
Multiple-symmetry-protected
lantern-like nodal walls in
lithium-rich compound LiRuO2

Hongli Gao1*, Weizhen Meng2*, Lirong Wang2 and
Jinxiang Deng1

1Department of Physics and Optoelectronic Engineering, Faculty of Science, Beijing University of
Technology, Beijing, China, 2School of Materials Science and Engineering, Hebei University of
Technology, Tianjin, China

Topological semimetals have attracted wide attention due to their potential

applications, such as electronic devices and electrocatalysis. Herein, based on

the first-principles calculations and symmetry analysis, we first report that

ternary compound pnnm-type LiRuO2 is a typical lantern-like nodal wall

semimetal. Specifically, without considering spin-orbit coupling (SOC), one-

dimensional (1D) two-fold degenerate bands on the ki = ±π (i = x, y) planes form

the two-dimensional (2D) topological state (namely, nodal surface) under the

constraint of multiple symmetry operations. In addition, the symmetry-

enforced nodal network is formed on the kz = ±π planes. Finally, these

nodal networks and nodal surfaces are coupled together to form lantern-

like nodal walls. Remarkably, these topological states are protected by multiple

symmetries, namely, nonsymmorphic two-fold screw-rotational symmetry [S2i
(i = x, y)], time-reversal symmetry (T), inversion symmetry (I), glide plane

symmetry (σz), and two-fold rotational symmetry (C2x/y). In addition, we

further discuss the effect of spin-orbit coupling on the lantern-like nodal

walls. We find that even if LiRuO2 contains S2z and T symmetries, these

nodal surfaces and nodal networks are still broken. Then, due to the

existence of I and T symmetries, Dirac nodal lines and Dirac points are

formed in the low-energy region. Therefore, our work indicates that

LiRuO2 is an excellent material platform for researching multiple

topological states.
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1 Introduction

Topological insulators (TIs) have attracted extensive attention in condensed matter

physics due to the fact that they possess the Dirac cone feature on some specific surfaces

[1–3]. Inspired by TIs, the researchers found that there exist multiple types of crossing

points near the Fermi level in some electronic band structures with a metal feature. Under

some symmetry operations, such as mirror plane symmetry, glide plane symmetry, and

inversion/time-reversal symmetries, these crossing points generate topological states of
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different dimensions. It is well known that the high-dimensional

fermions usually originate from topological states of a lower

dimension. Among them, the most typical example is that the

one-dimensional Weyl/Dirac nodal line [4–10] is actually

formed by countless zero-dimensional Weyl/Dirac points

[11–20]. In other words, a two-dimensional nodal surface

[21–25] is made up of countless one-dimensional nodal lines.

In this case, the classification of topological semimetals is

greatly expanded. Thus, topological states with different

dimensions exhibit a variety of interesting properties, such

as opposite chirality [11–15], Fermi arc or drumhead-like

surface states [4–10], and high surface density of states

[26–29]. These properties make topological semimetals

have important application prospects in electronic devices

or electrocatalysis [e.g., hydrogen evolution reaction (HER)

and N2 cleavage] [26–31].

It is well known that with the increase of dimensions,

topological fermions usually require higher symmetry

operations. So far, the topological fermion with the

highest dimension has been theoretically proved to be a

two-dimensional nodal surface. Wu et al. [21] and Yu

et al. [32] analyzed that there exist only three possible for

nodal surfaces, namely one (a), two (b), or three (c) nodal

surfaces, as shown in Figures 1A–C. At present, in electronic

systems, a large number of topological nodal surface

semimetals have been reported [21–35], such as hexagonal

compounds XTiO2 (X = Li, Na, and K Rb) [22], Ti3Al family

[23], quasi-one-dimensional half-metals XYZ3 (X = Ca, Rb,

Y = Cr, Cu, and Z = Cl, I) [24], electride Ba4Al5 [25], and

Sr5X3 (X = As, Sb, and Bi) [33]. We can find that more nodal

surface semimetals only exist in one nodal surface, while

reported two and three nodal surfaces are mainly

concentrated in phonon systems [36–38]. Interestingly, in

these phonon systems, Wang et al. [38] found that P42/nmc-

type Li6WN4 material possesses a novel topological phase,

namely ideal lantern-like phonons. This lantern-like phonon

is composed of two nodal surfaces and two symmetry-

enforced nodal networks, as shown in Figure 1D. To the

best of our knowledge, this novel topological phase may not

have been reported in electronic systems. Therefore, it is

urgent to find the real materials with this topological state in

the electronic system.

In this work, we first report that the synthesized ternary

compound LiRuO2 possesses this novel type of topological

state, namely lantern-like nodal wall. Specifically, in

compound LiRuO2, there exist two-fold degenerate bands

along k-paths X-S-R-U (kx = π) and Y-S-R-T (ky = π). Under

the combined operation of S2x/y and T symmetries, these

degenerate bands form two-dimensional nodal surfaces on

kx = π and ky = π planes. In addition, a symmetry-enforced

nodal network is formed on the kz = π surface due to the

existence of a two-fold rotational symmetry (C2x/y)

along the kx/y directions, glide plane (σz), inversion-

reversal (I), and T symmetry. Finally, two nodal

networks and two nodal surfaces form the lantern-like

nodal wall. However, when spin-orbit coupling (SOC) is

considered, the lantern-like nodal wall is broken and

transformed into Dirac points (located at Z point) and

Dirac nodal lines (on kz = 0 and ky = π planes) under IT

symmetries.

FIGURE 1
(A) Schematic diagrams of (A) one nodal surface, (B) two nodal surfaces, (C) three nodal surfaces, and (D) lantern-like nodal walls.
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2 Calculations and results

2.1 Crystal and electronic structures

Figures 2A,B show the crystal structure and the Brillouin

zone (BZ) of LiRuO2. It possesses a typical orthorhombic

structure and belongs to the space group Pnnm (No. 58). The

primitive cell of LiRuO2 contains eight atoms [see 3) of

Figure 2A], namely, two Li atoms at the 2c Wyckoff position

(0,0, and 1/2), two Ru atoms at the 2a Wyckoff position (1/2, 1/2,

and 1/2), and four O atoms at the 4 g Wyckoff position (0, 0.67,

and 0.75). From the crystal structure, we can find that six O

atoms form a tilted octahedron, and Ru atoms are contained in

the body center, while Li atoms form a one-dimensional chain

along the c-axis [see (I and 2) of Figure 2A]. In fact, LiRuO2 is the

final configuration in which the abundant lithium ions are

inserted into the anodic material RuO2. Specifically,

researchers [39] have proved that RuO2 with a hexagonal

structure is an excellent anode material. Then, RuO2 was

ground into powder, mixed with Li in proportion, and placed

in acetone and dibutyl phthalate to form the final lithium-ion

battery LiRuO2 with an orthorhombic structure [see Figure 2C].

Interestingly, we find that LiRuO2 shows abundant degenerate

bands near the Fermi level from its electronic band structure. As

shown in Figure 2D, the k-paths Y-S-R-T-Y (kx = π), X-S-R-U-X
(ky = π), and Z-U-R-T-Z (kz = π) are all two-fold degenerate

bands, and these bands are mainly contributed by O atoms of

octahedron and Ru atoms of body center, as shown in Figure 2E.

Finally, these degenerate bands form a new type of lantern-like

nodal wall under multiple symmetric operations.

2.2 Lantern-like nodal wall

Since the lantern-like nodal wall is composed of two nodal

networks and two nodal surfaces, we will analyze the two

topological states one by one from two aspects of symmetry

operations and DFT calculations.

2.2.1 Analysis of symmetry
In space group (SG) 58, the symmetry operations contain:

two-fold screw symmetries: S2y � x, y, z{ } → −x + 1
2, y + 1

2,{
−z + 1

2}, S2x � x, y, z{ } → x + 1
2,−y + 1

2 − z + 1
2{ }, inversion

symmetry: I � x, y, z{ } → −x,−y,−z{ }, rotation symmetries:

C2y � x, y, z{ } → x + 1
2,−y + 1

2, z{ }, C2x � x, y, z{ }→ −x+ 1
2,{

y+ 1
2, z}, C2z � x, y, z{ }→ −x,−y, z{ }, mirror symmetry:

FIGURE 2
Crystal structure (A) and Brillouin zone (B) of LiRuO2. Among them, the primitive cell (iii) of LiRuO2 is formed by countless O atoms with a tilted
octahedron, Ru atoms with a body center, and Li atoms with a one-dimensional chain (ii). (C) Anode material RuO2 with a tetragonal structure forms
the final LiRuO2 with an orthorhombic structure by inserting lithium ions. The electronic band structure without SOC (D) and the density of states (E)
of LiRuO2, where the arrows point the two-fold degenerate bands of all k-paths.
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Mx � x,y, z{ }→ −x, y, z{ }, My � x, y, z{ }→ x,−y, z{ }, Mz �
x, y, z{ }→ x, y,−z{ }, glide symmetries: σz � x,y, z{ }→ x, y,{
−z+ 1

2}, σx � x, y, z{ }→ x+ 1
2,−y+ 1

2,z+ 1
2{ }, σx � x, y, z{ }→

−x+ 1
2, y+ 1

2, z+ 1
2{ }, and T symmetry. Based on Yu et al.‘s

report [32], when rotation [Ci (i = x, y, z)], glide plane (σi), I,

and T symmetries are organized together, causing the formation

of symmetry-enforced two-fold degenerate bands along high-

symmetry-paths. According to the aforementioned symmetry

operations, we can find that SG 58 can form symmetry-enforced

nodal networks on kx/ky/kz = ±π planes. In addition, based on the
work of Wu et al. [21], when the two-fold screw symmetry [S2i
(i = x, y, z)] is combined with the T symmetry [namely, (TS2i)2 �
e−iki �−1, where ki is ki � π surface], 2D nodal surfaces can be

formed in momentum space. Remarkably, SG 58 contains S2x
and S2y and T symmetries, indicating a Kramer-like degeneracy

can be formed on kx and ky = ±π planes. In other words, the nodal
networks on kx/ky planes also belong to a part of the nodal

surfaces are protected by [S2x/2yT].

2.2.2 Nodal networks
By DFT calculation, we find that the calculated results in

LiRuO2 compound are consistent with the symmetry analysis.

Specifically, as shown in Figure 3A, we can find that these bands

along k-paths Γ-Y, Γ-X, Γ-Z are single band. Based on group

theoretic analysis, the irreducible representations of these single

bands are {R1, R2, R3, and R4}. Finally, these single bands form

symmetry-enforced two-fold degenerate bands [namely

open nodal line] along k-paths Y-S-R-T-Y (kx = π),
X-S-R-U-X (ky = π), and Z-U-R-T-Z (kz = π) [See

Figure 3B]. In addition, the irreducible representations of

these nodal lines on kx = π, ky = π, and kz = π are {R2, R4}, {R6,

R8}, and R5, respectively. Due to the existence of Mx/y/z

symmetries, these nodal lines finally form the nodal

network on different surfaces, as shown in Figure 3C.

Remarkably, based on the symmetry analysis and the

following DFT verification, the nodal network on the kx/y
planes actually belongs to part of the two nodal surfaces. It is

well known that a pair of Weyl points of opposite chirality

are connected by a one-dimensional Fermi arc, as shown in

1) of Figure 3D. For LiRuO2 compound, these nodal lines on

kz = π are composed of countless zero-dimensional Weyl

points. Thus, the surface state of nodal line is connected by

countless one-dimensional Fermi arcs, namely drumhead-

like surface state, as shown in 2) of Figure 3D. In this case,

compared with the Weyl semimetals, the surfaces of nodal

line semimetals possess higher density of states (DOSs), as

shown in 3) of Figure 3D. Based on some reports of

topological catalysis [26–31], high surface DOS [namely

(001) surface] may possess potential application prospects

for the catalytic performance.

FIGURE 3
(A) Electronic band structures along k-paths (i) Y-S-R-T-Y (kx = π), (ii) X-S-R-U-X (ky = π), and (iii) Z-U-R-T-Z (kz = π) (B) Different surfaces of
LiRuO2 in momentum space, where these purple lines represent the node lines. These nodal lines finally form the nodal networks on different
surfaces (C). (D) Schematic diagram of the surface states for (i) Wey point (WP) and (ii) nodal line (NL).
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2.2.3 Two nodal surfaces
By symmetry analysis, the nodal lines on the kx = π/ky = π

planes should belong to a part of two nodal surfaces. In this

section, we verify the existence of two nodal surfaces by DFT

calculation. Figure 4A shows the electronic band structure along

the highly symmetric paths on the kx = π/ky = π planes. Then, we
denote the midpoints of the T-S (R-Y) and X-R (U-S) paths as B

and D [See Figure 4B]. Obviously, we can clearly observe that the

two linear single bands cross at B and D points, as shown in

Figure 4C. In other words, the whole surfaces of kx = π/ky = π are
double degenerate bands. Furthermore, the three-dimensional

dispersion bands on kx = π and kx = 0.8π planes are calculated, as
shown in Figure 4D. We find that when on the kx = π plane, the

two single bands are combined to form a curved double

degenerate surface. On the contrary, the bands on the kx =

0.8π plane evolves into four curved single bands due to the

absence of S2x symmetry. Therefore, the aforementioned DFT

calculations fully confirm that the kx = π/ky = π planes are the

double degenerate surfaces, which agree well with the results of

the symmetry analysis. In addition, the surface states of zero-

dimensional nodal points and one-dimensional nodal lines are

one-dimensional Fermi arcs and two-dimensional drumhead-

like, respectively. In other words, the dimension of the surface

state is one dimension higher than that of the topological

fermion. Since the highest dimension of the projected surface

in three-dimensional materials is a two-dimensional surface,

there is no surface state for nodal surface.

FIGURE 4
(A) Electronic band structures along k-paths (i) Y-S-R-T-Y (kx = π) and (ii) X-S-R-U-X (ky = π) (B) Some symmetry points of (i) kx = π/(ii) ky = π
planes for LiRuO2 in momentum space. (C) Electronic band structure along k-paths (i) A-B-A′ and (ii) C-D-C’. (D) Three-dimensional dispersion
bands on kx = π and kx = 0.8π planes.

FIGURE 5
(A) Electronic band structures with SOC for LiRuO2

compound. (B) Schematic diagram of a pair of Weyl points with
opposite chirality and Dirac point. Among them, the two Dirac
points are formed by four single bands and two double
degenerate bands. (C) Different surfaces of LiRuO2 in momentum
space, where these red lines and green dot represent the node
lines and Dirac point, respectively.
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3 Discussions and conclusion

Before concluding the discussion, we also discuss the effect of

SOC on the lantern-like nodal wall. As reported byWu et al. [21],

all types of topological nodal surfaces may be destroyed after

considering SOC but may be retained in containing the

combined nonsymmorphic two-fold screw-rotational and T

symmetries. For LiRuO2 compound, we find that even if this

material contains S2z and T symmetries, the two nodal surfaces

and two nodal networks are broken, as shown in Figure 5A. Due

to the existence of IT symmetries, Dirac points and Dirac nodal

lines are finally formed on the high symmetric point Z and the

k-paths X-S-Y (kz = 0), S-R (ky = π), respectively [See Figures

5B,C]. It is worth noting that these Dirac points and Dirac nodal

lines are composed of a pair of Weyl points with opposite

chirality (C = ±1). In other words, the Chern number of these

Dirac states are 0 (C = 0). That is, these Dirac states do not have

topologically protected Fermi arc and drumhead surface states.

In conclusion, we find that two nodal surfaces exist on the

kx = ±π and ky = ±π planes of LiRuO2. These nodal surfaces are

protected by nonsymmorphic two-fold screw-rotational (S2x/S2y)

and T symmetries and are classified to the second class (class-II) of

nodal surfaces. In addition, the symmetry-enforced nodal network

is formed on the kz = ±π surfaces due to the existence of a two-fold
rotational symmetry (C2x/y), glide plane (σz), inversion-reversal (I),

and T symmetries. Finally, the two nodal networks and two nodal

surfaces form the lantern-like nodal wall.

4 Calculation methods

In this work, the first-principles calculations were performed

in the framework of density functional theory (DFT) by using the

Vienna ab initio simulation package (VASP) [40, 41]. For ionic

potentials, the generalized gradient approximation (GGA) of the

Perdew–Burke–Ernzerhof (PBE) method is used [42]. The cutoff

energy was adopted as 550 eV, and the Brillouin zone was

sampled with Γ-centered k-point mesh of 9 × 9×11 for both

structural optimization and self-consistent calculations. The

energy convergence criteria were chosen as 10−5 eV. In

addition, the DFT + U method was used to calculate the band

structures of compound LiRuO2 (URu = 3eV) [43]. We find that

the change of the electronic band structure is weak at different U

values, which is similar to some of the previous reports [13, 44].
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