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Electrical impedance tomography (EIT) has been widely used in biomedical

research because of its advantages of real-time imaging and nature of being

non-invasive and radiation-free. Additionally, it can reconstruct the distribution

or changes in electrical properties in the sensing area. Recently, with the

significant advancements in the use of deep learning in intelligent medical

imaging, EIT image reconstruction based on deep learning has received

considerable attention. This study introduces the basic principles of EIT and

summarizes the application progress of deep learning in EIT image

reconstruction with regards to three aspects: a single network

reconstruction, deep learning combined with traditional algorithm

reconstruction, and multiple network hybrid reconstruction. In future,

optimizing the datasets may be the main challenge in applying deep learning

for EIT image reconstruction. Adopting a better network structure, focusing on

the joint reconstruction of EIT and traditional algorithms, and using multimodal

deep learning-based EIT may be the solution to existing problems. In general,

deep learning offers a fresh approach for improving the performance of EIT

image reconstruction and could be the foundation for building an intelligent

integrated EIT diagnostic system in the future.
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1 Introduction

Electrical impedance tomography (EIT) is a non-invasive imaging method for

reconstructing the distribution or changes in electrical properties by applying a safe

alternating current excitation, measuring the surface voltage signal, and using a

reconstruction algorithm. With the advantages of being radiation-free and

inexpensive, and allowing real-time imaging, it has been extensively utilized in

geophysical imaging, multiphase flow monitoring, and biomedical imaging (Menden

et al., 2021a; Menden et al., 2021b; Hsu et al., 2021; Jiang et al., 2021). In terms of medical
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applications, EIT is regarded as a functional imaging method

compared with traditional computed tomography (CT) and

ultrasound, which reflect the pathophysiological information

of the human body through impedance changes. Presently, it

shows good potential for application in numerous clinical

settings. For example, Draeger Medical Devices has developed

the first commercial EIT equipment for pulmonary function

monitoring and conducted several clinical studies (Bickenbach

et al., 2017; Eronia et al., 2017; Longhini et al., 2019; Zhao et al.,

2019). Particularly during the COVID-19 pandemic, EIT has

provided a potential reference for the decision-making of

patients’ treatment (Hsu et al., 2021; Nascimento et al., 2021;

Bayford et al., 2022), thereby demonstrating the significant

clinical application value of pulmonary EIT in the

management of patients suffering from severe respiratory

failure (Zhao et al., 2020; Bronco et al., 2021). In the case of

brain injury monitoring, Fu et al. demonstrated the important

role of EIT in the treatment of mannitol dehydration (Fu et al.,

2014). Subsequently, Yang et al. first studied the comparative

relationship between EIT and intracranial pressure and

confirmed that EIT could also be used to track changes

related to cerebral edema (Yang et al., 2019). Moreover, they

performed extensive research on hardware systems and

algorithms for EIT clinical application (Shi et al., 2018; Liu

et al., 2019; Li et al., 2019; Ma et al., 2019; Li et al., 2020). In

contrast, Holder et al. used EIT for the first time to locate

epileptic lesions in animal experiments (Boone et al., 1994),

and monitored different physiological changes between

seizures and during epileptic activity (Hannan et al., 2018).

They achieved deep neural activity imaging (Faulkner et al.,

2018) and imaging of the hippocampus (Hannan et al., 2021).

Furthermore, they confirmed that the use of

electroencephalogram (EEG) combined with EIT monitoring

improved the diagnosis rate of epilepsy patients (Witkowska-

Wrobel et al., 2021). Recently, the Holder group made good

progress in rapid neural network EIT (Aristovich et al., 2018;

Ravagli et al., 2020). In addition, EIT has shown good application

prospects in other types of brain imaging, such as brain stroke

detection (Romsauerova et al., 2006; Yang et al., 2016; Goren

et al., 2018), brain tumor detection (Meng et al., 2013), and brain

abscess (Oh et al., 2013; Kim et al., 2015). For breast cancer

detection using EIT, a variety of equipment has been developed

and clinical studies have been conducted (Kao et al., 2008; Ji et al.,

2009; Zhang et al., 2014). Furthermore, You et al. first reported

the case of retroperitoneal hemorrhage EIT monitoring in

patients with renal trauma (You et al., 2013), and Liu et al.

reported the first study on non-invasive monitoring of cerebral

blood volume during total aortic arch replacement (Liu et al.,

2019). In addition to the abovementioned fields, EIT has

extensive applications in biomedical areas, such as cell culture

monitoring (Yang et al., 2019; Schwarz et al., 2020; Liu et al.,

2022b) and bioimpedance analysis (Cortesi et al., 2021). These

studies fully demonstrate that EIT, as a new medical imaging

technology, is gradually becoming a powerful supplement to

traditional medical imaging technology.

Most of the time, image reconstruction is one of the main

concerns of EIT researchers. Image reconstruction methods of

EIT can be divided into time-difference, frequency-difference,

and absolute imaging. Time-difference imaging, also known as

dynamic imaging, uses the measurement data at different times

to obtain images of changes in conductivity distribution through

differential imaging algorithms (Zhang et al., 2021). Frequency-

difference imaging is based on the difference in spectral

characteristics between biological tissues, wherein a

reconstructed image is obtained by applying excitation

currents of different frequencies using a multi-frequency

imaging algorithm (McDermott et al., 2020). Absolute

imaging, also known as static imaging, uses measurement data

at a specific moment to obtain the distribution of conductivity

through an inverse problem reconstruction algorithm (Hamilton

et al., 2018). Owing to the severely ill-posed and ill-posed nature

of the EIT inverse problem, static imaging is very sensitive to

noise and boundary conditions, and obtaining imaging results

suitable for clinical applications stably is difficult. To date, time-

difference imaging has been used primarily in clinical research

studies. However, the imaging results are easily affected by noise,

thereby resulting in low spatial resolution. Thus, exploring new

EIT reconstruction algorithms to improve image quality has

attracted considerable attention.

With the development of deep learning in natural language

processing, speech recognition, image processing, computer

vision and other fields, more researchers focus on its

application in medical image reconstruction, such as

reconstruction of low-dose CT and fast magnetic resonance

imaging (MRI) (Kim et al., 2019; Ben Yedder et al., 2020;

Anaya-Isaza et al., 2021). Considering the advantages of

applying deep learning in image reconstruction, some

researchers have applied deep learning in EIT reconstruction

to enhance image quality and spatial resolution.

This study systematically reviews the application progress of

deep learning in EIT image reconstruction, focusing on direct

reconstruction of a single neural network, joint reconstruction of

traditional algorithms and deep learning methods, and hybrid

reconstruction of multiple deep neural networks (DNNs). The

results indicate that the traditional algorithm combined with

deep learning reconstruction and a variety of DNN hybrid

reconstruction strategies have greater advantages compared

with traditional algorithms in EIT image reconstruction, and

great potential for future clinical applications.

2 Basic principles of EIT

EIT is typically divided into forward and inverse problem.

The former pertains to calculating the surface voltage change

based on conductivity distribution of the target body and the
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excitation current. The frequency of the EIT excitation current

generally used for medical imaging is in the range of 10–100 kHz.

In this frequency range, the influence of the dielectric properties

can be ignored and the current field is treated as a steady-state

field. As shown in Figure 1, we set the imaging domain as Ω.

Based on Maxwell’s equations, the conductivity and potential

distributions satisfy the following Laplace equation with natural

boundary conditions.

∇ · σ r( )∇Φ r( )( ) � 0, r ∈ Ω
σ r( )∇Φ r( ) · n � J, r ∈zΩ{ (1)

where the internal conductivity σ is a function of the spatial

variable; Φ(r) represents the potential at r within the field; �Φ

represents the potential on a given boundary; n is the direction

outside the normal; and J represents the current density of the

injected excitation current at the boundary. The EIT forward

problem can be addressed using the finite element

method (FEM).

Generally, in practical EIT applications, the conductivity

distribution inside the target body is unknown, and only the

excitation current and measurement voltage at electrodes are

known. Furthermore, as measurement errors are unavoidable,

the observational model of EIT can be described as follows.

V � F σ( ) + e (2)
where V is the measured voltage; F(·) is the non-linear mapping

between the conductivity distribution and boundary voltage, also

known as the forwardmap; and e is the noise ormeasurement error.

The inverse problem of EIT, also known as image

reconstruction, refers to reversely solving the conductivity

distribution σ in the target domain according to the obtained

measured voltage V. It is severely ill-posed, non-linear and ill-

conditioned. Therefore, to obtain stable and fast EIT imaging

with high resolution, researchers have proposed a number of

image reconstruction methods, which can be divided into

statistical inversion methods and deterministic methods.

Reconstruction method based on the former are largely based

on Bayesian theory, and use maximum likelihood estimation to

iteratively solve the conductivity distribution when the

maximum probability event meets the boundary conditions

(Liu et al., 2018; Liu et al., 2020; Liu et al., 2021). In contrast,

reconstruction methods based on the latter can be grouped into

linear methods and non-linear reconstruction methods. Linear

approximation methods primarily include the back-projection

algorithm (Santosa and Vogelius, 1990), sensitivity matrix

method (Morucci et al., 1994), Calderon method (Cheney

et al., 1990), Newton’s one-step error reconstructor (NOSER)

method (Le Hyaric and Pidcock, 2000), and GREIT algorithm in

lung EIT (Adler et al., 2009). Whereas non-linear reconstruction

methods primarily include non-linear optimization methods,

which refer to global and local optimization search methods,

and direct methods, which refer to the D-bar method (Hamilton

et al., 2018; Hamilton et al., 2019b; Santos et al., 2020). In

addition, based on shape constraints, scholars have proposed

parameter set methods (Liu et al., 2018; Liu et al., 2019c; Liu et al.,

2020a; Liu et al., 2020c) and shape reconstruction (Liu et al.,

FIGURE 1
Typical schematic of image reconstruction. Left part: EIT measuring data from body Ω. Middle part: EIT forward problem for a finite element
model of the body. Right part: EIT inverse problem, where forward mapping and reconstruction algorithms are used to reconstruct the EIT image
from measured data (Lionheart and Adler, 2021).
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2019b; 2020b; Liu et al., 2020d; Gu et al., 2021a; Liu et al., 2021;

Gu et al., 2021b; Liu and Du, 2021). With the tremendous

advancement of artificial intelligence, machine learning

methods are gradually being used in EIT image reconstruction

and have achieved good reconstruction results.

3 Deep learning in EIT image
reconstruction

A neural network is an artificial computing model that

imitates the structure and function of animals’ nervous

system. It is composed of multiple neurons and can model

the complex relationship between data. With the rapid

progress of deep learning, imaging with DNNs provide a

powerful framework for EIT image reconstruction. This

section highlights the application of deep learning in

different ways of EIT image reconstruction and reviews

three aspects: reconstruction of conductivity distribution

directly from measurement data from a single neural

network, joint reconstruction of traditional algorithms and

deep learning, and hybrid reconstruction of multiple neural

networks.

3.1 Single neural network-based direct
reconstruction

3.1.1 EIT reconstruction based on conventional
neural network

In the early stage of neural network development, Guardo

et al. proposed an EIT reconstruction technique using the

adaptive linear element (ADALINE) neural network. They

used the trained network structure to directly correlate the

measurement data with the conductivity distribution; thus,

solving the Jacobian matrix was not necessary (Guardo et al.,

1991). Based on that, Adler and Guardo proposed a circular finite

element model for numerical simulation to quickly generate a

training set to solve the problem of time-consuming generation

of training sets. The ADALINE network was trained without and

with noise; the results revealed that training the network with

noise exhibited better anti-noise performance and the imaging

resolution was better as compared with the potential back-

projection method (Adler and Guardo, 1994). Subsequently,

researchers successively proposed methods based on pattern

recognition, back-propagation networks, artificial neural

networks (ANNs), and Bayesian multilayer perceptrons to

solve the EIT inverse problem (Mikhailova et al., 1997;

Nejatali and Ciric, 1998; Ratajewicz-Mikolajczak et al., 1998;

Lampinen et al., 1999). However, these studies focused primarily

on EIT reconstruction through training linear reconstruction

operators and measured voltage, but do not focus on the non-

linearity of EIT.

Considering the non-linearity of the EIT inverse problem,

feed-forward neural networks with non-linear transfer functions

were proposed to solve the EIT imaging problem (Acharya and

Taylor, 2004). Wang et al. proposed a neural network based on

the radial basis function (RBF) to construct a non-linear mapping

model for EIT. Additionally, they optimized the parameters in

the RBF network using a genetic algorithm; this resulted in a

significantly better spatial resolution of imaging than the back-

projection method (Wang et al., 2004). To further verify the

feasibility of using the RBF neural network for reconstruction in

EIT, Michalikova et al. used EIDORS to generate a 32-electrode

simulation data set, and built and trained the RBF neural

network. Their RBF neural network had 928 measured voltage

inputs (input layer), 3214 conductivity distribution outputs

(output layer), and could obtain imaging results similar to

EIDORS (Michalikova et al., 2014). On this basis, Venclikova

et al. further optimized the RBF neural network expansion factor

(Venclikova et al., 2016). In regard with the RBF neural network

problems of slow convergence and being prone to fall into the

local minima, Zhang et al. proposed a method based on an

algebraic neural network for EIT reconstruction and verified the

performance of the algorithm via simulation (Zhang et al., 2009).

Figure 2 shows the progress in EIT reconstruction based on

conventional neural networks.

In the field of medical image reconstruction, because a DNN

has stronger non-linear reconstruction ability compared with a

shallow neural network, researchers have gradually begun to use

multi-layer neural networks for EIT reconstruction. Li et al.

proposed a four-layer DNN framework based on stacked

autoencoders (SAEs) to build a non-linear mapping between

measured voltage and internal conductivity; they verified the

advantages of this method by simulation and phantom

experiments (Li et al., 2017). Similarly, Zhang et al. (2021)

proposed a four-layer DNN framework named EIT-4LDNN

for EIT reconstruction. To obtain the accurate conductivity

distribution in the target body, another previous study

proposed a multi-layer ANN to solve the EIT inverse problem

and subsequently reconstructed the conductivity distribution

(Fernández-Fuentes et al., 2018). To determine the optimal

ANN architecture and hyperparameter for the EIT inverse

problem, Huuhtanen et al. investigated the effect of the width

and depth of the multilayer perceptron on imaging quality

(Huuhtanen and Jung, 2020). In addition, other researchers

proposed a series of particle swarm optimization algorithms

to optimize the network parameters to increase the

convergence speed of the neural network in the training phase

(Wang et al., 2009b; a; Martin and Choi, 2016).

3.1.2 EIT reconstruction based on convolutional
neural network

A convolutional neural network (CNN) is a type of neural

network with convolution estimation and deep structure. It is a

representative algorithm of deep learning and has been widely
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applied in numerous fields. In electromagnetic imaging, Tan et al.

applied a deep learning method based on CNN to solve the image

reconstruction of electrical resistance tomography. They utilized

two convolutional layers to extract the key features in the voltage

measurement and two pooling layers to shrink the network’s

parameters. Additionally, to address the optimization problem in

the initial model, the dropout layer and moving average method

were applied, which significantly enhanced the system’s

generalizability and training speed (Tan et al., 2019).

Subsequently, to improve the quality of reconstruction results

of EIT, Gao et al. (2019) proposed an EIT image reconstruction

algorithm based on a convolutional denoising autoencoder; their

method used a CNN in the encoder and decoder networks. In

contrast to the traditional GREIT method, their proposed model

does not require background calibration, reduces noise artifacts,

and sharpens the boundaries of the imaging target. Compared

with traditional SAEs and non-linear algorithms, this method is

more robust.

Considering that the voltage signal collected by the system

corresponds to one-dimensional data, converting the one-

dimensional samples to two-dimensional samples is very time-

consuming; additionally, the structure of the original

measurement signal is possibly damaged, which may extract

incorrect features from the two-dimensional signal. Li et al.

FIGURE 2
Progress in EIT reconstruction based on conventional neural networks (Adler and Guardo, 1994; Wang et al., 2009a; b; Michalikova et al., 2014;
Li et al., 2017).

Frontiers in Bioengineering and Biotechnology frontiersin.org05

Zhang et al. 10.3389/fbioe.2022.1019531

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.1019531


proposed a one-dimensional CNN (1D-CNN) based on

convolutional, pooling and fully connected layers to solve the

direct reconstruction of EIT. In comparison with traditional

DNNs and two-dimensional CNNs, simulation and physical

model experiments revealed that this method has better edge

retention, and anti-noise and generalization abilities, which

confirmed its usefulness (Li X. et al., 2020).

Recently, Wu et al. optimized the CNN method based on the

visual geometry group (VGG) model for lung EIT imaging by

adding a batch normalization (BN) layer, ELU activation

function, RBF network, and global average pooling (GAP)

layer (Wu et al., 2021). The method directly learns the non-

linear mapping between measurement voltage and conductivity

distribution in an end-to-end manner. In comparison with the

experimental results of the traditional Tikhonov, CNN and

CNN-GAP algorithms, the simulation and experimental

results revealed the robustness and effectiveness of the

improved CNN-RBF. The network implementation process is

shown in Figure 3.

3.2 Joint reconstruction of traditional EIT
algorithm and deep learning

Although an ANN can be used to solve the EIT inverse

problem, owing to the complexity of real clinical scenarios,

obtaining good reconstruction results from actual data using

simple ANNs is difficult. To overcome this issue, Martin et al.

proposed a joint reconstruction method that first used the one

step linear Gauss–Newton method to initially solve the EIT

inverse problem and subsequently used an ANN to post-

process the conductivity distribution (Martin and Choi, 2017).

The benefits of linear and non-linear methods are combined in

this strategy. In comparison with the one step Gauss–Newton,

primal-dual interior-point, and pure ANN direct reconstruction

methods, the results revealed that the proposed method has

better stability and accuracy. Inspired by this, Dumdum et al.

proposed a joint reconstruction strategy that first used the one

step Gauss–Newton method to solve the EIT inverse problem

and subsequently used the U-Net to post-process the image

(Dumdum et al., 2019). In a recent work, Wang et al. used

the NOSER method to obtain preliminary reconstruction and

subsequently proposed a MobileNet-based PSPNet for post-

processing the imaging results (Wang et al., 2021).

Lin et al. (2020) used a supervised descent method with

flexible fusion of prior information and good generalization

performance combined with a neural network with strong

non-linear fitting ability for EIT image reconstruction. They

proposed a neural network based on the supervised descent

method (NN-SDM), which has the advantages of supervised

descent method and neural network. They compared this joint

reconstruction method with linear supervised descent, end-to-

end neural network, and Gauss–Newton methods; the results

revealed that the proposed method has a faster convergence

speed and better generalization performance among the three

methods.

To overcome the issues of low image spatial resolution and

additional under sampling artifacts caused by low-pass filtering

in the traditional D-bar algorithm, Hamilton et al. (2018)

proposed a deep D-bar method to reconstruct EIT images. As

illustrated in Figure 4, the method first uses the D-bar algorithm

to obtain the initial low-quality conductivity distribution image

and then combines the U-Net to post-process the image to

remove artifacts, thereby obtaining a high quality static EIT

image with low time delay. Inspired by the deep D-bar,

Hamilton et al. subsequently proposed a domain-independent

Beltrami-net for EIT absolute imaging, which uses training data

from the associated non-physical Beltrami equation instead of

simulating the traditional current and voltage data specific to a

given domain; this makes the training data independent of the

shape of domain boundaries (Hamilton et al., 2019a). The results

revealed that the suggested strategy is more resilient to border

shape changes. Furthermore, in response to the problem of

blurred internal organ boundaries in the reconstructed images

generated by the traditional D-bar algorithm, Capps et al.

proposed a method for sparse reconstruction that fused the

FIGURE 3
EIT image reconstruction of conductivity distribution directly from boundary voltage data using CNN (Wu et al., 2021).
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reconstruction results of the normal D-bar algorithm with organ

boundaries reconstructed by a neural network (Capps and

Mueller, 2021). The method first uses D-Bar to obtain the

reconstruction result, and subsequently, the organ boundaries

are derived from the scattering transformation using deep

learning methods. Finally, by fusing the normal D-bar

reconstruction results with those of the neural network-

reconstructed organ boundaries, the high-precision EIT

reconstruction results of the organ boundaries are obtained.

In the traditional EIT reconstruction method, the

regularization parameter has considerable influence on the

imaging quality; thus, choosing an optimal regularization

parameter is highly challenging. Aiming at this problem, a

two-stage deep learning method was proposed by Ren et al.

(2020); the method consists of a pre-reconstruction block and a

CNN, as shown in Figure 5. In this method, the pre-

reconstruction block learns regularization patterns from the

training dataset and gives a crude reconstruction of the target.

To eliminate modeling errors, a CNN post-processes the pre-

reconstruction results through a multi-level feature analysis

technique. The experimental results revealed that this method

exhibited better reconstruction accuracy and robustness to noise

compared with traditional algorithms, such as NOSER and total

variation regularization. Zhang et al. (2022) proposed a network

that employs a deep CNN to post-process the initial

reconstruction of the conjugate gradient algorithm, called the

V-shaped dense noise reduction network (VDD-Net). This

method reduces the dependence on the exact forward mode,

and in addition, the initial prior information allows the

reconstruction of EIT images with high spatial resolution.

As described previously, CNNs are particularly beneficial in

imaging applications due to their translational invariance and

ability to exploit local dependencies and structures. However, for

non-linear EIT problems, their forward models are usually

discretized using triangular elements and solved by FME;

therefore, it is necessary to convert the triangular mesh data

into pixel grid data using an interpolation or equivalence step in

order to apply CNNs to imaging tasks. To overcome this

problem, Herzberg et al. proposed a flexible iterative Graph

Convolution Newton-type Method (GCNM), which is capable

of learning task-specific priors from training data using current

iteration information and Newton-type update information and

improves robustness to noise and model adaptation (Herzberg

et al., 2021). The robustness of GCNM in terms of modeling

errors is expected to provide a method to address the application

research of EIT absolute imaging. For multi-frequency EIT in cell

imaging, Chen et al. (2022a) proposed a mask-guided spatial-

temporal graph neural network (M-STGNN) to simultaneously

capture spatial and frequency correlations. Simulations and

experiments showed that the M-STGNN achieves significant

improvements in terms of both shape preservation and noise

reduction compared with the state-of-the-art mfEIT image

reconstruction algorithm. Exploiting the frequency and spatial

correlation is an impressive technique for improving the image

quality of multi-frequency electromagnetic tomography (Xiang

et al., 2020). Based on this ideology, Chen et al. (2022b) proposed

a multiple measurement vector network (MMV-Net) that

integrated the advantages of the traditional Alternating

Direction Method of Multipliers for the MMV problem

(MMV-ADMM) and deep learning. By adding a spatial self-

attention module and a convolutional long short-term memory

module, which can adequately capture the intra-frequency and

inter-frequency dependencies, it enhances picture quality,

generalization ability, noise robustness, and convergence

performance.

3.3 Hybrid deep learning reconstruction
for EIT

In addition to the joint reconstruction using deep learning

and traditional algorithms, hybrid deep learning reconstruction

for EIT is a popular way of deep learning in EIT reconstruction.

Hrabuska et al. (2018) reported that first using radial basis neural

network reconstruction and subsequently using a Hopfield

neural network to filter the image will obtain better

reconstruction results through simulation experiments.

Subsequently, Huang et al. (2019) proposed a method

combining an ANN and U-Net for EIT image reconstruction.

The method first uses the adaptive moment estimation

optimization algorithm and mean square error function to

train an ANN for reconstructing the initial EIT image, and

then uses U-Net for image post-processing to obtain higher

quality EIT images (Huang et al., 2019).

Considering the strong correlation between the measured

values of some electrodes in the EIT measurement, Rymarczyk

et al. proposed a hybrid reconstruction method to reduce the

computational time and achieve fast imaging (Rymarczyk et al.,

2018). The method first uses ElasticNet to remove the relevant

prediction vectors and then trains an ANN to obtain the

reconstruction results. The hybrid algorithm speeds up the

neural network training and image reconstruction process,

thus rendering the system more robust to the noise of input

data. With a similar purpose, Chen et al. were inspired by the

concept of transfer learning and proposed a hybrid

reconstruction method for EIT called FC-UNet. This method

first inputs the measured voltage data into a simple network that

only contains fully connected and ReLU layers to generate an

initial image, and subsequently uses U-Net to denoise the image

to obtain the final EIT reconstructed image (Chen et al., 2020). In

order to address the challenge of accurately reconstructing

continuous, multilevel conductivity distributions in multiple

objects settings via EIT in tissue engineering applications,

Chen et al. (2021) proposed a deep learning and group

sparsity (DL-GS) regularization-based hybrid algorithm for

miniature EIT on the architecture of FC-UNet. The method
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estimates structural information using deep neural networks and

then estimates continuous conductivity distributions using group

sparsity regularization. Following that work, they proposed a

structure-aware two-branch network (SADB-Net) that fuses

information together by two feature extractors, and the results

showed that SADB-Net can obtain high-quality reconstructed

images at multi-target, multilevel conductivity distributions,

which can be well applied to dynamic cell culture for tissue

engineering (Chen and Yang, 2021). Different from the study by

(Chen Z. et al., 2020), Ye et al. (2021) proposed to expand the

data only through the splicing layer and subsequently input it

into the U2-Net network to realize a hybrid reconstruction

method called CAT + U2-Net. In addition, they have also

recently proposed a 3D reconstruction method for composite

electrode EIT systems using U2-Net (Ye et al., 2022).

Owing to the severe ill-posedness of the EIT inverse problem,

Seo et al. (2019) suggested an image reconstruction method based

on manifold learning to transform it into a well-posed one, and

introduced its application in lung time-difference EIT imaging.

This method first uses a variational autoencoder to identify the

low-dimensional latent space encoding of useful lung images,

subsequently learns the non-linear regression map between EIT

FIGURE 4
Deep D-Bar uses the initial low quality conductivity image obtained by traditional D-Bar and subsequently combines the U-Net to post-process
the image and obtain a high quality static EIT image (Hamilton et al., 2018).

FIGURE 5
Two-stage deep learning method utilizing a CNN to post-process the pre-reconstruction (Ren et al., 2020).
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measurement data and low-dimensional latent variables, and

finally performs image reconstruction (Seo et al., 2019; Ko and

Cheng, 2021). Fan et al. proposed a novel neural network

architecture for the EIT problem, which combined a 2D CNN

based on BCR-Net for EIT image reconstruction (Fan and Ying,

2020). Considering that the measured voltages or target images in

EIT dynamic imaging are spatiotemporally correlated, Ren et al.

(2021) proposed a RCRC DNN, comprising a reconstruction

network, recurrent neural network model, CNN encoder, and

CNN decoder, as shown in Figure 6.

4 Discussion

In this review, we systematically analyzed the application and

development of deep learning technology in EIT image

reconstruction from three aspects: neural network

reconstruction directly from EIT measurement data,

traditional algorithm and deep learning joint reconstruction,

and multiple network hybrid reconstruction. A summary of

the application of deep learning in EIT reconstruction and

analysis is presented in Table 1. It should be noted that most

of the computer configurations currently used for deep learning

tasks listed in Table 1 are relatively high-end. However, for most

of the methods, once the model is trained, a properly configured

personal computer can also perform EIT reconstruction quickly.

In general, with the ongoing advancement of deep learning,

EIT image reconstruction based on deep learning can often

obtain better imaging results, compared with traditional EIT

reconstruction methods. However, most of the current research

is limited to simulation and phantom experiments. There are still

some challenges remaining for the future advancement of deep

learning-based EIT to practical clinical and industrial

applications. 1) Training a good deep learning model requires

a large amount of data, which is time-consuming and laborious

to obtain, especially for medical applications where human data

is more difficult to obtain. 2) Overfitting is a common issue with

deep learning models, which leads to a significant reduction in

generalizability in practical applications. Although there are ways

to mitigate this, it is still a non-negligible problem for practical

applications. 3) Deep learning involves substantial programming

knowledge, adjusting of parameters, and bug-fixing abilities, all

of which might be challenging for beginners utilizing deep

learning-based EIT. Some of the following directions may be

FIGURE 6
Typical hybrid deep learning reconstruction network RCRC that can automatically learn prior spatial-temporal information from the training
dataset and utilize it to enhance the conductivity reconstruction accuracy (Ren et al., 2021).
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TABLE 1 Summary of the deep learning application in EIT reconstruction and analysis.

Category Model Main Methods Applications Metrics for
improvement

Computer
Configuration

References

Single neural network-
based direct reconstruction

CNN Based on LeNet and refined by dropout
layer and moving average

To solve the EIT inverse problem Lower relative image error (RIE)
Higher Image correlation
coefficient (ICC)

GPU: Nvidia TITAN Xp Tan et al. (2019)

CNN-RBF Based on VGG model by adding a BN
layer, ELU activation function, RBF
network, and GAP layer

High-resolution and robust shape
reconstructions with multiphase
conductivity for EIT lung imaging

Lower root mean square error
(RMSE); Higher ICC

GPU: Nvidia GeForce GTX
1660 RAM: 16 GB

Wu et al. (2021)

1D-CNN Utilizes the convolutional layer, pooling
layer, and full connection layer

To solve the EIT inverse problem;
Industrial Process Tomography

Lower RIE and higher ICC Requires a GPU, model
unknown

Li et al. (2020b)

Joint reconstruction of
traditional EIT algorithm
and deep learning

One-
stepGN+ ANN

Applying the ANN after the linear one-
step GN

To solve 3D EIT problems Lower position error(PE) and
shape deformation (SD)

CPU: Intel Core I7-6700 RAM:
64 GB

Martin and Choi
(2017)

Beltrami-net Pairs deep learning with D-bar methods
and examine the effect of prior information

For absolute imaging with EIT Higher structural similarity
indices (SSIM); Lower RIE

GPU: Nvidia Titan XP Hamilton et al.
(2019a)

Deep D-bar Fuses the results of the output of the CNN
with reconstruction computed by the D-
bar method

Reconstruction of organ boundaries
for lung EIT

Higher SSIM boundaries and
image

GPU: Nvidia RTX 2080 Hamilton et al.
(2019b); Capps and
Mueller (2021)

TSDL Consists of the pre-reconstruction block to
learn regularization patterns and a CNN to
perform post-processes in a multi-level
feature analysis strategy

For robust shape reconstruction of the
lung

Lower RMSE Higher SSIM CPU: Intel Xeon E5-2630 GPU:
Nvidia GTX Titan X RAM:
64 GB

Ren et al. (2020)

GCNM Interprets the mesh as a graph and
formulates the network using a graph
convolutional neural network

For nonlinear inverse problem, such
as EIT

Lower mean squared error
(MSE) and more robust

GPU: Nvidia Titan V Herzberg et al. (2021)

M-STGNN Simultaneously captures spatial and
frequency correlations

mfEIT image reconstruction Higher peak signal-to-noise ratio
(PSNR) and SSIM; Lower RMSE

GPU: Nvidia P5000 Chen et al. (2022b)

VDD-Net Employs a deep CNN to post-process the
initial reconstruction of the conjugate
gradient algorithm

To obtain high spatial resolution EIT
images of the lungs

Lower reconstruction error,
distortion and widening; Higher
SSIM

GPU: Nvidia RTX 2080Ti Zhang et al. (2022)

MMV-Net Integrates the advantages of MMV-
ADMM and deep learning

mfEIT image reconstruction Higher peak signal-to-noise ratio
(PSNR) and SSIM Lower RMSE

GPU: Nvidia P5000 Chen et al. (2022b)

Hybrid deep learning
reconstruction for EIT

VAE+encoder-
decoder

Utilizes manifold learning to transform
EIT inverse problem into a well-posed one

Lung time-difference EIT imaging Higher image reconstruction
quality

GPU: Nvidia GeForce GTX
1080 Ti

Seo et al. (2019)

ANN+U-Net RBF networks reconstructs initial image
and U-Net is used for post-processing

To solve the inverse problem and
post-processing images

Higher resolution Lower PE GPU: Nvidia GeForce GTX
1080 Ti

Huang et al. (2019)

RCRC Includes a reconstruction network,
recurrent neural network, and CNN
encoder and decoder

Dynamic image reconstruction Lower RMSE Higher SSIM CPU: Intel(R) Xeon(R) E5-
2630; RAM: 64 GB; GPU:
Nvidia Titia Xp

Ren et al. (2021)

(Continued on following page)

Fro
n
tie

rs
in

B
io
e
n
g
in
e
e
rin

g
an

d
B
io
te
ch

n
o
lo
g
y

fro
n
tie

rsin
.o
rg

10

Z
h
an

g
e
t
al.

10
.3
3
8
9
/fb

io
e
.2
0
2
2
.10

19
5
3
1

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.1019531


something we may work on in the future in order to gradually

transition deep learning-based EIT to real-world applications.

4.1 High quality EIT dataset for deep
learning

A deep learning model’s capacity for learning is mostly

determined by the training dataset. Most current datasets are

generated based on 2D or 3D simulation models, and some

differences with the actual EIT data obtained from the human

body still exist. The measurement noise of a hardware system in a

real environment is typically irregular, whereas the noise added

to the training data in a simulation is typically of a known

distribution. In addition, owing to the complexity of the actual

hardware system, accurately modeling the hardware system is

very difficult. Therefore, datasets based on simulation models

often cannot accurately reflect true EIT measurements. Gaggero

et al. (2014) initially explored the possibility of using real

saltwater tank model data for training. However, this dataset

only contained training data of 770 different locations, and the

total amount of data was small. In contrast, owing to the data

collection patterns of different EIT systems, the current way of

increasing data sets by sharing data among research groups has

some difficulties. As deep learning requires a considerable

amount of high quality training data (Sun et al., 2017),

numerous studies on extending an EIT dataset based on

variational autoencoders and generative adversarial networks

(Chen et al., 2020; Zhan et al., 2021) have been conducted.

Non-etheless, building high quality EIT datasets for training is

still a major problem, which can be solved collaboratively by EIT

research groups.

4.2 Building efficient deep learningmodels
in EIT

As the data set used for training is always limited, if deep

learning is only used as a black-box solver to directly learn the

mapping relationship between the measured voltage signal and

output conductivity distribution, the training results may have

lower generalization ability under the training of limited sample

data. Therefore, the method of reducing the dependence of deep

learning on datasets is also an issue that needs to be considered.

One possible way, as described in Section 3.2, is utilizing

traditional algorithms combined with deep learning for EIT

image reconstruction. Traditional algorithms are based on

well-established mathematical and physical principles, and

generate outputs corresponding to their inputs in a fixed

manner, regardless of generalization issues. If the prior

knowledge of physics and mathematics in traditional

algorithms can be integrated into the deep learning network,

the non-linearity of the neural network mapping function can beTA
B
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reduced and the generalization ability of the model can be

improved. In addition, the optimization of traditional imaging

methods is worth studying. For example, based on the concept of

induced contrast current, Wei et al. (2019) proposed a basis-

expansion subspace optimization method to solve the inverse

problem of EIT and a deep learning method based on dominant

current; this improved the generalization of the network and

enabled fast, high quality and stable EIT imaging.

In addition to requiring considerable training data, deep

learning consumes considerable computing resources. To

obtain strong representation ability, the typical deep learning

models must require a significant number of parameters.

Subsequently, training and testing these models require more

memory and computing power. For example, the U-Net network,

a popular tool for medical imaging, requires hours of training

time on a Nvidia Titan GPU (6 GB) although the computational

overhead has been minimized (Ronneberger et al., 2015). This

poses some challenges to the portability of EIT hardware systems.

Therefore, optimizing the network structure to reduce hardware

resource requirements should be considered in future deep

learning technology for EIT. Recently, Alford et al. proposed a

pruned and structurally sparse neural network (Alford et al.,

2018), and Hosseini et al. proposed a recurrent sparse connection

architecture (Hosseini et al., 2021); these studies provide a new

research direction for deep learning-based EIT image

reconstruction as well as a novel perspective for the

development of intelligent portable EIT.

4.3 Smarter multi-modality EIT and image
fusion

As EIT is a type of functional imaging, its poor spatial resolution

is a major issue in realizing its clinical application. Therefore, the

main task of the current deep learning-based EIT image

reconstruction technique is to improve the reconstruction quality

and spatial resolution of imaging. Multi-modality imaging is used to

improve the image quality of EIT; for example, dual-modality

imaging of EIT and ultrasound based on acousto-electric effect

significantly improve the image quality of imaging results (Liang

et al., 2017; Liu et al., 2019). Recently, Liu et al. reported an

impedance optics-dual-modal imaging framework for 3D cell

culture imaging, where they used a multiscale feature cross-

fusion network (MSFCF-Net) to fuse the information between

different modalities. In addition, Liu et al. (2022a) also proposed

a multimodal reconstruction algorithm based on the Kernel method

that originated from machine learning and obtained excellent EIT

images (Liu and Yang, 2022). In comparison with traditional

methods, multi-modality learning based on deep learning has

several advantages. Ramachandram et al. reviewed the

development of deep multi-modality learning in existing

literature (Ramachandram and Taylor, 2017), which provides a

new development idea for future multi-modality imaging of EIT.

In addition, using CT images to assist EIT imaging and

encoding the structural information in CT images in the

regularization term to constrain the conductivity estimation is

another method to improve the imaging quality of EIT (Li et al.,

2020). This type of image fusion technology has been initially

developed by Xu et al. to fuse CT and EIT images for obtaining

EIT-CT images, thereby providing doctors with more intuitive

diagnostic information (Xu et al., 2011). However, this method is

limited to registration of images and does not realize the utilization

of CT data information. A similar approach was applied in the study

by (Reinartz et al., 2019) to provide real-time ventilation image

information for the lungs. In comparison with traditional methods,

deep learning has achieved better results in data information

utilization and medical image registration; this also provides a

new technical means for improving the imaging quality of EIT

through image fusion technology.

4.4 3D EIT

Because the propagation of current in space is not confined to

the 2D electrode plane but in 3D space, the EIT essentially reflects

the conductivity distribution in 3D space. However, most of the

current reconstruction algorithms onEIT focus on 2D, even for deep

learning-based reconstruction methods. When the 2D approach is

extended to 3D, it leads to a significant increase in the number of

dimensions, requires more computational resources, and makes it

difficult to train the model efficiently so that it can be reconstructed

accurately. In order to solve the non-linear 3DEIT inverse problem,

Martin et al. proposed a solution based on the divide-and-conquer

method and ANNs (Martin and Choi, 2018). This solution caps the

number of outputs for each individual ANN and subsequently

lowers the number of weights and biases in each individual

ANN, greatly accelerating training and enhancing global

convergence. Yi et al. (2022) proposed a transposed convolution

with neurons network (TN-Net) to solve the image reconstruction

problem of 3D EIT. The DNNmethod proposed by Fan et al. can be

used for both 2D and 3D imaging of EIT (Fan and Ying, 2020). In

addition, for the needs of 3D cell culture process monitoring,

researchers have also proposed numerous deep learning-based

methods that could be extended to 3D, such as SADB-Net

(Chen and Yang, 2021), GCNM (Herzberg et al., 2021), MSFCF-

Net (Liu et al., 2022a), M-STGNN (Chen et al., 2022a),MMV-Net

(Chen et al., 2022b), etc., which provide a large number of

algorithmic bases for future 3DEIT reconstruction studies.

4.5 Intelligent medical decision-making
based on EIT

Although this study primarily focus the advancement of deep

learning in EIT image reconstruction, deep learning plays a

significant role in solving other aspects of EIT. In particular,
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in terms of medical diagnosis and decision-making, deep

learning can be used to provide doctors with intelligent

auxiliary diagnosis information for quick decision-making.

Candiani et al. used neural networks to achieve effective

classification of brain stroke from EIT results (Candiani and

Santacesaria, 2022), whereas Dunne et al. used image-based

machine learning that provides intelligent monitoring for

urinary incontinence patients (Dunne et al., 2018). Moreover,

Lee et al. (2020) proposed EIT abdominal fat estimation based on

deep learning. In addition, in lung EIT used in clinical research,

researchers achieved the separation of cardiac images using the

semi-Siamese U-Net (Ko and Cheng, 2021) to obtain cardiac

impedance images that can be used for bedside diagnosis; this

provides a new method and diagnostic basis for doctors. The

aforementioned studies indicate that deep learning plays a

significant role in medical diagnosis of EIT, which may

facilitate the clinical application of EIT in future.

5 Conclusion

At present, deep learning plays an important role in EIT image

reconstruction, and has had a significant impact on improving the

quality of EIT reconstruction. The simple way of reconstructing

EIT images directly from measurement data based on neural

networks cannot meet the complex clinical use scenarios owing

to insufficient generalization ability of the model. In future, the

joint reconstruction method based on traditional reconstruction

algorithms and deep learning, and the use of multiple networks for

hybrid reconstruction will be the main development directions of

deep learning in EIT image reconstruction. Currently, EIT image

reconstruction based on deep learning still deals with certain

problems in terms of datasets, and establishing shared datasets

through the cooperation of more research teams is necessary. In

addition, deep learning can be combined with traditional

algorithms to design a better network structure to ensure that it

can better integrate prior information, improve the generalization

ability of the model, and expand the application prospects of EIT

by integrating multi-modal intelligent imaging; some of them

could be solutions to existing challenges.

In conclusion, deep learning provides a new method for EIT

image reconstruction and to solve the problems faced by EIT in

clinical settings. The successful application of deep learning in

EIT image reconstruction has laid a foundation for the

establishment of an intelligent integrated EIT diagnostic

system in the future.
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