and holes gives rise to a

localized electric field envelope, whose dynamics is

described by the non-linear Schrödinger equation. The

latter provides dark envelope solutions, representing the

electric field wave packet. We have investigated the

conditions for the existence of localized solitary waves by

using a pseudo-potential formalism. The variation of the

solitary wave profile with e–h temperature and frequency is

examined. It is found that both compressive and rarefactive

solitary pulses exist simultaneously.
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Appendix A

λ � 1
4
{1 + βe 1 − E +HM2( ) +M3 + βh M3 +M2E −M4H( )}.

(A1)
Ne a0( ) � exp βe1 −

�������
1 + |a0|2

√
− E 1 −

�������
1 + |a0|2

√( )[
+H 1 −

����������
1 +M2|a0|2

√( )]. (A2)

Nh a0( ) � exp βh1 −
����������
1 +M2|a0|2

√
+ME 1 −

�������
1 + |a0|2

√( )[
−MH 1 −

����������
1 +M2|a0|2

√( )]. (A3)

β �
−a0 1 − βe 1 − E +H( )( ) − βeHa0

����������
1 +M2a20( )√

2 1 + a20( )3/2
− βeHM2a0

2 1 + a20( )1/2 1 +M2a20( )1/2. (A4)

β* �
−M2a0 1 + βh 1 +ME −MH( )( ) − βhEM

�������
1 + a20( )√( )

2 1 +M2a20( )3/2
− βhEMa0

2
����������������
1 + a20( ) 1 +M2a20( )√ .

(A5)

A � 1
8
1 + βe − Eβe −HM4βh +M3 1 + βh( ) +M2 Hβe + Eβh( ).

(A6)

B � 1
48

− 3 − 3 − 3E +HM2 2 +M2( )( )βe − 1 − E −HM2( )2β2e
−M23M3 + E + 2EM2 − 3M3 −1 +HM( )βh(
+M E +M −HM2( )2β2h). (A7)

C � 1
384

15( + 15M7 + 15 − 15E + 9HM2 + 3HM6( )βe
+ (9 − 12E + 6E2 + 9HM2 − 9HEM2 + 3HM4 + 3H2M4

− 3HEM4 + 3H2M6)β2e
+ 1 − 3E + 3E2 − E3 + 3HM2 − 6HEM2 + 3HE2M2(
+3H2M4 − 3H2EM4 +H3M6)β3e
+ 3EM2 + 3EM4 + 9Em6 + 15M7( −15HM8)βh
+ 3E2M3 + 3EM4 − 3HEM5 + 3E2M5 + 9EM6 + 6M7(
−9HEM7 − 12HM8 − 6H2M9)β2h
+ (E3M4 + 3E2M5 + 3EM6 − 3HE2M6 +M7 − 6HEM7

− 3HM8 + 3EH2M8 + 3H2M9 −H3M10)β3h.
(A8)
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