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Revealing plants’ tolerance and transport genes to heavy metal stress play an

important role in exploring the potential of phytoremediation. Taking the heavy

metal lead (Pb) hyperaccumulator plant Pogonatherum crinitum (Thunb.)

Kunth as the research object, a hydroponic simulation stress experiment was

set up to determine the physiological indicators such as antioxidant enzymes

and non-enzymatic antioxidants in the roots of P. crinitum under different Pb

concentrations (0, 300, 500, 1000, 2000mg·L-1). RNA-Seq was performed, the

Unigenes obtained by transcriptome sequencing were enriched and annotated

by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) databases, and the differential expression genes (DEGs) of root were

screened and verified by quantitative real-time polymerase chain reaction

(qRT-PCR). The results are as follows: with the increase of Pb concentration,

superoxide dismutase (SOD), catalase (CAT), and ascorbic acid (AsA) content

increased. Peroxidase (POD), malondialdehyde (MDA), and ascorbic acid–

glutathione (AsA-GSH) cycles showed low promotion with high inhibition. A

total of 38.21 Gb of bases were obtained by transcriptome sequencing, and the

base quality of each sample reached Q20 and Q30, accounting for 90%,

making the sequencing results reliable. Combined with transcriptome

sequencing, functional annotation, and qRT-PCR validation results, 17 root

Pb-tolerant genes of P. crinitum were screened out, which were related to

antioxidation, transportation, and transcription functions. Moreover, qRT-PCR

verification results under different Pb stress concentrations were consistent

with the transcriptome sequencing results and changes in physiological

indicators. In brief, the root of P. crinitum can adapt to the Pb stress

environment by up-regulating the expression of related genes to regulate

the physiological characteristics.

KEYWORDS

hyperaccumulator, Pogonatherum crinitum, Pb stress, transcriptomics, Pb resistance
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1 Introduction

Heavy metal pollution is one of the major problems in global

soil pollution, posing a threat to the growth of plants, sustainable

development, and human health (Huang and Luo, 2022).

Therefore, the problem of heavy metal pollution in soil has

attracted the attention of many scholars worldwide.

Phytoremediation is a soil pollution remediation technology

that integrates the advantages of low cost, high efficiency, and

large-scale use with a minimal negative impact on soil structure

(Jiang et al., 2019). The ability of plants to enrich heavy metals in

soil is the key to phytoremediation technology (Ma et al., 2021).

Therefore, studying hyperaccumulators and their physiological

responses to heavy metal stress has become a hot topic.

However, the wild-type hyperaccumulators found in the

literature still have shortcomings regarding environmental

impact, growth cycle, and response to species to heavy

metals (Chen, 2008); therefore, the research is still in the

exploratory stage.

Pogonatherum crinitum (Thunb.) Kunth is a Pb

hyperaccumulator plant with large biomass, which can grow

normally under Pb stress with a concentration of upto 20,000

mg·kg-1 (Hou et al., 2019). Under Pb stress, P. crinitum can

improve the total antioxidant capacity by increasing the content

of osmotic regulators (Han et al., 2018) and regulating the

ascorbic acid–glutathione (AsA-GSH) cycle (Han et al., 2018)

to adapt to the Pb stress environment. It shows that P. crinitum

resists heavy metal stress in various ways; however, the

molecular biology strategy of its response to Pb stress is

still unclear.

Various studies have shown that plants may respond to heavy

metal stress by regulating genes related to antioxidants, transporters,

signal transduction, and transcription factors (Auguy et al., 2013).
Abbreviations: Ascorbic acid, ASA; Ascorbic acid–glutathione, ASA-GSH;

Aseorbate peroxidase, APX; ATP-binding cassette, ABC; Catalase, CAT;

Cluster of orthologous groups of proteins, COG; Coat protein II, COP II;

Dehydroascorbate, DHA; Dehydroascorbate reductase, DHAR; Differential

expression genes, DEGs; False discovery rate, FDR; Gene ontology, GO;

Glutathione, GSH; Glutathione oxidized, GSSG; Glutathione peroxidase,

GSH-Px; Glutathione reductase, GR; Kyoto encyclopedia of genes and

genomes, KEGG; Malondialdehyde, MDA; Metallothioneins, MTs;

Monodehydroascorbate, M-DHA; Monodehydroascorbate reductase, M-

DHAR; National center for biotechnology information, NCBI; Natural

resistance-associated macrophage proteins, Nramp; Nicotinamide adenine

dinucleotide, NAD+; Nicotinamide adenine dinucleotide phosphate,

NADPH; Non-redundant protein sequence, Nr; Peroxidase, POD;

Peroxisomal targeting signal 1, PTS1; Phytochelatins, PCs; Quantitative

real-time polymerase chain reaction, qRT-PCR, Reactive oxygen species,

ROS; Superoxide dismutase, SOD; v-myb avian myeloblastosis viral

oncogene homolog, MYB; Water holding capacity, WHC; ZRT, IRT-like

protein, ZIP.
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Plants such as Trigonella foenum-graecum L. (Alaraidh et al., 2018),

Medicago Sativa L. (Lou et al., 2018), and Brassica juncea L. (Singh

et al., 2020) reduce the toxic effects of heavy metals on plants by

regulating the expression of antioxidant enzymes and other related

genes to varying degrees. Sun et al. (2019) conducted transcriptome

sequencing, enrichment analysis, and verification of the Cadmium

(Cd) hyperaccumulator plant Brassica campestris L. They found

that the up-regulation of key genes in the glutathione (GSH)

metabolic pathway is crucial in improving the plant’s resistance

to Cd stress. Salvinia minima, a Pb hyperaccumulator plant,

increase the glutamine synthetase SmGS gene’s expression level in

plants under stress. The subsequent increase in GSH enzyme

activity significantly prevents plants from being poisoned by Pb

(Neyi et al., 2012). Another study found that Pb induced the

FeABCC1 gene to be significantly expressed in the

hyperaccumulator plant Fagopyrum esculentum Moench and the

transformed yeast showed that tolerance to Pb in plants increased

significantly with gene expression and accumulated more Pb

(Mizuno et al., 2010).

Rini and Hidayati (2021) found that Saccharum spontaneum

L. stimulated root growth by up-regulating phytochelatins (PCs)

gene to adapt to the stress environment under Pb stress. The

hyperaccumulator plant Sedum alfredii Hance has a strong

ability to enrich a variety of heavy metals. In addition,

transporter gene SaPCR2 (Ge et al., 2022) and the member of

the heat shock transcription factor gene family SaHsfs (Chen

et al., 2018) were overexpressed under Pb stress, and these genes

may play a role in the detoxification to Pb. The molecular

mechanism of Pb tolerance in the hyperaccumulator plant P.

crinitum is still unclear. Almost no information about genes and

their action mechanisms in response to Pb stress leaves a big gap.

Therefore this study aims to investigate the response strategies of

P. crinitum at the molecular level under different Pb stress levels.

According to the research objectives, a hydroponic simulation

stress experiment with varying concentrations of Pb was used for

this study. This study will provide a basis for further revealing

the intrinsic mechanism of plant response to Pb stress.
2 Materials and methods

2.1 Experimental material and design

The tested P. crinitum was cultivated with seeds. The seeds

were collected from the lead-zinc mine in Sanming, Fujian

Province. The seeds were spread evenly on the seedbed in the

greenhouse to cultivate the plants. Watering was done regularly

to keep the soil water holding capacity (WHC) at about 70% for

the experiment. P. crinitum plants of consistent growth were

selected, cleaned in the root system, and transplanted into a

hydroponic device with a 1/8 Hoagland nutrient solution.

Fifteen plants per pot were transplanted. The Pb stress test
frontiersin.org
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was initiated after cultivating the plants in the nutrient solution

for three days.

Two experiments were set up: one group at 1000 mg·L-1 Pb

stress treatment (indicated by TS in the text) and a control

experiment without Pb stress (indicated by CS in the text). The

other group was set up with different concentrations of Pb stress

treatment :0, 300, 500, 1000, 2000 mg·L-1 (represented by CK,

Pb300, Pb500, Pb1000, and Pb2000 in the text). Using the 60

mg·L-1 Pb solution prepared by (CH3COOH)2Pb, the

corresponding Pb solution is added to the culture device with

the nutrient solution according to the designed stress

concentrations. The nutrient solution components are shown

in supplementary material; the concentration of KH2PO4 was

reduced from 0.136 g·L-1 in the original formula to 0.68 mg·L-1

to avoid precipitation (Table S1).

After repeated washing with deionized water, the roots of the

P. crinitum were moved into the stress solution of different Pb

concentrations and placed in an artificially controlled incubator

for the experiment (conditions were 25°C, 75% humidity, 6000

Lx light intensity, and day and night light time was (16/8) h·d-1),

and the stress time was 7 d. To ensure that P. crinitum can grow

normally under hydroponic conditions, hydroponic pots were

aerated twice every morning and evening for 10 min and

supplemented with the nutrient solution without Pb to the

original nutrient solution scale. Three repetitions were used for

each treatment.

After the stress experiment, harvested fresh P. crinitum

plants were washed repeatedly with deionized water and dried

adequately with filter paper (It takes about 52 d from seed to

harvest fresh P. crinitum sample, of which 45 d was required for

plants grown from seed to 15 cm and 7 d for hydroponic stress

experiment). The fresh root samples were quick-frozen in liquid

nitrogen and placed in a -80°C refrigerator for later use. The CS

and TS-treated samples were used for high-throughput

transcriptome sequencing. The samples treated with CK,

Pb300, Pb500, Pb1000 and Pb2000 were used for physiological

indicators, RNA extraction and fluorescence quantification. In

addition, each treatment was repeated three times.
2.2 Experiment methods

2.2.1 Physiological indexes measurement
To prepare the enzymatic solution, 0.2 g of fresh roots were

weighed and ground into a homogenate in a mortar with liquid

nitrogen; then, put into a 4 mL centrifuge tube; added 1 mL of

0.05 mol·L-1 phosphate buffer at pH 7.8, and then fix the volume

to 4 mL. The solution was mixed well with a vortexer, then

centrifuged in a refrigerated high-speed centrifuge at 4°C with

10,000 rpm for 10 min. The supernatant was taken and put in

the 4°C refrigerators for later use. The activities of superoxide

dismutase (SOD), catalase (CAT), peroxidase (POD) and

malondialdehyde (MDA) were determined by nitrogen blue
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tetrazolium, ultraviolet absorption, guaiacol, and thiobarbituric

acid method, respectively (Zou, 1995). For GSH and ascorbic

acid (ASA) determination methods, we used methods

mentioned by Ma and Cheng (2003) and Tanaka et al. (1985),

respectively. The APX activity was consistent with Nakano and

Asada (1981).

2.2.2 RNA extraction, sequencing,
and assembly

The root RNA was extracted using the RNA prep Pure

polysaccharide and polyphenol plant total RNA extraction kit

produced by TIANGEN. The concentration and purity of RNA

were detected by ultra-micro spectrophotometer (DeNovix

Company, DS-11+Spectrophotometer, the concentration

should be greater than 50 ng·ml-1). OD values were between

1.8-2.0 to ensure the purity of RNA). 1% agarose gel was

prepared; electrophoresis was for about 20 min. The gel was

placed on an automatic gel imager to observe the sample’s

integrity. After quality inspection of the obtained RNA, a

library was established and sequenced using the Illumina Hi

Seq 4000 sequencing platform. The resulting clean reads were

assembled and evaluated using Trinity (Grabherr et al., 2011).

RSEM quantifies the assembled Unigenes.
2.2.3 Functional annotation of Unigenes and
differential expression genes analysis

Assembled Unigenes were aligned with non-redundant

protein sequence (Nr), a cluster of orthologous groups of

proteins (COG), gene ontology (GO), Kyoto encyclopedia of

genes and genomes (KEGG), and SwissProt databases and highly

similar proteins to annotate the IDs of the Unigenes. The reads

count data in the gene expression level were analyzed using

DESeq2 to obtain differential genes (Love et al., 2014). Genes

with false discovery rate (FDR) < 0.05 and |log2FC| >1 were

considered significantly different expression genes. The Blast2go

software was used to compare the significantly different

Unigenes with the KEGG and GO databases for annotation

and enrichment analysis and combined with the functional

annotation and pathway enrichment results to screen

candidate genes related to Pb resistance.
2.2.4 Reverse transcription and quantitative
real-time PCR

The cDNA was obtained by reverse transcription using the

Uni All-in-one First-Strand cDNA Synthesis SuperMix for

qPCR Reverse Transcription Kit produced by Transgen. The

selected primers for Pb-resistant genes were designed using the

premier designing tools in National Center for Biotechnology

Information (NCBI). Then DNAMAN 8, PCR amplification,

and electrophoresis verified the stability of each primer. The

primers of the Pb-tolerant gene in the roots of P. crinitum are

shown in the supplementary materials (Table S2). qRT-PCR was
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performed using the QuanStudio3 system fluorescence

quantitative PCR instrument of Fuzhou Dobiotech. The

reaction system was: 0.4 mL of upstream and downstream

primers (10 mM), 1 mL of cDNA, 10 mL of 2×PerfectStart

Green qPCR SuperMix, and Nuclease-free Water 8.2 mL for a

total of 20 mL. The reaction process was 94°C for 30 s; 94°C for 5

s; 60°C for 30 s, a total of 40 cycles. Each sample has three

biological replicates, and each has three technical replicates, and

the relative expression levels of genes were calculated using

2-DDCt.
2.3 Statistical analysis

Using SPSS 25 software, one-way analysis of variance (One-

way ANOVA) and Tukey’s post-hoc test were used for multiple

comparisons of experimental data and followed by multiple

comparisons using the least significant difference (LSD) test.

The level of significance was set at P < 0.05 (two-tailed). All the

test results are expressed as mean ± standard deviation. The

differential gene volcano map, heat map, GO entry enrichment

map, and KEGG pathway enrichment map are all drawn using

the cloud tools of Omicshare. The dynamic heat map of

Omicshare and Adobe Illustrator CC jointly drew the pathway

analysis map. The relative expression histogram is drawn using

Origin 2017.
3 Results

3.1 Physiological indexes under different
Pb stress

Data in Table 1 show that, under Pb stress, SOD, CAT, and

ASA content showed an upward trend with the increase of Pb

concentration, and the differences among the treatments were

greater than those of CK (P < 0.05). SOD and CAT treated with

Pb2000 increased by 24.53% and 66.34%, respectively, compared

with CK. The contents of POD, aseorbate peroxidase (APX), and
Frontiers in Plant Science 04
GSH in roots reached were higher when treated with Pb500 and

increased by 14.68%, 444.22%, and 30.37%, respectively,

compared with the control. When the concentration of Pb was

less than 1000 mg·kg-1, the MDA content increased with the

concentration increase. The effects of different Pb stress on these

indicators are low promotion and high inhibition.
3.2 Transcriptome sequencing analysis
under Pb stress

3.2.1 Sequencing results
Two groups of samples were assembled and filtered to obtain

a total of 38.21 Gb of total bases, the GC ratio was 52.71%-

53.14%, and the base composition was balanced. The number of

bases with base quality values above Q20 in each sample account

for more than 95%, and those with base quality above Q30 were

more than 90%, indicating that each sample’s sequencing quality

is high and meets the requirements for library construction

(Table S3).

3.2.2 Analysis of DEGs
Based on the different analysis results, genes with FDR < 0.05

and |log2FC| >1 were screened as significantly different genes

(Figure 1A). There were 51,281 unigenes with significant

differences (P < 0.05), of which 21,138 were up-regulated

(accounting for 41.22%), and 30,143 were down-regulated.

Figure 1B shows that the genes related to antioxidant enzymes

were up-regulated, consistent with the response trend of

physiological indicators in roots under Pb stress. In addition,

the expression levels of genes related to heavy metal transport

[ATP-binding cassette (ABC), natural resistance-associated

macrophage proteins (Nramp), metallothioneins (MTs)],

transcription factor genes (WRKY, NAC), ATPase, GTP-

binding proteins, heat shock proteins, and disease course-

related proteins (Unigene47646_All) were increased. However,

genes related to cell wall proteins (cell wall protein,

CL9150.Contig2_All, Unigene48447_All) and genes related to

plant hydrolysis and metabolism (caspases, calcium-binding
TABLE 1 The physiological characteristics in the roots of P. crinitum under different Pb stress concentrations.

Treatment

Physiological indicators CK Pb300 Pb500 Pb1000 Pb2000

SOD activity 1832.42 ± 46.11d 2170.04 ± 56.84b 2367.1 ± 82.14a 1971.36 ± 123.14c 2281.86 ± 62.79ab

POD activity 341.72 ± 3.90c 367.70 ± 18.76b 391.88 ± 3.26a 369.74 ± 11.85b 374.20 ± 8.19b

CAT activity 34.69 ± 2.05c 40.05 ± 3.21c 48.78 ± 4.07b 51.38 ± 3.52ab 57.71 ± 2.95a

MDA content 10.63 ± 1.47c 11.57 ± 1.55bc 13.81 ± 2.21b 26.13 ± 5.11a 11.4 ± 1.67bc

APX activity 0.09 ± 0.01b 0.1 ± 0.01b 0.48 ± 0.1a 0.17 ± 0.04b 0.14 ± 0.03b

ASA content 5.02 ± 0.49c 6.13 ± 0.40b 5.03 ± 0.19c 5.44 ± 0.26c 6.69 ± 0.65a

GSH content 1.22 ± 0.04d 1.36 ± 0.06b 1.59 ± 0.04a 1.27 ± 0.04cd 1.29 ± 0.04c
Different lowercase letters in the same row represent significant differences among different treatments (P < 0.05).
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prote ins , CL14032 .Cont ig2_Al l , Unigene56209_Al l ,

CL6109.Contig1_All) showed down-regulated expression. This

may be because Pb stress damages the cell wall and some

mechanisms related to plant growth and metabolism,

hindering its expression.
3.2.3 GO enrichment analysis of DEGs
By comparing with the GO database, the differential genes in

the roots of P. crinitum under Pb treatment are annotated to 44

GO terms, divided into three categories: biological process, cell

component, and molecular function. The main functional items

in the biological process were the metabolic process and

regulation. In the molecular function, the entries with the

most significant number of DEGs were binding, catalytic

activity, and transporter activity. In the cellular component,

the most enriched number was the cellular anatomical entity.

It indicates that the root system of P. crinitum under Pb stress

might adapt to the Pb stress environment through metabolism,

generation of new substances, catalytic enzyme activity, and

transport of heavy metals (Figure 2).

As shown in Table S4, a total of 8447 DEGs were

significantly enriched in 42 secondary entries related to Pb

resistance, including antioxidant enzymes, transport,

transcription, ubiquitin, and signaling (P < 0.05). The

complete details are shown in (Table S4). Among them, 1773

DEGs and 1677 DEGs were enriched in antioxidant-related and

transcription-related GO items, respectively. Among the

significantly enriched entries, four items are related to

transport, accounting for 9.53%. The GO items related to

signaling account for 6.12%, the DEGs enriched in the GO

items related to protein kinases were the most, and the genes
Frontiers in Plant Science 05
significantly enriched in the GO term “protein kinase activity”

account for 2.13%.

3.2.4 KEGG enrichment analysis of DEGs
Annotation and enrichment analysis are carried out by

comparing the DEGs in the KEGG pathway database’s root

system. A total of 15,291 differential genes were significantly

enriched in 25 pathways (P < 0.05). DEGs on the “RNA

transport” pathway were the most significant and enriched,

with a total of 2983, accounting for 19.51% of the total DEGs

significantly enriched in the KEGG database (Figure 3).

The root differential genes were mainly enriched in

“Phenylpropanoid biosynthesis,” “MAPK signaling pathway -

plant,” and “Plant hormone signal transduction,” accounting for

8.96%, 6.29%, and 5.48%, respectively. Among the KEGG

pathways significantly enriched in DEGs, “Flavonoid

biosynthesis,” “Ascorbate and aldarate metabolism” ,

“Isoflavonoid biosynthesis,” “Plant-pathogen interaction” and

“Cutin, suberine, and wax biosynthesis,” were all related to plant

resistance to heavy metals related, accounting for 49.87% of the

total DEGs significantly enriched in the KEGG database. These

results indicated that the root system of P. crinitummay respond

to Pb stress mainly through the transport system. At the same

time, signal transmission, antioxidant enzyme, and disease

resistance systems also respond to Pb stress. Moreover, KEGG

pathways such as “Flavone and flavonol biosynthesis,” “Alanine,

aspartate and glutamate metabolism,” “Phenylalanine

metabolism,” “Glutathione metabolism,” “ABC transporters,”

“Basal transcription factors,” and “Peroxisome” are all related

to Pb resistance. A total of 2507 DEGs were enriched, accounting

for 7.06% of all differential genes enriched in the

KEGG database.
A B

FIGURE 1

(A) CS-vs-TS difference volcano map of roots, and (B) heat map of the expression of some Pb-tolerant DEGs in roots of P. crinitum. (1000
mg·L-1 Pb stress treatment is indicated by TS and control experiment without Pb stress is indicated by CS).
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FIGURE 3

Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis of differential expression genes (DEGs) in the roots of P. crinitum under
Pb Stress.
FIGURE 2

Gene ontology (GO) enrichment classification map of differentially expressed genes in the roots of P. crinitum under Pb Stress.
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3.3 Pathway analysis of Pb-tolerant
candidate genes in roots of P. crinitum

Combined with the expression and functional annotation

results of differential genes, DEGs with significant differences in

Pb tolerance were screened from the GO items and significantly

enriched KEGG pathways. The genes related to root

antioxidants were: CL17117.Contig11, CL17117.Contig17 and

CL762.Contig2 was all involved in the “Peroxisome” pathway,

which belongs to the peroxisome targeting signal (PTS1 type) in

the antioxidant enzyme system.

As shown in Figure 4, there were 5 DEGs associated with the

ASA-GSH cycle:and all acted on Glutathione metabolism.

Among them, CL871.Contig1 and CL5100.Contig1 were located

at “1.11.1.11” and “1.6.5.4”, respectively, and both sides were L-

Ascorbate and Monodehydro-ascorbate, but the two work in the

opposite direction. It indicates that these two genes acted on the

redox of ascorbic acid in the roots of P. crinitum .

CL12071.Contig1 was located at “1.8.1.7” and acts on the

transition from GSSG to GSH, while CL13989.Contig3 was

located at “1 .11 .1 .9” and acts on GSH to GSSG.

CL2332.Contig13 was located in “2.5.1.18”, and the back end

of this gene is meicaptuiac acid, indicating that this gene may be

involved in converting glutathione to meicaptuiac acid, thereby

adapting to the Pb stress environment.
Frontiers in Plant Science 07
A total of 4 root-Pb tolerance genes related to transport were

screened: CL1174.Contig14 participates in “ABC transporters”

and is located as an ABC-B class transporter, CL4795.Contig9,

CL12532.Contig3 and CL14340.Contig2 were annotated as a

natura l res i s tance-associated macrophage prote in ,

mitochondrial import inner membrane translocase subunit,

and COPII protein in the “Protein processing in endoplasmic

reticulum” pathway, respectively, indicating that roots under Pb

stress might alleviate the toxicity through the differential

expression of these transporter-related genes.

Furthermore, five root DEGs were also screened to be related

to plant signal transduction and transcription under Pb stress:

Unigene46823 was involved in “Plant-pathogen interaction”,

located in “WRKY”, and played a role in the induction of

defense-related genes to resist abiotic stress. CL8121.Contig3

was involved in the “MAPK signaling pathway - plant,” a copper

ion exporting ATP enzyme, and acted on the defense response

pathway of the plant hormone Ethylene. CL14444.Contig1 was

involved in “1.11.1.7” in “Phenylpropanoid biosynthesis” in

Figure 4 as the activation gene of heat shock protein ATPase,

and the upstream and downstream were aldehyde and lignin,

respectively, indicating that this gene might be involved in the

conversion of aldehydes into lignin, thus responding to the Pb

stress environment. CL1583.Contig2 was annotated as a two-

component system protein gene of the “Plant hormone signal
FIGURE 4

Partial possible molecular mechanism of Pb tolerance in roots of P. crinitum.
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transduction” pathway. As shown in Figure 4, Unigene7992

participates in the “Alanine, aspartate and glutamate

metabolism” pathway, which was located in the process of

“2.1.3.2” acting on the conversion of L-Glutamine to L-

Aspartate, and the pathway belonged to the conversion of

L-Glutamate.
3.4 qRT-PCR validation and analysis of
Pb-tolerant candidate genes

The expression levels of the selected DEGs were analyzed to

verify the transcriptome sequencing results and Pb-tolerant

candidate genes in roots. As shown in Figure 5A, the relative

expression of CL17117.Contig17 increases with the increase of

Pb concentration, and the difference between treatments was

significant (P < 0.05). Under the treatments of different Pb

concentrations (Figure 5D), the relative expression levels of

CL8121.Contig3 were significantly higher than those in control

(P < 0.05), and the expression under Pb2000 treatment was

significantly higher than that in other treatments (P < 0.05),

compared with Pb1000 treatment, the up-regulation degree was

increased by 55.52%. In addition to Pb300, the relative

expression levels of CL13989.Contig3, CL5100.Contig1,

CL2332 .Con t i g 13 (F i gu r e 5B ) , CL12532 .Con t i g 3 ,

CL14340 .Con t i g 2 (F i gu r e 5C) and Uni g ene7992 ,

CL14444.Contig1 (Figure 5D) under each treatment was

significantly greater than those of CK (P<0.05). The gene

expression under the Pb2000 treatment was 7.47, 10.28, 3.52,

5.75, 73.36, 20.16, and 12.65 times that of the control.

The relative expression levels of CL17117.Contig11,

CL762.Contig2 (Figure 5A), CL871.Contig1, CL12071.Contig1

(Figure 5B), CL1583.Contig2 and Unigene46823 were

significantly higher than CK under Pb1000 and Pb2000

treatments (P < 0.05). The expression levels of these genes

under Pb1000 treatment are increased by 48.21%, 892.11%,

341.28%, 142.37%, 183.97%, 180.51% and 207.94% compared

with CK, respectively. Comparing Pb1000 with Pb2000

treatment, the expression levels were increased by 90.72%,

97.05%, 51.02%, 62.67%, 60.57%, 56.61% and 99.55%,

respectively. The relative expression of CL4795.Contig9 at the

Pb concentration of 1000 mg·L-1 was significantly higher than

that of CK (P < 0.05), which is 1.52 times that of the

control (Figure 5C).
4 Discussion and conclusions

The main way for plants to deal with Pb toxicity is to

improve their antioxidant capacity (Song et al., 2015). In this

study, with the increase of Pb concentration, the activities of

POD, SOD and CAT enzymes in the roots of P. crinitum

generally showed an upward trend. This is because Pb stress
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activates antioxidant enzymes in the roots, and by increasing

their activity, it can remove excess reactive oxygen species (ROS)

in the plant and improve the antioxidant capacity of plants to

improve the Pb tolerance. Iris ensata (Bo et al., 2021), Brassica

juncea (Małecka et al., 2019), Medicago sativa (Helaoui et al.,

2020) species have similar response mechanisms. In this study,

the content of MDA in roots of P. crinitum increased with the

increase of Pb stress, indicating that Pb stress caused damage to

root membrane lipidation and stimulated the antioxidant

system. At Pb2000, the MDA content was significantly lower

than other treatments, which is because the antioxidant enzymes

in the plants scavenge excess ROS, and the antioxidant defense

system alleviates Pb toxicity (Cedeno and Swader, 1972; Mao

et al., 2019).

In this study, the GSH content and APX enzyme activity in

the roots of P. crinitum showed an increasing trend with the

concentration increase. This is because the reactive oxygen

system was out of balance under Pb stress, and GSH and ASA

undergo a reduction reaction with ROS, thereby maintaining

dynamic balance (Wang et al., 2021). APX participates in the

ASA-GSH cycle as a coenzyme and acts together with POD and

CAT to decompose H2O2 (Qin et al., 2018). When the

concentration is more significant than 500 mg·L-1, the non-

enzymatic antioxidants in P. crinitum decreased with the

concentration increase. This may be because the high

concentration of Pb inhibits the enzymatic reaction in the

GSH-ASA cycle, and the synthesis of GSH and ASA is

hindered (Liu et al., 2019).

In this study, Pb-resistant candidate genes were screened by

transcription sequencing of the roots of TS and CS. GO

enrichment analysis found that the most significant GO entry

for root DEGs was the metabolic process, followed by a catalytic

activity. One of the main ways in which plants respond to

external stimuli is metabolite regulation, which can resist

abiotic stress by metabolizing or generating secondary

metabolites (Sarvajeet and Narendra, 2010). The DEGs in the

root system of P. crinitum were significantly enriched in GO

items because plants produce a large amount of ROS under

abiotic stress, and scavenging excess ROS is the main way for

plants to adapt to stress and toxicity (Lu et al., 2020). In addition,

root DEGs are also significantly enriched on nicotinamide

adenine dinucleotide phosphate (NADPH)-related terms.

Under Pb stress, antioxidant-related genes in roots promote

nicotinamide adenine dinucleotide (NAD+) generation to

ensure the reduction reaction of NADPH and inhibit the

generation of reactive oxygen species (Zhang et al., 2014). In

addition to antioxidant-related GO terms, root DEGs were

significantly enriched in functional terms related to

transcription, transport, and protein kinases. The possible

reason is that the root system is an organ with a high degree

of Pb enrichment. Under stress, many gene-regulated plants can

improve stress resistance in different ways, which is consistent

with Yuan’s research results (Yuan et al., 2017). DEGs in roots of
frontiersin.org

https://doi.org/10.3389/fpls.2022.1066329
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhu et al. 10.3389/fpls.2022.1066329
P. crinitum were significantly enriched in Pb tolerance-related

pathways such as “Phenylalanine metabolism” and

“Phenylpropane biosynthesis” under Pb stress. This is because

phenolic compounds such as flavonoids and lignin, as the

products of phenylpropane metabolism, mainly play a role in
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removing excess ROS in plants and improving plant

antioxidants (Xie and Zhang, 2003), and phenylalanine is

involved in this metabolic process as the main ammonia

enzyme (Ouyang and Xue, 1988); therefore, the roots of P.

crinitum can promote phenylpropane biosynthesis through gene
A

B

C

D

FIGURE 5

The expression of (A) antioxidant-related genes, (B) Ascorbic acid–glutathione (ASA-GSH) cycle-related genes, (C) transporter-related genes,
and (D) signal transduction and transcription-related genes in the roots of P. crinitum under different lead stress concentrations.
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regulation and improve its tolerance to Pb stress, which is

consistent with the response of the phenylalaninase gene of

Oryza satival L. subsp. indica to heavy metal stress (Huang et al.,

2012). In addition to antioxidant and transport-related KEGG

pathways, root differential genes were significantly enriched in

signal transduction-related pathways such as “MAPK signaling

pathway-plant” and “Plant hormone signal transduction”. This

is because signal transduction is activated by the inducement of

an abiotic stress environment, in which ROS and plant

hormones generated by stress are essential components in the

signal transduction process (Wang et al., 2012). Besides, DEGs

are also significantly enriched in pathways such as “Flavonoid

biosynthesis” and “Ascorbic acid and aldehyde salt metabolism”.

In this study, CL17117.Contig11, CL17117.Contig17 and

CL762.Contig2 in the “peroxisome” pathway were up-regulated

expressed, the peroxisomal targeting signal 1 (PTS1) in the

antioxidant system. As an important organelle in response to

abiotic stress, peroxisomes cannot generate related enzymes by

themselves, and PTS is required to direct enzyme precursors into

peroxisomes (Zhao, 2000). Pb stress may stimulate the

production of PTS1 by peroxisomes in the roots of P.

crinitum, promotes the directional transport of ribosomes and

the expression of these genes to synthesize antioxidant enzymes

such as CAT and SOD, and scavenge O2-. Under Pb stress,

CL14444.Contig1 is up-regulated in the “phenylpropane

biosynthesis” pathway as an upstream gene in the lignin

synthesis pathway, which is because this gene promotes the

conversion of aldehydes to lignin. As an important component

of the cell wall, the increase of lignin content means that the root

system can improve the stress resistance of plants by inhibiting

the production of oxygen free radicals (Ortega and Peragón,

2009) and increasing the strength of the cell wall (Long et al.,

2021). This result is consistent with the response strategy of

Pyrus pyrifolia to abiotic stress (Lu et al., 2015).

In this study, with the increase of Pb stress concentration, the

relative expression levels of CAT, SOD, and POD-related genes

gradually increase, which is consistent with the changing trend of

root antioxidant enzyme activities, indicating that P. crinitum may

adjust the enzyme activity of the plant through these antioxidant-

related genes to adapt it to the Pb stress environment. Studies have

shown that under heavy metal stress, antioxidant-related genes in

Vicia faba L. (Liu et al., 2020), Triticum aestivum L. (Navabpour

et al., 2020), and Phytolacca americana L. (Zhao et al., 2012) plants

are also up-regulated and their enzyme activity changes. With the

increase of Pb stress concentration, the relative expression levels of

the GSH-ASA cycle-related genes are all up-regulated, and all are

consistent with the non-enzymatic antioxidant activity.

CL12071.Contig1 and CL13989.Contig3 are annotated as

glutathione reductase (GR) and glutathione peroxidase (GSH-Px),

respectively. The up-regulated expression of the twomay be because

Pb stress induces GR gene expression and promotes the expression

of reduced GSSG to GSH. GSH regulates intracellular and

extracellular osmotic pressure and chelates with heavy metals
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(Sousa et al., 2015), reducing Pb toxicity. The expression of GSH-

Px further promotes the reaction between GSH and reactive oxygen

species to generate glutathione oxidized (GSSG) (Zhao, 2017).

Therefore, the GSSG-GSH cycle maintains plants’ antioxidant

capacity and further improves plants’ stress resistance.

CL871.Contig1 and CL5100.Contig1 were up-regulated with

increasing concentration and annotated as APX, and

monodehydroascorbate reductase (M-DHAR), respectively. Under

Pb stress, P. crinitum produced excess ROS and reacted with ASA.

The up-regulated expression of the APX gene increases the activity

of this enzyme and promotes the oxidation of ASA (Zhou and Mo,

2003). The product of this reaction, monodehydroascorbate (M-

DHA) is unstable, and the stress environment stimulates the

upregulation of dehydroascorbate reductase (DHAR) gene, which

accelerates the reduction of reductase to ASA, thereby further

accelerating the scavenging of reactive oxygen species (Li et al.,

2007). The oxidation product of M-DHA is dehydroascorbate

(DHA), which participates in the metabolic process of

spermidine, which can improve the activity of plant antioxidant

enzymes and maintain the balance of reactive oxygen species (Liu

et al., 2007). CL2332.Contig13 is expressed on the pathway of GSH

conversion to cysteine, which is consistent with the response

mechanism of Porphyra yezoensis Ueda under Pb stress (Zhou

et al., 2011); it is because cysteine cannot only directly react with

heavy metals but also reduce the toxicity of heavy metals to plants

using transporters (Zhao et al., 2012; Zhang et al., 2017; Abdulla

et al., 2019).

The natural resistant macrophage protein gene

CL4795.Contig9 was also up-regulated by Pb stress induction.

It is because the protein is tissue-specific and plays a decisive role

in the uptake of Pb in the root system of P. crinitum (Liu et al.,

2022). The root CL14340.Contig2 belongs to the coat protein II

(COP II) in the endoplasmic reticulum, and its expression is up-

regulated under Pb stress, which promotes the transport of COP

II vesicles to proteins which respond to Pb stress (Zhang et al.,

2020). Genes related to transcription factors such as WRKY, v-

myb avian myeloblastosis viral oncogene homolog (MYB), and

ZRT, IRT-like protein (ZIP) were highly expressed under Pb

stress. The possible reason is Pb stimulates the expression of

these transcriptomic factors through signal transduction and

responds positively to stress, thereby inducing the synthesis of

enzymes related to defense against stress and further improving

plant stress resistance (Yang et al., 2020). CL8121.Contig3 acts

on the ethylene response pathway, and Pb stress stimulates the

expression of this gene, thereby promoting plant ethylene

response to the stress environment. Ethylene metabolism can

promote the synthesis of antioxidant enzymes and cell

lignification to improve plant cell defense capacity (Lu et al.,

2020). The two-component system is one of the most important

systems in plant hormone signaling, CL1583.Contig2 regulates

the regulator in this system, and Pb stress stimulates the

expression of this gene, transmits the signal received by the

sensor, and induces the expression of tolerance genes (Lei et al.,
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2004). Pb stress induces up-regulated expression of Unigene7992

in the “Alanine, aspartate and glutamate metabolism” pathway,

which may be because the gene promotes the synthesis of

aspartate and interacts with other proteins to participate in the

stress response (Wu et al., 2013). At the same time, its

subsequent products, oxaloacetic acid, and citric acid, not only

improve the activity of antioxidant enzymes (Basit et al., 2021)

but also react with the product glutamic acid and heavy metals,

reducing the effectiveness of Pb elements in plants (Guo

et al., 2017).
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