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Fatty acid metabolism is
related to the immune
microenvironment changes
of gastric cancer and RGS2
is a new tumor biomarker

Shifeng Yang1,2†, Boshi Sun1†, Wenjing Li3†, Hao Yang1,
Nana Li1 and Xinyu Zhang1*

1Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University,
Harbin, China, 2The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China,
3Department of Otorhinolaryngology, Head and Neck Surgery, Second Affiliated Hospital of Harbin
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Background: Alterations in lipid metabolism promote tumor progression.

However, the role of lipid metabolism in the occurrence and development of

gastric cancer have not been fully clarified

Method: Here, genes that are related to fatty acid metabolism and

differentially-expressed between normal and gastric cancer tissues were

identified in the TCGA-STAD cohort. The intersection of identified

differentially-expressed genes with Geneset was determined to obtain 78

fatty acid metabolism-related genes. The ConsensusClusterPlus R package

was used to perform differentially-expressed genes, which yielded divided two

gastric cancer subtypes termed cluster 1 and cluster 2.

Results: Patients in cluster 2 was found to display poorer prognosis than

patients in cluster 1. Using machine learning method to select 8 differentially

expressed genes among subtypes to construct fatty acid prognostic risk score

model (FARS), which was found to display good prognostic efficacy. We also

identified that certain anticancer drugs, such as bortezomib, elesclomol,

GW843682X, and nilotinib, showed significant sensitivity in the high FARS

score group. RGS2 was selected as the core gene upon an analysis of the

gastric cancer single-cell, and Western blotting and immunofluorescence

staining results revealed high level of expression of this gene in gastric

cancer cells. The results of immunohistochemical staining showed that a

large amount of RGS2 was deposited in the stroma in gastric cancer. A pan-

cancer analysis also revealed a significant association of RGS2 with TMB, TIDE,

and CD8+ T-cell infiltration in other cancer types as well. RGS2 may thus be

studied further as a new target for immunotherapy in future studies on

gastric cancer.
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Conclusion: In summary, the FARS model developed here enhances our

understanding of lipid metabolism in the TME in gastric cancer, and provides

a theoretical basis for predicting tumor prognosis and clinical treatment.
KEYWORDS

gastric cancer, fatty acid, immunotherapy, tumor microenvironment,
machine learning
1 Introduction

Gastric cancer (GC) is one of the most prevalent malignant

digestive system tumors, characterized by a high degree of

heterogeneity, difficulty of treatment, and a poor prognosis (1,

2). The liver is the most frequently affected organ by

hematogenous metastases of gastric cancer tumors, after liver

metastasis, the survival rate was only 20% (3) The development

of neoadjuvant chemotherapy and immunotherapy for gastric

cancer treatment in recent years has led to improvements in the

diagnosis and prognosis of gastric cancer to a certain extent, yet

further improvement is still necessary (4). To this end, new

tumor markers, therapeutic targets, and treatment strategies

need to be developed (5). Previous studies have shown that the

occurrence, proliferation, and metastasis of tumors are closely

related to their microenvironment. Various tumor cell

metabolites can affect the activation of surrounding immune

cells in various ways, and suppress their antitumor activity.

Alterations in the tumor microenvironment promotes

proliferation and development of tumor cells (6). Growing

evidence suggests that reprogramming of energy metabolism

towards e.g. lactic acid production and acetylation enzymes

contributes to the progression of gastric cancer (7). An in-

depth investigation of metabolic changes in the tumor

microenvironment of gastric cancer may thus provide with a

new marker or therapeutic target to improve gastric cancer

prognosis and treatment.

In lipid metabolism and especially fatty acid (FA) synthesis,

nutrients are converted into metabolic intermediates for membrane

biosynthesis, energy storage, and signal molecule production (8).

Alterations in lipid metabolism is a hallmark and metabolic

phenotype of cancer cells. Blocking the supply of lipids to cancer

cells has a significant impact on cancer cell bioenergetics,

membrane biosynthesis, and intracellular signal transduction (9).

Most tumors were previously shown to display an abnormal lipid

metabolism (10). Polymorphonuclear myelogenous suppressor cells

(PMN-MDSCs) are pathologically-activated neutrophils that play

an important role in the regulation of cancer immune response.The

selective pharmacological inhibition of FATP2 was also found to

eliminate the activity of PMN-MDSCs, and significantly delay

tumor progression in mice. Inhibition of PMN-MDSCs thus
02
improves the efficiency of cancer treatment (11, 12). Therefore,

targeted fatty acid-induced oxidative stress can prevent cancer-

induced cachexia.

In recent years, inhibition of FA synthesis has attracted

attention as a potential strategy for cancer treatment, yet it is not

yet implemented in clinical practice (13). The role of lipid

metabolism in gastric cancer has also not been widely studied

previously. Therefore, we conducted an in-depth study here on

the expression and significance of fatty acid disorder-related

genes in gastric cancer. We identified differentially-expressed

fatty acid metabolism-related genes in gastric cancer, and

determined two subtypes based on consistency clustering

analysis. A prognostic signature (FRAS) model was

constructed by performing a univariate Cox regression analysis

of differentially-expressed genes in different subtypes, and used

as a potential molecular marker of gastric cancer to identify

immune infiltration and genomic instability patterns.

FeaturePlot visualization was performed to display the

expression and distribution of model genes in the cell

population and to verify the accuracy of the model. A “core

gene”, RGS2 was selected for subsequent experiments, and the

relationship between the expression level of RGS2 protein and

the prognosis of patients with gastric cancer was evaluated.

Finally, we also discussed the biological significance of the

RGS2 gene in multiple cancer types to fully understand the

role of fatty acid metabolism in gastric cancer, and to provide a

theoretical basis for effective treatment.
2 Materials and methods

2.1 Patients and tissues samples

All patients were admitted to the Second Affiliated Hospital

of Harbin Medical University between May 2020 and June 2022,

and diagnosed by pathological examination.Pathological

diagnosis was based on the 8th edition of the American Joint

Commission on Cancer (14). All participants have informed

consent. The study design was approved by the Internal Audit

and Ethics Committee of the Second Affiliated Hospital of

Harbin Medical University (No : KY2021-075).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1065927
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2022.1065927
2.2 Western blotting

The protein content of the cells was extracted, and the

expression of RGS2 protein was analyzed by Western blotting

after the cell density of cultures of AGS, HGC27, MKN-45,

MKN-1, and the GES-1 cell lines reached 90%.
2.3 Data preparation and processing

STAD clinical information and expression data were

obtained from the American Cancer Genome Map Database

(TCGA, https://cancergenome.nih.gov/) using the TCGA R

package biollinks. Tumor samples with both expression and

survival information were retained for follow-up analysis, which

included 373 cancer and 32 paracancerous samples. Fatty acid-

related genes (Geneset) are derived from fatty acid-related

factors (fattyacid) in the MsigDB database (HALLMARK,

KEGG, REACTOME). A total of 14 pathways and 342 related

genes were identified.
2.4 Clustering analysis

An intersection between the identified differentially-

expressed genes with Geneset yielded 78 differentially-expressed

fatty acid-related genes. Using the ConsensusClusterPlus R

package, differentially-expressed genes related to fatty acid

disorder were clustered based on Euclidean distance. The

maximum number of clusters was set to five, and the clustering

method toK-means, in order tofind a stable and reliable subgroup

classification. The results yielded two subtypes, and the

differential gene expression between two subtypes was analyzed

(screening condition of the difference was: absolute value of

log2FC > 1, P< 0.05).
2.5 Construction of prognostic
risk model

The genes differentially-expressed between the subtypes

were analyzed using univariate Cox regression analysis to

identify genes related to the prognosis of subtypes. For this

purpose, LASSO penalty Cox regression analysis was used via

the Rglmnet package to construct a prognostic model to

minimize the risk of overfitting. Patient scores were calculated

according to the expression levels of the pathway genes and their

corresponding regression coefficients.

Score =o
n

i=0
bi ∗ xi
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bi: weight coefficient of each gene; ci: expression of each

gene (FPKM). Patients were divided into high and low score

groups based on the median score, and the survminer R package

was used for survival analysis of OS based on high and

low scores.
2.6 Evaluation of immune cell filtration

The CIBERSORT algorithm provided by the IOBR R

package was used to calculate the scores of immune cells in 22

types of tumor microenvironments using the default parameters.

Based on the gene expression profile in the TCGA-STAD data,

the proportion of immune cell infiltration was calculated.
2.7 Single-cell dataset analysis

The Seurat R package, which is single-cell transcriptome

analysis tool, was used to analyze the single-cell dataset. The

analysis workflow mainly included the steps of constructing

objects, data standardization, data dimensionality reduction,

clustering, and searching for marker genes. Then, the SingleR

R packagewas used to annotate the clustering results obtained

from Seurat.
2.8 Drug sensitivity

Using the pRRophetic R package and the expression data of

model genes, the sensitivity (IC50 value) of 138 drugs in the GDSC

database was predicted, and the sensitivity of STAD patients to drug

therapy was evaluated based on the predicted IC50 values.
2.9 Statistical analysis

The R program (version 4.1.2) was used for statistical analysis.

The survival curve was generated using the Kaplan-Meier method,

and the differences between groups were compared using the log-

rank test. A Cox regression model was used for univariate and

multivariate analyses combined with other clinical features to

determine the independent prognostic value of the risk score. The

R package timeROC was used for time-dependent ROC curve

analysis to evaluate the predictive value of prognostic

characteristics. ROC analysis was used to evaluate the sensitivity

and specificity of the score in predicting prognosis, and the area

under the ROC curve (AUC) was considered to judge prognosis.

Statistical significance was set at p< 0.05. The same formula is used

to calculate verification scores.
frontiersin.org

https://cancergenome.nih.gov/
https://doi.org/10.3389/fimmu.2022.1065927
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2022.1065927
3 Results

3.1 Differential expression of fatty acid
related genes in tumor tissues and their
biological functions

The study population included 373 STADand 32 paracancerous

tissue samples obtained from the TCGA-STAD cohort.|Using

log2FC | > 0.585, BH-corrected, and P< 0.05 as differential

expression criteria, 3857 genes were found to be differentially-

expressed in gastric cancer and paracancerous tissues, with 2801

and 1056 up- and down-regulated genes, respectively. A total of 78

fatty acid-related differentially-expressed genes were identified by

determining the intersection of these genes with the Geneset, A

volcano map and a differentially-expressed fatty acid metabolism-

relatedgene thermogram is shown inFigures 1A,B.ThePPInetwork

showed that HSP90AA1, EPHX2, ACOX2, ACADM, ACLY, and

other genes had high connectivity in the network (Figure 1C). The

correlation between the expression levels of differentially-expressed

fatty acid metabolism-related genes was also calculated. Fatty acid

metabolism-related genes were found to be classified into three

groups (Figure 1D). A functional GO enrichment t was found for

oxidoreductase activity, actingon theCH-OHgroupofdonors,NAD

or NADP as acceptor, acting on paired donors and binding or

reducingoxygenmolecules,CH-CHgroupactingondonor, andeasy

to bind iron ions. These enzymes participate in long-chain fatty acid

metabolism, fatty acid biosynthesis, eicosane-like metabolism, olefin

metabolism, and unsaturated fatty acidmetabolism (Figures 1E–H).

The clinical feature analysis revealed that there were significant

differences in the expression of some fatty acid metabolism-related

genes between different age, sex, stage, and grade groups (Figures

S1A-D).
3.2 Determination of molecular
subtypes based on fatty acid
metabolism related genes

Subtyping can beused to reveal distinct states of the tumor, and

thus help implement personalized treatment strategies. Cancer

samples from the TCGA gastric cancer data were subjected to

consistency clustering based on expression patterns of 78 different

fatty acid metabolism-related genes to identify groups of samples

with similar expression patterns. According to the cumulative

distribution function and incremental region map of consistent

clustering, the change in the CDF curve for the case of two clusters

(k = 2, clusters 1 and 2) was found to be close to smooth.Hence, the

samples were divided into two subtypes (Figures 2A-C).We found

that there were significant differences in survival time between

patients with different fatty acid metabolism subtypes, and the

prognosis of patients in cluster 2 was worse than that of cluster 1

patients (Figure 2D). In addition, the scores of angiogenesis-related

pathways in the HALLMARK and GOBP gene sets in theMSigDB
Frontiers in Immunology 04
database were calculated using SSGSEA. The results showed

significant differences between the scores of all pathways related

to angiogenesis between the fatty acid metabolism related

molecular subtypes (Figure 2E). A large number of blood vessels

(Figure 2F) were found in gastric cancer tissues by HE staining.

Immune cell infiltrationwas calculated usingCIBERSORT, and the

immune score, matrix score, and tumor purity (Figure 2G) were

calculated using ESTIMATE algorithms. The heatmap of immune

cell infiltration in subtypes showed that there were significant

differences in Mast_cells_activated, Dendritic_cells_resting,

Macrophages_M0, etc. Inter-subtype immune scores and matrix

scores (Figure 2H).
3.3 Construction of a fatty acid
metabolism-related prognostic signature

We have identified 515 genes differentially-expressed between

the two subtypes under the screening condition of | log2FC | > 1 dBH

correction p< 0.05. A total of 454 and 61 genes were up- and down-

regulated, respectively. Univariate Cox regression analysis showed

that 146 genes were associated with OS. KM analysis revealed eight

genes (eight genes screened after LASSO-Cox regression analysis)

(Figure S2). The signature (Figures 3A-C) composed of eight genes,

and was determined based on the optimal value of l. The regression
coefficient of each gene is shown in Table S1.
3.4 Verification of prognostic efficacy
of FARS based on an analysis of
training and external independent
verification sets

The score of eachpatientwas calculated according to the formula

and the patients were divided into high score group and low score

group by the median score. KM curve showed that the survival

probability of patients with high score was significantly lower than

that of patients with low score (Figures 3D, E). To evaluate the

predictive efficiency of prognostic models in 1 -, 2 -, and 3-year

survival rates, we performed a time-related ROC analysis. The area

under the ROC curve (AUC) is 0.627 at 1 year, 0.643 at 2 years and

0.631 at 3 years, indicating that the prediction effect of the model is

good (Figure 3F).Univariate andmultivariateCoxanalysiswereused

todeterminewhetherScorewasan independentprognostic factor for

OS. In univariate Cox analysis, Score obtained from TCGA data

queue was significantly correlated with OS. After correcting other

confounding factors, multivariate Cox analysis showed that Score

was still an independent predictor of OS (Figure 3G).

In order to verify the stability of the model, the Score of each

sample is also calculated inGSE13861 dataset andGSE26899 dataset

based on the same algorithm. According to the median of Score,

gastric cancer samples were divided into high score group and low

score group. Consistent with the results obtained by the TCGA
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A B

D
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G H
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FIGURE 1

Expression disturbance of fatty acid-related genes in tumors (A) Volcanogram of fatty acid related genes differentially expressed in gastric cancer
and paracancerous tissues. (B) Heat map of differentially expressed fatty acid-related genes. (C) Based on the differentially expressed fatty acid
related genes, the PPI network was constructed by using STRING database. (D) Expression correlation analysis of genes related to differential
fatty acids. (E-H) GO functional enrichment analysis of genes related to differential fatty acids.
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FIGURE 2

Molecular subtype recognition of fatty acid related genes (A, B) TCGA gastric cancer samples were analyzed by consistent cluster analysis based
on 78 fatty acid related genes. (C) The consistency matrix heat map when the number of clusters is 2. (D) Survival curve of patients with fatty
acid subtypes. (E) The scores of ANGIOGENESIS-related pathways in HALLMARK,GOBP gene set in MSigDB database were calculated by
SSGSEA. (F) HE staining of gastric cancer tissue. (G) Using CIBERSORT to calculate the heat map of immune cell infiltration. (H) ESTIMATE was
used to calculate immune score, matrix score and tumor purity. ns means p > 0.05, *p<=0.05, **p<=0.01, ***p<=0.001 and ****p<=0.0001.
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FIGURE 3

Construction of hierarchical scoring system for Fatty Acid related prognosis (A) LASSO coefficient profiles of eight genes. (B) Tuning parameter
lambda (l) selected by cross-validation error curve. (C) Eight genes determined based on the optimal value of l (D) The relationship between
survival status/risk score of TCGA cohort, mRNA expression heat map of 8 genes and survival time (days)/risk score. (E) Kaplan-Meier OS
analysis of gastric cancer patients in low-risk and high-risk groups (F) The time-dependent ROC curve of TCGA training data set OS. AUC was
evaluated at 1 year, 3 years and 5 years, respectively. p value was calculated using the log-rank test. p< 0.001. (G) Univariate and multivariate
Cox analysis were used to determine whether Score was an independent prognostic factor for OS. (H) GSE13861 dataset was used to analyze
the relationship between survival status/risk score, mRNA expression heat map of 8 genes and survival time (days)/risk score. (I) Kaplan-Meier
OS analysis of gastric cancer patients in low-risk and high-risk groups based on GSE13861 data set (J) Time-dependent ROC curve of GSE13861
dataset OS. AUC was evaluated at 1 year, 3 years and 5 years, respectively. P value was calculated using the log-rank test. P< 0.001. (K) The
GSE13861 dataset uses univariate and multivariate Cox analysis to determine whether Score is an independent prognostic factor for OS. (L) The
relationship between survival status/risk score, mRNA expression heat map of 8 genes and survival time (days)/risk score was analyzed by
GSE26899 dataset. (M) Kaplan-Meier OS analysis of gastric cancer patients in low-risk and high-risk groups based on GSE26899 data set
(N) Time-dependent ROC curve of GSE26899 dataset OS. AUC was evaluated at 1 year, 3 years and 5 years, respectively. P value was calculated
using the log-rank test. P< 0.001. (O) The GSE26899 dataset uses univariate and multivariate Cox analysis to determine whether Score is an
independent prognostic factor for OS.
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cohort, patients with high scores had a lower probability of survival

than patients with low scores (Figures 3H, I, L, M). In addition ,the

prognostic model revealed that the 1- year AUC was 0.695, 2-year

AUC was 0.667, 3-year AUC was 0.685 in the GSE13861 dataset

(Figure 3J),and 1-yearAUCwas 0.705, 2-yearAUCwas 0.676, and3-

year AUC was 0.658 in the GSE26899 dataset (Figure 3N). In the

validation set, univariate and multivariate Cox analyses were also

used to determine whether Score was an independent prognostic

factor forOS.The results showthat inunivariateCoxanalysis, there is

a significant correlationbetweenScore andOS.After correctingother

confounding factors, multivariate Cox analysis shows that Score is

still an independent predictor of OS (Figures 3K, O).
3.5 FARS is related to the clinical
characteristics of tumor

We found that the score of patients with Helicobacter pylori

infection was significantly higher than that of patients without

infection and significant differences were also detected between

patients with first-, second-, and third-grade cancer: higher grades

corresponded to higher scores and poorer prognosis (Figure 4A).

Immune cell infiltration as calculated by the CIBERSORT algorithm

revealed that many immune cell types, such as Mast_cells_activated,

Dendritic_cells_resting, and Macrophages_M0, are significantly

correlated with the FARS score (Figure 4B). Figure 4C shows the

difference in gene expression of immune checkpoints in the high- and

low-risk groups of scores, in which the expression leves of CD276,

CTLA4, PDCD1, and PDCD1LG2 were significantly higher in the

high score group. This high expression level helps gastric cancer cells

escape immune surveillance and promote immune escape. Based on

the calculation of the Pearson correlation between the fatty acid risk

score (Score) and the identified gene signature score, we detected

several gene sets related to immunity and EMT from the literature,

and then performed mapping between the SSGSEA score and the

fatty acid risk score (Score) of these samples. We found a significant

correlation between the FRAS score and EMT2, EMT3, and

PanFTBRS, which promote the EMT process in gastric cancer cells

(Figure 4D). We further evaluated the relationship between fatty acid

risk score and chemotherapeutic drug resistance, and also calculated

the difference in chemotherapeutic drug resistance between

highFARS and lowFARS using the pRRophetic package. The IC50

values of bortezomib, elesclomol, and nilotinib were found to be

significantly different between highFARS and lowFARS, and with

stronger chemotherapeutic effects (Figure 4E) in the low-score group.
3.6 Single-cell dataset analysis

Using the STAD samples in the single-cell data set

downloaded from the GEO database (GSE142750), the cells

were grouped and annotated based on an t-SNE analysis. A
Frontiers in Immunology 08
total of 107597 cells (33694 features) were grouped into 13

clusters, and finally annotated as two large cell groups

(Figure 5A). Then, the union of the top 5 marker genes of in

each cluster was used to draw a heat map to show the differential

expression of each marker gene in each subtype. No genes

included in the constructed model (model genes) was detected

(Figure 5B) among these top 5 marker genes.

Feature plot visualization was used to show the expression

and distribution of model genes in the cell population. The

results showed that RGS2 and DUSP1 were significantly

expressed in the cell population, and three model genes,

CXCR4, SLCO2A1, and FNDC1, were not in the cluster,

indicating that the two model genes that were significantly

expressed could be used as marker genes (Figure 5C) of cancer.
3.7 Biological significance of RGS2 in
gastric cancer

We found that the high expression of RGS2 in gastric cancer

was significantly correlated with a shorter survival time

(Figure 6A). The TME score showed that the high expression

of RGS2 was positively correlated with the stomalscore,

Immunescore, and Estimatescore, which indicated a worse

immune response (Figure 6B). Correlation analysis of immune

cell infiltration showed that the expression of 10 types of

immune cells in 22 types of immune cells was correlated with

RGS2 expression (Figure 6C). We also analyzed the

clinicopathological features of patients with high and low

RGS2 expression, including age, sex, survival, grade grade, T

stage, and N stage. The figure shows that there is no statistical

difference in age and sex between the high and low RGS2

expression groups. High RGS2 expression was found to be

closely related to poor prognosis. This finding shows that high

expression of RGS2 represents a higher degree of malignancy

based on clinicopathological features (Figures 6D, E). We also

analyzed the relationship between expression levels of RGS2 and

immune checkpoints (Figure 6F). We found that the lower

tumor mutation load in the group with high expression of

RGS2 increased the difficulty of receiving the benefit of

immune checkpoint inhibitors for patients (Figure 6G). We

found that the TIDE score of the RGS2 high expression group

was significantly higher than that of low expression group

(Figure 6H). This also indicates that high RGS2 expression is

more likely to lead to immune dysfunction and immune

rejection. We have determined the mRNA and protein

expression levels of RGS2 in GES-1 gastric mucosal cells and

AGS, HGC-27, MKN-1, and MKN-45 gastric cancer cell lines.

Accordingly, the expression of RGS2 in gastric cancer cell line

was found to be higher than that of GES-1 (Figure 6I) at both

mRNA level and protein level. Immunofluorescence staining
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showed that RGS2 was highly expressed in gastric cancer cell

lines AGS and MKN45, and most of them were located in the

cytoplasm (Figure 6J). In order to verify the expression of RGS2

in gastric cancer, we found that RGS2 was expressed to varying

degrees in different clinical stages of gastric cancer by

immunohistochemical staining, and with the increase of

staging, the more RGS2 deposition (Figure 6K).
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3.8 Biological significance of RGS2 in
other cancer types

A pan-cancer analysis has shown that RGS2 is expressed in

many tumor types (Figures 7A, B).We found that the expression of

RGS2 in the overall survival time (OS) was significantly correlated

with the survival rates of BLAC, KIRC, LIHC, SKCM, STAD,
A B

D

E

C

FIGURE 4

Relationship between risk scoring system and immune infiltration and immunotherapy (A) Analysis of correlation between risk score and clinical
characteristics of patients with STAD (B) CIBERSORT calculated the relationship between immune cell infiltration and risk score (C) The
difference of gene expression in immune checkpoint between high and low score groups. (D) Pearson analysis of SSGSEA score and fatty acid
risk score. (E) Correlation analysis between fatty acid risk score and chemotherapy resistance. *p<=0.05, ***p<=0.001, ****p<=0.0001, ns
means p > 0.05.
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FIGURE 5

Single cell data set analysis (A) T-SNE clustering and cell group annotation based on STAD samples from single-cell data sets. (B) Draw a heat
map of the Marker gene of TOP5 in each Cluster. (C) Display the expression and distribution of model genes in the cell population by
FeaturePlot visualization.
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FIGURE 6

Biological significance of RGS2 in gastric cancer and expression level of gastric cancer cell line (A) The relationship between the high and low
expression of RGS2 in gastric cancer and prognosis (B) The relationship between the high and low expression of RGS2 and the score of TME
(C) The correlation between the high and low expression of RGS2 and immune cell infiltration. (D, E) Analysis of the correlation between the
high and low expression of RGS2 and the clinicopathological features of patients (F) The relationship between the high and low expression of
RGS2 and immune checkpoints (G) The relationship between the high and low expression of RGS2 and TMB score (H) The relationship between
high and low expression of RGS2 and TIDE score (I) Expression at mRNA level of RGS2 in gastric cancer cell lines AGS, HGC27, MKN-1, MKN45
and normal gastric mucosal cells GES-1 (J) Expression and localization of RGS2 in gastric cancer cell lines AGS and MKN45 (K) Expression of
RGS2 in different clinical stages of gastric cancer. ***p<=0.001.
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THCA, and THYM (Figure 7C). There was also no significant

difference in the expression of RGS2 between cancer and disease-

free survival (DFS) groups (Figure 7D). There was a correlation

between disease-specific survival and ACC, BLCA, KIRC, PRAD,

SKCM, STAD, and THYM (Figure 7E), and also a significant

correlation betweenprogression-free survival andACC,KIRC, and

THYM (Figure 7F). We analyzed the correlation between RGS2,

TMB, and MSI, and found that it was significantly correlated with

TGCT, STAD, PAAD, COAD, and CESC, suggesting that it can be

used as a basis of detection for immunotherapy of the above tumors
Frontiers in Immunology 12
(Figures 7G, H). Finally, we found that RGS2was closely related to

the level of immune cell infiltration inmost tumors, suggesting that

RGS2 participates in the regulation of the tumor immune response

in the tumor microenvironment (Figure 7I).
4 Discussion

Rapid proliferation and insufficient angiogenesis of tumor

cells lead to hypoxia, low pH levels, and depletion of nutrients in
A
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FIGURE 7

Biological significance of RGS2 in pan-cancer (A) RGS2 expression level in multiple tumors (B) Correlation analysis between RGS2 expression
level and tumor stage (C) Relationship between RGS2 expression level and OS (D) Relationship between RGS2 expression level and disease-free
survival (E) Relationship between RGS2 expression level and Disease specific survival (F) Relationship between RGS2 expression level and
Progression free survival (G) Correlation analysis between RGS2 and Tumor mutation burden (TMB) (H) Analysis of the correlation between
RGS2 and Microsatellite instability (MSI) (I) The relationship between RGS2 and immune cell infiltration. *p<=0.05, **p<=0.01,***p<=0.001.
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the tumor microenvironment (15, 16). Therefore, tumor cells

show unique metabolic characteristics that are distinct from

those of normal cells. Tumor cells deal with a variety of adverse

microenvironments by reprogramming their metabolism, and

blocking carcinogenic signals to maintain their proliferating

state and survival. Abnormal energy metabolism is thus a

hallmark of cancer, which indicates that the metabolism of

carbohydrates, lipids, and amino acids in tumor cells is

significantly different from that in normal cells. Fatty acid

metabolism was previous shown to maintain tumorigenesis,

disease progression, and therapeutic resistance by enhancing

lipid synthesis, storage, and decomposition (17, 18). Recently,

increasing attention has been paid to the role of membrane fatty

acids (with respect to e.g. the ratio of saturated fatty acids,

monounsaturated fatty acids, and polyunsaturated fatty acids) in

promoting cell survival, limiting lipotoxicity, and iron-

dependent cell death (19–21). Here, eight fatty acid

metabolism-related genes related to gastric cancer prognosis

were identified based on an analysis of genomic information

of 373 STAD samples and 32 paracancerous tissue samples using

univariate COX regression, clustering, and principal component

analyses. A model called “FRAS” was constructed, and the score

calculated using this model (FRAS score) was found to be closely

related to increased immune cell infiltration, genomic instability,

immune escape and sensitivity of immune checkpoint inhibitor

(ICIs). This fatty acid metabolism-related model was

comprehensively evaluated as well. The fatty acid prognostic

risk score model was found to be able to independently predict

the prognosis of patients with gastric cancer, and effectively

distinguish the sensitivity of patients to chemotherapeutic drugs.

In addition, the relationship between the prognostic risk score

model and characteristics of TME cell infiltration was studied.

The prognostic risk score model was found to identify patients

with gastric cancer who are suitable for anti-CTLA4 antibody

immunotherapy sucessfully, and thereby also indicated that fatty

acid metabolism is crucial for shaping individual TME

characteristics. These findings may provide a new perspective

for exploring the mechanisms of fatty acid metabolism and

treatment of gastric cancer.

Rapidly proliferating tumor cells show a high affinity for

lipids and cholesterol by increasing exogenous lipid uptake, or

by overactivating their biosynthetic pathways (22). Therefore,

fatty acid synthesis (FAS) inhibitors, especially fatty acid

synthase (FASN), have been the focus of cancer treatment

studies (23–25). RGS2, DUSP1, CXCR4, FNDC1, SNCG,

SLCO2A1, APOD, and GPX38 were selected to construct this

risk model. This model can predict the prognosis of patients with

gastric cancer more accurately that a single clinical variable,

which may be helpful for clinicians in making clinical decisions.

The model was used to classify patients with stage G2/G3,

patients aged > 65 years and< 65 years, and patients with

Helicobacter pylori infection into two groups. This was found

to have a significant impact on prognosis, as it confers the
Frontiers in Immunology 13
advantage of using genetic characteristics in predicting clinical

grouping and prognosis.

Gastric cancer patients also develop drug resistance

eventually, even though 60% of them are sensitive to

chemotherapy. This leads to a 5-year survival rate of less than

10% (26–28). Therefore, understanding the mechanism of

chemotherapy resistance in gastric cancer cells is important for

improving the prognosis and survival rate. Previous studies have

revealed that some cancer cells require fatty acid oxidation to

provide energy that is required to maintain the stem cell state.

Studies on resistance of breast tumor stem cells (BCSCs) to

chemotherapy have found that JAK/STAT3 signaling systems

help breast cancer cells maintain their stem cell status, and

resistance to chemotherapy by promoting fatty acid oxidation

(29, 30). Animal experiments have further confirmed that drugs

that inhibit the JAK/STAT3 signaling system can greatly reduce

the population of stem cells in breast cancer, and improve the

efficiency of chemotherapy (31, 32). Here, we further analyzed

the relationship between the develop fatty acid metabolism-

related risk score and chemotherapy resistance in gastric cancer

cells, and identified significant differences in sensitivity to

chemotherapeutic drugs between the high- and low-score

groups. Specifically, bortezomib, elesclomol, and nilotinib

showed better therapeutic effects in the low-score groups.

Targeting of the fatty acid metabolism may thus be a new

strategy for reversing drug resistance in gastric cancer cells.

The G protein signal transduction regulatory factor (RGS)

gene family, which includes negative regulators of G protein-

coupled receptors, are potential drug targets for the treatment of

malignant tumors (33, 34). RGS is a large family of genes with

multiple functions (35–37). These proteins share an RGS

domain with a conserved core that includes 130 amino acid

residues, which can directly bind to the activated G-a subunit to

inactivate GTP, and thus help negatively regulate GPCR-related

signaling pathways (38–40). RGS gene has been proved to be

closely related to the occurrence and development of many

systemic diseases and cancers (41–43). Here, we analyzed the

role of RGS2, in the tumor microenvironment in gastric cancer,

and also in other cancer types for the first time. The results

showed that the expression of RGS2 was correlated with

interstitial and immune scores. Therefore, we speculate that

RGS2 participates in the occurrence and development of gastric

cancer by affecting the migration of immune cells. Moreover, we

also found that the TMB score of the RGS2 high-expression

group was lower than that of the low-expression group, and the

TIDE score was higher than that of the low-expression group.

This indicates that it is more difficult for gastric cancer patients

to benefit from immunotherapy, and have a worse prognosis.

High expression levels of RGS2 were detected by Western blot

analysis, which indicates a role of RGS2 in the progression of

gastric cancer.In gastric cancer, the deposition of RGS2

increased with the increase of clinical stage. Therefore, in the

microenvironment of gastric cancer, RGS2 may predict a poor
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prognosis. RGS2 expression in various tumor types was also

found to be significantly correlated with survival, clinical stage,

immune score, TMB score, and MSI. Therefore, RGS2 could be

used as a new tumor marker as well.

However, our study has suffered from some limitations as

well. For example, further research is still needed to reveal how

fatty acid-related genes affect immune cell infiltration and

genomic instability in gastric cancer. In addition, as this study

mainly used online datasets for analysis, more clinical data

supplement is necessary.
5 Conclusion

In conclusion, we analyzed here the expression of fatty acid

metabolism-related genes in gastric cancer, and constructed a

model based on fatty acidification to calculate a disease risk score

for gastric cancer. Our analysis revealed that FARS score in

gastric cancer is closely related to tumor mutation load, genomic

instability, ICIs treatment response, immune cell infiltration,

and immune escape. This score provides with a new tool for the

diagnosis and treatment of gastric cancer, and the genes related

to FARS may become new tumor markers or therapeutic targets.

In general, the FARS score developed in this study can be used as

a potential molecular classification tool for gastric cancer, and

thus help identify immune infiltration and genomic instability

patterns in gastric cancer. FARS can also be used to evaluate

response of patients to ICIs treatment.
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