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The Gnetales are one of the most fascinating groups within seed plants.

Although the advent of molecular phylogenetics has generated some

confidence in their phylogenetic placement of Gnetales within seed plants,

their macroevolutionary history still presents many unknowns. Here, we

review the reasons for such unknowns, and we focus the discussion on

the presence of “long branches” both in their molecular and morphological

history. The increased rate of molecular evolution and genome instability as

well as the numerous unique traits (both reproductive and vegetative) in the

Gnetales have been obstacles to a better understanding of their evolution.

Moreover, the fossil record of the Gnetales, though relatively rich, has not

yet been properly reviewed and investigated using a phylogenetic framework.

Despite these apparent blocks to progress we identify new avenues to enable

us to move forward. We suggest that a consilience approach, involving

different disciplines such as developmental genetics, paleobotany, molecular

phylogenetics, and traditional anatomy and morphology might help to “break”

these long branches, leading to a deeper understanding of this mysterious

group of plants.
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Introduction

Among the extant groups of gymnosperms [Acrogymnospermae sensu Cantino et al.
(2007)], Gnetales are probably the most fascinating as well as the most misunderstood.
The three genera Ephedra Tourn. ex L., Welwitschia Hook. f., and Gnetum L.
(Figures 1A–C) have been at the center of the debate around the evolution of seed
plants since the beginning of evolutionary thought. In particular, they were thought to
be one of the keys for understanding the origin and the early evolution of angiosperms
(Arber and Parkin, 1907). This focus was renewed after the first cladistic analyses based
on morphological data retrieved a clade including Gnetales and flowering plants as well
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as a few extinct taxa, termed the “Anthophyte hypothesis”
(Crane, 1985; Doyle and Donoghue, 1986, 1992; Rothwell and
Serbet, 1994; Doyle, 1998).

Later analyses based on molecular data, however,
undermined the support for the anthophyte hypothesis
(Qiu et al., 1999; Donoghue and Doyle, 2000), with such a
topology only found in a few analyses with extremely low
support (Rydin et al., 2002). Instead, molecular data supported
either phylogenies with Gnetales as sister to the other seed
plants (“Gnetales sister”) (Rydin et al., 2002; Chen et al., 2016),
Gnetales as sister to Pinaceae (“Gnepine”) (Bowe et al., 2000;
Chaw et al., 2000; Zhong et al., 2010; Ran et al., 2018; Smith
et al., 2020), and Gnetales as sister to cupressophytes (i.e., the
rest of the conifers) (“Gnecup”) (Gitzendanner et al., 2018; Li
et al., 2019). A few analyses support a topology with Gnetales
sister to monophyletic conifers (“Gnetifers”) (Rydin and Korall,
2009; One Thousand Plant Transcriptomes Initiative., 2019;
Majeed et al., 2021; Figure 1D). A review of the phylogenetic
placement of the Gnetales and an update classification of the
gymnosperms have been recently produced (Yang et al., 2022).

It was hoped that a consensus about the phylogenetic
placement of the Gnetales among the Acrogymnospermae
would “solve” the mystery of their evolutionary history.
However, the rejection of the Anthophyte hypothesis and its
variations (Crane, 1996; Doyle, 1996; Friis et al., 2007) has only
deepened the perceived morphological chasm between Gnetales
and their gymnosperm relatives. Moreover, the enormous
morphological diversity (disparity) between the extant genera
further complicates any attempt at understanding the evolution
of morphology and ecology within Gnetales (Ickert-Bond and
Renner, 2016).

Here, firstly we review the main issues currently hindering
our understanding of the evolution of the Gnetales. Then we
propose a multidisciplinary approach to better understand their
evolutionary history.

Long branches and the
relationships of the Gnetales

Our understanding of the relationships and evolutionary
history of the Gnetales has been hindered by the presence
of “long branches” in their evolutionary tree. These long
branches are often indications of either long unsampled
evolutionary histories, due to extensive extinction and/or a
lack of an adequate fossil record; an increase in the rate
of molecular or morphological change, potentially associated
with phenomena such as neoteny; or a combination of both.
In phylogenetic analyses and other phylogenetic applications
such as molecular dating or ancestral state reconstruction, long
branches pose many challenges. When inferring trees, clades or
taxa subtended by long branches might be artificially grouped
together [Long-Branch Attraction (Felsenstein, 1978), reviewed

in Bergsten (2005)], both when using molecular (Klimov et al.,
2018) and morphological data (Coiro et al., 2018). This is
particularly apparent when using parsimony but can also arise
with other methods. The problem of long-branch attraction is
caused by the large among-lineage rate heterogeneity needed
to accommodate long branched groups in molecular dating
analysis. So even when clock assumptions are relaxed, it
might lead to imprecise and even inaccurate estimates of
the ages of the resulting dated tree (Sanderson and Doyle,
2001; Crisp et al., 2014). A long, unsampled morphological
history makes any attempt at reconstructing ancestral character
states uncertain and potentially inaccurate (Finarelli and Flynn,
2006), and prevents understanding of the sequence of origin of
apomorphies and related scenarios.

The Gnetales are affected by long-branch issues both in
molecular and morphological trees (Figure 2), although the
causes of these long branches have not been investigated in
detail. Here, we will discuss these issues in both data categories
in more detail. Importantly, we suggest a method to break these
long branches to overcome this issue.

Molecular data

Molecular long branch attraction has been one of the most
important confounding factors in the early analyses of molecular
data of the seed plants, affecting both angiosperms and Gnetales.
Indeed, the Gnetales are subtended by a substantially long
branch both in analysis of single or few loci and in genomic-level
analyses (Doyle, 1998; Chaw et al., 2000; Rydin et al., 2002; Ran
et al., 2018). Long branch attraction between Gnetales and the
long-branched outgroups of the seed plants probably generated
the so-called “Gnetales-sister” topologies (Figure 1D), as was
suggested by methodological incongruence (i.e., when the
results of parsimony vs. maximum likelihood for the same
dataset result in different placement of long-branched groups)
simulation studies, and signal conflicts between the 1st and 2nd
codon position vs. the much more variable and often saturated
3rd position (Sanderson et al., 2000; Magallón and Sanderson,
2002; Burleigh and Mathews, 2004).

Long divergence times between the three genera of the
Gnetales, and between Gnetales and the other seed plants, may
be a cause of the long branches retrieved in molecular studies.
However, the timescale for the evolution of Gnetales is higly
uncertain. The oldest divergence, that of Gnetales and their
closest relatives (Pinaceae or cupressophytes depending on the
study), has been variously inferred to be dated between the
Carboniferous and the Triassic (Hou et al., 2015; Ran et al.,
2018), while the Gnetales crown age has been inferred to be
between Late Triassic and the Early Cretaceous (Hou et al., 2015;
Ran et al., 2018; Rydin et al., 2021). The divergence between
Gnetum and Welwitschia is inferred to have occurred in the
Early Cretaceous. The crown age of Gnetum has been inferred
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FIGURE 1

(A–C) Extant Gnetales, Ephedra (A, Ephedra viridis Coville, White Mountains, California, USA), Welwitschia (B, Welwitschia mirabilis Hook. f.,
Namibia) and Gnetum (C, Gnetum gnemon L., grown at the Hortus Bergianus, Stockholm, Sweden). (D) Alternative topologies retrieved for the
placement of Gnetales within seed plants.

to be as young as the Miocene (Won and Renner, 2006) or as old
as the Late Cretaceous (Hou et al., 2015). On the other hand, the
extant diversity of Ephedra is inferred to be quite young, with
ages retrieved between the Oligocene (Loera et al., 2012) and
the Pliocene (Ickert-Bond et al., 2009; Rydin et al., 2021). Even
though the times of divergence of the Gnetales from the other
seed plants are indeed quite old, groups with similarly inferred
old ages (i.e., cycads and Ginkgo) do not share the same long
branches. The main explanation given for the presence of a long-
branch subtending the Gnetales, but not for cycads and Ginkgo,
is a shift in the rate of molecular evolution in the Gnetales
compared to the other gymnosperms, which persists within the
three genera (Drouin et al., 2008; Wang et al., 2015; Ran et al.,
2018).

The recent publication of the genome for Gnetum
montanum Markgr. further underlines the molecular
distinctiveness of the Gnetales: this Gnetum genome presents
signs of elimination of repeated sequences, which accumulated

freely in the other sequenced gymnosperms genomes, as well as
idiosyncratic expansions and reductions of several gene families
(Wan et al., 2018). The elevated molecular rates inferred for
Gnetum have been hypothesized to have erased the signal of the
common genome duplication preceding the origin of the seed
plant (the so-called “zeta” duplication event) (Wan et al., 2018).
The genome of Welwitschia further stresses the derived state
of the Gnetales, showing signs of both an expansion of long
terminal repeat-retrotransposons and an idiosyncratic genome
duplication that is not shared with Gnetum (Wan et al., 2021).
Currently there are no whole genome sequences for Ephedra,
limiting our understanding of genome evolution across the
Gnetales.

Although a placement of Gnetales within the extant
gymnosperms is strongly supported by recent phylogenies, the
long branch subtending the Gnetales hinders the resolution
of their accurate placement within Acrogymnospermae.
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FIGURE 2

Phylograms showing the presence of long branches in the Gnetales. Left, molecular phylogram from the concatenated alignment of the 1st-
and 2nd-codon positions of 1,308 orthogroups using the partitioned maximum-likelihood method in RAxML, with each gene treated as one
partition, from Ran et al. (2018), trimmed to only include acrogymnosperms. Right, morphological phylogram based on the data from Doyle
(2006) analyzed using bayesian analysis as in Coiro et al. (2018). Bars indicate the average number of expected molecular and morphological
substitutions per site, respectively.

The Gnecup topology may have resulted from long-
branch attraction between the previously sparsely sampled
cupressophytes and Gnetales (Zhong et al., 2010). The Gnepine
hypothesis is thought to be the most accurate as it is the
most commonly retrieved topology in recent studies, but the
morphological gap between Pinaceae and Gnetales is still
considerable. The use of molecular data alone may not provide
all the evidence for an exact relationship between the conifers
and Gnetales. This may be due to the signal erosion linked with
the increased rate of evolution in the lineage leading to crown
group Gnetales. Other data must then be incorporated into
molecular datasets to overcome this signal limitation.

Morphology

Even though it has received less attention, the presence
of a long branch in morphological trees of Gnetales within
seed plants (Coiro et al., 2018) is not surprising. Both the
morphological uniqueness of the Gnetales within the seed
plants, and of the three genera within Gnetales has been clear
since the very beginning of evolutionary thought (Chamberlain,
1935). Many gnetalean traits are only shared with the similarly
divergent angiosperms. Even within Gnetales, some considered
that the three genera did not form a natural group as today they
are so disparate and ecologically distinct (e.g., Eames, 1957).
The synapomorphies of the Gnetales are both vegetative and
reproductive, and they include characters that evolved in other
gymnosperm groups, as well as apparently unique traits.

The opposite-decussate phyllotaxis that is typical of Gnetales
(Figures 3A–C) is also found in conifers, particularly Cupressus
L., Juniperus L., and related genera in Cupressaceae, Agathis
Salisb. in Araucariaceae, as well as some genera in the extinct
family Cheirolepidiaceae (Watson and Alvin, 1999). However,
the combination of opposite-decussate phyllotaxis and long
internodes is unknown within other gymnosperms, but is
present in many angiosperm groups (e.g., Chloranthaceae, many
parasitic plants in Santalales).

Gnetum and Welwitschia present many synapomorphic
and autapomorphic vegetative traits that are unique within
Acrogymnospermae. In Welwitschia, the only vegetative leaves
produced during the plant’s life are linear and multiveined
with a basal meristem producing new leaf tissue continuously.
In Gnetum, leaves have hierarchical venation and free-ending
veins, traits only shared with angiosperms. Peculiar vein
anastomoses forming a “herringbone” or chevron pattern are
present both in cotyledon and vegetative leaves of Welwitschia
and cotyledons of Gnetum. Brachyparacytic stomata with
mesogenous subsidiary cells are shared by both genera
(Figure 3D; Rudall and Rice, 2019), and are only known from
angiosperms and (probably) the extinct Bennettitales (Rudall
and Bateman, 2019) within seed plants. The presence of vessels
in the wood of Gnetales (Figure 3E) is another trait that
is only shared with angiosperms within seed plants. Unlike
angiosperms though, the unique vessels in Gnetales originate
from tracheids with bordered pits (Thompson, 1918; Bailey,
1944, 1953; Carlquist, 1996, 2012).

All three genera of the Gnetales share the presence
of a “micropylar tube” formed by an extension of the
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FIGURE 3

Vegetative traits of the Gnetales. (A) Node of Ephedra fragilis Desf., showing opposite leaves (lf) and branches (lb) as well as the main branch. (B)
Welwitschia mirabilis, showing the cotyledons (ct) and the two vegetative leaves (lf) (C) Gnetum montanum, showing opposite lateral branches
(lb) (courtesy of James Doyle). (D) Epidermis of Gnetum gnemon showing the paracytic stomata (courtesy of Paula Rudall). (E) Schema of vessel
of Ephedra monostachya Turcz. redrawn from Thompson (1918), showing the perforations derived from bordered pits.

integument into a hollow tube. A similar structure is only
present in the extinct Bennettitales and in seeds assigned
to the Erdtmanithecales, and has been considered to be a
synapomorphy of a clade including these three groups [the
“BEG” clade, (Pedersen et al., 1989; Friis et al., 2007; Mendes
et al., 2008)]. However, other authors consider the presence of
this structure in Bennettitales and Gnetales to be convergent,
based on histological and organographical considerations
(Rothwell et al., 2009; Klymiuk et al., 2022). Within fossil taxa,
the presence of a micropylar tube is considered an important
apomorphy for the assignment of a specimen to the Gnetales
(Yang et al., 2005; Friis et al., 2007; Rydin and Friis, 2010).

In the Gnetales, this micropylar tube is enclosed together
with the whole ovule by either one envelope in Ephedra and

Welwitschia or two in Gnetum (Figure 4). In the former two
genera, this structure is clearly formed by the fusion of opposite
bracteoles around a terminal ovule (Bierhorst, 1971; Rydin et al.,
2010). The nature of the second envelope in Gnetum, though less
evident than the clearly bract-like single envelopes of Ephedra or
Welwitschia, is also of a bracteolar nature (Thoday, 1921; Rodin
and Kapil, 1969; Takaso and Bouman, 1986; Endress, 1996).

The morphology and development of the megagametophyte
is particularly unique within Gnetales. Even though Ephedra has
a typical gymnosperm gametophyte, both the egg cell nucleus
and the ventral canal nucleus are fertilized creating two separate
zygotes (Friedman, 1990a,b). Both Gnetum and Welwitschia
evolved extremely divergent morphologies. In Gnetum, the
gametophyte has a tetrasporic initiation, and later presents a
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FIGURE 4

Ovulate reproductive structures and diagrams for the Gnetales. (A,B) Welwitschia mirabilis. (C,D) Ephedra viridis. (E,F) Gnetum gnemon. In the
three genera micropylar tubes (mt) extend beyond the ovule integument. In the diagrams, black circles represent ovules, crescents represent
bract-like structures, and the two concentric circles represent the two envelopes in Gnetum, while x represents the main axis of the cone.

FIGURE 5

Other reproductive traits of the Gnetales. (A) Scheme of the megagametophyte in Gnetum. Dark circles represent nuclei, while the central
vacuole is highlighted in light blue. (B) Polyplicate, boat shaped dispersed fossil gnetalean pollen recovered from the Early Cretaceous Crato
Formation, scale bar = 50 um.

micropylar side with coenocytic nuclei arranged around a large
central vacuole and a chalazal side with dense cytoplasm and
numerous nuclei that cellularize early (Figure 5A; Carmichael
and Friedman, 1995; Friedman and Carmichael, 1998). During
fertilization, both nuclei of the male gametophyte merge with
gametophyte cells, leading to two zygotes developing in to
separate embryos. The megagametophyte of Welwitschia, even
though it shares the tetrasporic initiation present in Gnetum,
lacks a central vacuole during its early development. The nuclei
of the gametophyte divide to form a dense coenocyte. After
that, cell wall formation leads to separate “cells” with multiple
nuclei. On the chalazal side, these nuclei fuse leading to a set
of polyploid cells. On the micropylar side, the nuclei remain
separated, while the cells elongate toward the micropyle forming

“prothallial tubes.” Only one nucleus in this prothallial tube
participates in the fertilization (Friedman, 2015). Proembryos
are cellular in all three genera [or less ambiguously, they are
derived from single nucleate cells (Doyle, 1996)], a trait only
present in angiosperms outside the Gnetales (Friedman, 1994).

The pollen and the male gametophyte are also rather
distinct in Gnetales. The pollen is polyplicate and boat-shaped
in Ephedra and Welwitschia [being inaperturate in the former
(El-Ghazaly et al., 1998) and sulcate in the latter (Rydin and
Friis, 2005)] (Figure 5B), while it is echinate, globular, and
inaperturate in Gnetum (Gillespie and Nowicke, 1994). The
infratectum of the pollen is granular (Doores et al., 2007;
Bolinder et al., 2015), another unusual trait present in some
angiosperms. Though Ephedra has a rather typical gymnosperm
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microgametophyte, the number of nuclei is reduced to four in
Welwitschia and Gnetum.

Looking at the amount of unique traits present in the
Gnetales, it is not surprising that their relationship with conifers
only cemented recently. Long branch attraction between
the angiosperm and Gnetales branches is at least partially
responsible for the retrieval of anthophyte trees in more
recent matrices that include the clear synapomorphies between
Gnetales and coniferophytes (Coiro et al., 2018).

Breaking the branches

Though the presence of long branches in the Gnetales does
currently represent a big obstacle in understanding of their
macroevolutionary history, different strategies can be employed
to try to “break” these branches. Here we summarize the
evolutionary-developmental tools that can be used to provide
new insights into the evolution of the Gnetales. The origin of
the unique traits and their homologies with gymnosperm traits
can be tested, for example, using information from development
and fine anatomy. One clear example is the independent
origin of vessel elements found in Gnetales and those of
the angiosperms. A thorough investigation of the morphology
and developmental trajectory of vessels in Gnetales revealed
that these indeed originated through different developmental
trajectories, suggesting convergence with angiosperm vessels
(Thompson, 1918; Bailey, 1944, 1953; Carlquist, 1996, 2012).

Study of the genetic basis of development can also offer
insights into homology and homoplasy of morphological
innovations (Müller and Newman, 2005; Chanderbali
et al., 2016; Harrison, 2017). Most previous research on
the developmental genetics in Gnetales has focused on the
known angiosperm regulators of reproductive characters, in
particular the MADS-box transcription factor family involved
in organ determination and other reproductive processes
in the angiosperms (Gramzow and Theissen, 2010). These
investigations have shown that MADS-box for the B and C
functions do exist in Gnetales, and they are controlled at least
partially by the same regulators as in angiosperms (Moyroud
et al., 2017). Heterodimerization of MADS-box regulators has
also been shown to happen in Gnetum gnemon (Wang et al.,
2010). However, many unknowns remain on the function
and activities of MADS-box genes in Gnetales, with even the
exact number of MADS-box gene families present in the group
being uncertain (Gramzow et al., 2014; Chen et al., 2017;
Hou et al., 2020).

Even less attention has been paid to the regulation of
vegetative aspects of growth in the Gnetales. This is rather
surprising, since the continuously growing leaves of Welwitschia
and the angiosperm-like leaves of Gnetum represent innovations
that are extremely rare within gymnosperms. The long
reproductive cycle of Welwitschia and Gnetum hinders their

usefulness as models for reverse genetic approaches that have
been successful in non-model, non-seed plants (Plackett et al.,
2018; Zheng et al., 2022). On the other hand, Ephedra could
be amenable as a model system for molecular developmental
genetic studies, given their short reproductive cycles and
relatively small genomes compared to other gymnosperms (Di
Stilio and Ickert-Bond, 2021).

Breaking the morphological branch:
The fossil record

The fossil record could offer a wealth of intermediate
forms that would allow us to break the morphological
long branch between Gnetales and their closest gymnosperm
relatives. However, the fossil record of the Gnetales, though not
particularly poor, presents unique challenges. Pre-Cretaceous
macrofossil records of Gnetales have been controversial for a
long time. The oldest is the cone Palaeognetaleana auspicia Z.Q.
Wang from the Permian of China (Wang, 2004). This cone was
described as being bisexual, with polyplicate pollen grains, and
having a short integumental tube. However, the preservation
of this compression fossil does not allow us to resolve its
morphology, and the lack of ultrastructural information on
the pollen does not allow us to distinguish between gnetalean
and convergent morphologies. The Triassic Masculostrobus-
Dechellyia from the Chinle formation (USA) was first described
as presenting a few characters that might be synapomorphic
for the Gnetales, such as Ephedra-type pollen (Equisetosporites
chinleana Daugherty), a decussate phyllotaxis, and the presence
of two veins entering the leaves (Ash, 1972). However, later
reinvestigations have shown that the pollen of Masculostrobus
has substantial ultrastructural differences when compared with
gnetalean pollen (Pocock and Vasanthy, 1988). Though recent
phylogenetic analysis have shown a closer relationship between
the Masculostrobus-Dechellyia plant and the crown group
coniferophytes (Herrera et al., 2020), a relationship with the
total-group Gnetales has not yet been formally tested.

The Piroconites-Bernettia-Desmiophyllum plant, from the
Jurassic of Franconia, Germany, has been associated with the
Gnetales based on the retrieval of Ephedripites-like pollen in
Piroconites kuespertii Gothan (van Konijnenburg-van Cittert,
1992; Doyle, 1996). However, the ovulate scale Bernettia Gothan
does not show many characters with gnetalean affinities,
suggesting a more distant relationship with the crown group
Gnetales (Kustatscher et al., 2016).

The oldest fossil with clear gnetalean affinity is Dayvaultia
tetragona Manchester & Crane, a seed-bearing structure
preserved as casts and permineralizations from the Late
Jurassic Morrison Formation in the USA (Manchester et al.,
2021; Figure 6A). This cone comprises two sets of opposite-
decussate bracts surrounding six to eight chlamydospermous
seeds arranged in an opposite-decussate manner. However,
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FIGURE 6

Top: examples of macrofossils with gnetalean affinity. (A) Dayvaultia tetragona from the Late Jurassic Morrison Formation, USA, CT scan of the
cone (specimen from Smithsonian Natural History Museum, image provided by Steven Manchester). (B) Itajuba yansanae from the Araripe Basin,
Early Cretaceous of Brazil, reproductive structure with probable micropylar tube (mt). Image modified from Figure 4 of Ricardi-Branco et al.
(2013) under CC-BY 3.0 license (https://creativecommons.org/licenses/by/3.0/), scale bar = 1 mm. (C) Siphonospermum simplex from the Early
Cretaceous Yixian Formation. Image modified from Figure 1 of Rydin and Friis (2010) under CC-BY 2.0 license
(https://creativecommons.org/licenses/by/2.0/), scale bar = 1 mm. Bottom: (D) map of localities bearing gnetalean macrofossils. Jurassic
locality in light blue, Early Cretaceous localities in green.

vegetative data for the plant are currently lacking. Another
fossil with potential gnetalean affinities, the cone Bassitheca
hoodiorum Manchester & Crane, is also retrieved from the
Morrison Formation (Manchester et al., 2022). This taxon is
represented by a cone with two opposite terminal ovules that
seem to be enclosed by bracts. However, the preservation of
this material does not currently allow a confident assignment
to Gnetales.

The macrofossil record of the Gnetales is particularly
numerous in Lower Cretaceous rocks (Figures 6B–D; Krassilov
and Bugdaeva, 2000; Rong and Yong, 2003; Rydin et al., 2003,
2006; Dilcher et al., 2005; Yang et al., 2005, 2013, 2015, 2017;
Kunzmann et al., 2009, 2011; Rydin and Friis, 2010; Wang and
Zheng, 2010; Ricardi-Branco et al., 2013; Liu and Wang, 2015;

Yang and Ferguson, 2015; Puebla et al., 2017). Most fossils from
these strata are preserved either as impressions or compressions
that, even when they represent almost complete plants, offer a
limited amount of available characters. Others are exquisitely
preserved charcoalified mesofossils that are however, limited
to dispersed seeds, In both cases, these fossils offer limited
information about many of the traits of the original plants.
Moreover, many fossil species are only retrieved from a few
Lagerstätten. Among these, the Crato Formation from the
Aptian of Brazil (Rydin et al., 2003; Dilcher et al., 2005;
Kunzmann et al., 2009) and the Yixian Formation from the
Aptian-Albian of China (Rydin et al., 2006; Rydin and Friis,
2010; Yang et al., 2013) account for the majority of the gnetalean
macrofossil taxa described.
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Among the most promising Early Cretaceous fossils, the
permineralized female cone Protoephedrites eamesii Rothwell &
Stockey from the Valanginian Apple Bay locality, Vancouver
Island (Rothwell and Stockey, 2013) bears two opposite ovules
preceded by a pair of decussate bracts, borne on axillary shoots
of a decussate, bracteate main axis. The structure of this fossil
is incredibly similar to the early stage of an Ephedra-like cone
as hypothesized by Eames (1952), and could help to break
the morphological long branch subtending the Gnetales. Even
in this case though, the fossil does not offer any data on the
vegetative structures of the parent plant.

During the Cenozoic, very few gnetalean macrofossils have
been identified so far. Ephedra miocenica Wodehouse from
the Florissant beds (USA) (Wodehouse, 1934), and Ephedra
nudicaulis Saporta from the flora of Aix-en-Provence (France)
(Saporta de, 1889), are represented only by fragmentary
vegetative material, and thus are only tentatively assigned
to Ephedra. This lack of record could be driven by niche
conservatism within the three genera. Neither the tropical
environments currently inhabited by Gnetum, the desert
conditions where Welwitschia is currently found [though its
fossil relative might have occupied different environmental
conditions, see Ribeiro et al. (2021)], nor the seasonally
arid conditions favoured by Ephedra are very conducive
to fossilization. On the other hand, the reduced vegetative
morphology of Ephedra might lead to misidentification of
potential fossils. Indeed, fossils previously assigned to Ephedrites
johnianus Göpp. & Berendt by Goeppert and Berendt (1845)
have been later identified as members of Loranthaceae
(Conwentz, 1886; Sadowski et al., 2017).

The pollen record shows a similar pattern to the macrofossil
record with high diversity of distribution of gnetalean pollen
during the Early Cretaceous (Crane and Lidgard, 1989), see
comprehensive summary in Han et al. (2016). The first reliable
fossils of Ephedripites Bolchovitina were described by Klaus
(1963: Ephedripites primus Klaus) from the upper Permian
of Austria and by Wilson (1962 E. corrugatus Wilson) from
the Permian Flower Pot Formation (USA). However, no
ultrastructural information is known for these grains, putting
into question their assignment to the Gnetales. Both sulcate
and inaperturate pollen grains (e.g., Jugella Smirnova = syn
Welwitschiapites Bolchovitina ex. Potonié and Ephedripites
sp.) have been retrieved from the Upper Jurassic Tendaguru
Formation of Tanzania (Schrank, 2010). Pollen morphology
within ephedraceaous pollen (i.e., polyplicate, inaperturate)
(Figure 5B) during the Early Cretaceous seems also to
suggest that different pollination modes (i.e., wind, insect and
potentially mixed) were present during this time (Bolinder et al.,
2016; Hofmann et al., 2022). Even though the abundance of
gnetalean pollen declined in the Late Cretaceous, Ephedra-type
pollen has a notable Cenozoic record across the globe, including
records from the Eocene to the Pliocene of Brazil (Garcia
et al., 2016), central Asia (Tang et al., 2011; Yuan et al., 2020),

New Zealand (Lee et al., 2012), Patagonia (Palazzesi and
Barreda, 2012), India (Ghosh et al., 1963), Turkey (Akkiraz et al.,
2008), Taiwan (Shaw, 1998), North America (Wodehouse, 1933;
Gray, 1960), Australia (Cookson, 1956), Europe (Potonié, 1958;
Krutzsch, 1961; Grímsson et al., 2011). This is in stark contrast
with the lack of macrofossils for this genus during the Cenozoic,
further complicating the picture of gnetalean evolution.

When considering the fossil record of the Gnetales, a few key
questions remain: what would the oldest gnetalean plants have
looked like and would we be able to recognize them as such?
The group is characterized by a constellation of morphological
characters and, as we detail above, with fragmented natures of
their macrofossils. Added to this is the overall current spottiness
and unevenness of their fossil record. We mainly rely on the
preservation of either isolated reproductive structures or more
complete plants bearing them to enable identification. We often
cannot assign the assorted “sticks” and stems that can be present
in a fossil plant assemblage to any group. Some may represent
disarticulated ephedroids for instance, but without diagnostic
reproductive features or a suite of vegetative characters, we
cannot be certain. Until new productive localities are identified
we are very reliant on the handful of Late Jurassic and Early
Cretaceous Lagerstätten for our understanding of the group, and
so as yet we cannot pinpoint their origin nor their ancestral
character states.

However, we do note that the pollen record suggests a
greater diversity and wider spread of gnetaleans than evidenced
just by their macrofossil record. This is not unusual as plants
may have grown in areas with limited preservation potential
(often areas away from waterways), whereas pollen can be
more easily dispersed by wind and transported to locations
with improved preservation potential, thus highlighting bias in
the fossil record. This gives hope that new localities bearing
as yet unknown gnetalean fossils are yet to be discovered.
Interestingly, the pollen record and the macrofossil record for
the Gnetales start at around the same time and share the Early
Cretaceous peak in diversity with the angiosperms (Crane and
Lidgard, 1989; Coiro et al., 2019), although with a subsequent
dramatic decrease. Does this suggest that the Gnetales had a
truly rapid diversification and spread after their origin, but
unlike that proposed for the angiosperms, they could not rise
to nor compete with their dominance?

The future of Gnetales research,
causes for optimism

Consilience, or convergence of evidence, is a fundamental
principle of epistemology (Whewell, 1840) based on the
idea that knowledge and science form a coherent unit.
It postulates that evidence from independent fields should
converge on similar results, and thus statements can be strongly
supported by multiple independent lines of evidence even
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if each line provides only marginal support. This principle
is often at the very base of evolutionary investigations:
clear examples are the argumentation of “On The Origin of
Species” collecting evidence from natural variation, variation
under domestications, biogeography, and the fossil record
(Darwin, 1859), as well as the so-called “Modern Synthesys,”
where support for mendelian, population-based evolutionary
mechanisms came from disparate fields. Some authors have
advanced the idea that consilience is at the very base of
phylogenetic analysis (Kluge, 1983), and it is still considered an
important approach to solve evolutionary relationships even in
the phylogenomic age (Rota-Stabelli et al., 2011; Fröbius and
Funch, 2017; Marlétaz et al., 2019; Ontano et al., 2021).

In the history of gnetalean research, consilience has been
fundamental in understanding the evolutionary history
of gnetalean traits. The hypothesis of an independent
origin of vessels in Gnetales and Angiosperms has been
converged on by many lines of evidence, including comparative
anatomy, development, morphological-based phylogenetics,
and molecular phylogenetics. We believe that a consilience
approach, with multiple independent fields and lines of evidence
converging on a similar answer, holds extreme promise for the
future of the research on Gnetales.

In this light, the problems of the molecular and
morphological long branches found in the Gnetales may
not be as permanently intractable as first thought. However,
issues might need the convergence of different lines of evidence
to reach a solid consensus (Figure 7). The long morphological
branch could be “cut” by better primary homology assessment
and character history informed by developmental genetics,
comparative morphology and anatomy, gene duplication
histories, and the fossil record. Similarly, the long molecular
branch might be better understood by a better temporal
framework for the divergence of the genera provided by
the fossil record and by a wider sampling of genomes
across Gnetales.

Thus, Gnetales still offer many unexplored research
paths for the future. Previously only a few exemplary taxa
have been sequenced, but we note the increasing ease and
speed of sequencing and assembling genomes from non-
model, non-crop organisms promises to open further avenues
for phylogenomic and evolutionary research. A broader
sampling of gnetalean genomes, especially for Ephedra
where we currently have a coverage gap, should improve
our understanding of their molecular and morphological
peculiarities. This, of course, should be integrated with a clearer
understanding of the developmental genetics of Gnetales
and other gymnosperms, given that their distance from our
angiosperm models could reduce the explanatory power of
our current regulatory models. Studies looking at the genetic
basis of bract development in Ephedra based on transcriptome
analyses (Zumajo-Cardona and Ambrose, 2022) and of the
genetic network involved in ovule development in Gnetum

(Zumajo-Cardona and Ambrose, 2021) have already shown
the promises of such approaches in non-model organisms.
Developmental genetics could help us to better understand
the homologies of vegetative and reproductive structures in
Gnetales, and to identify steps in character evolution that can
be validated by the fossil record. The potential development
of Ephedra as a new model for reverse genetics (Di Stilio and
Ickert-Bond, 2021) offers the possibility of an extremely detailed
understanding of its genetics and development.

New promising findings are to be made even in a well-
understood and studied field such as gnetalean morphology.
Recent studies have demonstrated that there is still much
to learn about trait variation and its correlation with
environmental conditions (Bolinder et al., 2016). Further
investigations in Ephedra and particularly in the poorly
treated Gnetum could help us to better grasp the patterns of
trait evolution in Gnetales, feeding into primary homology
assessment within Gnetales and within seed plants as a whole.

A better understanding of the fossil record of Gnetales and
the relationships between extant and fossil taxa is also needed
to advance our understanding of the group. Very few attempts
have been made to place gnetalean fossils on the phylogeny of
the extant genera (Rydin et al., 2003), and a few attempts at
reconstructing potential character transition patterns have been
attempted (Yang, 2014). However, unlike other gymnosperms,
no phylogenetic hypotheses have been formally advanced for
the whole fossil record. We believe, however, that integrating
fossil Gnetales in the phylogeny of the extant species is a
necessary step for contributing to our understanding of the
timing, character history, and macroevolutionary dynamics of
the group. Recent methods and analyses have shown that even
fragmentary fossil material, both reproductive and vegetative,
can still carry a substantial amount of phylogenetic and
evolutionary signal (Coiro et al., 2018; Mongiardino Koch et al.,
2021; Woolley et al., 2022). This is particularly true when data
are analyzed with techniques that keep in consideration the
uncertainty implicit in phylogenetic analyses (Dávalos et al.,
2014; Coiro et al., 2018, 2020; Erdei et al., 2019; Klopfstein
and Spasojevic, 2019). An alternative path could involve Total-
evidence dating, a technique that has shown promise in its
application to other plant clades (May et al., 2021).

A reinvestigation of the potential “stem” relatives in the
Permian and Triassic could also lead us closer to filling the
gap between conifers and Gnetales. Ultrastructure of some of
the earliest pollen, as well as a more detailed investigation of
the many macrofossils and the test of their relationships in
a phylogenetic framework, could help us to follow the thread
of early gnetalean evolution in the early diversification of
gymnospermous plants (Rothwell and Stockey, 2016; Herrera
et al., 2020; Klymiuk et al., 2022).

In conclusion, the future of Gnetales research is still full of
unexpected discoveries, and we are confident that the mystery of
the origin of this unique group will soon be unveiled.
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FIGURE 7

Schema showing the promises of a consilience approach, based on convergence of evidence and reciprocal illumination.
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