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Persistent respiratory bacterial infections are a clinical burden in several

chronic inflammatory airway diseases and are often associated with neutrophil

infiltration into the lungs. Following recruitment, dysregulated neutrophil

effector functions such as increased granule release and formation of

neutrophil extracellular traps (NETs) result in damage to airway tissue,

contributing to the progression of lung disease. Bacterial pathogens are a

major driver of airway neutrophilic inflammation, but traditional management

of infections with antibiotic therapy is becoming less effective as rates of

antimicrobial resistance rise. Bacteriophages (phages) are now frequently

identified as antimicrobial alternatives for antimicrobial resistant (AMR) airway

infections. Despite growing recognition of their bactericidal function, less is

known about how phages influence activity of neutrophils recruited to sites of

bacterial infection in the lungs. In this review, we summarize current in vitro

and in vivo findings on the effects of phage therapy on neutrophils and

their inflammatory mediators, as well as mechanisms of phage-neutrophil

interactions. Understanding these effects provides further validation of their

safe use in humans, but also identifies phages as a targeted neutrophil-

modulating therapeutic for inflammatory airway conditions.
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Introduction

Chronic airway diseases are major causes of human
mortality (1, 2), represented by conditions such as cystic
fibrosis (CF), chronic obstructive pulmonary disease (COPD),
bronchiectasis, and asthma. Key features of these diseases are
recurrent lower respiratory bacterial infections, which over
repeated courses of antibiotic therapy can become antimicrobial
resistant (AMR). Across these lung conditions, neutrophilic
inflammation sustained by frequent infections can be a major
driver of airway damage (3), yet effective anti-inflammatory and
neutrophil-targeted therapies are not available.

An emerging tool against AMR infections is the therapeutic
use of bacteriophages or phages, viruses that infect bacteria,
ubiquitously and abundantly present in the environment (4).
First identified in the early twentieth century, phages were
initially investigated for use as antimicrobials in humans
following observations of bacterial killing in vitro (5). Upon the
discovery of penicillin and other antimicrobial compounds in
the 1940s, interest in phages waned as academia and industry
focused on development of these drugs; however, therapeutic
phage centers have remained active in certain countries (5).
With the emergence of antimicrobial resistance, and four
decades since the last antibiotic drug was discovered, there
is resurging interest in phages as potential alternatives. Phage
therapy works by exploiting the life cycle of lytic phages, which
in the process of replication lyse and kill their bacterial host
(5). Phages have several characteristics that support their clinical
use. They do not infect human cells (5), appear to be safe
and well tolerated (6–8), may require less doses compared to
conventional antibiotics due to their self-replicating nature (9,
10), and are highly specific to their target bacterial species,
meaning unlike antibiotics they do not have broad bactericidal
activity against the host microbiome (7, 11). The use of phages as
a standard clinical therapeutic is hampered by a still incomplete
understanding of phage biology (12), as well as a lack of
regulatory manufacturing guidelines for phage products (13,
14) and standardized large-scale clinical trials (15); however,
science, medicine, and industry are progressively working to
surmount these challenges. In the context of chronic respiratory
diseases, phage therapy is now being explored as a treatment for
pulmonary infections (16, 17). Intriguingly, emerging evidence
suggests that administration of phages may also have significant
therapeutic benefits for managing neutrophilic inflammation in
the lungs (18–21).

The role of bacterial infections in
chronically diseased airways

The link between bacterial airway infections and chronic
inflammatory lung diseases is well established. One significant
bacterium in this regard is the opportunistic pathogen

Pseudomonas aeruginosa, a species which is notably associated
with severe and negative health outcomes across multiple
chronic airway conditions (22). Perhaps most striking is
the early childhood acquisition in the autosomal recessive
disorder CF, where P. aeruginosa contributes to reduced lung
function (23–26), increased airway inflammation (27, 28),
permanent airway remodeling (29, 30), and increased mortality
in individuals with the disease (31, 32). Treatment strategies
initiating eradication therapy in children with CF have reduced
P. aeruginosa colonization rates from 80 to 50% (33, 34), but
acquisition of this bacterium remains a key determinant of
long-term CF clinical outcomes (31, 35). Among individuals
with COPD, up to 40% will have positive sputum cultures
for P. aeruginosa (36–39), with over 10% meeting criteria for
colonization (39–41). In addition, up to a third of participants
in cohorts of non-CF bronchiectasis can be colonized by
this pathogen (42–44). The degree to which P. aeruginosa
colonization in non-CF airway diseases contributes to lung
function decline is still not clear (45), but multiple studies
in both COPD and bronchiectasis link P. aeruginosa to more
frequent exacerbations and/or hospitalization (36, 38, 42, 44,
46–48), increased mortality (36, 44, 46, 47, 49, 50), and greater
annual lung function decline (40).

The role of bacterial infections in the pathogenesis of asthma
is not as well understood as that of respiratory viruses, which
are associated with childhood wheezing, compromised epithelial
barrier function, asthma development, and exacerbations (51,
52). However, studies have still noted associations between
bacterial pathogens and asthma pathologies. For example,
in a cohort of 56 asthmatic patients from Royal Brompton
Hospital, London, sputum bacterial culture positivity with
P. aeruginosa, Haemophilus influenzae, and Staphylococcus
aureus was significantly associated with increased asthma
duration and frequency of exacerbations in the previous year
(53). Other factors including pneumonia, pathogen isolation,
as well as sputum production and purulence have also been
identified and associated with the development of bronchiectasis
in asthma cohorts (54, 55).

A primary concern with treating frequent lung infections in
the context of these diseases is the acquisition of antimicrobial
resistance, with some pathogens becoming multi-drug resistant
(MDR). This makes eradication of these bacterial infections
challenging and increases the treatment burden of patients
with chronic lung conditions. In 2019, lower respiratory
infections globally accounted for over 1.5 million out of
4.95 million estimated deaths associated with antimicrobial
resistance, more than any other infectious syndrome (56).
Among individuals with chronic lung diseases, acquisition of
AMR/MDR pathogens is associated with increased disease
severity (57–59), exacerbations (57, 59, 60), and mortality (31,
61). With prevalence of chronic airway conditions increasing by
nearly 40% since 1990 (62, 63), novel therapeutics to treat AMR
lung infections are desperately needed.
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Neutrophils, drivers of lung
damage

As one of the first immune cell types recruited to sites
of infection, neutrophils have an important role in the innate
immune response to respiratory bacterial infections (64).
Historically perceived as functionally rigid and transcriptionally
fixed, neutrophils are increasingly described as plastic cells
whose function is shaped by their environment (65–67).
In the context of chronic lung diseases, studies assessing
neutrophils recruited to diseased airways have observed changes
in neutrophil antimicrobial functions that result in airway
damage and contribute to lung disease progression.

One of the major mechanisms by which neutrophils can
damage the airways is through release of neutrophil elastase
(NE), a serine protease normally stored within intracellular
primary granules. Airway NE is an important marker of
inflammation in CF, significantly correlating with severity of
lung disease in both children and adults (68, 69). Infection
with P. aeruginosa is associated with increased sputum NE
activity in adults with CF (70), as well as prolonged NE activity
in pediatric CF airways (28). Release of NE by neutrophils
in CF airways was originally thought to be a consequence
of neutrophil death, but studies within the last decade have
described how this process occurs from granule exocytosis by
viable neutrophil populations in CF lungs (71–73). Work by
our group using in vitro modeling of the airway infection
environment created by P. aeruginosa has demonstrated that
infection induces neutrophil degranulation (74). We found
that neutrophils recruited to infection microenvironments
primed by P. aeruginosa had significantly increased staining
of CD63 and CD66b, neutrophil markers of primary and
secondary granule exocytosis, respectively (74). In COPD,
airway NE is elevated during exacerbations and can be predictive
of bacterially induced exacerbations (75). Studies are also
identifying airway NE as a potential biomarker of disease
severity in non-CF bronchiectasis. For example, in a cohort of
433 adult patients, Chalmers and colleagues found significant
associations between high sputum NE levels and increased
dyspnea scores, lung function decline, exacerbation frequency,
and radiological scoring of bronchiectasis severity (76). Sputum
NE was elevated during exacerbations and reduced in response
to antibiotic therapy targeting organisms such as P. aeruginosa
and H. influenzae, highlighting a relationship between release
of NE and bacterial respiratory infection (76). Another
recent pediatric cross-sectional study of both CF and non-CF
related bronchiectasis also found that sputum NE significantly
correlated with exacerbation severity and frequency, as well as
number of hospitalizations (77). For CF bronchiectasis it was
specifically observed that NE correlated with risk of disease
progression and increased lung function decline, while for non-
CF bronchiectasis, sputum NE positively correlated with airway
neutrophil counts and severity of lung disease (77). Asthma is a

chronic lung disease with a much broader range of inflammatory
phenotypes, and while eosinophil activity is critical to some
cohorts, some of the more severe forms of asthma are primarily
a result of airway neutrophilic inflammation (78). Past studies
of asthma have associated increased airway NE (79–81) and
myeloperoxidase (82), another factor released from primary
granules, with more severe disease. Studies on allergic asthmatic
responses in animal models have also shown reduced airway
inflammation (83, 84) and bronchoconstriction (85) following
treatment with NE inhibitors.

Neutrophil degranulation and NE release seem to coincide
with a reduction in phagocytic ability that, certainly in CF,
may contribute to further disease (71–74, 86). There are few
reports describing decreased phagocytosis by neutrophils in
COPD (87–89), bronchiectasis (90, 91), and asthma (92), and
further investigation is required to definitively conclude whether
this is a feature of non-CF lung diseases. Impairment of
this crucial neutrophil function may contribute to prolonged
infection, pathogen colonization, and associated negative health
outcomes in chronic airway diseases, and may explain in
part why neutrophils in these conditions resort to alternative
antimicrobial strategies detrimental to host airways.

In the last 20 years, a novel neutrophil antimicrobial
function was discovered and linked to the production of
neutrophil extracellular traps (NETs) (93). This was termed
NETosis, a process in which neutrophils eject extracellular
networks of DNA containing primary granules, NE and
other antimicrobial factors, which can trap and neutralize
invading pathogens. Also thought to be an event resulting in
neutrophil death (94), different NETosis pathways have been
described that utilize mitochondrial DNA release rather than
nuclear DNA (95), or preserve neutrophil viability after NET
formation (96, 97). The degree to which NETs significantly
contribute to pathogen clearance is debated (98, 99). The
toxic antimicrobial factors harbored within NET complexes
may instead contribute to airway damage. Interest in NETs
has increased since studies identified them as major sputum
components in chronically disease airways (100–102). In
CF, NETs influence airway mucus viscosity (100, 103) and
are associated with increased airway obstruction (104). CF
neutrophils are also inherently predisposed to increased NET
formation, delayed apoptosis and increased lifespan as a result
of CFTR dysfunction (105). NET formation in COPD sputum
has been found to significantly correlate with disease severity,
lung function decline, and exacerbation frequency (101, 106). In
severe asthma, high extracellular DNA indicative of increased
NETosis has been associated with increased corticosteroid use,
neutrophilic inflammation, and inflammasome activation (107).
An international observational study by Keir et al. performed
proteomic analysis of sputum from bronchiectasis patients,
finding that NET proteins were abundantly present and strongly
associated with increased disease severity, hospital admissions,
and mortality (102). A separate study within this report further
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showed that low doses of antibiotics over a 12-month period was
associated with NET reduction in sputum from individuals with
bronchiectasis or asthma (102), underscoring the connection
between NETosis and airway bacteria.

Limiting neutrophil migration to the lungs would appear
to be a simple solution for preventing damage by aberrant
functions of recruited neutrophils. However, reducing airway
neutrophil influx can have negative consequences, as was
the case in a phase two clinical trial of the leukotriene B4
(LTB4) receptor antagonist BIIL 284 BS (108). This trial was
prematurely terminated upon discovering a significant increase
in serious adverse events among CF patients receiving the drug
(108). A follow up study assessing participant samples and
BIIL 284 treatment in P. aeruginosa infected mice determined
that the drug significantly reduced airway neutrophil counts,
leading to increased P. aeruginosa in the lung, bacteremia,
and increased lung inflammation (109). This suggests that
outright reduction of neutrophil numbers in infected lungs is
not therapeutically beneficial; a therapy that instead amends
neutrophil pathological activity, preserves phagocytic function,
and aids in bacterial clearance, may be more effective. In
chronic lung diseases, the interplay between bacterial respiratory
infections, neutrophilic inflammation, and airway damage
highlights an important need for therapies that can treat
infection, and the inflammatory processes and neutrophil
functions that result in damage to the lungs (Figure 1).

Phage therapy and airway
inflammation

Trials of phage therapy for respiratory infections in
humans have occurred in a limited number of instances for
compassionate use, particularly in cases with MDR pathogens
where the traditional spectrum of antibiotics failed to clear
infection. Many of the resulting case reports have described
positive outcomes, with no adverse effects and infections
successfully cleared in treated patients (110–115). However,
despite increasing validation for use as antimicrobials in
humans, little is known about the innate immune response to
respiratory phage therapy, and how airway neutrophils recruited
during bacterial infection may respond to treatment. A handful
of studies in small animal models have provided some data
on inflammation following therapeutic phage administration
during experimental airway infection (20, 116–119).

Airway neutrophil recruitment is initiated by detection
of chemotactic signals such as interleukin (IL)-8 and LTB4
(120). As neutrophils exit circulation and migrate through
tissue, they can encounter additional inflammatory cytokines
such as IL-1, IL-6, IL-18, TNFα, and become primed, further
increasing their responsiveness and propensity for pathological
activation (67, 121). Thus, host cytokines have an important
role in modulating neutrophil responses during infection.

A study by Pabary et al. assessed the effects of an intranasally
administered mixture of individual phages or phage cocktail,
before, during, and after P. aeruginosa inoculation in mice,
measuring inflammatory markers and neutrophil counts in
bronchoalveolar lavage fluid (BALF) (116). In experimental
infections with P. aeruginosa reference strain PAO1, phage
treatment at all timepoints significantly reduced viable bacterial
numbers, but only the prophylactic administration of phages
significantly reduced BALF neutrophil counts compared to
untreated animals (116). Simultaneous inoculation with phages
and bacteria significantly reduced IL-10 and IL-1β compared
to animals infected with bacteria alone, while both delayed
and prophylactic administration of phages significantly reduced
the neutrophil chemokine keratinocyte chemoattractant (KC)
(116). A CF clinical isolate of P. aeruginosa was also
tested, inoculated simultaneously with lytic phages. Curiously,
bacterial clearance of this isolate was not enhanced with
phage treatment compared to untreated animals; however,
the authors acknowledged differences in bacterial doses and
BALF sampling times in experiments with the clinical isolate
vs. PAO1 that may account for this (116). Nevertheless,
phage treatment in this experiment significantly reduced both
neutrophil counts and pro-inflammatory mediators IL-6, IL-
10, IL-12p70, KC, and TNFα in BALF of treated animals
compared to untreated controls (116). A different study using
bioluminescent P. aeruginosa was able to image phage-mediated
clearance in the lungs of infected mice, with treatment with
phages reducing bacterial luminescent signal from the lungs,
increasing animal survival, and reducing IL-6 and TNFα in
BALF (117). It was also determined that prophylactic phage
administration twenty-fours prior to bacterial inoculation had
a protective effect against infection (117). Importantly, a study
of Escherichia coli pneumonia in mice showed that bacterial
lysis induced by phage therapy induces similar levels of cytokine
release as lysis induced by antibiotics, with phages primarily
reducing release of most inflammatory signals (118). This
suggests phage-induced bacterial lysis is unlikely to result in
more severe inflammation compared to activity of conventional
antibiotics, but additional research is needed to verify this.

While by design not a respiratory model, a CFTR loss-of-
function zebrafish model has been used by Cafora et al. to
describe the immunomodulatory potential of phage therapy
in CF across two studies. In the first, a phage cocktail
administered to zebrafish embryos infected with PAO1 was
observed to significantly reduce bacterial load, lethality, and
gene expression of IL-1β and TNFα (119). Of note, reduced
cytokine gene expression was also observed in embryos exposed
to phages alone in the absence of bacteria, suggesting phage anti-
inflammatory mechanisms independent of bactericidal activity
(119). This was a major focus of the second study, which
identified that embryo toll-like receptor (TLR) recognition of
phage capsid proteins, and not phage DNA, was necessary to
elicit an anti-inflammatory effect (20). The injection of a phage
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FIGURE 1

Interplay between infection and inflammation in chronically diseased lungs (created with BioRender.com).

cocktail at the site of experimental tail amputation was further
observed to reduce neutrophil recruitment to wound sites,
further demonstrating phage capacity to influence localized
inflammation (20).

As a direct barrier to infection, the airway epithelium
is a major source of neutrophil chemotactic signals and
inflammatory mediators (122, 123). In perhaps one of the only
studies assessing effects of phage therapy on primary airway
epithelial cells, Trend and colleagues performed exposures of
undifferentiated primary airway epithelial cell cultures to the
virulent P. aeruginosa phage E79 (124). They observed that
E79 did not increase release of pro-inflammatory cytokines
IL-1β, IL-6, IL-8, or induce apoptosis, in airway cultures
derived from children with and without CF (124), indicating
that phages alone are not highly immunostimulatory to
human airway cells. Altogether, studies suggest that phage
therapy can effectively reduce cytokine signals involved in
neutrophil recruitment and activation. This effect is not always
a consequence of overt antimicrobial activity, with induction
of anti-inflammatory mediators (125), reduced production
of reactive oxygen species (126), and LPS binding (127)

identified as possible mechanisms. This would make phages an
attractive multipurpose therapeutic for managing both airway
inflammation and infection in chronic lung diseases. However,
further investigation is necessary to understand the specific
mechanisms of phage anti-inflammatory activity.

Phage-neutrophil interactions

The interactions between phages and human phagocytes
have been of interest to researchers since the 1920s, when
a number of early studies noted increased phagocytosis of
bacteria by leukocytes in the presence of phages (128–130).
More recent studies in neutropenic mouse models have noted
a synergism between phages and neutrophils that is required
for successful clearance of bacteria. An investigation by Tiwari
et al. found that immunocompetent mice inoculated intranasally
with a lethal dose of PAO1 could clear lung infection and
maintain an 80–100% survival rate when receiving different
doses of lytic phages; however, neutropenic animals failed
to clear infection with phage administration alone (131).
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FIGURE 2

Models for assessing innate immune responses to pulmonary phage therapy (created with BioRender.com).

Roach and colleagues took this approach a step further, using
in silico modeling to identify host innate responses as a
necessary feature to overcome emerging phage resistant mutants
during respiratory P. aeruginosa infection, and neutrophil
activity as a key component of successful phage therapy (21).
Whether this synergy implies phage-mediated enhancement of
neutrophil bacterial killing capacity is an important question for
future research. Some studies have linked phages to increased
intracellular killing of pathogens within human phagocytes
such as Klebsiella pneumoniae (132), Mycobacterium avium and
tuberculosis (133), and methicillin-resistant S. aureus (134, 135).
There are contrasting reports, however, where phages did not
significantly influence intracellular killing of pathogenic bacteria
(136, 137).

Whether phages contribute to activation of pathological
neutrophil functions is critical to ascertain for safe use of this
therapy. A study of neutrophil exposure to lytic phages observed
little to no respiratory burst activity induced by T4 E. coli
phage and A3/R S. aureus phage preparations, compared to heat
inactivated S. aureus cells, suggesting that phages alone should
not induce oxidative stress when administered in humans (19).
Importantly, it has also been shown that A3/R phage and
S. aureus phage lysate do not elicit neutrophil degranulation,
as indicated by low neutrophil expression of CD63 and CD66b
(18). This implies that both phages and phage-mediated lysis
of bacteria are not likely to activate neutrophil degranulation
and consequent NE release during treatment in vivo. However,
availability of data in this regard is inconsistent across bacterial

pathogens and neutrophil activation states, so there remains
much work to be done for a definitive understanding. Further
exploration of whether phage therapy can restore neutrophil
phagocytosis of evasive organisms and ameliorate aberrant
functions such as degranulation is warranted, particularly in the
context of inflammatory airway diseases.

Modeling phage therapy and
neutrophilic inflammation in the
laboratory

Altogether, studies to date suggest potential anti-
inflammatory and neutrophil-modulating benefits of phage
therapy for respiratory infections. Further research on this
topic is justified, as findings could point to novel therapeutic
benefits with capacity to improve treatment of multiple chronic
inflammatory lung conditions. However, several factors must
be taken into account for relevant modeling of human airway
immune responses during phage therapy. For the purposes
of understanding airway cell and neutrophil responses to
pathogen associated molecular patterns during infection,
a major limitation of murine models is differential TLR
expression. Mice contain a pseudogene for TLR10, an anti-
inflammatory TLR shown to detect bacterial and viral ligands,
which is normally expressed by human cells (138). Furthermore,
mice and rats express three TLRs that are not express in humans,
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TLRs 11, 12, and 13, which detect flagellin, fungal profilin, and
bacterial ribosomal sequences, respectively (139). In addition,
mouse neutrophils may not be activated by certain microbial
factors that normally affect human neutrophils, as has been
reported with staphylococcal superantigen-like protein 13
(SSL13) (140). These limitations can be overcome by using large
animal models of chronic airway disease including pigs and
ferrets (Figure 2) (141, 142), whose airway physiology and TLR
expression more closely resemble that of human airways (143).

A major drawback of large animal models is the high
cost, labor, and resources required. This is where cell-based
laboratory models have an advantage. Few studies to date have
assessed phage safety and efficacy on cultures of differentiated
primary airway epithelial cells known as air-liquid interface
cultures (Figure 2) (144, 145), the gold-standard model for
pre-clinical studies in human airways. Further research in this
model may provide valuable and biologically relevant insights
on innate responses to phage therapy in human lungs. Regarding
in vitro studies of phage-neutrophil interactions, one of the
major caveats of previous studies is the restricted exposure
of phages to peripheral blood neutrophils. This may provide
insights into how neutrophils in circulation interact with phages
delivered by intravenous injection, but it fails to account for
the fact that the site of infection and the extravasation process
itself contribute to pathological neutrophil activation (66, 67).
Granule releasing neutrophils in CF, as an example, are only
evident in the airway lumen, as peripheral blood neutrophils
in individuals with CF are phenotypically similar to neutrophils
from non-CF individuals (71, 73). Furthermore, recapitulation
of this neutrophil phenotype in the laboratory can only be
achieved following in vitro transmigration (71, 86). Existing
laboratory models of neutrophil recruitment to the lungs may
provide more relevant examples of neutrophil behavior during
respiratory phage therapy, as neutrophil responses to phages can
be observed following transmigration to the airway infection
environment (Figure 2).

Conclusion

In summary, neutrophils are important and necessary for
the clearance of bacterial respiratory pathogens. In chronic
and inflammatory airway diseases, persistent bacterial infections
sustain neutrophil influx into the lungs, wherein exaggerated

neutrophil antimicrobial functions can result in host tissue
damage. Phage therapy is emerging as novel therapeutic for
AMR lung infections resulting from prolonged antibiotic use.
A growing body of evidence suggests phage therapy may
have important immunomodulatory benefits. Whether this is
primarily a consequence of reduced bacterial burden or direct
interaction between phages and neutrophils merits further
investigation. Various laboratory model systems are available
to assess airway innate responses to phage therapy; researchers
must ensure that models are representative of these dynamics
in human airways.
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