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Immunotherapy has emerged as a breakthrough strategy in cancer treatment.

mRNA vaccines are an attractive and powerful immunotherapeutic platform

against cancer because of their high potency, specificity, versatility, rapid and

large-scale development capability, low-cost manufacturing potential, and

safety. Recent technological advances in mRNA vaccine design and delivery

have accelerated mRNA cancer vaccines’ development and clinical application.

In this review, we present various cancer vaccine platforms with a focus on

nucleic acid vaccines. We discuss rational design and optimization strategies

for mRNA cancer vaccine development. We highlight the platforms available

for delivery of the mRNA vaccines with a focus on lipid nanoparticles (LNPs)

based delivery systems. Finally, we discuss the limitations of mRNA cancer

vaccines and future challenges.

KEYWORDS
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1 Introduction

With almost 10 million deaths per year, cancer remains one of the leading causes of

death worldwide (1). Finding effective means to fight cancer has been one of the main

goals of researchers worldwide for decades and still presents us with enormous

challenges. In recent years, immunotherapy has been emerging as a major cancer
Abbreviations: TAs, tumor antigens; MHC, major histocompatibility complex; DCs, dendritic cells; APC,

antigen-presenting cell; ROS, reactive oxygen species; LNPs, lipid nanoparticles; UTR, untranslated region;

ORF, open reading frame; IVT mRNA, in vitro transcribed mRNA; TNFRSF4, tumor necrosis factor

receptor superfamily member 4; NGS, next-generation sequencing; PEG, polyethylene glycol; TLR, toll-like

receptors; HLA, human leukocyte antigen.
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treatment strategy (2–4). Immunotherapy is a therapeutic

approach that dynamically modulates the immune system to

recognize and destroy cancer cells. Various immunotherapy

approaches are being developed to improve clinical outcomes

in cancer patients. The development of cancer vaccines is a

promising immunotherapy strategy to induce tumor antigens

(TAs) specific and long-lasting immune responses. The artificial

triggering of an immune response against TAs forms the basis

for vaccines against cancers (1, 5).

Cancer vaccines target TAs to elicit both cellular and

humoral immune responses which suppress tumor growth and

eradicate the tumor (6). TAs can be classified into tumor-

associated antigens and tumor-specific antigens. Tumor-

associated antigens are nonmutated proteins that are

overexpressed or aberrantly expressed in cancer cells (7).

Tumor-associated antigens can be differentiation antigens,

products of silent genes, universal tumor antigens, and

oncoviral antigens. Clinical trials of cancer vaccines targeting

tumor-associated antigens have had limited success (8). In some

cases, tumor-associated antigens are expressed in normal cells,

increasing the risk of vaccine-induced autoimmune toxicity.

Tumor-specific antigens are specifically displayed by the tumor

cells and are generally not displayed by the normal cells (9).

Neoantigens are unique, tumor-specific antigens, resulting from

the genetic instability of cancer cells (10). Neoantigens have a

higher affinity for major histocompatibility complex (MHC) and

potent immunogenicity. They are specifically expressed by

tumor cells and elicit a tumor-specific T-cell response with

limited “off-target” toxicity. Hence, neoantigens have become

the main target for cancer vaccines in recent years (11).

Cancer vaccination strategies are of two types: preventive or

prophylactic strategy and therapeutic strategy (12, 13). The

preventive strategy aims to induce immune memory by

administering vaccines to healthy individuals to prevent

morbidity due to virus-associated cancers. There are currently

only two prophylactic vaccines that are approved by the FDA to

prevent malignancies caused by hepatitis B virus and human

papillomavirus (11, 14, 15). However, not all cancers can be

avoided by prophylactic vaccinations, as not all cancers are

caused by viruses. To date, no preventive vaccine against non-

viral cancers has been approved for use in humans. The

therapeutic strategy aims to treat the disease by boosting or

reactivating the patient’s own immune system. Two therapeutic

vaccines are currently approved in cancer immunotherapy,

namely the Bacillus Calmette-Guérin (BCG) vaccine for

bladder cancer and a dendritic cell-based vaccine (Sipuleucel-

T) for castration-resistant prostate cancer (11). In addition to the

approved cancer vaccines, several other cancer vaccines are

either in development or in the preclinical and clinical
Frontiers in Immunology 02
research phase (16). A complete list of cancer vaccines in

clinical trials is available at clinicaltrials.gov.

Despite considerable research into cancer vaccine

development, the clinical use of cancer vaccines has been

hampered due to the diversity of tumor antigens, systemic

toxicity, and low immunogenicity of tumor antigens. In recent

years, in-depth studies of immunological mechanisms and the

development of various new vaccine platforms have greatly

advanced vaccine research. The rapid development and success

of RNA-based vaccines against SARS-CoV-2 in response to the

COVID-19 pandemic have brought cancer vaccines back

into focus.

In this review, we discuss cancer vaccine approaches with a

focus on nucleic acid vaccines, compare DNA and mRNA cancer

vaccines, and finally discuss on the approaches for designing and

optimizing mRNA-based cancer vaccines, delivery formats for

mRNA vaccines, and future prospects.
2 Cancer vaccine platform types

In general, cancer vaccine platforms are classified into cell-

based vaccines, peptide-based vaccines, viral-based vaccines, and

nucleic acid-based vaccines (Figure 1).
2.1 Cell-based cancer vaccines

The tumor cell vaccine approach is a simple and

straightforward method in which allogenic or autologous

patient-derived tumor cells are used to produce cellular vaccines

(17, 18). To enhance the immune response against whole tumor

cells, tumor cell lines can be genetically modified by introducing

cytokines, chemokines, and co-stimulatory molecule-encoding

genes or by silencing immunosuppressive genes. The limitation

of this method is that it is sometimes difficult to obtain a sufficient

number of cells to induce effective immune response (19).

Dendritic cells (DCs) are highly specialized antigen

presenting cells (APCs) that activate naive T cells and are used

in the development of cell-based cancer vaccines (20). In DC

based vaccine development approach, DCs are loaded with a

variety of tumor antigens in the form of DNA, RNA, tumor

lysates, tumor-derived proteins, or peptides. Based on the DCs

subpopulation, various types of DC vaccines have been

developed in recent years. The main types of DCs used in DC

vaccines include monocyte-derived DCs (Mo-DCs) and

leukemia-derived DCs (DCleu) (20). Since it is possible to

culture DCs in adequate numbers, DC cancer vaccines have

been tested in phase I, II and III clinical trials (21).
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2.2 Peptide-based cancer vaccines

Peptide-based cancer vaccines consist of highly

immunogenic tumor-specific peptide antigens to elicit the

desired immune response. Using synthetic peptides, peptide

vaccination approaches are being used to develop personalized

cancer vaccines. Upon administration, peptides antigenic

peptides are taken up by APCs and presented in complex with

the HLA molecules on the cell surface. T cells recognize the

surface antigens, leading to cancer-specific immune responses.

The peptide-based vaccine approach has several advantages over

other types of vaccines, particularly in terms of safety and ease of

manufacturing (22). HBV and HPV vaccines for liver and

cervical cancers are two examples of peptide-based vaccines (23).
2.3 Viral-based cancer vaccines

Many viruses are inherently immunogenic, and their genetic

content can be manipulated to include sequences encoding TAs.

Several viruses have been used as platforms for cancer vaccines.

The most common viral vaccine vectors are from adenoviruses,

poxviruses, and alphaviruses (24, 25). Most viral vectors are

either replication-defective or attenuated versions. A major

advantage of virus-based vaccines is that the immune system

responds efficiently to viruses, with both innate and adaptive
Frontiers in Immunology 03
mechanisms working together in the induction of strong and

durable immune responses (26). The downside is that the

antiviral immune response can neutralize the vector, limiting

further repeat immunizations.

Oncolytic virus vaccines represent a novel and exciting

approach. Oncolytic viruses identify, infect, and kill tumor

cells and promote anti-tumor responses. After infection with

the oncolytic virus, tumor cells produce reactive oxygen species

(ROS) and cytokines that stimulate immune cells, followed by

oncolysis (27–29). T-VEC, a first-generation recombinant

herpes simplex virus product, is one such oncolytic virus

vaccine (30). Besides herpes simplex virus, adenovirus is

another commonly used oncolytic virus due to its ease of

handling and a broad spectrum of host cell tropism (11).
2.4 Nucleic acid-based cancer vaccines

Nucleic acid vaccines are vaccines that contain antigens

encoded by either DNA or RNA. The nucleic acid vaccine is a

promising and attractive vaccine platform because it allowsmultiple

antigens to be easily administered with one immunization and its

ability to induce strong MHC I mediated CD8+ T cell responses

(31). Compared to traditional vaccines, nucleic acid vaccines have

demonstrated advantages such as safety, specificity for inducing the

immune response for the antigen of interest, induction of both
FIGURE 1

Different types of cancer vaccine platforms.
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humoral and cellular immune responses, relatively low production

cost, and ease of manufacturing (32).

DNA cancer vaccines consist of engineeredDNAs that code for

one or more TAs. DNA vaccines cross the cell membrane of APCs

to the cytoplasmandmove to the nucleus to start transcription. The

resulting mRNAs translocate to the cytoplasm where they are

translated into specific TAs by the host machinery. The resulting

antigens are then presented to APC to stimulate an immune

response (33). Poor immunogenicity of DNA vaccines compared

to other vaccine platforms and long-term expression have drawn

attention to RNA vaccines (34). Several DNA cancer vaccines have

undergone preclinical and clinical trials over the past decade. The

DNA vaccine has been extensively studied in cervical cancer. VGX-

3100, a DNA vaccine against HPV-16/HPV-18 E6 and E7

oncogenes, has shown promising results in patients with

premalignant high-grade cervical intraepithelial neoplasia (35).

This vaccine is currently being evaluated in two Phase III clinical

trials for safety and efficacy. GX-188E is another cervical cancer

DNA vaccine that fuses multiple epitopes (36). GX-188E has the

ability to target and activate dendritic cells. Promising results were

obtained in a phase II study of GX-188E in cervical cancer (36).

Recently, a preclinical study using a synthetic DNA multi-

neoantigen vaccine demonstrated a therapeutic antitumor

response by inducing a predominant CD8+ T cell response in

mouse tumor models (37). In addition, DNA cancer vaccines have

demonstrated safety and tolerability in early clinical trials for the

treatment of multiple prostate and breast cancers (38, 39).

Like DNA vaccines, mRNA vaccines deliver genetic

information encoding TAs in the form of mRNAs. mRNA

vaccines do not need to reach the nucleus as they are translated

in the cytoplasm (40). The overall immunogenicity of mRNA

vaccines is slightly better than that achieved with DNA vaccines.

Transient expression of mRNA-encoded antigen allows for more

controlled antigen exposure and reduces long-term antigen

exposure risk. The disadvantage of the RNA vaccine is that RNA

is more easily degraded thanDNA (41). However, there are various

modifications that can increase stability. Due to challenges related

to stability, cost of personalized manufacturing of patient-specific

vaccines, and delivery, advances in clinical development of mRNA

vaccines have been slow. The COVID-19 pandemic led to the

successful development and deployment of multiple mRNA

vaccines, confirming the mRNA platform’s remarkable versatility,

safety, and promising immunogenicity on a global scale (42).

Several mRNA cancer vaccines are in different phases of

development. Immunostimulant mRNA vaccine TriMix,

encoding CD70, CD40L, and a constitutively active form of TLR4

produced vigorous CD8+ T cell responses in patients with stage III

or IV melanoma, showing favorable tumor response rates in phase

II clinical trial (43). Another immunostimulant mRNA vaccine,

mRNA-252, which encodes human OX40L, IL-23, and IL-36, was

developed by Moderna for the treatment of lymphoma and is

currently in a clinical trial (NCT03739931). BNT111 mRNA
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vaccine that encodes four TAAs (NY-ESO-1, MAGE-A3,

tyrosinase, and TPTE) has been effective in the treatment of

melanoma patients (44). BioNTech and Moderna’s personalized

mRNA vaccines have shown promising anti-tumor effects in

clinical trials. Currently, there are two personalized mRNA

cancer vaccines, Moderna vaccine mRNA-4157 (encodes up to

34 neoantigens) and BioNTech vaccine BNT122 (encodes up to 20

neoantigens), in phase II clinical trials (45). A phase II clinical trial

with BNT122 for the treatment of colorectal cancer is currently

underway (NCT04486378).

For this review, we focus only on mRNA-based vaccines.
3 Rational design and optimization
of mRNA cancer vaccines

The typical mRNA consists of a cap flanked by 5′-
untranslated regions (UTR), 3′-UTRs, an open reading frame

(ORF) encoding cancer antigens in mRNA cancer vaccines, and

a poly(A) tail (Figure 2). These components of mRNA can be

modified to increase stability, translational efficiency, and

immunostimulatory properties. The design and optimization

approaches include design and optimization of the coding

region, design, and optimization of the noncoding region, and

design and optimization of delivery formats.
3.1 Design and optimization of the
coding sequence

It is known that codon composition affects translation

efficiency. Substituting the rare codons with regular

synonymous codons that contain many similar tRNAs in the

cytosol accelerates translation and increases yield (46).

However, rare codon optimization for nucleic acid therapies

may have potentially serious consequences that should be evaluated

(47). Another form of sequence optimization is the enrichment of

the GC content. GC enriched sequences are translated at rates 100-

fold higher than low GC sequences (48). mRNA can be optimized

by incorporating chemically modified nucleosides, which are

known to decrease immunogenicity and significantly improve

translational efficiency. Nucleotide modifications such as 5-

methylcyt idine (m5C), 1-methylpseudouridine and

pseudouridine (y) are generally preferred modifications (49, 50).
3.2 Design and optimization of the
noncoding region

The 5′ and 3′ UTR elements adjacent to the coding sequence

are critical considerations in optimal vaccine design as they have
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a significant impact on mRNA stability, ribosome recognition,

and translation (51). Optimizing 5′- and 3′-UTR elements

greatly increases the efficiency and half-life of mRNA. The 5′-
UTR sequence can be optimized by avoiding the presence of

start codons in the 5′-UTR that disrupt ORF translation, by

avoiding the presence of highly stable secondary structures that

affect ribosome recruitment and codon recognition, by using

shorter 5′-UTRs that are ideal for mRNA translation (52, 53). By

introducing the 3′-UTRs of a-and b-globin mRNAs, translation

and stability of mRNA may be enhanced (54).

The 5′-cap structure is essential for effective mRNA protein

synthesis. The 5-cap regulates pre-mRNA splicing and nuclear

export acts as a protective structure protecting RNA from

exonuclease cleavage and initiates mRNA translation. 5′
capping can be achieved by using a vaccinia virus capping

enzyme or by incorporation of synthetic cap or anti-reverse

cap analogs during or after the transcription process (52, 55).

The poly(A) tail stabilizes the mRNA and promotes protein

translation. The appropriate length of the poly(A) tail is crucial

for the regulation of mRNA translation and stability (56). The

length of the poly(A) tail is directly proportional to the

translational efficacy. The poly(A) tail improves the stability of

mRNA by slowing down the degradation of RNA by RNA

exonucleases (45). There are two ways to add a poly(A) tail to

in vitro transcribed (IVT) mRNA i.e. (i) extending the IVT

mRNA after transcription by using recombinant poly(A)

polymerase (ii) including poly(A) tail encoding DNA template

from which IVT mRNA is transcribed. mRNA transcribed from

a DNA template yields transcripts with a defined poly(A) tail

length, whereas the enzymatic polyadenylation process yields

mRNA transcripts with variable length poly(A) tails. In addition,

deadenylation by poly(A)-specific nucleases can be inhibited by

the incorporation of modified nucleotides into the poly(A)

tail (52).
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3.3 Delivery format optimization

After generating the IVT mRNA transcript, the next step is

to administer the RNA vaccine, which should eventually reach

the cytoplasm of the target cells. Because of the negatively

charged structure of naked RNA and the large molecular size,

mRNA is prone to degradation by nucleases and cannot cross

the cell membrane. To overcome this obstacle, several mRNA

vaccine delivery strategies have been employed, which can be

broadly classified into two basic approaches i.e. (i) ex vivo

loading of mRNA into DCs, (ii) direct injection of mRNA

with or without a carrier.

3.3.1 Ex vivo loading of mRNA into DCs
DCs are the most potent antigen-presenting cells in the

immune system. When DCs are used as a vaccination platform,

DCs are transfected with mRNA encoding a tumor antigen of

interest and then delivered to the host to elicit an immune

response against the antigen (57–59). DCs can be transfected

with either TAAs mRNA or total tumor RNA (60, 61); both

methods have their advantages and disadvantages. DCs can

internalize naked mRNA through a variety of endocytic

pathways, but ex vivo transfection is commonly enhanced by

applying electroporation to achieve high transfection efficiency

without the need for a carrier molecule (57). Once DCs are

loaded with mRNA ex vivo, they are reinfused into the recipient

of the autologous vaccine to elicit the immune response. Loading

of DCs with additional mRNAs, such as mRNAs encoding

costimulatory molecules CD83, tumor necrosis factor receptor

superfamily member 4 (TNFRSF4), and 4-1BB ligand (4-1BBL),

has been shown to result in a substantial increase in the

immunostimulatory activities of DCs (59). Most ex vivo loaded

DC vaccines elicit a predominantly cell-mediated immune

response. Ex vivo DC loading allows precise control of
FIGURE 2

mRNA structural elements. Structural elements of mRNA vaccine include coding sequence, flanked by 5′and 3′ untranslated regions (UTRs), 5′
cap structure and 3′poly (A) tail.
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transfection efficiency and cellular target. The main disadvantage

of this approach is that it is an expensive and labor-intensive

vaccination approach (49). An example of this approach is a phase

I trial evaluating autologous Langerhans-type dendritic cells with

xenogeneic TRP-2 mRNA (62).

3.3.2 Direct injection of mRNA with or without
a carrier

Direct injection of mRNA is a comparatively faster and less

expensive approach. Recent advances in the direct injection

approach have made a lot of progress in precise and efficient

cell-type specific delivery of mRNA vaccines.

Naked mRNA has been used successfully for in vivo

immunizations. Naked mRNA vaccines are formulated in

buffer only and without a carrier. In this approach, native

mRNA vaccines are injected directly. After administration,

naked mRNAs can induce antigen-specific antibodies and T-

cell immune responses (61). The limitation of the naked mRNA
Frontiers in Immunology 06
vaccine platform is the short extracellular half-life of naked

mRNA due to rapid degradation caused by ubiquitous RNAases

(63). Viral vector-based technologies have been used to deliver

nucleic acid vaccines into cells, but their application is limited by

pre-existing or vaccine-induced anti-vector immunity, which

can reduce vaccine efficacy (64). To overcome some of these

limitations, physical methods such as the gene gun method,

electroporation, virus-like particles produced in yeast, synthetic

delivery vehicles such as liposomes and lipoplexes, and cationic

polymers have been developed for IVT mRNA to protect it from

RNAase degradation, enhance cellular uptake and improve

vaccine delivery (65–69).

Among the various delivery vehicles, LNPs have emerged as

one of the advanced and widely used mRNA delivery platforms

due to the success of the mRNA-LNP vaccines against SARS-

CoV-2 (Figure 3) (70). Lipid nanoparticles are nanosized lipid

formulations designed to protect mRNA payloads from

degradation and allow for their efficient delivery to target cells.
FIGURE 3

Schematic representation of lipid nanoparticle (LNP) based mRNA delivery. Components of the LNP are shown in the upper right box.
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These lipid-based nanocarriers can efficiently deliver mRNA

intracellularly by fusing with the lipid bilayer of early

endosomes, thereby transporting the mRNA into the cytosol.

LNPs are typically ~100 nm size carriers and consist of four

components: ionizable lipids to form complexation with mRNA

and allow the endosomal release of mRNA to the cytoplasm;

lipid-linked polyethylene glycol (PEG) to increase the half-life of

formulations; cholesterol to stabilize the structure of LNP; and

phospholipids to support the lipid bilayer structure (71, 72).

Ionizable lipid. Ionizable lipid is the most important

component of LNP as it determines LNP potency. Ionizable

lipid generally differentiates different mRNA-LNPs. Ionizable

lipids consist of a hydrophilic head group, hydrocarbon chains

to enhance self-assembly, and linkers to connect the head groups

to the hydrocarbon chains. Ionizable lipids are essential for

mRNA complexation. Ionizable lipids are unionized within the

LNPs, and they complex with mRNA to form electrostatically

stable lipoplex. Ionizable lipids remain neutral in the systemic

circulation pH (pH~7.4), but become protonated at early

endosomal pH (pH~6.5) and facilitate endosomal membrane

fusion followed by cytosolic release (73–75). Ionizable lipids lack

a substantial positive charge at physiological pH, resulting in

improved pharmacokinetics (76). This property increases the

half-life in the bloodstream, allowing for better accumulation in

target tissues such as solid tumors. Some ionizable lipids are

known to induce inflammation and cell toxicity by activating

toll-like receptors (TLR) pathways (77).

Polyethylene glycol (PEG)-lipid. Polyethylene glycol lipids

generally comprise <2.5% of the total formulation in LNP. PEG-

lipid structure consists of a hydrophilic PEG-polymer, which is

conjugated with a hydrophobic lipid anchor. They are found at the

surface of LNPs with the lipid domain hidden down in the particle

and the PEG domain protruding from the surface. PEG lipids play

an important role in balancing circulation time and cellular uptake

(71). They are also important for the proper determination of

particle size during manufacture (78). PEG-lipid helps to inhibit

particle aggregation and in turn improves storage stability (79).

Balancing the PEG lipids is important because they are known to

prevent the transport of RNA into cells at high concentrations.

The development of anti-PEG antibodies has raised concerns

about possible allergic reactions to LNPs (80).

Phospholipids and cholesterol. Phospholipids and cholesterol

contribute to the structural integrity and phase transition

behavior of the LNPs. Cholesterol and phospholipid

components of LNPs are unlikely to elicit significant innate

immune recognition and inflammatory responses as they are

naturally present in mammalian cell membranes (81).

Themain advantage of mRNA-LNP vaccines is the modularity

and versatility of the platform. LNPs components and their ratios,

targetingmoieties, and overall lipid-to-mRNA ratios can be tailored

and optimized for different targets and applications. LNPs have

lower immunogenicity, can deliver larger cargoes, and offer

opportunities for rapid and large-scale manufacture. However,
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more studies should be done on the risks of mRNA-LNP

technology. As with most drugs, side effects with mRNA-LNP

vaccines often increasewith dose. For example, for themRNA-1273

vaccine, 100 mg of the dose showed good efficacy and minimal side

effects, and 250mg of the vaccine caused severe side effects, while the
BNT162b2 vaccine at 30 mg showed better efficacy and minimal

side effects (82, 83). Anaphylactic reactions and inflammatory

reactions have been observed with some COVID-19 mRNA-LNP

vaccines, even at the recommended doses (84–86). In addition,

there is a residual risk of toxic side effects associated with the

complexing agents and delivery compounds. Long-term

immunological changes affecting adaptive immune responses

have been reported (87). These data necessitate future studies to

optimize the delivery system of mRNA vaccines.

Apart from the platform, the route of administration is also

important to the effectiveness of the mRNA vaccines.

Intramuscular and intradermal injections are the most

commonly used routes of injection because these routes of

injection provide the highest level of immunity and the longest

duration of effect (71). Intravenous administration involves liver

first-pass metabolism and is less convenient, so it is less preferred

(71). The systemic route is only preferred in select cases.
4 Concluding remarks

mRNA cancer vaccines are a powerful and versatile form of

immunotherapy. mRNA cancer vaccines are able to encode and

express TAA, TSA, and their associated cytokines, and these

vaccines can induce both humoral and cellular immunity.

Appropriate selection of antigens is the basis for the

development of mRNA cancer vaccines. mRNA cancer vaccines

have several advantages, such as rapid and large-scale production,

flexibility, versatility, relatively low production costs, no oncogenic

potential, well-tolerated, and the ability to elicit a robust protective

immune response. Importantly, mRNA vaccines do not carry the

risk of integrating into the host genome, making them a promising

therapeutic modality. The viability of mRNA vaccines to fight

cancer has been demonstrated by numerous preclinical and

clinical studies. Various mRNA cancer vaccines are currently

being developed for a variety of cancer treatments. These

studies have been extensively reviewed (45, 51, 88, 89).

Personalized mRNA vaccines open a new direction for

precision cancer therapy. Personalized mRNA cancer vaccines

coding for specific cancer antigens can be produced by utilizing

next-generation sequencing (NGS) technology. Various

computational approaches can be used to predict neoantigens

and their presentation by human leukocyte antigen (HLA).

Previously, we demonstrated such an application of

computational approaches in epitope prediction and rational

vaccine design (42, 90–94). With the increasing number of

studies and clinical trials of personalized cancer vaccines, the

possibility of developing mRNA vaccines against different types of
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cancer is mounting. Despite the promise of mRNA cancer therapy,

much more research is needed to develop stable mRNA and safe

advanced delivery systems. Further development of personalized

vaccines and clinical trials for different tumors are required.

mRNA-based vaccines have gained more and more popularity

for the development of novel immunotherapies. However, the

instability and in vivo delivery of mRNA cancer vaccine have

impaired its clinical application. Although progress has been made

over the past decades to overcome these limitations, challenges still

exist on the development of mRNA cancer vaccines. Another major

challenge is the targeted delivery ofmRNA to specific tissues and cell

types. In addition, future studies could focus on combining mRNA

cancer vaccines with other immunotherapies to improve clinical

outcomes and cancer treatment.

In summary, given the technological revolution in the field of

mRNAvaccines,wecansoonexpecta leap incancer immunotherapy

and successful clinical translation of mRNA cancer vaccines.
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