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potential in anti-diabetes:
Biological mechanisms,
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Xiaofei Xu*
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Diabetes mellitus (DM) is a global health threat. Searching for anti-diabetic

components from natural resources is of intense interest to scientists.

Mushroom polysaccharides have received growing attention in anti-diabetes

fields due to their advantages in broad resources, structure diversity, and

multiple bioactivities, which are considered an unlimited source of healthy

active components potentially applied in functional foods and nutraceuticals.

In this review, the current knowledge about the roles of oxidative stress in the

pathogenesis of DM, the extraction method of mushroom polysaccharides,

and their potential biological mechanisms associated with anti-diabetes,

including antioxidant, hypolipidemic, anti-inflammatory, and gut microbiota

modulatory actions, were summarized based on a variety of in vitro

and in vivo studies, with aiming at better understanding the roles of

mushroom polysaccharides in the prevention and management of DM and

its complications. Finally, future perspectives including bridging the gap

between the intervention of mushroom polysaccharides and the modulation

of insulin signaling pathway, revealing structure-bioactivity of mushroom

polysaccharides, developing synergistic foods, conducting well-controlled

clinical trials that may be very helpful in discovering valuable mushroom

polysaccharides and better applications of mushroom polysaccharides in

diabetic control were proposed.

KEYWORDS

oxidative stress, anti-oxidation, anti-lipidemia, anti-inflammation, gut microbiota,
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1 Introduction

Mushrooms have been a part of human diet for thousands
of years for their characteristic flavor and texture as an authentic
delicacy. There are approximately 150,000–160,000 mushroom
species on earth, of which only 10% are known to science (1).
About 700 mushroom species have pharmacological activities
and are edible (1). Since the 1970s, global mushroom production
has increased more than 30 times, and China has become the
world’s largest producer (2). Mushrooms not only be consumed
as foods, but also be widely used as medicinal materials.
Accumulative evidences from animal models and human
intervention studies have demonstrated their bioactivities in
anti-cancer (3), anti-inflammation (4), immunomodulation
(5), and their ability in the prevention and management
of metabolic-related diseases, including diabetes, obesity, and
cardiovascular diseases (6), and their protective action on the
degenerative brain function (7). Furthermore, some researchers
have also proposed the potential of mushrooms in the COVID-
19 treatment of the disease COVID-19 (8).

Mushrooms are rich in protein and carbohydrates, with
approximately 13–62% of crude protein and 14–75% of
carbohydrates in the dry matter for wild-growing mushrooms,
whereas they have low content in fat, approximately 0.1–8%
(9). The primary elements in mushrooms include potassium,
magnesium, calcium, and sodium, with potassium as the
dominant element. Vitamins including ascorbic acid, B-group
vitamins, tocopherols, and provitamin of ergocalciferol (vitamin
D2), pigments, and phenolics, are also widely reported to be
present in mushrooms (9). Studies have revealed many types
of active components present in mushrooms, including high
molecular weight components such as polysaccharides
and polysaccharide-protein complexes, lectins, fungal
immunomodulatory proteins (FIPs), ribosome-inactivating
proteins (RIPs), ribonucleases, laccases, polyphenols, and
low molecular weight components such as triterpenes,
ergothioneine, alkaloids (5, 6). Among these components,
polysaccharides and polysaccharide–protein complexes are
highly contained in mushrooms, which primarily contribute to
the bioactivities of mushrooms (10).

Diabetes mellitus (DM) is a non-communicable disease
characterizing chronic hyperglycemia caused by impaired
functions in insulin secretion and/or insulin action (11).
Clinically, DM is classified into type 1 diabetes mellitus
(T1DM), type 2 diabetes mellitus (T2DM), gestational DM,
and specific types of DM due to gene, drug, or disease (12).
T2DM is due to a progressive insulin insufficiency on the
background of peripheral insulin resistance, accounting for
more than 90% of all diabetes (12). DM is a major reason for
the development of cardiovascular diseases, blindness, kidney
failure, and amputations of limbs worldwide, which are called
complications (13). In 2017, 6.28% of the world’s population
was affected by T2DM, and the global prevalence rate of

T2DM is estimated to be approximately 7.08% by 2030 (14).
The high prevalence of DM and its complications place a
tremendous burden on the healthcare system worldwide. The
pharmacological mechanisms of drugs for the management
of DM include inhibition of glucose absorption from diets,
reduction of hepatic glucose production, and increased insulin
sensitivity in tissues (15). However, currently available most of
the synthetic drugs in the long-term management of DM have
side effects such as weight gain and hypoglycemia along with
their therapeutic potential (15). Natural components derived
from food materials and traditional herbal medicines, such as
mushrooms, and medicinal plants, have emerged as safe and
relatively economical approaches (16, 17).

Interdisciplinary studies focusing on mushrooms
have documented much of the knowledge on mushroom
polysaccharides and increasingly demonstrate valuably
pharmaceutical properties of mushroom polysaccharides
extracted from a number of species. As a result, several reviews
have been conducted in the field of mushroom polysaccharides
related to DM. Khursheed et al. (18) have summarized
mushroom polysaccharides with anti-diabetic activity
mainly derived from Hericium erinaceus, Phellinus linteus,
Inonotus obliquus, Catathelasma ventricosum, and Ganoderma
lucidum from the view of modulating gut microbiota. The
potential applications of mushroom polysaccharides in
diabetic complications have also been proposed by researchers
(19). Additionally, mushroom polysaccharides ameliorating
oxidative stress, beta-cell dysfunction, and insulin resistance,
which are closely associated with DM, through antioxidant
action have been discussed recently (20). In this review,
the extraction methods of mushroom polysaccharides, and
mushroom polysaccharides with potentials in the management
of DM reported in recent 3 years were summarized; the
biological mechanisms including anti-oxidation, hypolipidemia,
anti-inflammation, and modulating gut microbiota in anti-
diabetes, and future perspectives were also discussed for a better
understanding the current status of knowledge in such fields
and providing a valuable reference for the development and
application of mushrooms polysaccharides in functional foods
and nutraceuticals for DM and its complications management.

2 Pathogenesis of diabetes
mellitus and its complications

Reactive oxygen species (ROS) and reactive nitrogen species
(RNS) are vital for normal physiology in human body.
The ROS/RNS participate in normal physiology, including
reversible protein modifications, adaptive mitogen-activated
protein kinase (MAPK) signaling activation, and modulation
of gene regulation, and play essential roles in a number of
physiological processes. Therefore, cells keep a physiological
content of ROS/RNS to maintain homeostasis (21). Endogenous
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factors, such as hormones, and pro-inflammatory cytokines, and
exogenous factors, such as nutrients, and ultraviolet irradiation,
trigger ROS/RNS generation through multiple mechanisms,
including mitochondria, NADPH oxidase, nitric oxide synthase,
etc. (22). High metabolic load such as elevated glucose and/or
free fatty acid levels, inflammation, ER stress, and endocrine
dysregulation, increase the production of ROS/RNS in cells (22).
Oxidative stress is a result of the overproduction of ROS/RNS
mainly produced by mitochondria, leading to an imbalance
between antioxidants and pro-oxidants. This means excessive
production and/or incapable removal of ROS/RNS within cells
(23). A growing number of in vitro and in vivo studies have
proposed that oxidative stress plays a central role in the
pathogenesis of DM and its complications (Figure 1). Oxidative
stress disrupts normal insulin signaling and progressively
induces insulin resistance (22). Insulin resistance is an early
symptom of the pathogenesis of DM characterized by high levels
of blood insulin and glucose, defined as prediabetes. High level
of insulin damages to β-cell mass and/or function progressively.
Moreover, abnormal insulin level modulates the expressions of
key molecules such as proprotein convertase subtilisin/kexin
type 9 (PCSK9), low-density lipoprotein receptor (LDLR) in
lipid metabolism, and causes disorders of lipid metabolism
(13). Additionally, oxidative stress-induced damages to DNA,
proteins, and lipids in cells impair the structures and functions
of cells and organs. Cumulative damages over time ultimately
result in the pathogenesis of a variety of diseases including
DM, cancer, Alzheimer’s disease, chronic renal failure, etc.
(23). Furthermore, high level of glucose compromise autophagy
in endothelial cells, leading to endothelial dysfunction and
inducing disorder of platelets and thrombosis (13), therefore,
causing cardiovascular diseases ultimately such as coronary
artery disease and microvascular diseases such as nephropathy,
neuropathy, and retinopathy. Therefore, once hyperglycemia
occurs, endogenous and exogenous factors drive patients to
develop multiple chronic complications eventually.

3 Polysaccharides from
mushrooms with anti-diabetes
potentials

Polysaccharides from medicinal plants, grains, fruits,
vegetables, edible mushrooms, and medicinal foods have a wide
range of bioactivities such as hypoglycemic, hypolipidemic,
antioxidant, anti-inflammatory, and prebiotic effects, which are
associated with anti-diabetes (24). Mushroom polysaccharides
are naturally active components consumed frequently in our
lives. Due to their low toxicity, easy availability, and multiple
bioactivities, the evaluation of mushroom polysaccharides in
anti-diabetic potential has attracted extensive interest from
researchers (18, 24). The frequently investigated mushrooms
include Cordyceps militaris, H. erinaceus, P. linteus, I. obliquus,

C. ventricosum, G. lucidum, and Grifola frondosa. In recent
years, a number of novel polysaccharides derived from a
variety of mushrooms such as Auricularia auricula, Auricularia
polytricha, and Dictyophora indusiata have been documented
to have multiple pharmacological properties associated with
anti-diabetic potentials, including improving lipid metabolism,
increasing hepatic glycogen synthesis, anti-inflammation, and
reducing insulin resistance, etc. (Table 1).

4 Biological mechanisms of
mushroom polysaccharides on
anti-diabetes effects

4.1 Antioxidant action

Oxidative stress arising from the overproduction of
ROS/RNS within cells plays a crucial role in the pathogenesis
of many chronic diseases, including DM, cancer, cardiovascular
diseases, Alzheimer’s disease, and so on. A large number
of studies have documented that mushroom polysaccharides
have notable activities in scavenging against 1,1-Diphenyl-2-
picrylhydrazyl (DPPH), hydroxyl radicals, superoxide radicals,
hydrogen peroxide, nitric oxide, and peroxynitrite, and
inhibiting lipid peroxidation (43, 44). Among the active
components contained in mushrooms, including flavonoids,
polysaccharides, phenols, phenolic compounds, tocopherols,
ascorbic acid, and terpenes, polysaccharides exhibit relatively
low antioxidant activities in terms of scavenging activities
against free radicals using in vitro models (43). However, the
evaluation of scavenging activities in vitro is not a fully valid
proof to claim the antioxidant effects of the polysaccharides
because the scavenging activities investigations cannot simulate
the interaction of antioxidants with chemical free radicals
in the internal conditions of cells in a complex organism
(45). Interestingly, numerous in vivo studies have shown
that mushroom polysaccharides are capable of protecting the
antioxidant activities of enzymes such as superoxide dismutase
(SOD), catalase (CAT), and glutathione peroxidase (GSH-Px),
which are major components of the defense system against
ROS within body (20). For instance, oral administration of
Tremella fuciformis polysaccharides (TFPS) markedly improved
the SOD and GSH-Px activities in serum, liver, and heart
tissues in D-galactose-induced aging mice (46). G. lucidum
polysaccharides showed protective effects against acute liver
injury induced by restraint stress in mice, evidenced by the
improvement of GSH-Px, CAT, and SOD activities and a
decrease in the activities of ALT and AST (47). Agaricus
blazei Murill polysaccharides alleviated liver and lung damages
by improving the activities of SOD, GSH-Px, and CAT to
relieve oxidative stress in organ dysfunction syndrome (MODS)
mice (48). Moreover, many studies have also revealed that
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TABLE 1 Polysaccharides derived from mushrooms with anti-diabetic potentials reported in recent years.

Mushroom
resource

Structure characteristics Model Doses of
administration

Outcomes References

Auricularia
auricula

AAP polysaccharides consisted of
fucose, glucose, galactose, xylose,
rhamnose, and mannose with a
molecular weight of 173 kDa.

STZ-induced
diabetic mice

Oral administration
of 100 and
300 mg/kg,
respectively, for
4 weeks.

Blood glucose ↓, serum insulin ↑, CAT ↑, MDA ↓. (25)

Auricularia
polytricha

APP polysaccharides consisted of
fucose, glucose, galactose, xylose,
rhamnose and mannose with a
molecular weight of 17.1 kDa.

STZ-induced
diabetic mice

Oral administration
of 100 and
300 mg/kg,
respectively, for
4 weeks.

Blood glucose ↓, serum insulin ↑, TNF-α ↓, SOD ↑,
CAT ↑, MDA ↓.

(25)

Amillariella
mellea

Alkaline soluble and neutral
mannogalactoglucan.

db/db mice Oral administration
of 50 mg/kg/d BW
for 4 weeks.

Blood glucose ↓, insulin sensitivity ↑, reversed
impaired glucose tolerance. Improved hepatic lipid
metabolism and injury.
Protecting pancreatic islets from compensatory
enlargement.

(26)

Agrocybe
cylindracea

Heteropolysaccharides composed
of mannose, ribose, rhamnose,
glucuronic acid, galacturonic
acid, glucose, galactose, xylose,
arabinose, and fucose.

HFD and
STZ-induced
T2DM mice

Oral administration
of 100, 200, and
400 mg/kg/d BW,
respectively, for
4 weeks.

Blood glucose ↓, liver and colon injuries ↓,
inflammation ↓, SOD ↑, GSH-Px ↑, CAT ↑.
Restoration of lipid metabolism.

(27)

Cordyceps
militaris

Polysaccharides with a backbone
of (1→4)-β-D-Glcp and
(1→2)-α-D-Manp and with a
molecular weight of 700 kDa.

LDLR(−/−)

mouse fed with a
high-fat
and-cholesterol
diet

Oral administration
of 50, and
100 mg/kg/d BW,
respectively, for
8 weeks.

Reduced atherosclerotic plaque formation and serum
TC ↓, TG ↓, HDL-C ↑.
Improved apolipoprotein levels.

(28)

Cordyceps
militaris

Polysaccharides-protein complex
without precise characterization.

HFD-induced
obese mice

Oral administration
of 100 mg/kg/d BW
for 8 weeks.

Adipocyte size and liver steatosis ↓.
No effect on SCFAs production.
Diversity ↑ and richness ↑ in gut microbiota.
Relative abundance of Lactobacillus ↓, Dorea ↓,
Clostridium ↓, Ruminococcus ↑, Akkermansia ↑.

(29)

Cordyceps
militaris

Selenium-rich
polysaccharides-protein complex
without precise characterization.

HFD-induced
obese mice

Oral administration
of 50, 100, and
200 mg/kg/d,
respectively, for
8 weeks.

Adipocyte size and liver steatosis ↓.
Serum TG ↓, LDL-C ↓.
No effect on SCFAs production.
Diversity ↑ and richness ↑ in gut microbiota.
Relative abundance of Lactobacillus ↓, Dorea ↓,
Clostridium ↓, Ruminococcus ↑, Akkermansia ↑.

(29)

Dictyophora
indusiata

Crude polysaccharides composed
of glucose, mannose, and
galactose.

HFD-induced
obese mice

Oral administration
of 200 and
400 mg/kg/d,
respectively, for
4 weeks.

Fat accumulation ↓.
Serum TG ↓, free fatty acid ↓, glucose ↓, insulin ↓.
Intestinal barrier function ↑ and liver injury ↓.
TNF-α ↓, IL-1β ↓, and IL-6 ↓ and IL-4 ↑ and IL-10
↑.
Diversity ↑ and richness ↑ in the gut microbiota.
Decreased ratio of Firmicutes to Bacteroidetes.
Relative abundance of Bacilli ↓,
Gammaproteobacteria ↓, and Bacteroidia ↑.

(30)

Hericium
erinaceus

Polysaccharide (81.51%)-protein
(1.97%) complex composed of
rhamnose, arabinose, mannose,
glucose, and galactose with
weight-average molecular weights
of 263.6 kDa.

STZ-induced
diabetic rats

Oral administration
of 150 and 300
mg/kg, respectively,
for 4 weeks.

Blood glucose ↓, glucose tolerance ↑, hepatic
function and serum lipid metabolism ↑, antioxidant
enzyme activity ↑, lipid peroxidation ↓, and glycogen
synthesis ↑.

(31)

Inonotus
obliquus

Polysaccharides consisted of
mannose, rhamnose, glucuronic
acid, xylose, arabinose, fucose,
galacturonic acid, glucose, and
galactose with Mw of 373 kDa.

HFD and
STZ-induced
T2DM mice

Oral administration
of 150, 300, and 6
00 mg/kg/d BW,
respectively, for
5 weeks

Blood glucose ↓, serum TC ↓, TG ↓, LDL-C ↓,
HDL-C ↑.
TNF-α ↓ and IL-6 ↓.
Intestinal barrier function ↑.
Increased ratio of Firmicutes to Bacteroidetes.
Relative abundance of Akkermansia ↑, Lactobacillus
↑, Parabacteroides ↓, Bacteroides ↓.

(32)

Ganoderma
atrum

PSG composed of mannose,
glucose, galactose, rhamnose, and
arabinose with molecular weight
of 1013 kDa with

HFD and
STZ-induced
diabetic rats

Oral administration
of 50 mg/kg/d BW
for 4 weeks.

Blood glucose ↓, insulin resistance level ↓.
TC ↓, TG ↓, and LDL-C ↓ and HDL-C ↑.
Protection of islet cells and intestine injuries.
Restoration of the decreased ratio of Firmicutes and
Bacteroidetes.
Relative abundance Prevotella spp ↓, Blautia spp ↓,
Streptococcus spp ↓, and Clostridium spp ↓,
Lactobacillus spp ↑, Oscillospira spp ↑, Coprococcus
spp ↑, and Ruminococcus spp ↑.

(33)

(Continued)
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TABLE 1 (Continued)

Mushroom
resource

Structure characteristics Model Doses of
administration

Outcomes References

Ganoderma
lucidum

GLP composed of mannose,
glucose, galactose, rhamnose, and
arabinose with weight-average
molecular weight of 13.7 kDa.

HFD and
STZ-induced
diabetic rats

Oral administration
of 400 mg/kg/d for
4 weeks.

Improved lipid metabolism and inflammation ↓.
Blood glucose ↓, insulin ↓.
Relative abundance of Aerococcus ↓,
Ruminococcus ↓, Corynebacterium ↓, Proteus ↓,
Blautia ↑, Dehalobacterium ↓, Parabacteroides ↓,
Bacteroides ↓.
Restoration of the changes in metabolism of gut
microbiota.

(34)

Ganoderma
lucidum

Spore-derived polysaccharides
composed of glucose, mannose,
and galactose containing
(1→3)-β-D-Glcp,
(1→3,6)-β-D-Glcp,
(1→6)-β-D-Glcp, and
terminal-β-D-Glcp moieties with
molecular weight of 26.0 kDa.

HFD-induced
obese mice

Oral administration
of 100 and
300 mg/kg/d,
respectively, for
12 weeks.

Fat accumulation ↓, hepatic steatosis ↓.
Serum TG ↓ and HDL-C ↑.
No obvious effects on fasting hyperglycemia and
glucose intolerance.
Reduced ratio of Firmicutes/Bacteroidetes.
Relative abundance of Allobaculum ↑,
Bifidobacterium ↑, and
Christensenellaceae_R-7_group ↑.
SCFAs levels ↑.

(35)

Grifola frondosa Heteropolysaccharides mainly
composed of mannose, rhamnose,
glucuronic acid, galacturonic
acid, glucose, galactose, and
fucose with molecular weight of
18.18 kDa in the main fraction.

HFD and
STZ-induced
diabetic mice

Oral administration
of 300 and 900
mg/kg/d,
respectively, for
4 weeks.

Blood glucose ↓, glucose tolerance ↑, TG ↓, LDL-C
↓ in serum and hepatic glycogen level ↑.
Liver TC ↓, TG ↓, and free fatty acids ↓.
Relative abundance of Alistipes ↑, Streptococcus ↓,
Enterococcus ↓, Staphylococcus ↓, and
Aerococcus ↓.

(36)

Grifola frondosa Polysaccharides mainly consisted
of→4)-α-D-Glcp-(1→,
β-D-Glcp-(1→, and
→4,6)-β-D-Glcp-(1→ with
molecular weight of 5,570 kDa

HFD-fed obese
mice

Oral administration
of 50, and
100 mg/kg/d,
respectively, for
8 weeks.

Serum TG ↓, TC ↓, and LDL-C ↓, HDL-C ↑.
Fat accumulation in the liver ↓ and hepatic
steatosis ↓.
Blood glucose level ↓.

(37)

Lyophyllum
decastes

Heteropolysaccharides mainly
composed of mannose, glucose,
galactose, and fucose with
linkages of 1,3-Fucp, T-Galp,
1,4-Glup, 1,6-Glup, 1,6-Galp, and
1,2,6-Manp.

HFD-fed obese
mice

Oral administration
of 500, and
1000 mg/kg/d,
respectively, for
8 weeks.

Hepatic steatosis ↓, serum TC ↓, HDL-C ↓.
TNF-α ↓, IL-6 ↓, IL-1β ↓.
A tendency to reduce the ratio of Firmicutes to
Bacteroidetes.
Relative abundance of Bacteroides intestinalis ↑,
Bacteroides sartorii ↑, Lactobacillus johnsonii ↑.

(38)

Phellinus linteus Crude heteropolysaccharides
composed of glucose, arabinose,
fucose, galactose, xylose,
mannose, and arabinose.

HFD and
STZ-induced
diabetic rats

Oral administration
of 600 mg/kg/d for
8 weeks.

Insulin resistance ↓, fasting insulin levels ↓, and
HOMA-IR ↓.
CRP ↓, TNF-α ↓, and IL-6 ↓.
SCFAs content ↑, restored intestinal mucosal layer
thickness, and intestinal barrier function ↑.
Relative abundance of Lachnospiraceae-NK4A136
↑, Lachnospiraceae-UCG-006 ↑, Roseburia ↑,
Prevotella9 ↑, Blautia ↑, Ruminiclostridium-9 ↑,
Eubacterium xylanophilum ↑, Anaerotruncus ↑,
Oscillibacter ↑, Clostridium_sensu_stricto_1 ↓,
Escherichia-Shigella ↓, Bacteroidales_S24-7_group
↓, and Akkermansia ↓.

(39)

Sarcodon
aspratus

Polysaccharides-protein complex
composed of mannose, glucose,
galactose, and arabinose.

HFD-induced
obese mice

Oral administration
of 100, 200, and
400 mg/kg/d,
respectively, for
14 weeks.

Glucose intolerance ↑, hepatic steatosis ↓, lipid
homeostasis ↑.
Liver oxidative stress ↓, inflammation ↓, adipocyte
differentiation ↓.
Decreased ratio of Firmicutes/Bacteroidetes.
Relative abundance of Verrucomicrobia ↑,
Proteobacteria ↑. Lactobacillus ↑, Bacteroides ↑,
Akkermansia ↑.

(40)

Suillellus luridus Polysaccharide with backbone of
1,3-α-D-Galp, 1,3-β-D-Glcp and
1,6-β-D-Glcp composed of
galactose, glucose, arabinose, and
mannose with molecular weight
of 9.4 kDa.

STZ-induced
diabetic mice

Oral administration
of 100 mg/kg/d for
30 days.

Hepatic glycogen ↑, blood glucose ↓, insulin ↑.
Activities of SOD ↑, GSH-Px ↑, CAT ↑ in tissues.
Serum TC ↓, TG ↓, LDL-C ↓, and HDL-C ↑.

(41)

Tremella
fuciformis

Polysaccharides without structure
determination.

HFD and
STZ-induced
diabetic rats

Oral administration
of 200 mg/kg/d for
4 weeks.

Blood glucose ↓, serum insulin ↓, TC ↓, HDL-C ↑,
LDL-C ↓.

(42)

HFD, high-fat diet; STZ, streptozotocin; TC, total cholesterol; TG, triglyceride; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; SOD, superoxide
dismutase; GSH-Px, glutathione peroxidase; CAT, catalase; FFA, free fatty acid; HMA-IR, homeostatic model assessment for insulin resistance; CRP, C-reactive protein. ↑ Represents
increase; ↓ represents decrease.
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FIGURE 1

Schematic diagram of the effects of increased oxidative stress associated with insulin resistance and high glucose level on the signaling
pathways of the development of DM and its complications. O-GlcNAcylation could promote the production of AGEs. AGEs contribute to
inflammation through NF-κB signaling pathway. There are intricate links between oxidative stress and the development of complications.
PPARγ, peroxisome proliferator activated receptor-γ; AGEs, advanced glycation end-products; ERK, extracellular-signal-regulated kinase;
MAPK, mitogen-activated protein kinase; O-GlcNAcylation, O-linked-acetylglucosamine. ↑ Indicates increase and ↓ indicates decrease.

mushroom polysaccharides enhance the activities of antioxidant
enzymes including SOD, GSH-Px, and CAT in diabetes models
(Table 1). However, the molecular mechanisms by which
mushroom polysaccharides modulate the activity of antioxidant
enzymes in vivo are still unclear. Natural macromolecules
such as polyphenols can provide antioxidant protection against
oxidative damage by regulating complicated intracellular signals
for the induction of antioxidant enzymes (49). Plant-derived
polysaccharides have been reported to promote the expression
of antioxidant genes in Drosophila and cell models (50,
51). Polysaccharides derived from Suillellus luridus have been
supposed to relieve oxidative stress in STZ-induced diabetic
mice by regulating the nuclear factor erythroid 2-related factor 2

(Nrf2)/heme oxygenase-1 (HO-1) pathway (41). Nrf2 modulates
the expression of antioxidant and cyto-protective related genes
(52). Therefore, more studies would be needed to uncover
the molecular mechanism of how mushroom polysaccharides
regulate the expression profiles of antioxidant genes in the
mammalian models as well as the Nrf2/HO-1 pathway.

4.2 Anti-hyperlipidemic action

A high load of free fatty acids can result in reduced glucose
uptake and insulin resistance in cells (53), which is a critical
factor in the pathogenesis of obesity and type 2 diabetes. Ectopic
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lipid deposition within cells deteriorates insulin resistance
and ultimately accelerates the progression of DM and various
chronic complications (54). Intracellular molecules such as
peroxisome proliferator activated receptors (PPARs), sterol
regulatory element binding protein-1c (SREBP-1c), adenosine
(AMP)-protein kinase (AMPK), acetyl-CoA carboxylase (ACC),
and 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase,
fatty acid synthase (FAS), cytochrome P450 family 7 subfamily
a member 1 (CYP7A1), and carnitine palmitoyltransferase-
1 (CPT1) are critical mediators in the regulation of the
biosynthesis of fatty acid, triglyceride, and cholesterol, and fatty
acid oxidation within cells (55). Experiment evidences have
proven that insulin resistance regulates these key mediators and
results in abnormal lipid metabolism, progressively leading to
obesity and hyperlipidemia, which in turn deteriorate insulin
resistance, and therefore accelerate the progression of DM and
its complications (Figure 2) (55–57).

Low-density lipoprotein (LDL) receptor-involved
endocytosis is vital for cholesterol homeostasis, and
upregulation of the LDL receptor results in a decrease in
blood LDL-C level. However, in an LDLR(−/−) mouse model,
C. militaris derived polysaccharides (CM) could decrease
plasma total cholesterol (TC) and triglyceride (TG), and
increase the high-density lipoprotein cholesterol (HDL-C) and
improve apolipoprotein levels. Further molecular mechanical
analysis revealed that CM markedly enhanced VLDLR
expression and decreased SREBP-1c and ApoB expression at the
protein level in the liver, and significantly increased the protein
expression of LXRα/ABCG5 in the small intestine, as well as
downregulation of the protein expression of PPARγ and ATGL
in the epididymal fat (28). This experiment demonstrated a
non-LDL receptor-involved cholesterol lowering pathway.

Pleurotus ostreatus polysaccharides fraction reduced liver
triglyceride level through modulating the expressions of
Dgat1, Ldlr, Nr1h4, Acat1, Srebf1, and Srebf2 in diet-induced
hypercholesterolemic mice (58). Treatment with Trametes
versicolor polysaccharide (EVP) dramatically reduced serum
TC, TG, LDL-C, and atherosclerosis index in a dose-
dependent manner in high-fat diet-induced hyperlipidemic
mice. A significant increase in serum lipoprotein lipase (LPL)
activity and a notable decrease in protein expression of
hepatic 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR)
were observed, demonstrated that the anti-lipidemic properties
of EVP probably via regulation of hepatic LPL and HMGR
(59). Grifola frondosa polysaccharides (GFP) were proven to
be capable of decreasing the levels of fasting blood glucose
(FBG), oral glucose tolerance (OGT), TC, TG, and LDL-
C in serum, and reducing the hepatic levels of TC, TG,
and free fatty acids through inhibiting the expressions of
SREBP-1c, ACC, Cd36, and HMGCR, and promoting the
expressions of Acox1, Ldlr, CYP7A1, and BSEP in gene
levels in high fat diet (HFD) and STZ-induced diabetic mice
(36). Dictyophora indusiate crude polysaccharides displayed

hypolipidemic actions, including a decrease in fat accumulation
and serum TG and free fatty acid levels by inhibiting the
expressions of lipogenic genes, such as PPAR-γ, C/EBPα,
SREBP-1c, acetyl-CoA carboxylase-1 (ACC-1), and FAS (30).
The polysaccharide-protein complex obtained from Sarcodon
aspratus could improve lipid metabolism in HFD-induced
obese mice by regulating lipogenesis meditators (ACC-1 and
PGC-1α) (40). The current results suggested that different
mushroom polysaccharides might play a role in hypolipidemic
action through differential molecular mechanisms. Taken
together, these observations demonstrated that mushroom
polysaccharides could exert anti-lipidemic action by multiple
pathways, including reducing TG and TC synthesis, decreasing
lipid storage in adipocytes, elevating energy production, and
promoting TC secretions from the liver and small intestine.
Further studies are needed to illustrate the detailed mechanism
of hypolipidemia of mushroom polysaccharides with high purity
and precise structure characterization.

Numerous animal and human clinical trial studies
have demonstrated that dietary polysaccharides, such as
plant polysaccharides, mushroom polysaccharides, and alga
polysaccharides, have potential anti-hyperlipidemic effects
(60). It is commonly recognized that oat or barley β-glucan
greater than 3.0 g/d is effective in lipid-lowering function
in humans, and the high molecular weight of β-glucan is
more effective than those with low molecular weight (60).
Contrary to intensive investigations of oat or barley β-glucan
in clinical trials, the investigation of anti-lipidemic effects of
mushroom polysaccharides is mainly carried out in animal
models. Thus, clinical trials to assess the efficacy of mushroom
polysaccharides in metabolic disorders management are
necessary for their successful applications (61). Additionally,
structure-bioactivity relationship of mushroom polysaccharides
is also an exciting topic, which provides some guides for
exploring highly active polysaccharide. For example, degraded
polysaccharides obtained from G. lucidum with a molecular
weight of 13.6 kDa exhibited higher anti-lipidemic effects
than the original ones with a higher molecular weight of
3.06 × 103 kDa, including atherosclerosis index, TC, TG,
low-density lipoprotein cholesterol (LDL-C), and HDL-C in
HFD-induced hyperlipidemia mice (62).

4.3 Anti-inflammatory action

Inflammation promotes the pathogenesis of insulin
resistance and DM (63). Multiple studies have solidified
a link between low-grade chronic inflammation and the
development of DM, particularly T2DM, and the deterioration
of cardiovascular diseases in people with DM. Obesity and
insulin resistance are characterized by a chronic low-grade
inflammation (64). Therefore, many factors, such as dysbiosis,
intestinal barrier dysfunction, and low-fiber diets, which could
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FIGURE 2

Schematic representation of insulin resistance and high glucose level inducing obesity and hyperlipidemia. Insulin resistance induces abnormal
insulin signaling, activating transcription factors such as SREBPs, PPARs, leading to up-expressions of FAS and HMGCR, which promote fatty
acid synthesis and cholesterol synthesis. CYP7A1 is a rate limiting enzyme in the pathway of transforming cholesterol into bile acids, which is
regulated by the “bile acid pool” within human body. The β-oxidation of long-chain fatty acids is regulated by the activity of CPT1, which is
highly sensitive to inhibition by malonyl-CoA (55). In adipose tissue, insulin is an anti-lipolytic hormone that inhibits the actions of HSL and
ATGL, thus increasing fatty acid storage in adipocytes. Meanwhile, insulin increases LPL activity, releasing free fatty acids into the circulation
from LDL (56). High levels of fatty acids in the circulation further, in turn, deteriorate insulin resistance. Obesity is an independent risk factor for
the pathogenesis of DM and related complications. PPARs, peroxisome proliferator activated receptors; AMPK, adenosine (AMP)-protein kinase;
SREBPs, sterol regulatory element binding proteins; ACC, acetyl-CoA carboxylase; HMGCR, 3-hydroxy-3-methylglutaryl-CoA reductase; FAS,
fatty acid synthase; CYP7A1, cytochrome P450 family 7 subfamily a member 1; CPT1, carnitine palmitoyltransferase-1; HSL, hormone-sensitive
lipase; ATGL, adipose triglyceride lipase. ↑ Indicates increase and ↓ indicates decrease.

aggravate inflammation, may be related to the progression of
DM and its complications (65).

In the past several decades, mushroom polysaccharides have
attracted growing interest from global researchers due to their
outstanding immune-modulatory and anticancer properties
and diversity in resources and structures (66). Mushroom
polysaccharides are well known as biological response modifier
(BRM) and immune-modulatory activity is one of their most
important biological properties (67). The immunomodulatory

mechanisms of mushroom polysaccharides to immune cells
have been well recognized. Mushroom polysaccharides can
interact with immune cells such as dendritic cells (DCs),
macrophages, and NK cells through cell surface receptors and
subsequently activate intracellular cascade signaling to induce
immune responses (68). A variety of immune cell receptors,
including dectin-1, scavenger receptors, complement receptor
3, lactosylceramide, and toll-like receptors (TLRs), are proposed
to be involved in mushroom polysaccharide-induced immune
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responses, including immune modulation, anticancer, and anti-
inflammation (68, 69). For example, TLR-2, TLR-4, and Dectin-
1 have been identified to be involved in the activation of
immune-related intracellular signaling of a novel polysaccharide
from C. militaris (70). Natural polysaccharides have been
documented to suppress the production of cyclooxygenase 2
(COX2) and inducible nitric oxide synthase (iNOS), which
are associated with a reduction in pro-inflammatory responses,
and modulate NF-κB-related signaling pathways to increase
expression of anti-inflammatory cytokines like IL-10 and
decrease expression of inflammatory cytokines such as TNF-α,
IL-1β, leading to anti-inflammatory action (71). For instance,
TFPS attenuated LPS-induced inflammation through inhibiting
miR-155, a small RNA which regulates NF-κB, to inactivate NF-
κB signaling pathway, leading to reduce the production of TNF-
α and IL-6 in macrophages (72). Observations derived from
dextran sulfate sodium (DSS)-treated animal model suggested
that the anti-inflammatory effects of mushroom polysaccharides
might be gut microbiota-dependent in vivo since β-glucan
aggravated colitis features of DSS-treated mice which were given
drinking water with antibiotics to diminish gut microbiota (73).

Intestinal epithelial cells (IECs) express TLRs and Dectin-
1 receptors by which mushroom polysaccharides could
activate a variety of physiological responses, including immune
regulation, anti-inflammation, and enhanced barrier function
(74–76), which might be important action pathways for exerting
pharmacological properties of mushroom polysaccharides. In
addition, as an essential part of gut-associated lymphoid tissue,
Peyer’s patches distribute in the ileum region of the small
intestine. Mushroom polysaccharides can be uptake into Peyer’s
patches via M cells and stimulate resident immune cells such as
macrophages, DCs, and T-cells (77), thus triggering a cascade
of immune responses. Moreover, mushroom polysaccharides
can be fermented by gut microbiota in the colon to
produce SCFAs, although differently structural mushroom
polysaccharides might induce differential production of SCFAs
(66). SCFAs play anti-inflammatory activity through inducing
the proliferation and differentiation of Foxp3+ regulatory T-cells
and the secretion of IL-10 (78). In DSS-induced colitis mice,
TFPS could inhibit colonic inflammation via promotion of
Foxp3+ T-cells and production of anti-inflammatory cytokines
(79). Therefore, mushroom polysaccharides could exert anti-
inflammatory actions through multiple pathways but in concert
by integrating various receptors-involved signaling within
mucosal immune system (Figure 3).

A β-glucan isolated from the fruiting body of A. blazei
Murill, named ABMP, with a triple-helical structure and a
molecular weight of 12.26 kD, showed protective effects on
acute inflammatory injury mice established by high dosage
zymosan (ZY)-induced organ dysfunction syndrome (MODS)
partially through activating NF-κB signaling pathway and then
reducing expression of inflammatory cytokines, including TNF-
α, IL-1β, IL-6, COX-2, and PGE-2 (48). The effects of a

G. lucidum spore polysaccharides (BSGLP) with a molecular
weight of 26.0 kDa on metabolic disorders and chronic
inflammation were evaluated in a mouse model of dietary-
induced obesity. BSGLP dramatically reduced serum levels
of TNF-α, IL-1β, and monocyte chemoattractant protein-1
(MCP-1), and inhibited macrophage infiltration into white
adipose tissues (WAT). Molecular mechanism analysis in
mRNA and protein levels showed that BSGLP partially inhibits
inflammation via TLR4/Myd88/NF-κB signaling pathway (35).
Besides, BSGLP could increase SCFAs production, in particular
acetate and butyrate production, which were associated with
increased GPR43 expression and reduced inflammation in
WAT. Furthermore, fecal microbiota transplantation (FMT)
from HFD with BSGLP markedly decreased serum levels of LPS
and TNF-α, and slightly decreased the content of IL-1β and
MCP-1 in serum in the recipient mice, demonstrating that the
anti-inflammatory effects of BSGLP might be in part dependent
on the gut microbiota (35). These results suggested that multiple
pathways may exist for each mushroom polysaccharides to exert
anti-inflammatory effects, however, identifying the major action
pathway is still great challenges to researchers. In recent years,
a variety of mushroom polysaccharides obtained from different
resources have shown anti-inflammation activities in metabolic
disorder models (Table 1).

In an acute liver injury mouse model characterized
by high levels of alanine aminotransferase (ALT) and
aspartate aminotransferase (AST), and high levels of pro-
inflammatory cytokines TNF-α, IL-2, IL-6, and MCP-1 induced
by lipopolysaccharide/d-galactosamine (LPS/d-GalN), GFP
inhibited inflammation level, elevated the levels of SOD and
glutathione, and attenuated liver injury. Further analysis
revealed that the expression levels of miR-122, a key molecule
targeting Nrf2, was reduced and Nrf2/antioxidant response
element (ARE) signaling pathway was regulated in liver tissue
evidenced by upregulation of transcription factors Nrf2, Nqo-1,
and HO-1, and downregulation of transcription factor Kelch-
like ECH-associated protein 1 (Keap-1) (80). Keap-1 is vital for
maintaining intracellular redox homeostasis and modulating
inflammation. HO-1 plays a role in anti-inflammation (81).
Thus, Nrf2/ARE signaling pathway might play key roles
in modulating the antioxidant response and inflammatory
response within cells. This provides an explanation that GFP
exhibits anti-inflammation and anti-oxidation effects on the
liver injury mouse model partially through activating the
miR-122-Nrf2/ARE pathway (80, 81).

However, not all mushroom polysaccharides show
consistently beneficial effects on hyperlipidemic animals.
For example, Cordyceps sinensis polysaccharides (CSP) with
a molecular weight of 6.5 × 104 Da could decrease serum
levels of LDL-C and TC, but increase serum TG level in
HFD-induced obese mice. Surprisingly, CSP deteriorated liver
fibrosis and steatosis characterized by increased liver weight
and fat accumulation, elevated alanine aminotransferase and
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FIGURE 3

Schematic diagram of the anti-inflammatory action pathways of mushroom polysaccharides and their metabolites SCFAs. SCFAs, such as
acetate, butyrate, and propionate, are metabolites of mushroom polysaccharides by fermentation of the gut microbiota. SCFAs facilitate the
proliferation and differentiation of IL-10-producing Foxp3+ Treg by inhibiting histone deacetylase (HDAC) activity through G protein–coupled
receptors (GPRs). Additionally, butyrate could directly regulate the function of macrophages and dendritic cells to induce Foxp3+ Treg (78). IEC,
intestinal epithelial cell; M8, macrophages; DC, dendritic cell; B, B lymphocytes; T, TH lymphocytes; TLR, toll-like receptors; GPRs,
G protein–coupled receptors (GPR41, GPR43, and GPR109A); SCFAs, short chain fatty acids.

infiltration of inflammatory cells in the liver. Furthermore, CSP
could increase insulin resistance and inflammation. Therefore,
CSP would lead to non-alcoholic steatohepatitis (NASH)
and elevate the risk of type 2 diabetes. However, CSP could
protect barrier function characterized by an increase in the
expression of ZO-1 and occludin in HFD-induced obese mice
(82). For these controversial findings, further investigations
are needed to clarify the effects and its mechanisms of CSP on
metabolic disorders.

4.4 Modulating of gut microbiota

Diabetes mellitus is strongly linked and associated with
alterations in gut microbiota and intestinal barrier function
(83). In patients with type 2 diabetes, Firmicutes and Clostridia
are obviously reduced, while Proteobacteria and Bacteroidetes
are increased, compared with those in healthy individuals (84).
Elevated Ruminococcus and Fusobacterium, whereas decreased
Roseburia and Clostridium, as well as fewer butyrate-producing

bacteria, were observed in T2DM patients and prediabetes (85,
86). In animal models, continuous intake of a high-fat diet
induces dysbiosis in the gut microbiota and intestinal barrier
dysfunction, which is linked to the development of DM (32,
87). Gut microbiota involves in modulating insulin sensitivity
and glucose tolerance through bile acids metabolism, amino acid
metabolism, and SCFAs metabolism. Studies suggested that the
absence of the commensal bacterium Akkermansia muciniphila
damaged to integrity of intestinal barrier and increased
intestinal permeability, leading to insulin resistance ultimately
in mice and macaques (88). Correspondingly, supplementation
of A. muciniphila restored normal insulin sensitivity in diabetic
mice and macaques (88). Fecal microbiota transplantation
from T2DM patients impaired insulin sensitivity and OGT in
recipient mice by altering the ability of intestinal microbiota to
metabolize bile acids (BAs) and regulating the BAs/glucagon-
like peptide-1 (GLP-1) pathway (89). Branched-chain amino
acids (BCAA) play important roles in regulating metabolism
of glucose, lipid, and protein, except for being utilized as
materials for synthesis of proteins (90). Increased BCAA
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levels contribute to the pathogenesis of insulin resistance
and DM in human, whereas enhancing BCAA catabolism
improves glucose homeostasis and ameliorates metabolic
disorders related complications such as cardiovascular damage
(91, 92). Interestingly, an intestinal microbiome possessing a
higher potential for biosynthesis of BCAA was associated with
increased levels of BCAA in plasma and decreased insulin
sensitivity in human (93). Specifically, the gut bacteria Prevotella
copri could elevate circulating levels of BCAAs and induce
insulin resistance in mice (93). Thus, the downstream signaling
activated by altered microbial metabolites and microbiota
composition promotes the pathogenesis of metabolic diseases
such as obesity and diabetes (94, 95) (Figure 4). In addition,
LPS derived from the cell wall of Gram-negative bacteria in the
gut activates inflammatory response through binding to toll-
like receptor 4 (TLR4) on the mucosal immune cells, which
is vital for maintaining gut microbiota homeostasis in normal
physiology. However, dysbiosis results in elevated level of LPS
in gut and therefore initiates low-grade chronic inflammation,
which could induce insulin resistance to host (83).

Recently, the modulatory properties of mushroom
polysaccharides on gut microbiota have attracted intensive
investigations because of the development of metagenome
sequencing technology and genome-wide association
studies. The genomes of gut microbiota encode a number
of carbohydrate-active enzymes (CAZymes), which can degrade
mushroom polysaccharides. Three extracellular degradation
patterns of polysaccharides by gut microbiota have been
illustrated to date, such as starch utilization system (Sus)-like
system, ABC-transporter system, and multi-enzyme complex
system (66, 96). Mushroom polysaccharides can arrive the
colon, where the gut microbiota metabolizes them with mainly
SCFAs as the final products through CAZymes degradation
systems since gastric juices couldn’t hydrolyze them (97).
According to the currently available data, different mushroom
polysaccharides exhibit distinct effects on gut microbiota
composition and its metabolites (66, 97), resulting in differential
physiological responses to the host (98). These may be due to
the diverse structures of mushroom polysaccharides (99), the
physiological status of the host, and individual differences in
gut microbial colonization (100). For example, two kinds of
Flammulina velutipes-derived polysaccharides with different
monosaccharide compositions showed differential productions
of SCFAs in rats (101, 102). A heteropolysaccharides derived
from Lentinus edodes reduced the diversity and evenness of
gut microbiota in adult mice while increased the diversity and
evenness of gut microbiota in aged mice (103, 104).

Increasing evidences have demonstrated the critical roles
of gut microbiota in the prevention and treatment of DM
(95). Altering the gut microbiota composition to improve
insulin sensitivity and glucose tolerance has received attention
from many researchers. Generally, mushroom polysaccharides
decrease the ratio of Firmicutes to Bacteroidetes and increase

the diversity and richness of gut microbiota along with
ameliorations in blood glucose level and insulin sensitivity
in obese and diabetic animal models. However, considerable
inconsistent impacts on intestinal bacteria at family and
genus levels were observed in different studies (Table 1).
A polysaccharides from I. obliquus decreases FBG, improves
intestinal barrier function, and restores the disrupted gut
microbiota, characterizing upregulation of Ki-67, ZO-1, and
MUC2 expression in the intestine, a restoration of the
ratio of Firmicutes to Bacteroidetes, and enriched beneficial
bacteria such as Akkermansia and Lactobacillus after the
treatment in diabetic mice (32). However, different mushroom
polysaccharides might exert differential impacts on the gut
microbiota of diabetes, although exhibiting a similar alleviation
in metabolic symptoms. For instance, both Ganoderma atrum
polysaccharide (PGS) and white hyacinth bean polysaccharide
(WHBP) ameliorated FBG and insulin resistance, as well as
the levels of TC, TG, and LDL-C in T2DM rats. In common,
PSG and WHBP alleviated the reduction of Firmicutes and
the increase of Bacteroidetes, decreased the genus Prevotella
spp, and elevated the genus Lactobacillus in T2DM rats.
However, PSG and WHBP also showed their respective
characteristic effects on microbial regulation. Specifically, PSG
restricted the increase of Streptococcus spp and Clostridium
spp, while WHBP could promote the growth of Roseburia
spp and inhibit Turicibacter spp and Bacteroides spp in
T2DM rats (33). Interestingly, a recent study revealed that
commensal bacteria Bacteroides intestinalis and Lactobacillus
johnsonii enriched by treatment of mushroom polysaccharides
derived from Lyophyllum decastes were causally correlated with
decreased plasma TG and LDL-C in HFD-induced obese mice
through altering bile acid metabolism of gut microbiota (38),
demonstrating a potential therapeutic approach of mushroom
polysaccharides in the management of DM. Though many
mushroom polysaccharides with structural characterization
in somewhat context have been investigated in obese and
diabetic models regarding the impacts on gut microbiota, the
relationship of the structure of mushroom polysaccharides and
the changes of gut microbiota in these models is still poorly
understand due to heterogeneity in experimental protocols since
environmental factors and animal species strongly affect the
initial composition of gut microbiota (105). These influencing
factors should be considered in future studies when uncovering
the structure-function relationship in terms of mushroom
polysaccharides and gut microbiota.

Mushroom polysaccharides show prebiotic properties
in vitro fermentation, acting as a selective substrate for
beneficial gut microbiota growth. The degree of proliferation
of Bifidobacterium and Lactobacillus is commonly utilized to
assess the prebiotic properties. Seven crude polysaccharides
extracted from seven edible mushrooms: A. auricula-
judae, L. edodes, Pleurotus citrinopileatus, Pleurotus
djamor, P. ostreatus, P. ostreatus (Jacq.Fr.) Kummer and
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FIGURE 4

The proposed mechanism of dysbiosis in the gut microbiota that induces insulin resistance and ultimately DM. Gut microbiota is influenced by
diet, medication, lifestyle, and stress. Dysbiosis in gut microbiota leads to increased circulating LPS, lower short-chain fatty acids (SCFAs)
content, and changes in secondary bile acids. Increased LPS induces low-grade inflammation and insulin resistance through activating the
toll-like receptor 4 signaling pathway. Bile acids are transformed into secondary bile acids through the metabolism of the altered gut
microbiota. The alterations in secondary bile acids result in reduced GLP-1 and peptide YY secretions through TGR5 and FXR receptors-involved
pathways from intestinal L cells. Lower SCFAs also reduces the secretions of GLP-1 and PYY and the expression of tight junction proteins
through inactivating GPCRs (GPR41, GPR43, and GPR109A) signaling pathway, leading to intestinal barrier dysfunction and decreased insulin
sensitivity. SCFAs also play a role in immune cells. LPS, lipopolysaccharide; TLRs, toll-like receptors; TLR4, toll-like receptor 4; FXR, farnesoid X
receptor; TGR5, takeda G protein-coupled receptor 5; PYY, peptide YY; GLP-1, glucagon-like peptide-1; SCFAs, short-chain fatty acids; GPCRs,
G-protein coupled receptors. ↑ Indicates increase and ↓ indicates decrease.

Pleurotus pulmonarius have been determined based on
probiotic growth promotion (Lactobacillus acidophilus and
Lactobacillus plantarum), pathogenic inhibition (Bacillus cereus,
Escherichia coli, Salmonella Paratyphi, and Staphylococcus
aureus). These results suggested that the monosaccharide
composition of crude polysaccharides might influence their
prebiotic properties (106). The indigestible residues of five
strains of Macrocybe crassa mushroom varied in carbohydrate
and phenolic content and showed differential impacts on

the promotion of the growth of lactic acid bacteria and the
inhibition of pathogenic bacteria growth (107). Polysaccharides
from mushroom Clitocybe squamulosa (CSFP) were fermented
in a simulated human fecal microbial model after its treatment
by simulated saliva-gastrointestinal digestion. The production
of total SCFAs was increased due to an increase in the content
of acetic acid, propionic acid, and n-butyric acid, and the
ratio of Firmicutes/Bacteroidetes was decreased. Specifically,
CSFP promoted the growth of some beneficial bacteria, such
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as Bacteroides, and Prevotella_9, while inhibited the growth of
the typical intestinal pathogen Escherichia-shigella (108). This
demonstrates that simulated human intestinal fermentation
in vitro model might be an appropriate tool to investigate the
modulatory properties of different mushroom polysaccharides
on gut microbiota (109). Variation in the molecular structure
such as molecular weight, conformation, and branch degree of
mushroom polysaccharides has a significant impact on their
solubility, viscosity, and rheological properties (110), which
might affect the accessibility of polysaccharides to degrading
bacteria in the gut. However, the mechanism of how gut
bacteria degrade and utilize mushroom polysaccharides is rarely
illustrated, and more researches on this topic are needed.

5 Extraction method

The cell wall of mushrooms is a complex consisting
mainly of glycoproteins, glucans, chitin, and less proteins;
however, the assembly of these molecules has not been fully
elucidated. Polysaccharides (50–60%) are the major structural
components of the cell wall of mushrooms. Mushroom
polysaccharides present in the cell wall can mainly be classified
into three layers according to their distribution and cellular
localization: (1) the outside layer is glycoprotein consisting
of protein and heteropolysaccharides that vary in proportion
and monosaccharide composition between species and sites of
mushrooms; (2) the middle layer is mainly composed of β-
glucan which are insoluble; (3) the inner layer is composed
of a complex of chitin and β-glucan (43, 69). With the
increasing interest in exploring the structures and bioactivities
of mushroom polysaccharides by global researchers, various
extraction methods followed by a purification process and
structural identification have been developed (111) (Figure 5).
Generally, aqueous solution is widely applied to extract
polysaccharides with or without pre-treatment with organic
solvents (e.g., ethanol, acetone) to remove lipids, and phenols,
which facilitates the separation of polysaccharides from other
compounds in the cell wall (112). Hot water is the most
widely used because of its low cost and ease of handling. The
frequently extracted polysaccharides are heteropolysaccharides-
proteins complexes present in the outer layer of the cell wall
because of its low efficiency in breaking through and penetrating
the outer layer of glycoprotein structures. An acid or alkaline
solution is commonly used to obtain a high amount of β-
glucan present in the middle layer. For example, β-glucans
with globular small particle sizes were extracted from the
mushrooms Lentinula edodes and P. ostreatus using an acid-
base treatment followed by boiling with 0.5 M NaOH (113).
β-D-glucans obtained from mushroom Macrocybe titans were
consisted of (1→3)-linked β-D-Glcp by alkaline extraction
method (114). To increase the yield of polysaccharides and
improve the efficacy in extraction and/or explore green

processes, many novel assisted extraction technologies have
been developed. Novel technologies such as microwave-
assisted extraction (MAE), ultrasonic-assisted extraction (UAE),
enzyme-assisted extraction (EAE), subcritical water extraction
(SWE), pulsed electric field-assisted extraction, high pressurized
water extraction, deep eutectic solvent extraction, and combined
methods such as ultrasonic-microwave synergistic extraction
(UMSE), subcritical and pressurized hot water extraction,
pressure-associated hot water extraction have emerged in the
extraction of mushroom polysaccharides (115–118). These
novel extraction technologies mainly help solvent to penetrate
through and rupture the outer layer to reach the inner
cell wall, contributing to the release of polysaccharides
from the compact matrix. However, every extraction method
has advantages and disadvantages, such as extraction time,
efficiency, and risk of glycosidic bond breakage. Comprehensive
information including process parameters, yields, and structural
characteristics of obtained polysaccharides on traditional
extraction methods, and innovative and advanced extraction
methods in the extraction of polysaccharides from mushrooms
can refer to relating topic reviews (117, 118). The bioactivities of
mushroom polysaccharides greatly depend on their structures,
such as molecular weight, monosaccharide composition, branch
of degree, and conformation (119), whereas the structures of
mushroom polysaccharides vary remarkably based on resources
(species), extraction methods, as well as purification processes
(120), even dry processes of the fruiting body (121). Thus, novel
extraction methods should be evaluated in terms of efficacy,
yield, and bioactivity for better assessing the practicability
in industrial applications. Recent studies have shown that
innovative extraction methods can not only improve the efficacy
in the extraction of polysaccharides from natural materials, but
also enhance the bioactivities of the polysaccharides obtained
(122), which provide a promising direction for future studies.

6 Future perspective

In recent decades, many studies have demonstrated
that mushroom polysaccharides could modulate the
insulin signaling pathway to display hypoglycemic and
hypolipidemic effects. Regulation in mRNA and protein
levels and phosphorylation of many key molecules such as
insulin receptor substrate (IRS), protein kinase B (PKB),
phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt),
Jun N-terminal Kinase 1 (JNK), MAPK, and fork-head box
O family proteins (FOXO) involved in insulin signaling
pathway were observed in diabetic animals treated with
polysaccharides extracted from a number of mushrooms such
as Grifola frondosa, L. edodes, P. linteus, and Ophiocordyceps
sinensis (18, 123–125). Lowered blood glucose level, increased
glycogen level, and amelioration in damages to tissues
were observed as results of treatments as well as improved
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FIGURE 5

Schematic diagram of the polysaccharides’ location in the cell wall of mushrooms and the procedure of extraction, purification, and structural
analysis of mushroom polysaccharides.

insulin intolerance. Mushroom polysaccharides might directly
interact with insulin receptor or indirectly interplay with
insulin signaling through NF-κB pathway and subsequently
stimulate cascade signaling to promote glucose uptake of cells.
A heteropolysaccharides obtained from G. frondosa with an
average molecular weight of 66.1 kDa significantly upregulate
glucose transporter 4 to improve glucose uptake in insulin
resistant HepG2 cell induced by dexamethasone through
activating insulin receptor substrate 1 (IRS-1)–PI3K–c-JNK
signaling pathway (124). Alkaline soluble polysaccharides
derived from the fruiting bodies of Amillariella mellea,
Gomphidius rutilus, and Agrocybe cylindracea, respectively,
showed better promotion of glucose uptake than those from
Hypsizygus marmoreus, Pleurotus eryngii, and P. ostreatus
extracted with the same method in Hepa1–6 cells insulin
resistance model through activating insulin receptor (IR)-
AKT signaling pathway (26). However, there is still a great
gap in understanding the detailed interrelation between the
intervention of mushroom polysaccharides and the regulation
of insulin signaling pathway (Figure 6). Therefore, more
works are needed to bridge the gap and reveal the intricate
interactions of intracellular signaling pathways within cells,
including insulin signaling pathway, MAPK/NF-κB pathway,

and oxidative stress-related signaling pathways. The progress
in understanding the molecular mechanism of mushroom
polysaccharides in modulating insulin signaling pathway
would provide a basis for developing targeted therapy for the
prevention and management of DM.

The present state of knowledge on the structures of
mushroom polysaccharides and their biological functions
of anti-diabetes is limited. The successful development
and application of mushroom polysaccharides in the anti-
diabetic field requires illustrating the structure-activity
relationship of mushroom polysaccharides. Considering the
great variability in monosaccharide composition, molecular
weight (molecule size), glycosidic linkage, and conformation
of mushroom polysaccharides within individual species, not
all mushroom polysaccharides contained in mushrooms
exhibit equivalently therapeutic activity. For example, six
alkaline soluble polysaccharides extracted from the fruiting
bodies of A. mellea, G. rutilus, A. cylindracea, H. marmoreus,
P. eryngii, and P. ostreatus, respectively, showed differential
improvement of insulin sensitivity in the Hepa1–6 insulin
resistance cell model, suggesting that the specific structure of
polysaccharides could play an important role in modulating
insulin sensitization (26). However, there is insufficient data to
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FIGURE 6

Schematic representation of the hypoglycemic mechanism of mushroom polysaccharides by modulating IR signaling pathway. IR, insulin
receptor; IRS, insulin receptor substrate; PI3K, phosphatetidylinostitol-3-kinase; Akt, protein kinase B; GSK3, glycogen synthesis kinase 3; GS,
glycogen synthase; GLUT4, glucose transporter 4; FOXO, fork-head box O family proteins. ↑ Indicates increase and ↓ indicates decrease.

conclude which structural characteristics are key determinants
of mushroom polysaccharides in anti-diabetes, and which
type of mushroom polysaccharides might have better effects.
With the expanding exploration of mushrooms, more and
more mushroom species are found and identified. Given
the great potential of mushroom diversity, and structural
complicity and diversity of mushroom polysaccharides, the
current lacking of internationally recognized standard protocols
for the testing anti-diabetic activity would bring considerable

challenges to their translational applications for scientists
worldwide. Future studies assessing the efficacy of mushroom
polysaccharides with precise structural characterization in
well-recognized models for the prevention and/or treatment
of DM are needed. Furthermore, deep uncovering the anti-
diabetic mechanisms using modern technologies, including
metagenomics, proteomics, metabolomics, and transcriptomics,
would expand our understanding of the biological and
pharmacological properties of mushroom polysaccharides.
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These would lead to the successful development of therapeutic
agents in managing DM.

There has been an increasing interest in developing
synergic foods as functional foods or nutraceuticals, which
have advantages in stronger health benefits and convenience
for the management of non-transmissible chronic diseases
(126). Besides mushroom polysaccharides, other active
substances such as minerals and trace elements also have
beneficial roles in insulin resistance and DM (127). Thus,
mushroom polysaccharides combined with other active
components aiming at synergistic effects would provide a
potentially powerful approach to preventing and treating
DM and its complications. Mushroom polysaccharides show
a good metal ion chelating ability (43). Some metal ions
are vital for metabolism. For example, chromium (III)
is an essential trace element and plays a vital role in
maintaining insulin sensitivity and glucose homeostasis in
the human body (128). Polysaccharides-metal ion complexes
to improve the therapeutic activities in anti-diabetes have
been conducted. For instance, chromium (Cr)-G. frondosa-
derived polysaccharides complexes have been synthesized
and evaluated in terms of their anti-hyperlipidemic and anti-
hyperglycemic effects in HFD- and STZ-induced diabetic
mice. The Cr-polysaccharides complex showed better
activities in reducing blood glucose level, improving liver
glycogen synthesis, and decreasing serum TC and TG than
polysaccharides alone, suggesting outstanding therapeutic
actions of the complex in improving glucose and lipid
metabolism in diabetes (129). Selenium (Se) is a vital
micronutrient and plays a crucial role in redox homeostasis
in the body (130). Se-rich polysaccharides extracted from
the fruiting body of C. militaris exhibited stronger anti-
inflammation and anti-lipidemic properties than the same
source of Se-deficient polysaccharides (29). Furthermore, a
combination of inulin and G. lucidum polysaccharides displayed
better activities in improving insulin sensitivity, increasing
glycogen synthesis, and ameliorating lipid metabolism than
inulin or G. lucidum polysaccharides alone in T2DM rats,
demonstrating synergistic actions of inulin and G. lucidum in
anti-diabetes (131).

In addition, active polysaccharides combined with nano-
and micro-technological strategies or functionalized with
specific molecules would improve their efficacy in anti-
diabetes through targeting delivery and/or increasing intestinal
permeability (132). A polysaccharide-based micelle-hydrogel
containing insulin and nattokinase was developed. This
synergistic therapy system not only possesses glucose-
responsive insulin delivery properties, but also provides
good thrombolytic capacity (133). Se-C. ventricosum-
derived polysaccharides nanoparticles exhibited significantly
higher anti-diabetic effects than Se nanoparticles alone
(134). Therefore, a synergistic formula composed of
multiple mushroom polysaccharides and/or other active

components with different pharmacological properties by
targeting multiple action pathways combined with efficient
delivery technology would synergistically improve the
outcomes in the prevention and management of DM and
its complications.

Increasing studies focus on the interventions of mushroom
polysaccharides in diabetic animal model. However, little
attention has been paid to the pharmacological actions of
mushroom polysaccharides in DM patients. Available data on
human mainly use mushroom powder or mushroom extracts.
In a single-blind trial, 24 T2DM patients were randomized
for consumption of 50 mg/kg BW of dried and powdered
P. ostreatus or Pleurotus cystidiosus, respectively (135). Both
mushroom interventions effectively reduced postprandial
serum glucose levels and increased postprandial serum insulin
levels of diabetes patients. Twenty-two subjects with impaired
glucose tolerance consumed a meal either fortified with 20 g of
dried P. ostreatus powder (contained 8.1 g β-glucan) or without
enrichment, a fortified meal improved the levels of postprandial
GLP-1 and non-esterified free fatty acids compared to control
meal in a double-blind, randomized controlled crossover trial,
suggesting the beneficial effects of mushrooms β-glucan in
improving postprandial metabolism for peoples with a high risk
of development of T2DM (136). A possible reason might be that
it is tough and time-consuming to prepare a sufficient amount
of purified mushroom polysaccharide used in clinical trials. This
obstacle requires cooperation between institutes and industrial
companies. Further studies and well-controlled clinical trials
should be conducted in this context to develop the most reliable
anti-diabetic agents screened from mushroom polysaccharides.
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