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Artificial Intelligence (AI) plays an integral role in enhancing the quality of
surgical simulation, which is increasingly becoming a popular tool for
enriching the training experience of a surgeon. This spans the spectrum
from facilitating preoperative planning, to intraoperative visualisation and
guidance, ultimately with the aim of improving patient safety. Although
arguably still in its early stages of widespread clinical application, AI
technology enables personal evaluation and provides personalised feedback
in surgical training simulations. Several forms of surgical visualisation
technologies currently in use for anatomical education and presurgical
assessment rely on different AI algorithms. However, while it is promising to
see clinical examples and technological reports attesting to the efficacy of
AI-supported surgical simulators, barriers to wide-spread commercialisation
of such devices and software remain complex and multifactorial. High
implementation and production costs, scarcity of reports evidencing the
superiority of such technology, and intrinsic technological limitations remain
at the forefront. As AI technology is key to driving the future of surgical
simulation, this paper will review the literature delineating its current state,
challenges, and prospects. In addition, a consolidated list of FDA/CE
approved AI-powered medical devices for surgical simulation is presented, in
order to shed light on the existing gap between academic achievements and
the universal commercialisation of AI-enabled simulators. We call for further
clinical assessment of AI-supported surgical simulators to support novel
regulatory body approved devices and usher surgery into a new era of
surgical education.
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Introduction

In recent years, artificial intelligence (AI) technology has fuelled the advancement of

surgical simulators, enhancing their accuracy and capabilities. Surgical simulators are

increasingly used in modern medical practice to support preoperative planning and

enhance the hands-on experience of training a surgeon. The application of modern

AI technology can support simulators in providing personalised feedback to the user,

while also automating an immersive surgical experience for visualisation of patient

anatomy (1–5). In this review, we aim to discuss the current state of AI technology in

surgical simulation. By reviewing the available literature and through our consolidated
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list of FDA/CE approved AI-enabled medical devices, we

attempt to highlight recent advancements in the field as well

as discuss some gaps between the research and industry

communities. The key terms relevant to this article are

summarised in Table 1.
The application of AI in surgical
simulation assessment

AI can improve surgical training simulators by evaluating

performance and providing personalised feedback to the end

user (6). Several AI-based algorithms have been described in

recent years. For instance, a neurosurgical group at McGill

University, Montreal, developed a machine learning (ML)

algorithm that classifies participants’ skill levels while

performing a VR-based hemilaminectomy or brain tumour

resection task (7, 8). More recently, the same group developed

a “Virtual operative assistant (VOA)”—an open-sourced

AI-based software that, in addition to determining the skill

level, also provides personalised feedback in relation to expert

proficiency performance benchmarks.
TABLE 1 Definitions.

Terminology Definition

Artificial intelligence (AI) Mimicking of human intelligence through ability
to predict, classify, predict, learn, plan, reason
and/or perceive to make decisions

Machine learning (ML) Sub-branch of AI technology that processes
calculations and statistics to learn from data
without human supervision

Deep learning (DL) Subset of ML that uses neural networks to solve
more complex challenges such as image, audio,
and video classifications.

Artificial neural network
(ANN)

A collection of simple interconnected algorithms
that process information in response to external
input

Convolutional neural
network (CNN)

A deep learning neural network designed for
processing structured arrays of data such as
images.

Augmented reality (AR) A class of ANN; deep learning neural network
designed for processing structured arrays of data
such as images.

Virtual reality (VR) A computer-generated environment that replaces
the real environment with a digital environment
where users interact with virtual objects

Mixed reality (MR) A hybrid environment that merges both real and
virtual worlds with digital and physical objects
that can interact in real-time

Extended reality (XR) A complete immersive environment which
integrates AR, VR, and MR technologies to
provide an entire spectrum of reality to virtuality.

Head-mounted display
(HMD)

A display device, worn on the head or as part of a
helmet, that has a small display optic in front of
one or each eye.
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However, like any form of emerging technology, AI-driven

performance evaluation and feedback generation remains

imperfect with numerous limitations. Lam et al.’s systematic

review explored several different ML techniques assessing

surgical performance and noted the promising accuracy of

ML-based assessment software, while delineating several major

challenges and limitations of this technology (9). One

limitation is that the surgical skill assessment of a simulated

benchtop task might not accurately correlate with the trainee’s

performance in the operating room, as the real-life surgical

environment is highly complex. Furthermore, there is a lack

of validated assessment criteria against which participants’

performance should be assessed by the AI-algorithm. Another

major barrier is the exorbitant volume of surgical data

required to effectively train the ML-algorithms. Potential

solutions to some of these challenges include developing a

surgeon-led consensus statement outlining the core elements

of a surgical technique to be evaluated by ML-algorithms and

facilitating surgical data exchange through cross-institutional

open-source initiatives (10).

Interestingly, we note that our review of the FDA/CE list did

not identify any approved AI-powered software for appraising

and providing feedback in surgical simulation. However, it is

conceivable that such software may be commercially available

but have not been evaluated through the regulatory process as

they do not directly interact with patients (11).
The application of AI in surgical
visualisation

3D visualisation has been a major development in surgical

simulation across all surgical specialties ranging from

neurosurgery and orthopaedics to maxillofacial, plastics, and

general surgery (12, 13). Such universal demand for 3D

presurgical planning and its steadfast advancement since the

1980s testifies to the substantial benefits in reducing operation

duration, blood loss, and hospital stay (14–18) whilst

improving patient survival. Our review of the FDA/CE list

identified 11 AI-enabled visualisation devices (Table 2). It is

important to note that this list does not include visualisation

technology without obvious AI application.

The most widely accepted technique for creating 3D

simulations from 2D images involves convoluted neural

network (CNN) algorithms. AI can complement this method

by facilitating 3D segmentation and anatomical labeling

(19–21). In addition, AI plays a crucial role in facilitating

advanced visualisation modalities such as 3D printing, virtual

reality (VR) simulation, and extended reality (XR)

environment (Figure 1).

3D-printed simulators have been shown to facilitate

preoperative planning, improve surgical outcomes and

decrease operation duration (22); however, several challenges
frontiersin.org

https://doi.org/10.3389/fmedt.2022.1076755
https://www.frontiersin.org/journals/medical-technology
https://www.frontiersin.org/


T
A
B
LE

2
Li
st

o
f
FD

A
/C

E
ap

p
ro
ve

d
A
I-
p
o
w
e
re
d
d
e
vi
ce

s.

D
ev
ic
e
n
am

e
A
pp

ro
va
l

da
te

FD
A

su
bm

is
si
on

n
um

be
r

T
yp
e
of

ap
pr
ov
al

O
th
er

ap
pr
ov
al

A
pp

ro
va
l

da
te

D
es
cr
ip
ti
on

C
om

pa
n
y

C
ou

n
tr
y

So
ft
w
ar
e

fu
n
ct
io
n

So
u
rc
e

U
N
iD

Sp
in
e

A
na
ly
ze
r

5/
24
/2
01
7

K
17
01
72

51
0
(k
)

pr
em

ar
ke
t

no
ti
fi
ca
ti
on

D
ev
ic
e
th
at

al
lo
w
s
su
rg
eo
ns

to
vi
ew

,m
ea
su
re

im
ag
es
,
an
d
to

pe
rf
or
m

ge
ne
ri
c
sp
in
e
re
la
te
d

pr
es
ur
gi
ca
l
si
m
ul
at
io
ns

fo
r
pl
ac
em

en
t
of

su
rg
ic
al

im
pl
an
ts

M
ed
ic
re
a
In
te
rn
at
io
na
l

(D
ev
ic
e
ac
qu

ir
ed

by
M
ed
tr
on

ic
)

U
SA

2D
si
m
ul
at
io
n

1,
3

D
2P

8/
29
/2
01
9

K
18
34
89

51
0
(k
)

pr
em

ar
ke
t

no
ti
fi
ca
ti
on

C
E

10
/2
01
7

P
re
-o
pe
ra
ti
ve

im
ag
e
se
gm

en
ta
ti
on

an
d
D
IC
O
M

vi
su
al
is
at
io
n
so
ft
w
ar
e
fo
r
su
rg
ic
al

pl
an
ni
ng

3D
Sy
st
em

s,
In
c.

U
SA

3D
pr
in
ti
ng
,
V
R

si
m
ul
at
io
n

1,
2,
3,
4

H
ea
lth

JO
IN

T
12
/0
4/
20
20

K
20
24
87

51
0
(k
)

pr
em

ar
ke
t

no
ti
fi
ca
ti
on

N
A

N
A

So
ft
w
ar
e
fo
r
3D

re
co
ns
tr
uc
ti
on

fr
om

2D
im

ag
es

fo
r

pr
eo
pe
ra
ti
ve

pl
an
ni
ng

of
kn

ee
or
th
op

ae
di
c
su
rg
ic
al

pr
oc
ed
ur
es

Z
eb
ra

M
ed
ic
al

V
is
io
n

Lt
d
(A

cq
ui
re
d
by

N
an
ox
.a
i)

U
SA

3D
re
co
ns
tr
uc
ti
on

1,
3

In
ne
rs
ig
ht
3D

N
A

N
A

N
A

C
E

06
/2
01
9

M
od

el
lin

g
te
ch
no

lo
gy

fo
r
su
rg
er
y
pl
an
ni
ng

us
in
g

m
od

el
s
fr
om

M
R
I
an
d
C
T
sc
an
s

In
ne
rs
ig
ht
La
bs

Lt
d.

U
K

3D
re
co
ns
tr
uc
ti
on

4

M
E
D
IP

P
R
O

11
/0
7/
20
19

K
19
10
26

51
0
(k
)

pr
em

ar
ke
t

no
ti
fi
ca
ti
on

C
E

12
/2
01
9

So
ft
w
ar
e
in
te
rf
ac
e
an
d
im

ag
e
se
gm

en
ta
ti
on

sy
st
em

fo
r
tr
an
sf
er

of
D
IC
O
M

im
ag
in
g
in
fo
rm

at
io
n
fr
om

m
ed
ic
al

sc
an
ne
r
to

ou
tp
ut

fi
le
;p

re
-o
pe
ra
ti
ve

so
ft
w
ar
e
fo
r
tr
ea
tm

en
t
pl
an
ni
ng

M
ed
ic
al

IP
C
o.
,
Lt
d.

So
ut
h

K
or
ea

3D
re
co
ns
tr
uc
ti
on

,
3D

P
ri
nt
in
g,

M
R
/

X
R
Si
m
ul
at
io
n

1,
3,
4,
5

N
em

oS
ca
n

12
/1
1/
20
19

K
19
25
71

51
0
(k
)

pr
em

ar
ke
t

no
ti
fi
ca
ti
on

N
A

N
A

D
ia
gn
os
ti
c
an
d
tr
ea
tm

en
t
su
pp

or
t
fo
r
de
nt
al

im
pl
an
to
lo
gy

So
ft
w
ar
e
N
em

ot
ec

S.
L.

Sp
ai
n

3D
re
co
ns
tr
uc
ti
on

,
3D

P
ri
nt
in
g

1,
4

P
ro
fu
se

C
A
D

11
/2
1/
20
18

K
17
37
44

51
0
(k
)

pr
em

ar
ke
t

no
ti
fi
ca
ti
on

N
A

N
A

St
an
da
lo
ne

C
om

pu
te
r
A
id
ed

D
et
ec
ti
on

(C
A
D
)

so
ft
w
ar
e
us
ed

to
vi
su
al
is
e,
an
al
ys
e,
pl
an

an
d

in
te
rp
re
t
C
T
,M

R
I,
P
E
T
im

ag
es

E
ig
en

U
SA

3D
re
co
ns
tr
uc
ti
on

2

Su
rg
ic
al
A
R

5/
13
/2
01
9

K
19
07
64

51
0
(k
)

pr
em

ar
ke
t

no
ti
fi
ca
ti
on

N
A

N
A

D
is
pl
ay

of
m
ed
ic
al

im
ag
es

an
d
ot
he
r
he
al
th
ca
re

da
ta
,
in
cl
ud

in
g
fu
nc
ti
on

s
fo
r
im

ag
e
re
vi
ew

,b
as
ic

m
ea
su
re
m
en
ts

an
d
3D

vi
su
al
iz
at
io
n

M
ed
iv
is
,
In
c.

U
SA

M
R
/X
R
Si
m
ul
at
io
n

1,
4

Sy
na
ps
e
3D

,
Sy
na
ps
e
3D

B
as
e

T
oo
ls
v6
.1

02
/0
9/
20
21

K
20
31
03

51
0
(k
)

pr
em

ar
ke
t

no
ti
fi
ca
ti
on

N
A

N
A

So
ft
w
ar
e
fo
r
ad
va
nc
ed

pr
oc
es
si
ng

an
d
an
al
ys
is
of

im
ag
in
g
ai
di
ng

in
su
rg
ic
al

de
ci
si
on

su
pp

or
t
an
d

pr
eo
pe
ra
ti
ve

si
m
ul
at
io
n

Fu
jifi

lm
C
or
po

ra
ti
on

U
SA

3D
R
ec
on

st
ru
ct
io
n

1

Sy
ng
o
A
pp

lic
at
io
n

So
ft
w
ar
e

06
/0
9/
20
17

K
17
07
47

51
0
(k
)

pr
em

ar
ke
t

no
ti
fi
ca
ti
on

C
E

03
/2
01
7

P
ro
vi
de
s
re
al
-t
im

e
vi
ew

in
g,

im
ag
e
m
an
ip
ul
at
io
n,

3D
-v
is
ua
lis
at
io
n,

co
m
m
un

ic
at
io
n,

an
d
st
or
ag
e
of

m
ed
ic
al

im
ag
es

Si
em

en
s
M
ed
ic
al

So
lu
ti
on

s,
U
SA

,
In
c.

U
SA

3D
re
co
ns
tr
uc
ti
on

1,
2,
4

V
SI

H
ol
om

ed
ic
in
e

N
A

N
A

N
A

C
E

12
/2
01
9

Su
rg
er
y
su
pp

or
t
th
ro
ug
h
m
ix
ed

re
al
it
y

ap
oQ

la
r
G
m
bH

G
er
m
an
y

V
R
si
m
ul
at
io
n,

M
R
/X
R
Si
m
ul
at
io
n

4

1.
A
rt
ifi
ci
al

In
te
lli
g
e
n
ce

an
d

M
ac

h
in
e
Le

ar
n
in
g

(A
I/
M
L)

M
e
d
ic
al

D
e
vi
ce

s
[I
n
te
rn
e
t]
.
U
.S
.
Fo

o
d

an
d

D
ru
g

A
d
m
in
is
tr
at
io
n
.
2
0
2
1.

A
va
ila
b
le

fr
o
m
:
h
tt
p
s:
//
w
w
w
.f
d
a.
g
o
v/
m
e
d
ic
al
-d

e
vi
ce

s/
so

ft
w
ar
e
-m

e
d
ic
al
-d

e
vi
ce

-s
am

d
/a
rt
ifi
ci
al
-

in
te
lli
g
e
n
ce

-a
n
d
-m

ac
h
in
e
-l
e
ar
n
in
g
-a
im

l-
e
n
ab

le
d
-m

e
d
ic
al
-d

e
vi
ce

s#
re
so

u
rc
e
s.

2
.
W
u
E
,
W
u
K
,
D
an

e
sh

jo
u
R
,
O
u
ya
n
g
D
,
H
o
D
,
Z
o
u
J.

H
o
w

m
e
d
ic
al

A
I
d
e
vi
ce

s
ar
e
e
va
lu
at
e
d
:
lim

it
at
io
n
s
an

d
re
co

m
m
e
n
d
at
io
n
s
fr
o
m

an
an

al
ys
is
o
f
FD

A
ap

p
ro
va
ls
.
N
at
u
re

M
e
d
ic
in
e
.
2
0
2
1;
2
7(
4
):
5
8
2
-5

8
4
.

3
.
D
re
ye

r
K
,
W
al
d
C
,
A
lle

n
Jr
.
B
,
A
g
ar
w
al

S,
B
iz
zo

B
,
G
ic
h
o
ya

J
e
t
al
.
A
I
C
e
n
tr
al

[I
n
te
rn
e
t]
.
A
I
C
e
n
tr
al
.
2
0
2
2
.
A
va
ila
b
le

fr
o
m
:
h
tt
p
s:
//
ai
ce

n
tr
al
.a
cr
d
si
.o
rg
/.

4
.M

u
e
h
le
m
at
te
r
U
,D

an
io
re

P
,V

o
ki
n
g
e
r
K
.A

p
p
ro
va
lo

f
ar
ti
fi
ci
al
in
te
lli
g
e
n
ce

an
d
m
ac

h
in
e
le
ar
n
in
g
-b

as
e
d
m
e
d
ic
al
d
e
vi
ce

s
in

th
e
U
SA

an
d
E
u
ro
p
e
(2
0
15

–
2
0
):
a
co

m
p
ar
at
iv
e
an

al
ys
is
.T

h
e
La

n
ce

t
D
ig
it
al
H
e
al
th
.2

0
2
1;
3
(3
):
e
19

5
-e

2
0
3
.

5
.
ST

A
T
D
at
ab

as
e
:
A
I
T
o
o
ls

[I
n
te
rn
e
t]
.
St
at
n
ew

s.
co

m
.
2
0
2
1.

A
va
ila
b
le

fr
o
m
:
h
tt
p
s:
//
w
w
w
.s
ta
tn
ew

s.
co

m
/w

p
-c

o
n
te
n
t/
u
p
lo
ad

s/
2
0
2
1/
0
2
/S
T
A
T
_
FD

A
_
cl
e
ar
e
d
-_

A
I_
to
o
ls
.x
ls
x.

Park et al. 10.3389/fmedt.2022.1076755

Frontiers in Medical Technology 03 frontiersin.org

https://doi.org/10.3389/fmedt.2022.1076755
https://www.frontiersin.org/journals/medical-technology
https://www.frontiersin.org/


FIGURE 1

Summary of AI function in visualisation technology.

Park et al. 10.3389/fmedt.2022.1076755
have hindered its daily application (23). AI has removed the

largest barrier of implementing 3D printing—the need for

expert knowledge in the 3D-printing process and computer-

based design. Manual processes have been automated

through AI algorithms that can efficiently process large

amounts of data needed to prefabricate a model, convert

through slicer, detect, and rectify any errors, and print.

Moreover, AI-driven fabrication that adopts real-time

adaptation poses a solution to 3D-printing’s challenge of

reproducing in-vivo tissue (24). AI technology is essential to

support a VR environment and automating the workflow.

Software such as DICOM to Print (D2P) and MEDIP PRO

produces instantaneous 3D Printing and VR rendering

options. Moreover, AI is effectively used for segmentation

and anatomical annotation of the VR environment and,

more importantly, processing user input needed to facilitate

user interaction (25, 26). Furthermore, AI is required to

support the XR-environment—the most practical form and

the holy-grail of surgical simulation. In conjunction with

computer vision technology, deep learning (DL) based object

detection allows dynamic image identification (27). Such

complex feedback processing from DL models bridges the

mismatch between virtual and the real world in 3D

holographic projections (28).
Frontiers in Medical Technology 04
The simulation techniques are also integral in surgical

training. VSI Holomedicine, for example, provides a platform

for both preoperative planning and anatomical education.

Furthermore, hyperrealism is an AR concept used in training

where artificial objects, such as a silicon replica, are visually

enhanced by DL algorithms to simulate a realistic scene of

surgery (29).
Discussion

Technological challenges

Current AI frameworks used in surgical simulation have

some technological limitations. To begin with, AI-powered

feedback platforms could address the challenges experienced

with the VOA (3). For example, VOA is restricted to

categorising two expertise groups, whilst machine learning

techniques such as artificial neural networks can be utilised to

classify multiple groups of expertise (9, 30). VOA also

highlighted the downfalls of using linear machine algorithms;

there were instances of misclassification due to high positive

scoring metrics overcompensating for other negative scoring

metrics (3). Moreover, recent clinical experience with AI
frontiersin.org
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FIGURE 2

Recommendation and suggestions for AI-powered surgical simulators.
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models demonstrated difficulties in measuring subjective

combinations of actions such as “instrument handling (31).”

In addition to overcoming these fundamental obstacles, a leap

to translation will require succeeding platforms to be able to

recognise and capture different frames from an entire

simulation, in order to account for users’ variety of

approaches and techniques that can adequately fulfil a single

metric (3).

As seen in Figure 1, segmentation and anatomical labelling

seems to be the major application of AI in surgical simulation;

however, generalisability of these algorithms remains a

challenge (32). Although segmentation has proven its efficacy

in small clinical studies, its accuracy is yet to reach perfection

(33). Studies reported that their algorithms failed to identify

certain structures such as complex vasculature or certain types

of tumours and that their accuracy can be highly dependent

on the fidelity of different imaging modalities (32–34).

Furthermore, to train AI algorithms to an absolute precision

without bias and to be generalisable, experts are needed to

construct comprehensive datasets which require numerous

annotations and segmentation of anatomical structures.

However, this manual process is tedious and resource

intensive, hence, this approach cannot be translated into

clinical practice (35). Such technical impediments are closely

related to the fact that AI segmentation and anatomical

labelling technology has varying progress across different
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specialties, pathologies, and procedures. Technologies

currently in practice such as Syngo Application Software allow

automated segmentation across several different specialties.

Nevertheless, there is a lack of an overarching AI framework

that can learn, train, and segment or label any anatomical

structures in a human body. Some intraoperative AI models

have been applying deep learning architectures to predict

objects that were previously unseen by the AI (36). Albeit its

infancy, this seems to be the future in AI-powered

segmentation and anatomical labelling.

Additional technical challenges in the visualisation field are

attributed to the intrinsic limitations of technological devices,

[i.e., VR-sickness, head-mounted-displays (HMD), computing

power of graphic processors] which is beyond the scope of

this review. However, few AI-based solutions are proposed to

overcome these challenges. VR-sickness is commonly

experienced due to the delay between sensory input and VR.

To reduce such latency, CNN models are employed to

improve gaze-tracking by pre-rendering subsequent scenes

and predicting future frames (37, 38). Another ground

breaking area of development is in producing 3D displays

for human eyes. Current AR/VR displays display 2D images

to each of users’ eyes instead of 3D which is how

individuals perceive the real world. Choi et al. recently

proposed an AI algorithm and calibration technique for

producing 3D images, namely the “Neural holography,”
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that allows a more realistic fidelity of VR rendering,

comparable to that of an LCD display (39).
Affordable cost

At the moment, the use of AI-based simulation in

healthcare comes at a significant financial cost. As traditional

practice for both surgical training and pre-operative planning

rely on largely inexpensive methods such as near-peer

teaching and group discussions, the introduction of AI-based

simulators incurs additional costs. The price of such

simulators is rarely publicly disclosed and varies greatly

depending on quality, capabilities, and use cases. For instance,

none of the companies we identified in our FDA/CE database

search provided public information on the prices of their

product. However, it is well known that the cost of simulator

technology is steep. According to some estimates, the price to

equip a simulation lab can range anywhere between $100,000

to several millions (40). The use of AI-algorithms adds an

additional layer of costs, especially when considering that

such algorithms need to be regularly updated to ensure

optimal performance and reliability (41).

It is, therefore, important to understand if the clinical

benefit from AI-driven surgical simulators would justify the

significant costs associated with their purchase and

maintenance. Interestingly, the majority of published research

failed to yet report a significant superiority of surgical

simulators as compared to traditional methods in the realm of

surgical education (42). For instance, Madan et al. reported

that substituting virtual reality trainers with an inanimate box

does not decrease the rate and level of laparoscopic skill

acquisitions. Similarly, a systematic review by Higgins et al.

failed to identify any studies directly comparing the surgical

simulation with traditional surgical skill development in the

operating room (43). However, in the area of surgical

visualisation for pre-operative planning, there is some, albeit

still limited, evidence that supports the superiority of AI-

driven simulators compared to traditional surgical techniques

(14, 15, 18).

At the same time, it is important to explore if the cost of AI-

driven surgical simulators can be reduced while maintaining the

value they offer in patient care. The concept of “fidelity” refers

to how well a surgical simulator represents reality (44). A range

of studies found that higher fidelity simulators were rarely

superior to their lower fidelity counterparts in the area of

surgical education (45, 46). However, perceptual fidelity might

prove to be important in simulators aiming to support

surgical visualisation and preoperative planning process (47),

although there is currently limited literature on the topic.

Therefore, the choice to pursue low-cost, low-fidelity

simulator variants needs to be carefully reviewed and balanced

with the extent of benefits they can provide.
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In addition to pursuing lower-fidelity simulators, it is

reasonable to expect the price of simulators will be kept

within a reasonable range with growing market competition

and widespread adoption of this technology. Furthermore,

national healthcare services and large healthcare institutions

may have the negotiating power to further reduce the prices

when supplying their hospitals with AI-driven surgical

simulators and related equipment.
Regulatory challenges

Presently, a clear overview of all approved AI-based

medical devices and algorithms does not exist (48). Few

efforts are underway to curate an inclusive database of these

devices, in which FDA is at the forefront (49–51).

Additionally, multiple other regulatory bodies such as the

UK’s Medicines and Healthcare products Regulatory Agency

(MHRA), are making headway in developing regulatory

guidelines to ensure safety and effectiveness of AI-powered

devices and softwares (52). As valuable as these national

endeavours are, it is crucial for internationally governing

bodies to bring forth a guideline for implementing AI-

powered surgical simulators universally (41). International

Medical Device Regulators Forum (IMDRF) is a prime

example of a group that can strive towards this goal (53).

To our knowledge, there are only a handful of AI-powered

surgical simulators that are regulatory approved. Nevertheless,

we emphasise the need for strict scrutiny of these products to

ensure patient safety, transparency, and cyber security

(41, 54). Although feedback softwares do not directly interact

with patients, quality of training indirectly impacts patient

care. For AI-based surgical simulation assessments to become

the norm, like flight simulators, products should be driven to

adhere to rigid requirements that uplift the quality of surgical

training. From our experience with reviewing approved

preoperative planning simulators, we highlight the significance

of regulatory approval for several reasons. Products are often

exaggerated or falsely marketed to be AI-powered, to boost

their sales (48). Additionally, even for approved devices, the

extent of use or the function of AI in their devices are only

vaguely communicated to the public and the users.

Ultimately, as preoperative simulators hold and analyse

important patient information, they need to strictly abide by

established data security guidelines for medical devices. Some

preoperative simulators aim to automate the decision-making

process which makes regulation even more pivotal. Despite

the lack of data protection guidelines for AI specifically, the

General Data Protection Regulation (GDPR) for example,

contains elements that are relevant to such AI-based surgical

planning simulators, including use of personal data, profiling,

and automation of decision making (55). FDA’s most recent

endeavours share similar notions (50, 51).
frontiersin.org

https://doi.org/10.3389/fmedt.2022.1076755
https://www.frontiersin.org/journals/medical-technology
https://www.frontiersin.org/


Park et al. 10.3389/fmedt.2022.1076755
Moving forward, global organisations like IMDRF need to

corroborate on a consensus on AI regulation since the

aforementioned issues are ubiquitous around the globe. As we

aim towards universalisation of AI-based surgical simulators,

legal and ethical issues regarding accountability and

performance transparency of AI-based surgical simulators are

crucial components that should be overseen by such

governing bodies (54, 56).
Conclusion

Application of AI has the potential to enhance the quality of

surgical simulators and expand their capabilities. In this review

article, we have discussed the elements of surgical simulation

which are enhanced using AI-driven technologies and

reviewed the available literature and FDA/CE-approved

products. We summarised the current landscape of AI in

surgical simulations and provided suggestions for further

clinical implementation in Figure 2. It is promising to see

clinical evidence and technological reports attesting to the

efficacy of AI-supported surgical simulators. However, the

barriers to wide-spread commercialisation of these devices

and software are complex and multifactorial. High

implementation and production cost, scarcity of reports

evidencing the superiority of such technology, and intrinsic

technological limitations remain at the forefront. With this in

mind, we call for further clinical assessment of AI-supported

surgical simulators to support novel regulatory body approved

devices and usher surgery into a new era of surgical education.
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